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Abstract
Quantifying heterogeneity in gene expression among single cells can reveal information

inaccessible to cell-population averaged measurements. However, the expression level of

many genes in single cells fall below the detection limit of even the most sensitive technolo-

gies currently available. One proposed approach to overcome this challenge is to measure

random pools of k cells (e.g., 10) to increase sensitivity, followed by computational “decon-

volution” of cellular heterogeneity parameters (CHPs), such as the biological variance of

single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-

cell data alone, and typically within a single population of cells. However, integrating both

single- and k-cell data may reap additional benefits, and quantifying differences in CHPs

across cell populations or conditions could reveal novel biological information. Here we

present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to

infer CHPs within a single condition or their differences across two conditions. Using simu-

lated as well as experimentally generated single- and k-cell data, we found situations where

each data type would offer advantages, but using both together can improve precision and

better reconcile CHP information contained in single- and k-cell data. We illustrate the utility

of our approach by applying it to jointly generated single- and k-cell data to reveal CHP dif-

ferences in several key inflammatory genes between resting and inflammatory cytokine-

activated human macrophages, delineating differences in the distribution of ‘ON’ versus

‘OFF’ cells and in continuous variation of expression level among cells. Our approach thus

offers a practical and robust framework to assess and compare cellular heterogeneity within

and across biological conditions using modern multiplexed technologies.

Author Summary

Different cells can make different amounts of biomolecules such as RNA transcripts of
genes. New technologies are emerging to measure the transcript level of many genes in sin-
gle cells. However, accurate quantification of the biological variation from cell to cell can
be challenging due to the low transcript level of many genes and the presence of substantial
measurement noise. Here we present a flexible, novel computational approach to quantify
biological cell-to-cell variation that can use different types of data, namely measurements
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directly obtained from single cells, and/or those from random pools of k-cells (e.g., k =
10). Assessment of these different inputs using simulated and real data revealed that each
data type can offer advantages under different scenarios, but combining both single- and
k-cell measurements tend to offer the best of both. Application of our approach to single-
and k-cell data obtained from resting and inflammatory macrophages, an important type
of immune cells implicated in diverse diseases, revealed interesting changes in cell-to-cell
variation in transcript levels upon inflammatory stimulation, thus suggesting that inflam-
mation can shape not only the average expression level of a gene but also the gene’s degree
of expression variation among single cells.

Introduction
Transcriptomic profiling is widely used in biomedical research, but until recently it often relies
on measuring mRNAs pooled from thousands to millions of cells, thus obscuring the well-
appreciated biological variation that exists among individual cells of the profiled population.
Quantifying variation in gene expression across single cells could help address fundamental
biological questions and empower new applications previously not possible using cell-popula-
tion based measurements. Such new applications include de novo assessment of tissue compo-
sition without a priori knowledge on cell-type defining markers [1,2] and inferring biologically
relevant changes in cell-to-cell variations. Despite rapid technological advances, accurate mea-
surement of single-cell expression is a major challenge, particularly because many mRNAs are
expressed at levels close to or below the detection limit of current profiling technologies [3,4].
For example, the estimated rate of capturing individual mRNAmolecules ranges from ~10% to
~20% using state-of-the-art single-cell RNA-Seq protocols [4,5]. Indeed, typical single-cell
gene-expression data obtained by quantitative PCR (qPCR) or RNA-Seq contain a substantial
number of zero or non-detected measurements (“non-detects”), which cannot be entirely
attributable to cells expressing zero transcripts. For example, some non-detects may arise from
technical factors such as measurement noise, and missed capture or amplification of mRNA
transcripts at or near the detection limit, as revealed by recent studies using measurements of
spike-in standards and statistical inference methods [6–12].

An alternative approach to direct single-cell profiling, called “stochastic profiling” [13], has
been proposed to mitigate detection issues: measure the expression of random pools of a small
number of cells (k) (e.g., k = 10), followed by computationally deconvolving these pooled-cell
measurements to infer the underlying cell-to-cell variation parameters. This approach offers
more robust detection due to the increased amount of input mRNA and has been used to, for
example, assess whether expression distributions across cells are bimodal [13–15]. Each
approach can offer advantages, e.g., single-cell for its direct interpretability and k-cell for
improved sensitivity and therefore better quantitative estimates of certain cell-to-cell variation
parameters. In principle they can also be complementary, and when both data types are
obtained from a cell population, utilizing them together could potentially provide richer infor-
mation for assessing cellular heterogeneity than using either one alone; however, in practice,
no approach has been developed to take advantage of both data types simultaneously.

To utilize both data types jointly and also allow the flexibility of using either one alone, here
we present a Bayesian approach (calledQVARKS) that quantifies the degree and the statistical
uncertainty of expression variation across cells by using k- and/or single-cell data, after
accounting for technical detection limits. A key contribution of our approach includes a newly
developed statistical model and associated Bayesian inference and model assessment
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procedures that can handle single-cell, k-cell, or both data types jointly to infer cellular hetero-
geneity parameters (CHPs), including the fraction of cells in the population expressing the
gene (“ON” cells) or variation in expression level among “ON” cells. Both types of cellular het-
erogeneity can reflect meaningful biology, for example, the former, or “discrete” heterogeneity,
may capture the frequency of functionally distinct cell subsets as classically defined by marker
gene expression, while the latter, or “continuous” heterogeneity may capture the spread of the
expression phenotype that could ultimately influence the overall population-level response to a
perturbation [16].

Another feature of QVARKS is that it can model data jointly from two distinct cell popula-
tions to quantitatively assess differences in CHPs (or “differential heterogeneity”, DH) between
the two conditions. While assessing differences in mean expression between two conditions is
widely applied, the biology of differences in cell-to-cell expression variations (CEV) has been
underexplored. Given that CEV can play functional roles and can be under genetic regulation
[17], QVARKS can be used to help reveal gene expression heterogeneity among cell popula-
tions, such as those exposed to different environments or from distinct developmental lineages.
QVARKS thus complements existing single-cell data analysis approaches that either focus on
identifying differential expressed (DE) genes [7,11,18], or aim to find genes with high overall
variability but do not deconvolve the overall variability into discrete vs. continuous compo-
nents [6,12,10,19].

We systematically assessed the performance of QVARKS using both simulations and joint
single- and k-cell data obtained from two biological conditions. We took advantage of
QVARKS’ flexibility to handle different input data types to study the relative performance of
using single-cell, k-cell or both data types to infer CHPs in a single condition or compare them
between two conditions. We found scenarios where different input data types (single-cell, k-
cell, or both) offer advantages. However, integrating both single- and k-cell data often offers
the advantages of both. We also evaluated whether single-cell data would lead to inferred
parameters consistent with k-cell data and vice versa, and found many situations where single-
or k-cell analysis on its own led to significantly different results. Thus, this argues for proper
integration of the two data types for robust parameter estimation and cross-checking them for
consistencies when possible.

We illustrate the practical biological utility of our approach by applying it to compare CEV
in resting versus inflammatory-activated human macrophages, an important immune cell type
known to function in diverse tissues and biological processes, including chronic inflammation
associated with numerous common human diseases and aging [20]. QVARKS revealed signifi-
cant differences in the CEV of key genes (e.g., RELA, a component of NFκB) upon inflamma-
tory activation, potentially reflecting condition-dependent regulation of cellular heterogeneity.
QVARKS is provided as an R package with detailed documentation (see Data Availability for
download URL), and thus offers a practical, robust approach to quantitatively assess and com-
pare CEV within and among biological states or conditions.

Results

QVARKSmethod overview: Inferring cell-to-cell expression
heterogeneity via integrative modeling of single- and/or k-cell
measurements
We focus on assessing two aspects of CEV for a given gene. First, “discrete” heterogeneity,
arises due to the presence of cells with zero (OFF cells) vs. non-zero expression (ON cells) of
the gene. Biologically, this type of CEV can originate from differences in the transcriptional sta-
tus or activity at the gene locus among single cells, e.g., some cells have actively transcribing
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promoters while others have inactive promoters. Second, “continuous” patterns of CEV among
ON cells reflecting, for example, that some cells have higher levels of upstream transcriptional
regulators than other cells; inherent stochasticity in biochemical reactions, such as transcript
and protein production, can also contribute substantially to continuous variability among sin-
gle cells [17]. QVARKS mathematically models these two CEV patterns for each gene and the
Bayesian procedure described below infers the value of these parameters using single-cell (SC)
data alone, k-cell (KC) data alone, or both (SCKC). The overall framework is depicted in Fig 1.
The output of QVARKS includes an estimate of the CEV parameters (or their differences
between conditions when run in two-condition mode) and the statistical uncertainty around
each of the parameters (all computed from the posterior distribution inferred by the Bayesian
procedure; see description below and in Methods).

Fig 1. The QVARKSmethodology and its three input data modes (SC, KC and SCKCmethods). (A) Schematic of our experimental and
computational strategy (right box) for quantifying cell-to-cell variation in gene expression (left box) by integrating k- and/or single-cell expression
profiles is shown (see text for additional details). Our approach can utilize single-cell data alone, or k-cell data alone, or both together as input to infer
cellular heterogeneity parameters (CHPs). MCMC stands for Markov Chain Monte Carlo, and our gene expression data is measured in Et = 40-Ct
units for qPCR (both in this figure and rest of the paper; please note that Et approximates log2(transcript counts) as explained in Methods). (B)
Schematic of our AD-test based model assessment criteria (see text and Methods for details).

doi:10.1371/journal.pcbi.1005016.g001
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Model parameters and assumptions. For each gene we model the distribution of expres-
sion level in single cells with two modes: a fraction π of cells have at least one transcript and
hence are “ON”; the rest of the cells have zero transcripts of this gene and hence are “OFF”.
Within ON cells, the level of expression (after logarithmic transformation) is normally distrib-
uted with mean μ and variance σ2 (i.e., log-normally distributed) (Fig 1A). To model imperfect
transcript detection, such as when the input mRNA amount falls below the detection limit of
the assay, we explicitly model the probability of detection (ranging from 0 to 100%) with a
mathematical function (logistic function) that assumes higher values as the number of input
transcripts increase (see Fig 1A and Methods). To model two distinct cell populations or condi-
tions, each population has its own set of CHPs (π, μ and σ) and we assume the same transcript
detection assay is used to profile both conditions. Observed k-cell expression is modeled as a
random sampling of k single cells followed by noisy detection as described above (see also
Methods). Our choice of statistical distributions used to model single cells is motivated and
supported by earlier single-cell modeling studies suggesting log-normal distributions of tran-
script counts [7,21] and logistic detection behavior of qPCR or RNA-Seq assays [8,11,22], as
well as our own data (see bulk DE and model assessments below). However, our overall
approach is general and can be extended to alternative choices of single- and k-cell distribu-
tions, such as the negative binomial [11,12] and other models of detection limits.

