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Abstract

Advances in single-cell (SC) genomics enable commensurate improvements in methods for
uncovering lineage relations among individual cells, as determined by phylogenetic analy-
sis of the somatic mutations harbored by each cell. Theoretically, complete and accurate
knowledge of the genome of each cell of an individual can produce an extremely accurate
cell lineage tree of that individual. However, the reality of SC genomics is that such com-
plete and accurate knowledge would be wanting, in quality and in quantity, for the foresee-
able future. In this paper we offer a framework for systematically exploring the feasibility of
answering cell lineage questions based on SC somatic mutational analysis, as a function of
SC genomics data quality and quantity. We take into consideration the current limitations of
SC genomics in terms of mutation data quality, most notably amplification bias and allele
dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity
obtained from each cell as well as on cell sample density. We do so by generating in silico
cell lineage trees using a dedicated formal language, eSTG, and show how the ability to
answer correctly a cell lineage question depends on the quality and quantity of the SC muta-
tion data. The presented framework can serve as a baseline for the potential of current SC
genomics to unravel cell lineage dynamics, as well as the potential contributions of future
advancement, both biochemical and computational, for the task.

Author Summary

A human cell lineage tree describes the entire developmental dynamics of a person starting
from the zygote and ending with each and every extant cell. Fundamental open problems
in biology and medicine are in fact questions about the human cell lineage tree: its struc-
ture and its dynamics in development, growth, renewal, aging, and disease. Consequently,
a method to know the human cell lineage tree would allow resolving these problems and
enable a leapfrog advance in human knowledge and health. Recent advancements in sin-
gle-cell genomics have the potential to uncover various properties of the human cell line-
age tree and thus promote our understanding of various biological phenomena. In this
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paper we present a computational framework along with specific results, which enable to
understand what can be achieved using the limitations of current technologies and predict
future capabilities based on future improvements. This approach can serve as a valuable tool
for researchers who plan to perform lineage experiments both in designing and optimizing
the actual experimental needs and predicting the costs and limitations of the plan. This work
can also help researchers focus on developing what is needed for future advancements.

Introduction

Recent advances in SC technologies have generated a unique opportunity to delineate the com-
plex behavior of heterogeneous cell populations and uncover their underlying mechanistic
dynamics [1]. The use of SC genomics to reveal cell lineage relationships have been recently
demonstrated in various scenarios including diseases such as cancer [2-6] and normal develop-
ment [7-10]. Lineage analysis of cells sampled from an organism makes use of somatic muta-
tions to discover common history dynamics of the sampled cells. There are several types of
somatic mutations that can be used for this task, including Single Nucleotide Variations (SNV)
[2, 3, 11-13], Short Tandem Repeats (STR, also called Microsatellites) [6, 8-10, 14-18], Copy
Number Variations (CNV) [4, 5, 7], and Transposable Elements (TE) [8] where each type has
a different mutational model and different mutation rates. This analysis is mostly effective
when analyzing SC since the mixed mutational signal of cell bulks does not allow delineating
mutational co-occurrences and cannot distinguish between subpopulations with different
mutational patterns. Although published work have shown the great potential of using SC
mutational analysis for unraveling cell lineage dynamics, there are still several major limita-
tions, which hamper further generalization of this concept to various biological questions and
prevent its use in large scale experiments. These limitations include 1) technical issues related
to SC genomics, including the need for DNA amplification that introduces technical noise, 2)
lack of high throughput SC isolation techniques, especially if one wants to retain the original
3D structure, or analyze rare cell types that are difficult to isolate, 3) associated costs, such as
Whole Genome Amplification (WGA) kits, sequencing costs, and other consumable products
(e.g., reagents and microfluidic devices), and 4) lack of computational infrastructure and dedi-
cated algorithms specifically designed for the unique challenges of SC genomics.

