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Abstract

An important message taken from human genome sequencing projects is that the human
population exhibits approximately 99.9% genetic similarity. Variations in the remaining
parts of the genome determine our identity, trace our history and reveal our heritage. The
precise delineation of phenotypically causal variants plays a key role in providing accurate
personalized diagnosis, prognosis, and treatment of inherited diseases. Several computa-
tional methods for achieving such delineation have been reported recently. However, their
ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms
of prediction do not account for the existence of different categories of variants. Conse-
quently, their output is biased towards the variant categories that are most strongly repre-
sented in the variant databases. Moreover, most such methods provide numeric scores but
not binary predictions of the deleteriousness of variants or confidence scores that would be
more easily understood by users. We have constructed three datasets covering different
types of disease-related variants, which were divided across five categories: (i) regulatory,
(ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets
were used to develop category-optimal decision thresholds and to evaluate six tools for vari-
ant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation
revealed some important advantages of the category-based approach. The results obtained
with the five best-performing tools were then combined into a consensus score. Additional
comparative analyses showed that in the case of missense variations, protein-based pre-
dictors perform better than DNA sequence-based predictors. A user-friendly web interface
was developed that provides easy access to the five tools’ predictions, and their consensus
scores, in a user-understandable format tailored to the specific features of different catego-
ries of variations. To enable comprehensive evaluation of variants, the predictions are
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complemented with annotations from eight databases. The web server is freely available to
the community at http://loschmidt.chemi.muni.cz/predictsnp?2.

This is a PLOS Computational Biology Software paper.

Introduction

The rapid development and falling costs of sequencing technologies have enabled the study of
human genetic variants on a large scale [1]. Genome sequencing projects have generated a very
large catalog of human genetic variations, but the interpretation of these data remains challeng-
ing. In particular, it is difficult to determine the functional impact of variants on individuals
[2-4] and sub-populations [5,6]. These difficulties have become more pronounced and impor-
tant as the scope of analysis has expanded from Mendelian disorders [7,8] to complex diseases
such as diabetes [9]. Improvements in sequencing technologies have also allowed researchers
to move beyond studying associations in the exome: over the last decade, several large-scale
genome projects have provided evidence that the concept of “junk DNA” is flawed and at least
80% of the human genome is functional [10]. The Encyclopedia of DNA Elements (ENCODE)
[10] and Epigenomics Roadmap [11] projects have released comprehensive maps of regulatory
elements such as transcription factor binding sites, chromatin regulators, and regions of his-
tone modification. These annotations are available for many different cells and tissue types,
and provide an opportunity to detect new pathogenic variants. The disease mechanisms associ-
ated with some of these variants can be linked to perturbations in specific regulatory elements
that alter gene expression [12,13]. Although only a few Mendelian phenotypes have been
mapped exclusively to genetic variants outside the exome [14], it is likely that many remain to
be discovered. At present, about 50% of all 3,152 known Mendelian phenotypes have no
known association with coding regions [8] and thus represent promising candidates for further
investigation. Furthermore, genome-wide association studies (GWAS) have identified over
twenty thousand variants, of which over 90% occurred in non-coding regions [15]. These vari-
ants have been associated with common diseases in which lifestyle and environmental factors
play important roles [16]. This finding supports the hypothesis that most trait-associated vari-
ants with weak effects are non-coding [1].

Computational analysis is very important for prioritizing variants. While there are many
tools dedicated to predicting the effects of missense variations [1,17,18], only a handful have
been developed for analysis of non-coding variants. Because strong descriptors were not widely
available in the past, the first nucleotide-based tools relied exclusively on evolutionary conser-
vation in their analyses [19-21]. Unfortunately, the predictive performance of these tools is
limited by the high evolutionary turnover of regulatory elements [22,23], which makes it
harder to derive a significant signal from their degree of conservation than is the case for cod-
ing regions. The release of data from genome projects subsequently enabled the development
of a new generation of tools [24-32]. While all of the second-generation tools take advantage
of new functional annotations of the genome and offer superior performance to conservation-
based tools, their ability to provide accurate and interpretable estimates of deleteriousness for
all genome variations is often limited by two factors. First, they do not account for the existence
of different types of variations during the learning phase, so their results are biased towards
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missense variants, which are over-represented in the variation databases. Second, most of them
do not provide clear statements about the deleteriousness of analyzed variants or human-read-
able confidence scores. Instead, they report decimal values from numeric ranges without fixed
decision thresholds, making interpretation of their results difficult.