Bayesian inference of model parameters. A Bayesian inference procedure (based on a
random walk Metropolis Markov Chain Monte Carlo (MCMC) approach) was developed to
infer model parameters from SC, KC, or SCKC input modes (Fig 1A). A Bayesian approach was
taken to allow the inference of posterior distributions that naturally capture the statistical uncer-
tainty of inferred parameters, so that CHPs within a single cell population or their differences
among cell populations can be robustly assessed. For ease of presentation, we summarize each
parameter’s posterior distribution by its mean along with a 90% credible interval (CrI) that quan-
tifies the uncertainty or spread around the mean (see Fig 1A andMethods). To assess whether
our inferred models capture the data well and thereby also check if the data satisfies our model
assumptions and parameterizations, including statistical distribution choices, we verified the
agreement between the distribution of observed, real data and of simulated data generated from
inferred models, each of which was specified by parameters independently drawn from the poste-
rior distribution [23] (Fig 1B). The specific criterion we used required more than 75% of the
models drawn to be capable of generating data samples statistically indistinguishable from the
observed single- and/or k-cell data used to infer the parameters (i.e., AD-test P� 0.1 as shown in
Fig 1B and Methods), but other model assessment approaches, including a single AD-test
approach and posterior predictive checks [23,24] are supported by QVARKS as options (see Dis-
cussion). We hereafter refer to inferred models passing model assessment criteria in all studied
conditions as “successfully modeled” genes, and those passing in a given condition as successfully
modeled “gene-condition models” or “gene-condition combinations” (GCCs).

Thus, QVARKS provides a unique, flexible approach to handle three input data modes from
the ground up (SC, KC and SCKC), as well as a novel comparative framework to assess changes
in heterogeneity parameters, such as π and σ, between two conditions.

In addition to its ability to integrate single- and k-cell data, QVARKS was designed to pro-
vide functionalities that are distinct from and thus complementary to existing single-cell data
analysis methods. Approaches such as MAST and SCDE aim to model single cell data to iden-
tify differentially expressed (DE) genes among conditions [7,11,18]. The inferred CHPs from
QVARKS can also be used to infer DE genes (see below), but the primary goal of QVARKS is
to assess CHPs within a single condition or between two conditions. QVARKS also deviates
from this class of methods by explicitly modeling: 1) detection drop-offs for each gene to
deconvolve the observed fraction of OFF cells (no transcript detected) into those that are truly
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OFF (transcriptionally silent) vs. technically induced drop-offs, and 2) variation among ON
cells to assess continuous patterns of CEV. This type of decomposition is also not yet the focus
of other methods such as BASICS that do focus on quantitatively assessing cell-to-cell variabil-
ity [6,12,10,19]. BASICS, for example, identifies genes with high overall variability unlikely
explainable by those originating from technical sources by using a large number of spike-in
controls that span the dynamic range of expression to disentangle biological CEV from techni-
cal noise. Since QVARKS does not rely on spike-ins, it is applicable to platforms that can only
profile a smaller number of genes (e.g., microfluidic based qPCR or targeted RNA-seq).

Using simulation to compare the performance of SC, KC and SCKC
input data modes
We first sought to assess the relative performance of the three input data modes of QVARKS
(SC, KC and SCKC) in inferring CHPs (π, μ and σ) across a range of scenarios involving either
a single condition/cell population, or two conditions/cell populations aimed at comparing the
inferred CHPs between the two conditions. Here, the unique capability of QVARKS for han-
dling all three input data types served as a common inference procedure to help evaluate their
relative performance.

We simulated single- and k-cell data (using k = 10 and 50) subjected to measurement by an
assay that would suffer from increasingly missed detection as the input mRNA level is lowered
and additional measurement noise under a range of scenarios, and used the resulting single-cell
data (SC), k-cell data (KC), or both (SCKC) to infer the value and statistical uncertainty of the
CHPs (using a posterior surface scanning procedure; see Methods). The number of samples was
fixed at n = 1000 across all three approaches–i.e., n single-cell, n k-cell, or n/2 single-cell and n/2
k-cell samples were used. Data were simulated under scenarios reflecting low, medium and high
levels of difficulty, corresponding to, respectively, high π and low σ (i.e., high ON fraction and
low cell-to-cell variation among ON cells), medium π and σ, and low π and high σ (i.e., low ON
fraction and high cell-to-cell variation among ON cells) (see S1 Fig andMethods), as well as
assays with varying detection efficiencies (bad, medium and good sensitivity assays corresponding
to, respectively, 18%, 50% and 82% average detection of single-cell samples and nearly perfect
detection of all k-cell samples; see Methods). The simulated data was further subjected to known,
realistic sources of experimental noise including sampling, amplification and efficiency noise [12]
using five distinct noise configurations (see S1 Fig andMethods). Assessing such diverse scenarios
is important and informative since a wide range of possibilities is expected across the tens to thou-
sands of genes targeted by multiplexed techniques such as microfluidic qPCR and RNA-Seq. Per-
formance across the input data types was evaluated via the error (differences between inferred
and true values) and statistical uncertainty of the parameter estimates (Fig 2 and S2 and S3 Figs).

Our single-condition simulations revealed that 1) as expected, SC’s performance on infer-
ring both discrete and continuous heterogeneity (π and σ) was worst in medium- or high-diffi-
culty scenarios using assays suffering from sensitivity issues (Fig 2 and S2 Fig); 2) SCKC was
comparable to KC across a range of scenarios, and tended to be better than KC when k is larger
using assays of medium to high sensitivity for inferring π and μ—these were similar to the sce-
narios under which SC is better than KC when high sensitivity assays are used (see Fig 2 and S2
Fig). Note that SCKC’s inferred values for π and μ (and to a lesser extent, SC’s) tended to center
more tightly around the true values than those inferred from KC, because a given k-cell expres-
sion distribution for a larger k could be explained by scenarios involving different combina-
tions of π and μ (e.g., more ON cells because of higher π but lower mean expression μ, or
alternatively, less ON cells but higher μ) and these possibilities could be better disentangled by
having single-cell data using a sensitive assay; under this scenario in the case of SCKC, the
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samples allocated for single-cell measurements provide unique information not well-captured
by k-cell data. Depending on the expression-level distribution of the target genes and the assay
detection properties, a larger k may sometimes be warranted to improve detection and there-
fore SCKC could be advantageous in such situations as suggested by these simulation results
(see Discussion). Note that these conclusions held largely across the different measurement
noise configurations tested except for a few cases as shown in S2 Fig.

A key aim of QVARKS is to enable a quantitative, comparative assessment of heterogeneity
parameters of each gene between two biological conditions. Thus we augmented the single-
condition assessments with two-condition simulations. We simulated each gene under two
conditions with different ON cell fractions (e.g., 80% ON cells in one condition vs. 50% in the
other) and subjected them to the same logistic assay and measurement noise settings as in the
single-condition scenarios (see Methods). While the relative performance trend of the three
methods in inferring parameter differences between the two simulated conditions tends to be
similar to that when inferring single-condition parameters (S3 Fig), the performance difference
among methods, particularly that between SCKC and KC, was less pronounced in the compar-
ative setting. Again, as above, the measurement noise setting tends to have little effect on the
relative performance of different methods except for a few cases as shown in S3 Fig.

Examining single- and two-condition simulation results together revealed differences in
how measurement noise affects inference outcomes. As expected, as more noise is added, all

Fig 2. Comparison of SC, KC and SCKCmethods using single-condition simulations. Simulation results for single-condition parameter inferences,
where each dot corresponds to an inferred parameter for a gene simulated under one condition according to the simulation scenario denoted by the legend.
Diverse scenarios of varying levels of inference difficulty, measurement noise and assay sensitivity/detection (see Methods and S1 Fig) were used to
generate simulated data. Parameter inferences (posterior mode and 90%CrI based on a grid-based posterior scan) were made for ten simulated datasets
(sample size n = 1000) and the mean is shown here for each scenario and method. Each plot compares the performance of the two indicated methods as
follows: The x-axis indicates the difference in the absolute error of the two methods’ estimates divided (scaled) by the true parameter value (if non-zero)—
here absolute error is defined as the magnitude of the estimate minus the true parameter value; the y-axis is the difference in the CrI width of the two
methods’ estimates divided (scaled) by the true parameter value (if non-zero). Alongside the legend is the guide to understand the simulation result plots
indicating the quadrants where one method outperforms the other. See the legend for simulation result plots in conjunction with Methods and S2 Fig to obtain
a complete description of the simulation scenario (including measurement noise setting) underlying each dot in the plots. Note that S2 Fig is an expanded
version of the figure shown here containing additional results on KC vs. SC, as well as medium inference difficulty and medium assay sensitivity.

doi:10.1371/journal.pcbi.1005016.g002
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three methods suffered from increased error in their estimates within individual conditions
because none of the methods explicitly model experimental noise. However, such noise-
induced error appeared largely mitigated when comparing across two conditions (S4 Fig),
likely because such errors tend to cancel out in comparative analyses between two conditions.
However, under some comparative scenarios, such as when both the mean expression and cell-
to-cell variation are different between the two conditions, estimates of differences could still be
error-prone due to the dependence of technical noise on average/mean expression. This error/
bias can potentially be handled by explicitly checking the mean-variance relationship to assess
whether the observed difference in heterogeneity of a given gene can be accounted for by
changes in the average expression alone between two conditions (as illustrated in the biological
application below; see also S11 Fig).

In summary, our simulation results revealed scenarios where different input data types can
each offer advantages. We confirm that when assay sensitivity is high, SC can be desirable par-
ticularly for providing directly observable estimates of discrete heterogeneity (π). As the assay
sensitivity lowers and the inference difficulty increases, the advantages of KC become apparent,
at the cost of masking biological heterogeneity at larger values of k. Our simulations revealed
that SCKC tends to offer the best of both SC and KC under many scenarios, thus suggesting
that simultaneous generation and integration of the two data types can be a robust, valuable
approach, particularly under multiplexed settings where different genes would fall under differ-
ent inference difficulty and detection scenarios as simulated above.

Using simultaneously generated single- and k-cell data to compare the
precision of SC, KC and SCKC
Since certain features of real data cannot be fully captured by simulated data, we next sought to
assess the relative performance of the three input data modes using single- and 10-cell data
(i.e., k = 10) we had jointly generated for studying cell-to-cell expression variation of human
macrophages in resting conditions (control, CNT) vs. those exposed to inflammatory cytokines
for 24 hours (IFNγ together with TNFα, hereafter referred to as IFNT) (see full description of
this data below and in Methods). We performed several analyses to assess relative precision, or
conversely statistical uncertainty, using appropriately downsampled data so that the sample
sizes were the same across SC, KC and SCKC (see Methods). Here we can only assess precision
rather than error (the difference between the true and the estimated values), due to the lack of
ground truth about parameter values in real data.

We first assessed the precision of estimated parameters as quantified by the credible interval
(CrI) width reflecting the amount of statistical uncertainty about the true value of the parame-
ter. In particular, we focused on genes with similar inferred values across the three input
modes to avoid confounding from potential correlation between precision and error/bias. This
analysis revealed that SCKC tends to provide more precise estimates for π and σ than either SC
or KC alone across a larger fraction of genes (Fig 3A and S5 Fig). By using a t-like fold-change
statistic to assess statistical power for detecting changes in heterogeneity (DH) between two
conditions, this improved precision of SCKC in comparison to SC or KC also translated to
mild increases in sensitivity for detecting DH, especially for the π and μ parameters (Fig 3B).