The feasibility of using somatic mutations for uncovering cell lineage dynamics is dependent
on these issues but also on the specifics of the pursued biological question. Some factors are
inherent, such as the mutation rate and number of cell divisions, but others can be overcome
by spending more money or by improving biochemical or computational procedures. Using
controlled ex-vivo experiments is a close approximation to real biological scenarios; however, it
can be very costly and laborious. Furthermore, many scenarios cannot be examined due to
technical limitations in trying to mimic real biological dynamics (e.g., cell differentiation lead-
ing to changes in cellular dynamics), and also various parameter combinations cannot be stud-
ied using an ex-vivo experiment. A computational alternative is to model and simulate various
biological scenarios using a range of parameters and conditions. Not only this approach
enables to inspect the strengths and weaknesses of existing methods, it can also enable to pre-
dict the impact of future improvements.

Until now, there has not been any systematic examination of how much mutational data is
required in order to accurately answer questions related to the structure and dynamics of SC
lineage trees. In this work we cover few common biological settings, which capture certain tree
properties such as depth (corresponds to number of cell divisions) and clustering relationships,
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in order to systematically evaluate the feasibility of answering cell lineage questions using
somatic mutations, and predict future capabilities by extending the range of parameters values
to represent future enhancements. Using mutational data from an ex-vivo experiment we esti-
mated and modeled the properties of the mutational signal quality, afflicted mainly by the ran-
dom noise and ADO caused during the preprocessing and amplification of SC DNA. We then
applied this model onto the signal of simulated lineage trees, generated using a dedicated for-
mal language and simulation tool, based on environment-dependent Stochastic Tree Gram-
mars (eSTG) [19], which is capable of generating both the entire modeled cell lineage tree and
the corresponding somatic mutations accumulated through cell divisions. We present the
results on a variety of parameters values, including different distance relationships (corre-
sponding to different number of cell divisions) between different cell types, different mutation
rates and two types of somatic mutations, including STR [20] and SNV. We also take into con-
sideration current estimated costs of biochemical analysis and for each combination of param-
eters we calculate the cost-optimized number of cell samples and genomic loci that enable to
answer the biological question with high confidence. We map the dependency between the
quality and quantity of the SC mutational data and the ability to answer cell lineage questions
of specific settings, which can be used as a framework for planning cell lineage experiments
and predicting the potential of future enhancements, both biochemical and computational.

Results

We have previously presented a formal language, called eSTG, for describing population
dynamics [19] and a corresponding programming and simulation environment, called eSTGt
(eSTG tool) [21]. The language captures in broad terms the effect of the changing environment
while abstracting away details on interaction among individuals. A prominent feature of the
tool is that it can stochastically produce lineage trees, each corresponding to a different stochas-
tic program execution. These lineage trees record the entire execution history of the process,
including the dynamics that led to existing as well as to extinct individuals. In this paper we
simulated cell lineage trees using eSTGt by specifying and executing eSTG programs. The out-
put of each program’s execution is an instance of a stochastic lineage tree, which also includes
the corresponding somatic mutations as specified by the eSTG programs. By running multiple
executions of the programs we collected sufficient statistics as described below. The program
specifications used in this manuscript can be found in S1 File.

As mentioned above there are several types of endogenous somatic mutations, including
STR, SNV, CNV and TE. Since CNV and TE have a complex dynamics and are hard to predict
and model we decided to focus on STR and SNV, which are the most appropriate candidates
for inferring general cell lineages retrospectively. For STR mutations, we used the stepwise
mutation model [22], which assigns an equal probability psrx for either an increase or a
decrease of one repeat unit during each cell division (see Methods). Current estimations of the
STR mutation rate psrx range between 107>~10~" mutations per locus per cell division depend-
ing on various factors such as the STR length, repeat type and the specific cell genotype [20].
The low mutation rate might correspond to short STRs of normal cells whereas the fast muta-
tion rate might correspond to cells harboring Microsatellite Instability, which is common in
various types of cancer cells [23]. In order to cover the entire spectrum we chose to simulate
three scales of mutation rates, namely, psrr = 107, 107%, 107>, SNV mutations were modeled
by randomly mutating each base with probability psxy following each cell division. The muta-
tion rate psyy is estimated to be between 10~7-10"'° mutations per nucleotide per cell division
[24]. Since mutation rate of 10~'° was too low to yield any significant signal we present results
only for mutation rates psyy = 1077,1078,107°.
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As we mentioned, SC genomics poses many challenges, since the starting material consists
of only one copy of each DNA molecule. DNA isolation and amplification introduce technical
noise and methods for measuring and reducing it, both biochemically and computationally,
are still under extensive research [1]. We chose to model two types of interferences, namely,
ADO and random noise. To this end, we used data from an ex-vivo experiment that consisted
of clonal expansions from which SCs were sampled and processed. The processing included SC
Whole Genome Amplification (WGA) and sequencing of targeted loci. ADO was modeled by
taking into consideration both the distribution of samples quality and genomic location, and
noise was estimated by comparing the genotype of duplicates, which should be identical (see
Methods). After simulating the lineage trees along with their somatic mutations we applied the
models of the ADO and noise in order to generate the final mutation table that was used for
further analysis. In addition, we also adjusted the parameters of the ADO and noise models in
order to predict the performance of future improvements in the processing of SC genomics
(see Methods). In the figures below we present results for STR using mutation rate pgrg = 10~%,
which may correspond to highly mutable long STR loci of normal cells, for both current and
future predicted signals. Results for the other STR mutation rates (107>, 10~°) and for SNV
(with mutation rates 1077, 10~%, 10°) for current and future signal quality are presented in the
Supplementary Information.

In order to optimize the cost efficiency of a specific analysis, we used a fixed ratio of 1:1000
between the analysis cost of a single cell and the analysis cost of a single STR locus, thus one
can tradeoff between the number of cells and the number of loci analyzed, depending on spe-
cific constraints such as sample scarcity or sequencing availability. In the examples below we
used fixed costs of 10$ for a single cell analysis and 0.01$ for a single STR locus. These costs are
based on rough estimations of current processing (e.g., WGA kits and consumables) and
sequencing costs (see Methods) and can of course be adjusted as needed.

Reconstruction of Triplet Subtrees

A triplet tree consists of three leaves sampled from a (full) tree and the subtree they induce on
the full tree (Fig 1A). Since there are three possible bifurcation arrangements for the triplet
tree, the probability of a random triplet tree reconstruction to correctly reconstruct its topology
is 1/3. In order to measure the ability to correctly reconstruct a triplet tree using somatic muta-
tions we simulated such trees with various number of cell divisions along with the correspond-
ing mutational signal, which was distorted with the calibrated ADO and noise. We then
measured the percentage of correct reconstructions over 1000 repeated stochastic simulations.
Fig 1B shows the percentage of correctly reconstructed triplet trees with various number of cell
divisions (X = 2,5,10,20,40, see Fig 1A) as a function of the number of analyzed loci (ranging
from 500 to 100,000) using STR mutations with mutation rate 10~*, Fig 1C shows the results
that correspond to future signal improvements. It can be seen, for example, that using 5 cell
divisions (X = 5) and 25,000 loci the probability of correctly reconstructing a triplet tree is
about 50% (compared to 33% for random reconstruction) using the current signal and almost
70% using the predicted future enhancements. Results for the other STR mutation rates and
SNV are presented in S2 File.

Identifying Depth Differences

Many lineage questions are in fact questions about the depth relationship between two cell
groups. Examples include questions related both to cancer dynamics and normal development
or renewal. For example, is relapse after chemotherapy caused by ordinary tumor cells escaping
chemotherapy stochastically, or by a separate population of rarely-dividing cancer-initiating
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Fig 1. Reconstruction of triplet trees. (A) A triplet tree with the indicated depths (X = number of cell divisions) between the root and the leaves and
between the root and the branch. (B) Reconstruction accuracy as a function of the number of STR loci and the depth of the leaves (number of cell divisions
from the root). Results are shown for STR mutation rate of 10~* mutations per locus per cell division. The graph shows that fewer mutations are needed
when there are more cell divisions. The results are averaged over 1000 repeated stochastic simulations. (C) Same as (B) but using parameters that
represent future enhancements (see Methods).