We next evaluated whether using single-cell data alone would lead to inferred parameters
consistent with k-cell data and vice versa. In a perfect world where the single-cell assays have
100% detection and the value of k is sufficiently small so that masking of biological cell-to-cell
heterogeneity due to convolution of k cells is minimal, single- and k-cell data would reveal sim-
ilar information about cell-to-cell heterogeneity. In reality, these two data types may provide
different parameter estimates due to a variety of reasons, including their differences in
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susceptibility to detection limit problems, and thus it would be informative using simulta-
neously generated single- and k-cell data to formally assess their consistency. Towards this
end, we performed a cross-validation analysis by randomly dividing our data (84 single- and
randomly down-sampled 84 ten-cell samples per condition (IFNT and CNT)) in 2:1 ratio into
training and testing sets (Fig 4A). We used the training data to infer models separately using
SC or KC and the testing fraction to assess how well the inferred model fits using our AD-test
model assessment criteria (see Fig 1B and Methods). This analysis showed SC-inferred models
tend to explain only the corresponding single-cell test data well but not the k-cell test data, and
similarly but to a lesser degree, the KC-inferred models are more aligned with the k- than sin-
gle-cell test data (Fig 4B). However when both training data types were used (SCKC), the
inferred models fit both the single and k-cell test data substantially better than using the SC or
KC inferred models alone (Fig 4B). To an extent, these observations are to be expected given
that SCKC uses both single- and k-cell training data (half of each to keep the same sample size
across methods). Yet, importantly, our results revealed that single- or k-cell analysis on their
own could lead to models irreconcilable with the other data type, each of which contains
important information about the expression distribution of a gene across single cells. Given the
highly multiplexed nature of modern gene expression assays, a sizable number of genes could
fall under such “incompatible” scenarios, thus providing support for the generation, cross-
checking and proper integration of both data types when possible.

Using bulk RNA-Seq data and differential expression (DE) performance
to assess QVARKS
While the focus of QVARKS is to infer CHPs within a single condition or compare CHPs
between two conditions, several existing single-cell approaches focus on assessing differential
expression between conditions using single-cell data. QVARKS can also be used to assess DE
using one of the three possible input data modes. Assessing DE affords us another way to check
our model assumptions and the overall method because QVARKS computes DE using the pos-
terior distribution of its model parameters and thus achieving reasonable DE results require
that our inferred posterior distributions be accurate. Here following previous studies [11,18],
we view the DE estimates (log2-fold-change (log2(FC)) of the average expression of a gene
between two conditions) computed from bulk, cell population-level RNA-Seq data as “ground
truths”. Our bulk RNA-Seq data was generated in a related study in the same macrophage con-
ditions as our single- and k-cell data. In addition to comparing against bulk RNA-seq, we also
assessed QVARKS’ performance in recapitulating bulk DE relative to that of two other single-
cell based DE methods: MAST [18] and SCDE [11] (S6 Fig). Specifically, we applied MAST
and SCDE to our macrophage qPCR data and compared with QVARKS running in SC, KC or

Fig 3. Comparison of SC, KC and SCKCmethods using real data. Experimentally generated single- and ten-cell data obtained from
resting (CNT) and inflammatory-activated (IFNT) humanmacrophages are used for assessing the three methods. Note that for these
evaluations, ten random downsamplings of the data were performed as described in Methods to make SCKC sample size the same as that of
SC or KC. Results from one of these downsamplings chosen at random is shown in (A) given that other downsamplings show similar trends,
and results from all 10 downsamplings are shown in (B) as lightly shaded lines along with a darkly shaded blue line connecting the median
values across runs. (A) Comparing the precision (or uncertainty) of the parameter estimate of the indicated methods. For gene-condition
combinations (GCCs) whose parameter estimates are similar between the compared methods (see Methods and S5 Fig), the difference in CrI
width (reflecting uncertainty/precision) between the two compared methods scaled by the average parameter estimate is computed and
shown as a histogram. Atop the histogram are the percent of GCCs having at least a 20% precision advantage in one method vs. the other in
the indicated comparison (see Methods). (B) Differential heterogeneity (DH) comparisons. The empirical cumulative distribution function
(CDF) of a t-like fold-change statistic for assessing differences between IFNT vs. CNT in the indicated parameter is shown. The statistic
corresponds to the difference between the average estimate in the two conditions divided by the average uncertainty (CrI width). The
indicated CDF fraction (y axis) is out of all successfully modeled genes, which is 71 for KC, 58 for SC and 41.5 (median) across different
SCKC runs.

doi:10.1371/journal.pcbi.1005016.g003
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SCKC modes using relative (Pearson correlation shown in S6A and S6B Fig) and absolute
(average squared error shown in S6C and S6D Fig) measures of recovering ground-truth fold-
change values. Evaluation based on the relative, correlation based measure revealed that
QVARKS SCKC and KC nicely capture bulk level DE and perform comparably to MAST and
SCDE, and QVARKS SC performs comparably once genes with large CrI are removed (S6A
Fig). QVARKS SC in general yields more parameter estimates with large uncertainty (large
CrI) as has also been observed above (Fig 3A), thus removal of these genes led to improved per-
formance. Evaluation based on the absolute measure showed that DE estimates from all
QVARKS input modes were well-calibrated with respect to the ground-truth values, and thus
all had relatively low absolute error (S6C Fig). Thus, the overall DE performance of QVARKS
suggests that our model assumptions and inference procedures are reasonable and capture the
data well.

QVARKS reveals condition-dependent CEV in resting vs. inflammatory
human macrophages
To assess and illustrate the practical applicability and utility of QVARKS, we next applied
QVARKS to the full single/10-cell macrophage data set introduced above. Here we focused our
analysis using SCKC as the input data so that we can use all available data; SCKC also tends to
provide the most robust results as suggested by the evaluations above. The data was obtained
in a related study using fluorescence activated cell sorting (FACS) of single and ten cells fol-
lowed by microfluidic qPCR (measuring 93 transcripts and 3 spike-in control RNAs; see Meth-
ods). Macrophages are immune cells that exhibit diverse environment-dependent phenotypes
and hence are good models to study how the environment shapes CEV in transcript levels,
such as changes in the fraction of ON cells (π). Environment- or signal-induced changes in
gene expression have largely been assessed by measuring alterations in average expression
using a population of cells, but measuring the average alone could miss changes in CEV. By

Fig 4. Cross-validation of SC, KC and SCKCmethods using real data. (A) Illustration of the 2:1 cross-validation scheme. Note that the SCKCmethod’s
input data is of the same sample size as the SC or KCmethod. (B) Bar plots showing the number of GCCmodels trained using 2/3rd of the data via the
indicated method (SC, KC or SCKC) that successfully fit the unseen 1/3rd of the data. Here the fit is evaluated based on applying our AD-test model
assessment criteria on either single-cell (green bars) or k-cell (red bars) test data.

doi:10.1371/journal.pcbi.1005016.g004
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taking advantage of the posterior distributions containing measures of statistical uncertainty
around the inferred heterogeneity parameters, we can begin to quantitatively assess changes in
CEV in resting vs. IFNT-activated (inflammatory) macrophages.

Our Bayesian procedure successfully modeled and obtained posterior distributions of model
parameters for 53 and 60 genes in CNT and IFNT, respectively. Of these, 41 are shared between
CNT and IFNT, and hence their CEV can be quantitatively compared across these two condi-
tions (see below). A majority of the remaining genes failed model assessment due to scarcity of
detected cells (observed ON cells less than 5 in single-cell data for 23 failed genes in CNT and
17 failed genes in IFNT). Since these genes are inherently difficult to work with for inferring
CHPs (e.g. inferring ON-cell variance from 5 or fewer cells is challenging), they could essen-
tially be filtered out a priori. Under such a filter, the model assessment rate increases to 71–
75% (47 out of 66 filtered genes in CNT, and 51 out of 68 in IFNT were successfully modeled).
Thus, consistent with our DE assessment above, our model assessment indicates that for many
genes, the data is captured well by our models, suggesting that our model assumptions, includ-
ing distribution choices, are also robustly supported by the data.

Despite the relatively high sensitivity of qPCR assays, signs of imperfect detection were
apparent given that the average expression derived from single-cell data tended to be consis-
tently lower than that obtained from 10-cell data (divided by 10) for transcripts expressed at
medium or low levels (S7 Fig). Thus, some apparently “OFF” cells likely had some non-zero
level of expression that simply escaped detection. Indeed, the inferred fraction of OFF cells (1-
π) for a majority of genes in both conditions was consistently lower, albeit only slightly in most
cases, than that observed on single-cell data alone (Fig 5A). As expected, genes with a higher
observed fraction of OFF cells also tended to have larger uncertainty for π because it is more
difficult to narrow down model parameters (including ones associated with detection) using
information from just a few ON cells (analogous to the “high difficulty” simulation scenario;
see Fig 2). However, even for such “difficult” genes, not all of the OFF cells can be attributed to
escaped detection–the inferred fraction of OFF cells is at least 25% for a majority of these genes
even after accounting for statistical uncertainty (based on counting genes whose CrI is above
0.25 in Fig 5A). Thus, our Bayesian analysis integrating single- and 10-cell data helped estimate
the proportion of OFF cells attributable to detection issues and thereby helped obtain better
estimates of the expression distribution among single cells for a majority of the genes we
measured.

Bulk differential expression (DE) between two conditions can be attributed to a combina-
tion of changes in the fraction of ON cells and in the mean expression level among ON cells
[7]. Here QVARKS provides a rigorous framework to explore the relationship between bulk
differential expression (DE) and alterations in heterogeneity parameters π and μ [7] upon
inflammatory activation. We assessed the status of these parameters for 23 DE genes between
IFNT and CNT conditions (adjusted P-value or adjP< 0.05) determined using the posterior
distribution of the average mRNA level (reflected by the mean μ of ON-cells weighted by π; see
Methods)–these genes were largely similar to DE genes obtained directly from 10-cell data (see
Methods and S8 Fig). Eight of the DE genes had significant changes in π but not μ (e.g., RELA),
while four had the opposite behavior (e.g., FTL), and the rest either had significant changes in
both (e.g., CD274) or neither (Fig 5B). Note that many genes in the last category lacked signifi-
cant change in π and μ not necessarily because the mean fold changes are small, but more
because the statistical uncertainty around their inferred fold changes is large. Taken together,
our results show that in macrophages adapting to inflammatory stimulation, both “digital”
(altering π) and “fine-tuning” (altering μ) modes of regulating gene expression are prevalent.