doi:10.1371/journal.pchi.1004983.9001

cells that escape chemotherapy due to their slow division rate [6]? If relapse is initiated from
slowly dividing cells, these cells would accumulate fewer mutations since they go through fewer
cell divisions. By measuring the distance of the cells from the root of the tree (which can be esti-
mated using a combination of unrelated cell bulks) we can compare the depth relationship
between different cell groups. Another example question is whether the adult oocyte pool can
be renewed during adulthood [10]? Again, by comparing the number of cell divisions between
young and adult female, we may know whether oocytes are generated postnatally.

In order to map the feasibility of answering such questions we simulated lineage trees and
analyzed two cell groups from different depths in the tree (Fig 2A). For each cell we estimated
its relative depth in the tree using its mutational signature and performed a statistical test that
compared the relative depth of cells from both groups (see Methods). Fig 2B shows a heatmap
that represents the probability of correctly identifying a significant depth difference between
the two cell groups, one of depth X and the other of depth X+Y, for X =40and Y = 10,as a
function of the number of analyzed cells and the number of analyzed genomic loci. It can be
seen that in order to obtain a specific success probability one can tradeoff between the number
of analyzed samples and the number of analyzed loci (white line in Fig 2B that represents suc-
cess probability of 95%), however, a minimum cost can be obtained by selecting the combina-
tion that corresponds to the minimum of the black line in Fig 2B that shows the corresponding
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Fig 2. Experiment requirements for identifying that two cell groups have different depth on the cell lineage tree. (A) Cells from two cell groups are
sampled from the cell lineage tree. The depth (number of cell divisions since the root) of cells of group A is X and the depth of cells of group B is X+Y. (B)
The heatmap colors represent the statistical power, i.e., the probability of detecting a depth difference between cells from A and cells from B when such
difference does exists, as a function of the number of cells (x-axis) and number of loci (left y-axis) analyzed. The probability of falsely identifying depth
difference when it does not exist (type | error) is 5% (see Methods). White line marks the area of power = 95%. Black line indicates the overall analysis cost
as shown in the right y-axis—both lines have the same x-axis and every point in the black line represents the cost that corresponds to the combination of the
number of loci and number of cells as represented by the white line. In this case, for X =40 and Y = 10, a minimum cost is obtained using about 65K loci and
90 cells. The same power can be obtained using about 35K loci and 200 cells but the cost increases by about 50%. Results are averaged over 1000
stochastic simulations using STR mutation rate of 10~*. (C) Cost optimization for the number of loci and number of cell samples needed for statistical power
of 95%, for various values of X and Y. Numbers in parenthesis indicate the number of cell samples and number of required loci respectively. (D) Same as
(B) but using parameters that represent future enhancements affecting both the quantity and the quality of the signal (see Methods). (E) Same as (C) but
using parameters that represent future enhancements.

doi:10.1371/journal.pchi.1004983.9002

analysis cost. Fig 2C shows a summary of the cost-optimized number of samples and number
of loci needed for obtaining success probability of 95% using various combinations of X and Y
corresponding to various depths of the two cell groups (as depicted in Fig 2A). Fig 2D and 2E
show the performance using enhanced parameters that correspond to future enhancements in
SC genomics. Results for the other STR mutation rates and SNV are presented in S2 File.

Identifying Independent Subclones

Identifying the clonal relationship between two cell populations arises in many contexts. For
example, do progenitor cells commit to a single cell-type or can they produce multiple types as
needed [25]? Does geographic separation imply lineage separation or do cells migrate from one
area to another [8]? Are the original tumor and its relapse independent clones [6]? The muta-
tional signature of two cell populations can be used to perform clustering analysis in order to
examine whether they are separated or intermixed in the lineage tree.