A key application of QVARKS is to assess changes in heterogeneity parameters (or DH),
such as asking whether environment shapes cellular heterogeneity. Thus, we next inferred
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differences between IFNT and CNT in terms of 1) the standard deviation of expression in ON
cells (σ) reflecting continuous heterogeneity and 2) the ON-fraction (π) reflecting discrete het-
erogeneity (Fig 6). The inferred differences in these CHPs for successfully modeled genes were
also verified to be robust against well-to-well variation in detection efficiency quantitated using
spiked-in ERCC control mRNAs (see S9 Fig; note that detection efficiency was a major source
of technical noise assessed in [12]). In addition to π and σ, comparative assessment of heteroge-
neity across conditions can also be extended to other notions of heterogeneity, such as the
Shannon entropy function computed using π, by taking advantage of our Bayesian approach’s
ability to handle inference of any function of the CHPs (see S10 Fig and Methods).

Our analyses revealed both shared and condition-specific patterns of CEV (Fig 6A and 6D).
Genes such as FTL had similar continuous and discrete heterogeneity across conditions. How-
ever, RELA, a component of the NFκB complex, for example, had a higher fraction of ON cells
(adjP = 2.15e-05, calculated as described in Methods) as well as higher variability among ON
cells in IFNT than CNT (adjP = 0.012, Fig 6C). Such changes in continuous variability could
not be solely attributed to differences in average expression among ON cells (μ) or fraction of
ON cells (π) between the conditions (S11 Fig). The inferred change in σ across the two condi-
tions for genes such as RELA was also robust against sampling noise when random (50%)
downsamplings of the data were assessed (S12 Fig), and is thus potentially reflective of changes
in biological cell-to-cell variation. Since NFκB is a key transcription factor mediating responses
to diverse inflammatory signals in macrophages [25], an increase in the heterogeneity of RELA
expression upon inflammatory activation by IFNT suggests that elevating the response diver-
sity among cells in, for example, infected tissues may play an important functional role, such as
to counteract bacterial targeting of activated cells or to prevent detrimental over-inflammation.
CLEC7A also showed changes in both types of heterogeneity, albeit in opposite directions, i.e.,
up in continuous (adjP = 0.002) and down in discrete (adjP = 0.0006) variations. Differences in
σ could, for instance, reflect changes in stochastic dynamics during transcription and mRNA
degradation, or in negative feedback regulation. Thus, changes in both heterogeneity parame-
ters in inflammatory vs. resting macrophages can be robustly detected by our approach. It will
be interesting in the future to study the underlying mechanisms and function of such distinct
gene regulation modes revealed by the differential heterogeneity and differential expression
tests enabled by QVARKS.

Discussion
Environment- or signal-induced changes in gene expression have largely been assessed by mea-
suring alterations in average expression using a population of cells. However, measuring the
average alone could miss changes in cell-to-cell heterogeneity. Assessing such changes in a sta-
tistically rigorous manner has been challenging, in part due to difficulties in disentangling

Fig 5. Application of QVARKS SCKC reveals technical drop-offs and basis of bulk differential
expression. (A) Extent of technical noise. Comparing the inferred (y) vs. observed (x) fraction of OFF cells
across genes shows that genes with higher fractions of OFF cells were affected the most by imperfect
detection. Only genes successfully modeled in either the IFNT or CNT conditions are shown; the 90%
credible interval (Crl) is indicated by the lightly shaded line around the mean of the posterior distribution.
Several example genes associated with inflammatory or anti-inflammatory processes in macrophages are
marked. (B) Distinct modes of regulating differential expression. The 23 differentially expressed genes based
on average expression in the cell population in resting vs. IFNT conditions are shown in a scatter plot
depicting differences in the fraction of ON cells (x) against differences in the mean of ON cells (y). The CHPs
inferred using QVARKS are used to classify these genes into those with significant (adjP < 0.05) changes in:
1) only the fraction of ON cells, 2) only the mean expression of ON cells, 3) both, or 4) neither. The 90%Crl is
indicated by the lightly shaded lines around the mean of the posterior distribution as before.

doi:10.1371/journal.pcbi.1005016.g005
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technical vs. biological variations in single-cell measurements. To help overcome these chal-
lenges, we have developed a flexible computational method for inferring CHPs within a cell
population or across two cell populations using single-cell, k-cell, or both data types simulta-
neously, by obtaining measures of statistical uncertainty around the inferred heterogeneity
parameters so that the significance of an observed change can be evaluated. Here using inflam-
matory activation of human macrophages as a first biological application, we have uncovered a
number of significant changes in the fraction (π) of and/or variance (σ) among ON cells. Fur-
thermore, we have shown that changing π alone (“digital” gene expression) can contribute to
changes in mean expression at the bulk level. Our approach can also be used to explore whether
cellular heterogeneity can change without accompanying changes in average expression, e.g.,
increasing π and σ while reducing μ such that the population average is unaltered. Indeed, it is
increasingly recognized that cell-to-cell variations could themselves be regulated both geneti-
cally and environmentally without affecting the average expression level to, for example, reduce
the chance of noise-induced cellular activation by lowering heterogeneity or hedge against
environmental fluctuations by ensuring sufficient variation across cells in a population [17].
However, it is worth noting that despite our modeling of technical factors such as misdetection,
interpreting continuous CEV parameters (the variation among ON cells, or σ) can be more
challenging in general than interpreting discrete CEV parameters (the fraction of ON cells, or
π). For example, other sources of technical noise are still possible and thus the biological and
technical sources may not be fully disentangled, and additional checks, such as those in S11 Fig
based on linear regression, do not account for non-linear relationship between mean and vari-
ance, and could violate some linear regression assumptions (such as error-free measurement of
independent variables and homoscedasticity). One way to help disentangle biological from
technical variation in the future is to utilize dilution-series experiments to obtain an estimate of
the technical variation of all gene assays at different average expression levels, although sam-
pling/pipetting noise also need to be considered properly at lower ends of the concentration
scale.

The unique ability of QVARKS in handling the three input data types (SC, KC and SCKC)
allowed us to assess their relative performance for the first time under a common Bayesian
analysis framework. While analyses of both simulated and real data suggest that there are situa-
tions under which each of single- or k-cell input data types can offer advantages, in general
combining single- and k-cell data—when both are generated simultaneously—could yield
more robust estimates of CHPs compared to using single- or k-cell data alone across a range of
scenarios, particularly for genes with moderate to poor detection. A further practical appeal of
using single- and k-cell data jointly, particularly in multiplexed settings such as microfluidic
qPCR and RNA-Seq where tens to thousands of genes are measured, is that the single-cell data
for genes with good detection (e.g., highly expressed genes) can be directly analyzed to enable
applications that require measurements of multiple genes within individual cells, such as iden-
tifying novel cell subsets. However, our approach is flexible and therefore can also be applied to
single-cell data for assessing CHPs within a single condition or comparatively between two
conditions.

Fig 6. Application of QVARKS SCKC to assess differential heterogeneity.QVARKS was applied to assess significant (adjP < 0.05)
changes in π and σ using joint single- and 10-cell data obtained from human macrophages in resting (CNT) vs. IFNT-activated conditions.
(A,D) Continuous heterogeneity as reflected by σ (A) or discrete heterogeneity as reflected by π (D) were significantly altered in IFNT (y)
relative to CNT (x) for some (indicated in red) of the 41 successfully modeled genes. The 90%Crl is indicated by the lightly shaded lines
around the mean of the posterior distribution. (B,C) The posterior distribution of σ for DUSP1 (B) and RELA (C) are shown to illustrate why
only RELAwas deemed significantly changed between the two conditions. The 90%CrI around the posterior mean shown in (A) is indicated
here as red lines.

doi:10.1371/journal.pcbi.1005016.g006
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Our methodological framework can be extended to incorporate additional parameters or
use alternative model parameterizations to account for features such as multimodality within
ON cells, e.g., in samples comprising mixed cell types or subsets. But the inference accuracy
would be constrained by sample size. For example, each additional mode would require three
extra parameters per biological condition in order to capture its frequency, mean and variance
(assuming using a log-normal distribution). Thus, it would only become feasible to learn the
extra parameters for such models when larger sample sizes are available, which will likely be
the case in the near future as the experimental cost of profiling continues to drop with the
introduction of new technologies [5]. Here we chose to use the unimodal distribution for ON
cells for several reasons. First, it is simple, yet captures our single- and k-cell data well—as dis-
cussed above, our model assessment criteria indicated that this parameterization was sufficient
to successfully fit a majority of genes. Among the remaining genes, the predominant reason for
the lack of fit appeared to be the scarcity of ON cells rather than bimodality among them: there
are only two GCCs with more than 10% ON cells that appeared to be multi-modal (TIGD6 in
CNT and PTGS1 in IFNT according to Hartigan’s Dip test for unimodality using a relaxed P<

= 0.2 cutoff). While additional multimodal genes may be present in our study, they were not
evident at our current sample size.

The model assessment procedure used in this study, the default in the R package imple-
menting our QVARKS approach, leans on the stringent/conservative side (i.e., allows less
genes to pass model assessment), in that we required most data sets generated from each of the
posterior parameter draws to be statistically indistinguishable from the observed data (see
Methods). Users of the R package can choose other forms of model assessment, including a
variant of the one used here where data simulated from different posterior parameter draws are
concatenated into one dataset, and a single AD test is carried out to assess the concordance of
this dataset against the observed data. This approach can work well for genes with just a few
ON cells since concatenating all simulated datasets into one provides a larger sample size to
enable a more robust comparison against observed data. However, one advantage of the default
approach is that it matches the sample sizes of the simulated and observed data when perform-
ing each of the multiple AD tests. Another model assessment criterion that our R package sup-
ports is based on the well-accepted posterior predictive p values (ppp; [23,24]), wherein we
empirically test if a particular aspect of the observed data, such as mean or variance of observed
ON cells, is captured well by simulated datasets generated from the posterior parameter draws.
However, the ppp requires the user to choose which aspect of the data (e.g., mean and/or vari-
ance) to use, and does not use information from the whole data distribution the way the AD
test does. The vignette/manual of the QVARKS R package illustrates and compares these
model assessment options. Having multiple model assessment options allows the users to have
more means to determine whether to trust a particular gene’s fitted model, and depending on
the goals of the analysis, proper tradeoffs can be made between ensuring that model assump-
tions are comprehensively met vs. discarding expensive single- or k-cell data. For example,
consider a gene that is expressed in a high number of ON cells in condition A but in very few
in condition B. If the goal were to compare the continuous heterogeneity of genes between the
two conditions, it would be challenging to analyze this gene as the very few ON cells in condi-
tion B would yield unreliable estimates for σ in that condition. However, changes in the discrete
heterogeneity (π) or average differential expression can be more reliably studied for this gene
between the two conditions.

When the k-cell approach is used, the optimal value of k could depend on the cell type and
assayed genes, thus empirical assessment is needed for choosing k. For example, a dilution
series of bulk mRNA can be profiled to estimate the minimum value of k that would provide
reasonable detection for most genes. Our simulation assessment suggests a tradeoff between

Quantify Biological Variation from Single-/K-Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005016 July 20, 2016 17 / 33



the value of k and sensitivity: increasing k would better mitigate detection issues at the cost of
masking biologically relevant heterogeneity from convolving single-cell samples. Indeed, in
general k should be large enough to avoid detection issues, but sufficiently small to avoid such
masking effects where the relative contribution of biological cell-to-cell variations would
become increasingly small and thus undetectable due to technical noise. Similarly, the optimal
proportion of single- vs. k-cell samples to profile is context-dependent and best chosen using
an empirical approach. When no prior information is available, as in this study, one could start
with an equal proportion of both data types (e.g., 100 single- and 100 k-cell samples). One can
then use this data to estimate the relative contributions of each data type to the model likeli-
hoods and use this information to help determine the relative proportion of single- and k-cell
samples to profile in the next round of experiments. This process can be iterated to fine-tune
the proportion until a fixed profiling budget is reached. However, until the cost and time of
sample preparation and sequencing drop to negligibly low levels, this iterative strategy can be
prohibitive; thus, in practice, it is best to simply profile an equal number of single- and k-cells
and only generate more data of one of the data types if it is quantitatively clear that additional
data would help with answering the biological question of interest.

The vignette document distributed along with our QVARKS R package describes the func-
tionality of our package using actual data examples and discusses issues related to experimental
design (e.g., the dilution-series experiments discussed above when k-cell data is desired) as well
as statistical considerations (e.g., data quality assessment, preprocessing, transformation steps,
and model assessment) and computational considerations (e.g., scalability of the inference pro-
cedure to process a large number of genes via parallelization). Though QVARKS was primarily
developed to analyze single-cell qPCR datasets, as a proof of concept, the vignette also illus-
trates how QVARKS can be applied to an externally pre-processed single-cell RNA-Seq dataset
using a parallel computing cluster. Our approach thus provides a principled and practical
method to explore cellular heterogeneity in diverse settings.

Methods

Ethics statement
Peripheral blood was obtained by leukapheresis from a de-identified healthy donor by the NIH
Blood Bank, Department of Transfusion Medicine, National Institutes of Health Clinical Cen-
ter under IRB-approved protocol 99-CC-0168.

Model description and likelihood function
Wemotivated and described the parametric model of gene expression in single- and k-cell
samples from a cell population in the main text. Here, we formally specify the model along
with the likelihood function of model parameters. As shown below, the choices of specific dis-
tributions in our model are inspired by earlier single-cell modeling studies (eg. bimodal mix-
tures of ON/OFF cells and log-normally distributed ON-cell transcript levels assayed using
qPCR [7] or RNA-Seq [18,21], and logistic detection behavior of qPCR [8,22] or RNA-Seq [11]
assays). We extend the existing single-cell models by integrating both single- and k-cell data,
explicitly modeling imperfect detection assays and handling more than one environmental
condition under which a gene is profiled. Multiple environmental conditions are handled by
keeping the detection behavior parameters the same across conditions (which is reasonable as
the same gene assay is used across conditions) and letting the CHPs (π, μ and σ) be condition-
specific. We present the single-condition model first and then point out what changes need to
be made to handle the two conditions focused in this study. An interesting future direction
would be to extend these single/two-condition models to handle more complex experimental
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designs, e.g., those involving more than two conditions and handling covariates such as donor
information, batch effects, and cell size.

We extend a model of “underlying” or “true” single-cell expression in an earlier study [7] to
obtain a model of “measured” single-cell expression that handles imperfect detection as fol-
lows. Let G denote the expression of a gene transcript (i.e., counts of transcript copies without
any log transformation) in a random cell in the population. Then the bimodal mixture model
for G could be written in random variable notation as G = I X, where I* Bernoulli(π) is an
indicator variable that is 1 for an ON-cell of the gene with probability π and 0 otherwise, and
log2X* Normal(μ, σ). Note that the log of average overall expression is given by log2(E(G)) =
log2(E(I)E(X)) = log2 π + μ + σ2 loge(2)/2 (in line with the intuition that both fraction and mean
expression of ON cells determines the overall expression output, with σ2 contribution coming
from cells in the tail of a log-normal distribution). The measured expression H (e.g., 2Et values
of the gene across single-cell samples in a given condition, where Et = 40-Ct is a unit of mea-
surement for qPCR assays as described below) is either detected at the true underlying mea-
surement G with a certain detection probability DP(G) (which ranges from 0 to 1 and increases
with expression strength in a logistic manner) or not detected (2Et = 0) otherwise. So H = J(G)
G, where J(G)* Bernoulli(DP(G)) is an indicator variable that is 1 for detected measurements
and 0 for non-detects, and DP(G) is a logistic function with intercept c and slopem, i.e.,

DPc;m Gð Þ ¼ 1= 1þ exp � log2ðGÞ�c
m

� �� �
. This parameterization reflects the standard way of model-

ing the probability of a binary response, such as non-detect vs. detects in expression profiles.
We can now write the likelihood function of the model parameters given single-cell expression
measurements h1,h2,. . .,hn of the gene in n cells for a given condition as below. Here, Pμ,σ(X =
x) denotes the log-normal probability density function evaluated at x or equivalently the nor-
mal density function with mean μ and variance σ2 evaluated at log2(x).

Lðp; m; s; c;m j h1; h2; . . . ; hnÞ ¼
Yn

i¼1

Lðp; m; s; c;m j hiÞ; where

Lðp; m; s; c;m j hÞ ¼ p Pm;sðX ¼ hÞ DPc;mðhÞ if h > 0; and

¼ ð1� pÞ þ p
R1

g¼0
Pm;sðX ¼ gÞ ð1� DPc;mðgÞÞ dg if h ¼ 0:

Since each k-cell measurement is modeled as aggregating mRNAs from k randomly chosen
independent cells and subjecting it to the same imperfect detection as single-cell data, we can

write “true” k-cell expression V ¼ Pk
i¼1Gi (with the Gis being independent and identically dis-

tributed as G above, and hence fully defined by the single-cell expression parameters π, μ and
σ) and the k-cell measurementW = J(V) V (in the same way that H is obtained from G using
the c,m-parameter logistic “assay”). Since the true single-cell distribution G is bimodal, the true
k-cell distribution V is multimodal depending on how many ON cells constitute a particular k-
cell pool (denoted ‘). The likelihood function of this multimodal distribution can be approxi-
mated either empirically or analytically [15]:

1. The empirical (or Monte Carlo) approximation is straightforward and can work seamlessly
for any choice of single-cell distribution, probabilistic detection models and k value, but it is
more computationally intensive. This approach involves building kernel density estimate
(KDE; using R’s density function with default values for instance) from repeatedly drawn k-
cell measurements, where each repeat involves summing k independent samples from the
underlying single-cell distribution and simulating their detection by the logistic “assay”.

2. The analytical approximation is more computationally efficient—it involves marginalizing
out the unknown value of ‘ and approximating the distribution of a sum of ‘ON-cell
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transcript counts for each ‘ (denoted XðlÞ ¼
Pl

i¼1Xi, with Xis being independent and log-

normally distributed as X above) by another mean/variance-matched log-normal distribu-
tion as done in an earlier study [15].

The empirical approximation becomes more accurate by increasing the number of repeated
samples but at the burden of increased computational time, and the log-normal sum approxi-
mation we use, called the Fenton-Wilkinson approximation, is accurate when the standard
deviation σ is not too large [26]. Both approaches yielded similar likelihood values for the
parameter configurations we checked (involving σ values ranging from 0.25 to 2, and using
10,000 samples to build each KDE)–so we eventually chose the analytical approach in this
study for computational efficiency reasons. The likelihood function of the model parameters
given k-cell measurements w1,w2,. . .,wn of a gene in n k-cell pools for a given condition can
either be directly read off from the KDE for each measurement and multiplied together in the
empirical approach, or given by the formula below in the analytical approach. Here, Pμ,σ(X(l) =
x) denotes the Fenton-Wilkinson approximated probability density function of the sum of ‘

ON-cell transcripts evaluated at x, and Pp #ON cells ¼ ‘ð Þ ¼ k
‘

� �
p‘ð1� pÞk�‘ denotes the

probability of observing ‘ ON-cells in a random k-cell pool.

Lðp; m; s; c;m jw1;w2; . . . ;wnÞ ¼
Yn

i¼1

Lðp; m; s; c;mjwiÞ; where

Lðp; m; s; c;m jwÞ ¼
Xk

‘¼1

Ppð#ON cells ¼ ‘Þ Pm;sðXðlÞ ¼ wÞ DPc;mðwÞ if w > 0

¼ ð1� pÞk þPk
‘¼1Ppð#ON cells ¼ ‘Þ R1

v¼0
Pm;sðXðlÞ ¼ vÞð1� DPc;mðvÞÞ dv if w ¼ 0:

This likelihood function agrees with intuition that pools of small number of cells retain
information on single-cell variations, but that of large number of cells lead to “bulk or masked-
out” effect that makes the π and μ parameters inseparable, as also noted in the main text when
presenting simulation results. Because as k increases, the binomially distributed number of ON
cells in a random k-cell pool becomes more tightly concentrated around the value kπ, and so
the k-cell mixture asymptotically collapses from (k + 1) components corresponding to different
numbers of ON cells to a single component whose distribution is the sum of kπ i.i.d. log-nor-
mal variables. Note that the sum of kπ i.i.d. log-normal variables can be (Fenton-Wilkinson)
approximated by another log-normal with log-space parameters μ’ = ln(kπeμ) + (σ2 − σ’2)/2

and s’2 ¼ lnððes2 � 1Þ=ðkpÞ þ 1Þ. Such a k-cell mixture essentially makes the three heteroge-
neity parameters inseparable (or non-identifiable) using k-cell data alone, since the same k-cell
distribution (given by the same μ’, σ’) can be explained equally well by different combinations
of π, μ and σ. Note that though in reality the k-cell mixture model collapses to more than a sin-
gle component for large k values, the log-space parameters of these different components
would be so close to each other that it would be difficult to separate them out using reasonable
sample sizes.

To integrate single/k-cell data and obtain overall log likelihood of the five model parameters
given both single/k-cell data, we simply add the log of the k-cell likelihood and log of the sin-
gle-cell likelihood specified above. To handle two environmental conditions, we add three new
parameters π@,μ@ and σ@ for the new condition and use the same likelihood function specified
above to compute the likelihood of all eight model parameters given each condition’s single/k-
cell measurements separately and finally add the log-likelihood corresponding to all measure-
ments together. Since we use a non-informative prior, the joint posterior distribution is pro-
portional to the likelihood function. In case of an informative prior, the posterior is
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proportional to the product of the prior probability and the likelihood function (i.e., P(parame-
ters | data)/ P(parameters) P(data | parameters)). In other words, what you know about the
parameters after the data arrive is what you knew before, and what the data told you [27].