In order to investigate how well can phylogenetic analysis of somatic mutations be used for
answering such questions we simulated lineage trees consisting of two subclones, which have a
common ancestor of a specific distance (Fig 3A). We then estimated the distance within and
between the two cell groups and performed a statistical test to check whether the two cell
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times and two random cells of depth X generate the two clones, which divide Y times such that the depth of the extant cells of A and B is X+Y. (B) The
heatmap colors represent the statistical power, i.e., the probability of correctly identifying the two clones as independent, as a function of the number of cells
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doi:10.1371/journal.pcbi.1004983.g003

groups are separated (see Methods). Fig 3B shows a similar heatmap to Fig 2B but presents the
probability of identifying that the two cell groups are independent, using X =2 and Y = 20 (see
Fig 2A). Fig 3C presents the cost-optimized combinations for various values of X and Y. Fig 3D
and 3E show the performance using enhanced parameters that correspond to future enhance-
ments. Results for the other STR mutation rates and SNV are presented in S2 File.

Discussion

During normal mitotic cell division DNA is replicated with very high, but not absolute, preci-
sion, which leads to the incorporation of somatic mutations. These somatic mutations accumu-
lated since the zygotic stage, endow each cell in our bodies with a genomic signature that is
unique with a very high probability [17]. Sequencing cell bulks for somatic mutations may sup-
ply a coarse estimation of the cell population distribution but cannot specify the deterministic
position in the lineage tree of each cell and uncover population heterogeneity. Advancements
in single cell genomics offer a unique opportunity to detect somatic mutations private to each
cell and use them to understand the underlying dynamics of cell lineages with high precision.
Unfortunately, sequencing accurately the entire genome of each single cell is still prohibitively
expensive and technically challenging. In recent years there have been several attempts to use
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single cells genomic data in order to uncover various lineage dynamics. These attempts
included SC whole genome sequencing [26], exome sequencing [5], and genotyping of targeted
loci [6], or combinations of thereof [2]. There is a tradeoff between genomic coverage and sam-
ple density and the question of finding their right quantity and balance depends on parameters
such as cost, technical constraints and the specifics of the lineage question. In this paper we
offer a framework for answering this question by modeling and simulating the entire process of
lineage analysis taking into consideration the different aspects of SC genomics analysis, cali-
brated using real experiments, and possible lineage dynamics. The suggested framework can
help researchers in planning and optimizing their lineage experiments and can also point out
experimental aspects that should be improved in order to increase the chances for meaningful
outcomes. We selected a basic triplet tree structure and two aspects of lineage questions that
are widely tackled, namely identifying depth differences and identifying independent clusters,
and mapped the feasibility of answering them using a wide variety of parameters, including dif-
ferent mutation types, different mutation rates and various combinations of distances between
the cell groups. The results can serve as a guideline for planning a lineage experiment or as a
reference point for tailoring a solution for a more specific setting. Future experiments can help
in fine-tuning the different modeling aspects, such as ADO, noise and possible lineage scenar-
ios. Furthermore, these aspects can also be updated as new and more advanced biochemical
protocols, technological or computational tools are developed.

Methods
Mutational Models

STR mutations were modeled using the single-step model (SSM) [22]. For each STR loci of
length x, its length is updated during each cell division using the following function:

x + 1 with probability%
Jar(®) =\ x — 1 with probahility%

x otherwise

where pgrr is the mutation probability. In this paper we used three mutation scales, namely
107,107, 107°, corresponding to possible STR mutations rates. We note that some STRs can
display more complex mutational patterns; however, the SSM is the most common model used
and constitutes a good approximation.

SNV mutations were modeled by randomly changing each base with probability psyy dur-
ing each cell division, where we used three mutations scales, 1077, 10~%,107°.