Model inference using MCMC-based Bayesian approach
To infer the joint posterior distribution of all parameters, we use a random walk Metropolis
(RWM) Markov Chain Monte Carlo (MCMC) procedure with an adaptive tuning phase [27].
The proposal distribution or proposed jump for a RWMMCMC is an independent Gaussian
variable in each direction (each of the five parameters for single-condition or eight parameters
for two-condition gene expression) with mean 0 and a certain fixed proposal variance. This
would work for a posterior with unbounded support, but would be too computationally ineffi-
cient for our posterior with bounded support (due to MCMC steps being wasted in non-per-
missible values of the parameter, which do not satisfy parameter constraints such as 0� π� 1
and σ� 0). Therefore we use a truncated Gaussian proposal for each parameter, with the trun-
cation ensuring that each new proposed state of the MCMC is always within the constrained
parameter range. Note that the pdf (probability density function) of a Gaussian distribution
truncated to the interval [a,b] is 0 outside this interval, and same as the normal Gaussian pdf
otherwise, except for a uniform scaling of pdf values within the interval by a constant so that
the integral is unity. In the case of qPCR expression data in Et = 40-Ct units [7] (also see below
for our qPCR data description), we imposed additional constraints to further improve compu-
tational efficiency including 0� μ, σ, c� 40 and 0�m� 5. These constraints can also work
for other data types such as RNA-Seq data, once the RNA-Seq-based read counts have under-
went additional pre-processing steps (such as expression noise thresholding and log-transfor-
mation [18,21]) that are required to reveal the bimodal mixture of OFF/ON cells and log-
normal distribution of ON-cells for conforming genes. Our implementation is in the R statisti-
cal environment and extends the RWMMCMC implementation in the R packagemcmc that
works for any unbounded continuous distribution on Rd to the case of a continuous distribu-
tion with bounded support (which in our case is the posterior or likelihood function for non-
informative priors).

The whole MCMC-based inference procedure involves three phases: a) an adaptive phase
where the proposal variance is tuned to achieve good mixing–we use a noisy gradient algorithm
as implemented in the R package JAGS for this phase using a maximum of 400,000 iterations,
b) a burn-in phase where the tuned proposal variance is fixed and the chain is allowed to mix
for 20,000 iterations and all resulting samples discarded, and c) a final sampling phase where
the actual samples are collected over 200,000 iterations. These iteration counts for single-con-
dition inference are multiplied by two for a two-condition inference, and were determined
based on pilot MCMC runs and inspection of convergence diagnostics. Convergence diagnos-
tics such as MCMC trace plots and autocorrelation times are also reported alongside each
gene’s inference, and could be used to filter out genes with poor convergence; however we rely
instead on model assessment “fit” criteria of the parameter posteriors as described below to fil-
ter out poorly fit genes. The 90% credible interval (shortest interval containing 90% mass) is
constructed from the empirical cumulative density of the posterior samples of each parameter
using the R package coda.

For model assessment, i.e., to assess whether the data is captured well by our inferred mod-
els and satisfies our model assumptions including specific choices of distributions, we used
concepts from the posterior predictive checking framework [23]. We specifically check the
agreement between the distribution of observed data and of data generated from (“predicted
by”) 100 inferred models, each of which was specified by parameters independently drawn
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from the posterior distribution, following the framework of Graphical posterior predictive
checks but replacing the graphical check with a more quantitative AD-test check (Section 6.4
of [23]). The specific model assessment criterion we used required more than 75% of the mod-
els drawn to be capable of generating data samples statistically indistinguishable from the
observed single- and 10-cell data (i.e., AD-test P� 0.1). The Anderson-Darling or AD test is
similar to the KS-test in that it tests if the same distribution could have yielded two sets of data
samples (which in our case are the observed single- or k-cell samples and the same number of
samples simulated from the inferred single- or k-cell model respectively). We use the ad.test
implementation in the R package kSamples. In addition to filtering out genes that do not pass
this AD-test criteria, we also excluded genes with extremely high variance of ON cells (poste-
rior mean of σ greater than 5 in any of the two conditions) as part of model assessment. Genes
whose inferred models pass these model assessment criteria in both conditions are referred to
as successfully modeled genes, and genes that pass model assessment in a given condition are
referred to as successfully modeled gene-condition models or gene-condition combinations
(GCCs). Note that besides the default model assessment approach just described, our R pack-
age QVARKS also supports other model assessment options, including a single AD-test
approach and posterior predictive pvalues (see Discussion above and vignette/manual provided
with our R package).

When comparing two conditions for changes in an inferred quantity (either the parameter
such as σ or a function of the parameters such as average overall expression of single-cells spec-
ified above as the log mean of G), we reduced the joint posterior distribution of the quantity in
both conditions into a P-value. We chose to report P-values, instead of other hypotheses com-
parison measures such as the Bayes factor, to facilitate interpretation by researchers more
familiar with classical “frequentist” statistical notions and to permit us to adjust P-values of all
tested genes to account for multiple testing (using the Benjamini-Hochberg FDR procedure).
We specifically converted the posterior probability that a parameter/variable in one condition
is different than that in another condition to a P-value using a half-space approach [28]; this
approach requires specification or estimation of the proportion of null hypotheses among all
tested genes and we specify it conservatively at 100%. Several strengths of MCMC-based Bayes-
ian inference are at play here in comparative assessment of heterogeneity in different
conditions:

1. We are making inference about parameters of interest (π, μ and σ) in two conditions by
averaging over uncertainty in the “nuisance” parameters related to detection behavior in a
consistent fashion in both conditions (i.e., each MCMC sample is an eight-parameter con-
figuration with detection parameters tied consistently to the same value across both
conditions).

2. Posterior samples of the inferred parameters can be used to obtain posterior distribution of
any function of the parameters, thereby allowing us to assess quantities such as the Shannon
entropy based on the fraction of ON cells or the average overall expression of the entire cell
population.

3. Bayesian approach provides a systematic way to incorporate a priori information available
for any parameter (for instance, detection behavior parameters derived from a dilution-
series experiment). For this study, we focused on non-informative priors to broaden the
applicability of our strategy to settings where information from such a priori pilot experi-
ments are not available.
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Macrophage single/10-cell data generation, normalization and
downsampling
CD14+CD16- human peripheral blood monocytes were purified to>98% purity by magnetic
bead negative selection (Dynabeads Monocyte selection kit, Invitrogen, Carlsbad, CA). These
monocytes were aliquoted and frozen in 10% DMSO, 40% human serum, and 50% X-vivo 15.
Frozen monocytes were thawed and differentiated into macrophages by in vitro culture on tis-
sue culture-treated plastic dishes in X-Vivo-15 media (Lonza, Walkersville, MD) supplemented
with 100 ng/mL macrophage-colony stimulating factor (M-CSF, R&D Systems, Minneapolis,
MN) treatment over a period of 6 days with a full media change and M-CSF re-addition at day
3 and day 6. Fresh media on day 6 was supplemented with M-CSF + 100 ng/mL Interferon
(IFN)γ and 100 ng/mL Tumor necrosis factor α (IFNγ+TNFα or IFNT; both from Peprotech,
Rocky Hill, NJ), or M-CSF alone (Control or CNT). Cells were harvested for analysis 24 hours
after treatment (day 7 of differentiation) by scraping in cold media.

We used fluorescence activated cell sorting (FACS) on a BD FACS-Aria II (Becton-Dickin-
son, Mountain View, CA) to sort single and ten cells into individual wells of 96-well low-profile
PCR plates (Bio-rad, Richmond, CA) followed by reverse transcription and 18 cycles of spe-
cific-target pre-amplification using Celldirect one-step RT-PCR kit (Invitrogen). Preamplified
cDNA was quantified using microfluidic qPCR (Taqman probe-based qPCR assays (Life Tech-
nologies, Carlsbad, CA) targeting 93 gene transcripts (selected based on their relevance in mac-
rophage activation and core cellular processes (e.g., metabolism, RNA processing, core
transcriptional and translational regulators) as well as representative genes from modules of
co-expressed transcripts having myeloid-enriched expression patterns obtained using pub-
lished gene expression data [29]) and three spike-in artificial control RNAs from the ERCC
spike-in set (Life Technologies)) to comparatively assess cell-to-cell expression heterogeneity
of human macrophages between CNT and IFNT conditions. The single-cell and 10-cell sam-
ples in each condition were profiled in four Fluidigm 96.96 plates (Fluidigm Corporation,
South San Francisco, CA). To reduce technical confounding when comparing single cell
responses between conditions, we FACS sorted cells from each of the conditions (CNT and
IFNT conditions, as well as two other conditions from a related study) using a balanced distri-
bution across multiple 96-well plates, followed by qPCR profiling.

QPCR was performed on a Fluidigm Biomark instrument using the normal speed cycling
gene expression protocol. Data was exported from Fluidigm Real-time PCR Analysis software
version 3.1.3, using Linear (Derivative) Baseline method, a global threshold of 0.01, and a 0.65
quality threshold, parameters which were found to exclude non-specific amplification and
reduce plate-to-plate variation. We converted gene expression data exported from Fluidigm
Real-time PCR Analysis software from Ct (Cycle threshold) units to the more convenient
Et = 40-Ct units, as in previous studies [7], so that transcript copy counts can be approximated
by 2Et values upto a scaling factor as assumed in our model. Even if this copy count assumption
does not hold exactly (or even approximately) for certain gene assays due to less than 100%
qPCR efficiency, the model assessments performed after our MCMC-based Bayesian inference
should automatically exclude such problematic assays. In the future, we could recover such
gene assays if we know their qPCR efficiency (e.g., based on independent titration standards
experiments) and use it to derive the copy counts instead of the 100% efficiency that is often
assumed. We assigned samples where a gene is not detected an Et of–Infinity, and called them
as non-detected samples (non-detects). After excluding samples with fewer than 10% of all
assayed genes detected (as they may reflect wells that failed to amplify or receive a sorted
cell), we had 84 single-cell and 88 10-cell samples available per condition for downstream
analysis.
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Since the single and 10-cell pool samples in CNT and IFNT conditions (along with samples
in the two other conditions from a related study) had to be spread across 8 Fluidigm plates, all
of which could not be run at the exact same time, we used spiked-in ERCC control RNA levels
to track and correct for potential batch/plate effects. The ERCC control RNA were added at the
same concentration to all the wells of each 96-well sorting plate prior to cell sorting, and we
normalized all detected (i.e., Et> 0) gene measurements using the plate median of the ERCC
spike-in with the highest Et value (ERCC-0003). In detail, we shifted all detected gene measure-
ments in a plate by a plate-specific global factor, which is chosen such that the median ERCC-
0003 level of the shifted data across all (non-standard) samples in the plate becomes the same
across all plates. After removing plate effects using this plate-level normalization, the different
plates’ data are concatenated to obtain one single/10-cell dataset per experiment.

In certain analyses where we had to compare the precision of SCKC against SC or KC (Fig
3), to ensure the same sample size (n = 80) across all three methods, we first randomly down-
sample the 84 single- and 88 ten-cell samples available per condition to 80 samples each per
condition, and then run SCKC method on a random half of the single-cell and a random half
of the 10-cell samples (repeating this random halving ten times to inspect run-to-run varia-
tion), and SC or KC method on all single- or all 10-cell samples respectively.

RNA-seq data generation, processing and DE analysis
Note that to obtain the bulk population-level log2(FC) values, data from a related study was
used. Similar experimental setup as described for generating our Fluidigm qPCR data was used
to obtain and differentiate cells from donors, but instead of using qPCR on single- and 10-cell
samples in CNT or IFNT (24 hour post stimulation) conditions, we analyzed bulk RNA mate-
rial in CNT or IFNT (18 hours post stimulation) conditions from three different human donors
using the Illumina TruSeq Ribozero RNA-Seq protocol with 500ng of total RNA according to
manufacturer’s instructions. Standard RNA-Seq data analysis methods were used: Tophat2
[30] for splice-aware mapping, featureCounts [31] for counting reads mapped to gene exons,
and DESeq2 [32] to perform the DE test and generate the log2(FC) values using the design”gene
expression ~ Donor + Treatment” in R’s formula notation.

Identifying differentially expressed (DE) genes using an approximate
posterior-free method
We identified DE genes using the posterior probabilities converted to P-values as specified
above. As described in the main text, we could also identify DE genes in a model-free or poste-
rior-free fashion by directly testing for changes in k-cell expression mean in both conditions.
The idea behind this test is that k-cell data is closer to bulk population-level data than single-
cell data, and that bulk data when analyzed using t test or similar tests often is considered to
yield more accurate (“ground-truth”) estimates of changes in overall expression of a gene (DE)
than single-cell data (though this is not the case for estimating CHPs, where single- and k-cell
data are valuable). But this posterior-free method treats all non-detects in the k-cell data as
truly zero expression, which may not be valid for some lowly expressed genes or low values
of k.

The posterior-free method uses a linear regression model of each gene’s k-cell measurement
across two conditions against these dependent variables: treatment to model fold change
between the two conditions, ERCC expression to adjust for potential well effects, and plate vari-
able to adjust for potential plate effects. Non-detects are assumed to be have zero expression. In
R notation, the linear model is “k-cell expression of a given gene ~ treatment + ERCC-
0002-expression + ERCC-0003-expression + ERCC-0044-expression + plate”. We extract the P-
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values of the significance of the treatment coefficients (log fold change between two conditions
such as IFNT vs. CNT) being different from zero, and adjust them for multiple testing using
the Benjamini-Hochberg procedure. Only genes at adjusted P or adjP< 0.05 are declared as
DE hits.

Simulation scenarios and posterior surface scanning
We simulated datasets under different levels of biological and technical variation, thereby
translating to different levels of difficulty when inferring the true parameters. We first explain
this procedure for single-condition simulations and then outline changes to the procedure for
comparative two-condition simulations. The mean of ON-cells μ is set at 10 Et units in all sce-
narios, whereas the other parameters are set at

1. π = 0.8, σ = 0.5 for the low inference difficulty,

2. π = 0.5, σ = 1.0 for the medium inference difficulty and

3. π = 0.2, σ = 2.0 for the high inference difficulty scenarios.

These three biological variation scenarios are illustrated in S1A Fig.
The detection efficiency of the gene assay as given by the logistic function is also set at three

levels. Specifically we set the logistic function’s parameters at:

1. c = μ − σ,m = σ/4 for a good assay that detects 82% of single-cell samples on average,

2. c = μ, m = σ/4 for a medium assay that detects 50% of single-cell samples on average, and

3. c = μ + σ,m = σ/4 for a bad assay that detects 18% of single-cell samples on average.

These settings of the logistic “assay” leads to negligible loss of k-cell samples on average,
since the mean k-cell expression is k-fold higher than mean single-cell expression and the slope
m of the logistic function is set above such that the detection probability changes from 0 to
100% in a steep fashion as a function of the increasing expression strength. Note that this likely
favors the k-cell only approach when comparing its performance against our single/k-cell strat-
egy (since assay drop-offs may occur for certain genes in real k-cell data when k is smaller).
Larger values ofm that lead to a more gradual increase in detection probability with expression
increase (and hence drop-off or loss in both single/k-cell samples) could also be tested for sim-
ulations in future, if dilution standards experiments of typical gene assays have this detection
behavior.

Besides noise from imperfect detection of gene transcripts, there could be additional experi-
mental noise when measuring gene expression [12]. So we ran our simulations under four real-
istic configurations of measurement noise and a reference configuration of no additional noise.
The four realistic configurations were based on quantitative measures of total technical noise
in our experimental setup (encompassing all noise sources such as efficiency, amplification and
sampling noise [12]) derived from a dilution series experiment conducted alongside our mac-
rophage single/k-cell experiments. This titration data exhibited similar patterns of dependency
between the level of total noise and mean expression (S1B Fig) as previously observed [12], and
thereby helped select these noise settings:

1. [C0.5] Constant white noise sampled from a Gaussian distribution with a mean 0 and stan-
dard deviation (std) of 0.5 Et is added to the simulated Et value of detected single/k-cell
expression samples (the “detects” simulated under one of the “3 biological variation x 3
assay sensitivity” scenarios above). This scenario is representative of noise characteristics of
highly expressed genes in our experiment, whose measurements exhibit similar noise levels
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in both single- and k-cell measurements (the plateau region in S1B Fig, with 0.5 Et chosen
for std to represent gene assays that are more challenging than the median gene in the figure
with 0.25 Et noise levels).

2. [C1] Constant white noise of std = 1 Et is added to test how the different methods behave
under high levels of noise.

3. [T0.5,0.25] A two-step noise that adds a white noise of std = 0.5 Et to single-cell detects and
std = 0.25 Et to k-cell detects. This corresponds to the transition in S1B Fig and captures the
notion that single-cell samples are typically measured with higher technical noise than k-
cell samples due to lower transcript levels in the former. Please note that since the mean-
noise relation in S1B Fig can differ substantially from gene to gene (and was extrapolated to
expression levels not observed in the experiment), we opted to employ a simpler two-step
noise configuration instead of the observed mean-noise relation to account for these
uncertainties.

4. [T1,0.5] Another two-step noise that adds a white noise of std = 1 Et to single-cell detects
and std = 0.5 Et to k-cell detects.

5. [No white noise] Reference configuration that adds no additional noise to single/k-cell
detects.

We simulate single-cell/k-cell data (SC/KC) under any of the above “3 biological variation x
3 assay sensitivity x 5 noise configuration” scenarios = 45 settings using our model, and infer
back the true values using only the simulated data. We could have used our MCMC procedure
for inference, but wanted to rule out potential differences in the MCMC convergence behavior
of the SC, KC or SCKC approaches from confounding the intrinsic differences among these
methods. So we opted for a simpler posterior surface scanning procedure that involved com-
puting the posterior in each combination of the parameter values listed below and using this
coarse grid of likelihood values to approximate the posterior distribution and calculate its
mode and 90% CrI (credible interval) reported in Fig 2 and S2 and S3 Figs discussed in the
main text. The posterior surface is scanned at the grid points defined by these parameter
values:

1. Vary π from 0 to 1 in steps of 0.02.

2. Vary μ from 0 to 40 in in steps of 1 Et unit.

3. Vary σ from 0 to 5 in steps of 0.1 Et unit.

4. Set c,m to the true value, since we assume it is known to the inference procedure. This is a
realistic assumption since data from titration experiments of known mRNA inputs can be
used to independently determine these parameters.

Note that the posterior (derived from single-cell or Fenton-Wilkinson approximated k-cell
likelihoods) is a function of just the five parameters above and not of any additional measure-
ment noise configuration parameter, since our model is unaware of the additional measure-
ment noise added to simulated data.

We performed the comparative two-condition simulations similar to the single-condition
simulations described above (e.g., under the same 3 assay sensitivity and 5 noise configuration
settings), but with the following changes. Since we need to assess the performance of different
methods in identifying changes in heterogeneity parameters between two conditions (as
opposed to inferring the parameter values within one condition as in the three single-condition
biological variation scenarios), we now tested three comparative scenarios. A gene has
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1. 80% vs. 50% ON cells (π of 0.8 vs. 0.5) between the two conditions,

2. π of 0.6 vs. 0.4, and

3. π of 0.5 vs. 0.2.

In all these scenarios, the ON cells have a mean (μ) of 10 Et and a standard deviation (σ) of
1 Et in both conditions, so that both conditions are simulated using an assay with the same
logistic detection behavior (note that the logistic parameters in our simulations are derived
from μ, σ as described above). Grid-based posterior scan is now run separately on both condi-
tions of a simulated gene to approximate the posterior distribution of a parameter in each con-
dition, and the two resulting distributions jointly analyzed to approximate the posterior of the
difference in the parameter between the conditions. Relevant code snippets implementing the
single/two-condition simulations are provided (see Data Availability for download URL).

Supporting Information
S1 Fig. Inference difficulty and measurement noise of simulation scenarios. Three levels of
inference difficulty were used for single-condition simulations and four configurations of mea-
surement noise (and one more configuration of no noise) were used for both single- and two-
condition simulations. These configurations, in combination with different assay sensitivity
(detection) settings, yield the diverse simulation scenarios employed to compare the perfor-
mance of SC, KC and SCKC methods. A. Levels of inference difficulty when simulating gene
expression profiles. Low inference difficulty simulation scenario for instance corresponds to a
gene with a high fraction of ON cells with tight expression distribution. B. Measurement noise
configurations when simulating gene expression profiles. Technical noise vs. average expres-
sion relationship observed in a dilution-series experiment was used to define the four realistic
noise configurations for the simulation analyses. The estimate of total technical noise (includ-
ing amplification, efficiency and sampling noise) when measuring different genes (different
colored lines) at different dilutions of a standard bulk mRNA sample is shown. The average
expression of the gene (x axis) is plotted against the standard deviation of the technical repli-
cate measurements (y axis). The dilution series experiment was done using bulk mRNA pooled
from human macrophages residing in diverse conditions in a related study—a total of seven
dilutions were performed spanning a range of medium to high mRNA concentrations, and
each dilution had eight technical replicates (except for one dilution which had only seven repli-
cates due to an outlying measurement). Only genes that pass our quality control criteria are
shown here: 1) The gene must exhibit a range of detection behaviors along the standard curve,
or specifically its non-detect frequency should be at least 0.7 at the lowest concentration and at
most 0.1 at the highest concentration (with the concentrations with zero or unity non-detect
frequencies ignored for further analysis), and 2) the measured non-detect frequency and Et
value of the gene at different concentrations should be concordant, or specifically the baseline
Et value corresponding to single transcript copy detection (estimated using Poisson statistics
from both the non-detect frequency and measured Et value at each concentration as in digital
PCR or digital RNA-Seq (Grün et al. 2014, Nat. Methods 11, 637–640 [12]) should not vary by
more than 0.5 standard deviation units across different concentrations. Note that this baseline
Et value estimate, averaged across different concentrations, is subtracted from the average mea-
sured Et value of a gene at every concentration to obtain the average gene expression shown in
x axis. Also shown is a local regression fit along with its 95% confidence level band (visualized
using R package ggplot2’s stat_smooth function with default options).
(TIF)
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S2 Fig. SC vs. KC vs. SCKC performance for single-condition simulations. Single-condition
simulation results for sample size n = 1000 shown in main text Fig 2 is repeated here, but addi-
tional results on KC vs. SC comparison and additional simulation scenarios pertaining to
medium inference difficulty and medium assay sensitivity are shown. All other aspects of this
figure including x/y-axis format are same as main text Fig 2 - for instance, parameter inferences
(posterior mode and 90% CrI (Credible Interval) based on a grid-based posterior scan) were
made for ten simulated datasets (sample size n = 1000) and averaged before display for each
simulation scenario and method. Guide to understand the plots is also shown alongside the leg-
ends. A. Simulation results for single-condition parameter inferences, where each dot corre-
sponds to an inferred parameter for a gene simulated under one condition according to a
simulation scenario. Note that SC provides worse estimates than SCKC or KC under all noise
configurations for most of the high-difficulty scenarios (red symbols), and better estimates
with lower error particularly for σ in some noise settings for the medium/low-difficulty scenar-
ios (blue/green symbols); but this advantage of SC disappears in a two-condition, comparative
simulation setup (S3 Fig) where error in the two conditions tend to cancel out (S4 Fig). B. Sim-
ulation results shown in (A) are copied here, but the shapes of dots (simulation scenario genes)
now indicate measurement noise configuration instead of assay sensitivity of the simulation
scenarios.
(TIF)