We note that most chromosomes, except for the X and Y chromosomes in males, have two
copies. This may introduce additional complexity to the analysis of SC genomic loci since a
mutation can occur in one copy or the other. However, for MS loci this can be overcome by
analyzing only sex chromosomes of males [6, 9, 10] or by analyzing loci with heterogeneous
alleles that contain MS with different repeat number [27]. As for SNV analysis, the probability
of a double mutation is low enough in order to allow a unique identification of random somatic
mutations in each locus. Since the ex-vivo experimental data that we used in order to model the
ADO and the noise of the SC genomic signal included mostly data from the X chromosome,
we opted to analyze the simplified single allele scenario in this work. However, we are currently
working on computational methods for analyzing biallelic signal, which will allow analyzing
signal from autosomes and will also enable to extend the results presented here for more com-
plex scenarios.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004983 June 13,2016 8/13
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ADO Modeling

Since a human cell contains only one copy of a diploid genome there is a big chance that some
parts of the DNA will be damaged or lost during the different amplification stages. Because of
the stochastic nature of the amplification, one could also expect a relatively large variability in
the amplification quality of different samples. In addition, there could be amplification biases
where some parts of the genome are better amplified than others, resulting in some loci having
a better chance to be detected. In order to simulate the dropout patterning of the experimental
data we sought to find a modeling approach that will mimic the real behavior as much as possi-
ble. The experimental data evidently show that the allelic dropout is not random but is depen-
dent on both the sample quality and the genomic location. In order to capture the variability of
the signal quality in both the individual samples and the different loci we modeled the allelic
dropout of single cell DNA samples by assigning distinct dropout probabilities for each sample
and for each locus. Given M individual samples and N loci we define the mutation table T =

{tij: i=1..M, j = 1..N} such that t; equals the mutation call of sample 7 at locus j. In the case of
allelic dropout we set t;; = (). We define the mutation signal table as X = {x;: i = 1..M, j = 1..N},

where
{ 0if t; =0
x; =

1 otherwise

We define P = (p;: i = 1..M) as the probability of obtaining a signal in each sample and Q =
(gj: j = 1..N) as the probability of obtaining a signal in each locus. The probability of obtaining a
signal in sample 7 and locus j thus equals p;g;.

In order to estimate these probabilities using the real ex-vivo data, we used a Maximum
Likelihood (ML) approach. Given the mutation signal table data X = {x;;}, the log likelihood is:

M N
logL(P, Q; X) o< logP(X|P,Q) = Z Zlog(xijpiqj +(1— xij)(l _piqj)>

=1 j=1

The ML estimator of P and Q is thus:

ar%rgax(log(L(P, Q;X)))

We approximated the solution using simulated annealing and validated the results by
repeating the procedure with various starting points. For the data X we used an ex-vivo experi-
ment in which 167 single cells were amplified and analyzed for their genomic signal. For pre-
diction of future enhancement we used the calculated probabilities p,q and increased their
relative value by 25%.

Noise Modeling

Noise modeling differs between STR and SNV because STRs are much more prone to errors
introduced during the amplification stages. For STR mutations we defined noise as the proba-
bility for each locus to randomly shift by one repeat unit compared to its true value. In order to
estimate this probability we used the analysis results of duplicate cells from an ex-vivo experi-
ment and measured the rate of inconsistency between supposedly identical genomes.

For SNV mutations we set the probability for noise to be 10~ as measured using SC calling
results of next-generation sequencing data [28].

For prediction of future enhancement we used the noise probability value divided by 2.

PLOS Computational Biology | DOI:10.1371/journal.pcbi. 1004983 June 13,2016 9/13
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Cost of Analysis

We have divided the analysis cost into two parts, namely, the overhead of analyzing a
single cell and the analysis cost per single locus. A detailed cost analysis is not presented in
this manuscript, however, an approximation for a complete analysis of a single cell is 308,
from which 10$ are considered to be fixed overhead and 20$ are used for analyzing
either 2000 STR loci or 20,000 single bases. We thus approximated the analysis cost of a
single STR locus to be 20/2000 = 0.01$ and the analysis cost of a single base (SNV) to be
20/20,000 = 0.0001$.

In order to calculate the cost as presented in Figs 2 and 3 we used the following function:

feo = CostLoc * x + CostSamp * y
where CostLoc = 0.01 for STR and 0.0001 for SNV, CostSamp = 10, x = # of loci, y = # of samples

and x,y are constrained to the white line in Figs 2 and 3 (corresponding to success probability
of 95%). Minimal cost is obtained by finding the minimum of fc,-

Tree Reconstruction Algorithm

For the triplet trees reconstruction we used the Neighbor-Joining (NJ) algorithm [29] with the
absolute distance function:
Given a mutation table T = {T';i = 1..M,] = 1..N}, with M samples and N loci, where T!
is the genotyping of locus / in sample i, the distance between each two samples is:
1 N
D(ij) = 1T~ 1)

=1

where only loci with signal in both samples are counted. For the three example samples with
the following 5 loci genotype:

T, = (10,0,0,8,12)
T, = (12,0,7,8,0)

T, = (10,0,7,8,11)

where () means that there is no signal in that locus, the distances are:

1 1 1
D(1,2) == (|10 — 11| + [8 — 8|) == (1 + 0) = =
(1,2) = 5 (110 = 11[ + |8 = 8[) = 5 (1 +0) =5
1 1
D(1,3) =5 (|10~ 12| + 8 = 8]) = 5 (2+0) =1
1 1 2
D(2,3) =5 (112~ 10[ +]7~ 7| +[8 ~8)) =5 (2+0+0) = ¢

The result of the NJ tree reconstruction algorithm on these samples is depicted in S1 Fig.
We note that alternatives to distance-based methods for phylogeny estimation exist,
which might yield better results or improve the cost efficiency; however, analyzing or develop-
ing such methods is not in the scope of this paper and is a subject of an ongoing research in our
lab.
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Measuring Significant Depth Differences

Given two groups of cells A = {a;} and B = {b;} we define a binary classifier fthat decides
whether there is a depth difference between them or not. We define D(x) as the distance
between the cell x and the root of the tree where D is calculated using the absolute distance
function as defined above. We define the set D(X) = {D(x)},cx where X is a group of cells. We
define ttest(D(A),D(B)) as the p-value obtained from a t-test between the set of distances D(A)
and D(B). The classifier fis defined as follows:

F(AB) = { Lif ttest(D(A), D(B)) < 0.05

0 otherwise

where f(A,B) = 1 means that there is a significant distance between the cell groups A and B.
In the words of hypothesis testing, if we define the null hypothesis to be that there is no
depth difference between A and B then from the definition of fif the depth of the two popula-
tions is equally distributed the probability of incorrectly rejecting the null hypothesis, i.e., the

type I error, is 5% and the statistical power is depicted in Fig 2B.

Measuring Significant Independent Clustering

Similarly to the case of depth differences, we define D(x,y) as the distance between cell x and
cell y, and D(X,Y) = {D(x,)}xex,ycv- We define the clustering classifier f to be:

FALB) = { 1 if ttest(D(A, A), D(A, B)) < 0.05

0 otherwise

i.e., we measure the difference in the average distance of cells within the group A and the dis-
tance of cells between group A and group B. Similarly to the case of the depth differences, the
type I error is 5% and the statistical power is depicted in Fig 3B.

We note that the measures presented here for identifying significant depth differences and
clustering are used for proof of concept and there may be better ones. However, finding better
measures is not in the scope of this paper and is a subject of future research.

Supporting Information

S1 File. eSTG programs of the simulated lineage trees.
(Z1P)

S2 File. Results of cell lineage analysis. Results include figures similar to Figs 1B, 2B and 3B
but using STR mutations with mutation rates 10> and 10~> and SNV mutations with mutation
rates 1077, 107%, 10~ using current and improved values for ADO and noise corresponding to
future quality enhancements of single cell genomics.

(ZIP)

S1 Fig. Example of NJ tree reconstruction of a triplet.
(TIF)
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