S3 Fig. SC vs. KC vs. SCKC performance for two-condition simulations. Simulation results
for sample size n = 1000 on assessing CHP differences between two conditions under different
assay sensitivity and noise configurations. This figure is similar to the above S2 Fig in its x/y-
axis format and legend, except that the estimate of the parameter difference between two con-
ditions is shown here instead of the single-condition parameter estimate. Guide to understand
the plots is also shown alongside the legends. A. Simulation results for the comparative two-
condition parameter inferences, where each dot corresponds to condition-specific change in
inferred parameter for a gene simulated under two conditions according to a simulation/com-
parison scenario. Note that SCKC performs comparable to KC in most settings, with better
performance for large k (lighter symbols), similar to what was observed in the single-condition
simulations but to a lesser extent (in terms of absolute error advantages, since errors in both
conditions tend to cancel out in a comparative analysis as shown in S4 Fig). B. Simulation
results shown in (A) are copied here, but the shapes of dots (simulation/comparison scenario
genes) now indicate measurement noise configuration instead of assay sensitivity of the simula-
tion scenarios. This shows for instance that KC is better than SCKC in the T0.5,0.25 noise set-
ting where a very low amount of measurement noise is added to the k-cell data.
(TIF)

S4 Fig. Bias/error in parameter estimates in two- vs. one- condition simulation settings.
Error in parameter estimates is significantly mitigated in two-condition compared to one-con-
dition simulation settings, particularly for the σ parameter. The x-axis is showing the absolute
error of a parameter (difference between its inferred and true value), averaged across both con-
ditions and all ten simulation runs; the y-axis is showing the absolute error of the parameter
difference between the two conditions, averaged across all ten simulation runs. Both x- and y-
axis are divided (scaled) by the true value of the parameter difference between the two condi-
tions (if non-zero).
(TIF)

S5 Fig. SC vs. KC vs. SCKC precision comparisons at similar bias/error on real data. Experi-
mental data were generated from untreated (CNT) and IFN+TNF-treated (IFNT) human
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macrophages, and the three methods assessed on this data. Density plots of parameter infer-
ences for all gene-condition combinations (GCCs) successfully modeled by all three assessed
methods are shown. Each plot compares the performance of the two indicated methods as fol-
lows: The x-axis indicates the difference in the two methods’ estimates (posterior means); the
y-axis is the difference in the CrI width of the two methods’ estimates; and both x- and y- axis
values are divided (scaled) by the average parameter estimate if non-zero (specifically posterior
mean estimate, averaged across SC, KC and SCKC methods, and used in place of the unknown
true parameter value). To compare two methods when ground truth is not known (see also
text), we only consider GCCs whose parameter estimates are similar between the compared
methods (shown as red dots within the x = -0.2 to 0.2 red band i.e., GCCs whose estimates by
the two methods differ by less than 20% of the average parameter estimate). Shown alongside
are the histogram of red dots and the (method1 vs method2) percentages indicating the per-
centage of GCCs inside the red band whose method1 (or method2) CrI is tighter than that of
the other method by at least the same band width of 0.2 units (these histograms and percent-
ages are also shown in main text Fig 3A, as the same downsampling for SCKC chosen in Fig 3A
is chosen here as well).
(TIF)

S6 Fig. Comparison of QVARKS, MAST and SCDE methods on differential expression
(DE). Different methods were applied on our macrophage IFNT vs. CNT data and evaluated
by checking if their estimated log2-fold-change (log2(FC)) in average gene expression between
IFNT vs. CNT conditions are correlated (A-B) or close (C-D) to the “ground truth” log2(FC)
estimated from bulk RNA-Seq data. These correlations are shown for different values of bulk
RNA-Seq log2(FC) cutoffs (x axis) (i.e., for each cutoff value, the correlation is only computed
across the starting set of genes that satisfy “abs(bulk log2(FC))� cutoff”). We similarly com-
pute the closeness to true values, quantified conversely by the average squared error (square of
the difference between the bulk RNA-Seq log2(FC) value and the log2(FC) value estimated by a
given method, averaged across the genes under consideration). We first evaluate all methods
using a starting set of 55 genes that have more than 5 observed ON cells in both conditions (the
“ON-cells filter” that ensures sufficient data is available to estimate QVARKS parameters). We
also evaluate our QVARKS methods on other starting gene sets obtained by combining the
“ON-cells filter” with two other filters: i) genes whose log2(FC) CrI width estimated by our
method is at most 5 units, so that the point estimate of DE used in these comparisons are reli-
able, and ii) genes that passed our AD-test based model assessment criteria. A. QVARKS
SCKC and KC correlation to bulk RNA-Seq DE is comparable to that of MAST and SCDE
across all scenarios, and QVARKS SC performs comparable to other methods once CrI filter is
used to remove genes with large uncertainty in their estimates. B. QVARKS SCKC correlation
to bulk RNA-Seq DE using ten random 50% downsamplings of the dataset (the same down-
samplings as in main text Fig 3 to make QVARKS SCKC the same sample size as QVARKS SC
or KC) shows the extent of run-to-run or sampling variation in our DE performance metric. C.
Same as (A) but showing average squared error instead of Pearson correlation. All input modes
of QVARKS perform better than MAST and SCDE. D. Same as (B) but showing average
squared error instead of Pearson correlation.
(TIF)

S7 Fig. Checking the concordance of single-/10-cell average expression. Average expression
derived from single-cell data tended to be consistently lower than that obtained from 10-cell
data (divided by 10) for transcripts expressed at medium or low levels. Note that average
expression here refers to average of the 2Et measurement values, after assuming non-detects as
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zero expression (i.e., setting their 2Et to 0).
(TIF)

S8 Fig. Posterior-based vs. posterior-free differential expression. For the genes successfully
modeled in both IFNT and CNT conditions by our approach, we show the log2 fold change of
their bulk/overall mean expression between the two conditions and the list of significant differ-
entially expressed (DE) genes at adjusted P< 0.05, as determined by two methods. Though the
DE results from both methods are not expected to be exactly equal (as explained in Methods),
the concordance between them as shown here reinforces each method’s discoveries.
(TIF)

S9 Fig. Changes in heterogeneity parameters are largely robust against well-to-well techni-
cal noise.We augmented our method with an additional pre-processing/normalization step
that accounts for one of the key noise sources: well-to-well variation in sampling efficiency
(inspired by the “Model 1” strategy used in (Grün et al. 2014, Nat. Methods 11, 637–640 [12])).
This normalization involved inferring this noise using the Et values of three ERCC control
mRNAs spiked in at the same concentration across wells, and then removing the effect of this
noise from the data and applying our Bayesian inference procedure on the corrected data. A.
Technical factors contributed to well-to-well variations. The mean Et value of the three control
ERCC spike-in mRNAs is significantly correlated with the median of highly expressed genes
across wells, both within and across plates, suggesting that well-to-well differences in the start-
ing amount of mRNA, or sampling efficiency, or other related technical factors likely contrib-
uted substantially to well-to-well variations. This plot also shows that the magnitude of this
particular noise is not large in our data. Here a highly expressed gene is defined as a gene with
non-zero expression level in at least 90% of all single/k-cell samples measured in either condi-
tion. Also shown are robust linear regression fits along with 95% confidence level bands (visu-
alized using R package ggplot2’s stat_smooth function with “rlm”method and default options).
B. The changes in parameter estimates between IFNT vs. CNT are largely similar before or
after performing the new per-well normalization designed to remove well-to-well variations
shown in (A) (the black line is the x = y diagonal line). This comparison is done using the 39
overlapping genes out of the 41 and 47 genes passing model assessment (in both CNT and
IFNT conditions) in our macrophage data before and after performing the per-well normaliza-
tion respectively. Note that the per-well normalization factor subtracted from each gene mea-
surement within a well is a weighted sum of the three ERCC levels in the well, where the
weights are the corresponding coefficients of a linear regression model fitted separately for sin-
gle/k-cell data in each condition (in R notation: “Median expression of highly expressed
genes* ERCC-0002 + ERCC-0003 + ERCC-0044”).
(TIF)

S10 Fig. Alternate notions of discrete heterogeneity. The Shannon entropy function com-
puted using π (entropy(π) = −π log2(π) − (1 − π)log2(1 − π)) captures the intuitive notion that
a cell population containing a balanced number of ON and OFF cells is more heterogeneous
than another where almost all cells are ON or almost all are OFF. A. Inferred alterations in
entropy in IFNT treatment relative to CNT is shown for the genes successfully modeled in
both conditions. The 23 differentially expressed genes identified using overall expression
changes, along with whether they are increased or decreased, is also indicated. The 90% Crl is
indicated by the lightly shaded lines around the mean of the posterior distribution. B. Genes
with significant (adjP< 0.05) changes in entropy between the conditions (and gene RELA) are
shown along the entropy function’s curve.
(TIF)
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S11 Fig. Mean-variation relationship and related checks. Linear regression fit of changes in
continuous variation (σ) as a function of changes in the average expression among ON cells (µ;
A) or ON rate (π; B) between IFNT and CNT conditions using the genes successfully modeled
in both conditions. For genes with significant alterations in σ (from main text Fig 6A and
labeled here), changes in σ cannot simply be explained by differences in μ or π between the
conditions. Confidence bands around the linear regression fits are at 95% confidence level (and
visualized using R package ggplot2’s stat_smooth function with “lm”method and default
options).
(TIF)

S12 Fig. Robustness of Differential Heterogeneity (DH). For genes with significant alter-
ations in σ (DH genes from main text Fig 6A, with adjusted Pvalues reported here), difference
in σ was non-zero for many of the ten random 50% downsamplings of the dataset (the same
downsamplings as in main text Fig 3). Also shown here for comparison are the inferences
made by QVARKS on two non-overlapping subsets of the data: single-cell (SC) samples alone
vs. k-cell (KC) samples alone. The 90% Crl is indicated by the line around the mean of the pos-
terior distribution.
(TIF)
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