Here we report the construction of three balanced datasets covering different types of dis-
ease-related variants. To study the performance of individual tools in more detail, each dataset
was further divided into five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synony-
mous, and (v) nonsense variants. The datasets representing these categories were evaluated
using six prediction tools and used to develop category-optimal decision thresholds. The use of
these optimized thresholds with the predictive tools often significantly increases their perfor-
mance relative to that achieved with a general single-threshold approach. In addition, we have
developed a web interface providing easy access to binary predictions and uniform confidence
values for the five best-performing prediction tools and their consensus. These predictions are
supplemented with information gathered from eight publically available databases. Herein
introduced tool, PredictSNP2, represents a natural extension of previously published Pre-
dictSNP1 tool [33]. PredictSNP1 offers its users a consensus score based on the output of six
different amino acid-based predictors. Because of the nature of the tools whose results are com-
bined to generate its consensus, PredictSNP1 can only be used to analyze substitutions in an
amino acid sequence. PredictSNP2 complements PredictSNP1 by evaluating the effects of
nucleotide variants located in any region of the genome.

Design and Implementation
Datasets and data preprocessing

A collection of three datasets covering different types of pathogenic variants associated with
Mendelian, complex, and cancer diseases was constructed. This division was chosen to reflect
the different genetic basis of these diseases [9] and the differences in the extent of their pheno-
typic effects [34]. A dataset of variants associated with Mendelian diseases was created using all
variants annotated as pathogenic or likely pathogenic in NCBI ClinVar [35], a manually
curated database of genotype-phenotype relationships. Information on variants associated with
complex human diseases (p-value < 10~®) was obtained from the NHGRI GWAS catalog [15],
a collection of all publicly available genome-wide association studies. To compile the dataset of
somatic cancer variants, we extracted all records with confirmed somatic status present in at
least two different samples from the COSMIC database [36]. Each disease-related dataset was
then split into five subsets by classifying the variants according to their functional conse-
quences and location within the genome as determined by ANNOVAR [37] (Fig 1). The deci-
sion to use fine-grained variant categorization was motivated by the observation that the
classification features used by the evaluated tools exhibit different signals within different cate-
gories [38]. Finally, these categorized pathogenic variants were supplemented with their neutral
counterparts from the VariSNP database [39]. In addition to the standard VariSNP procedure
of removing all overlaps with disease-related records from ClinVar [35], Swiss-Prot [40] and
PhenCode [41], we also filtered out all variants present in the COSMIC [36] and NHGRI
GWAS catalogs [15]. We used the distance-based approach introduced by Ritchie et al. to con-
struct the neutral subsets [25], selecting the closest available neutral variant in the neighbor-
hood of each individual deleterious variant. This approach can be expected to yield balanced
datasets if one assumes that the neutral variants should reliably sample the overall background.
Because the advantage of using category-specific thresholds or consensus scores should not be
evaluated against the same datasets used for such optimizations [42], we split all of the individ-
ual category datasets into training and testing subsets based on the entries’ dates of submission.
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Fig 1. Categorization of variants based on their location within the genome and their type.
doi:10.1371/journal.pcbi.1004962.9001

To ensure that the testing dataset excluded information that may have previously been used to
train individual tools, it contained only variations submitted after December 2014. While the
variants in the non-exonic categories were divided randomly across these subsets, the corre-
sponding protein sequences representing exonic regions were clustered by CD-HIT [43] at the
level of 50% sequence identity to ensure that variants occurring in similar proteins were
assigned to the same set. The final versions of the datasets are available in the supporting infor-
mation (S1-S3 Datasets).

Prediction tools and databases

Six prediction tools were selected for evaluation, optimization and eventual integration into the
PredictSNP2 web portal (see S1 Table). These tools had to satisfy the following criteria: (i) to
be capable of predicting the effects of a nucleotide substitution anywhere within the human
genome, (ii) to be available as a stand-alone application or to provide pre-calculated scores for
all possible substitutions, (iii) to have a higher level of complexity than established first-princi-
ples approaches. The latter criterion prevented the inclusion of tools that base their predictions
solely on evolutionary data. This was done because the rapid evolution and varied evolutionary
patterns observed outside the protein-coding regions of the genome [21] mean that evolution-
ary constraints do not provide sufficient discriminatory power by themselves for non-coding
regions, although they can be useful when combined with other features. All six selected tools
benefit from the availability of functional annotations from the ENCODE project [10]. They
represent diverse predictive approaches leveraging different training datasets, machine learning
models, and combinations of decision features. CADD [24] estimates the deleteriousness of
variants, a property correlated with both molecular functionality and pathogenicity. Its predic-
tions are based on a logistic regression model that takes into account evolutionary conserva-
tion, regulatory and transcript information, and protein-level scores. The CADD classifier was
trained on a newly constructed dataset of mutations including a subset of approximately 15
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million putatively neutral variants derived from observed differences between the human and
chimpanzee genomes, and a second subset of approximately 15 million simulated variants that
was enriched in deleterious variants because it had not been subject to natural selection. A sim-
ilar approach was used with DANN [26], a deep neural network-based classifier with the ability
to capture non-linear relationships among features. FATHMM-MKL [27] assesses the func-
tional impact of variants using an SVM model, which was trained on a set of literature-derived
pathogenic variants drawn from the Human Gene Mutation Database (HGMD) [44] and neu-
tral common variants drawn from the 1000 Genome Project [45]. Data from the same sources
was used to build a training dataset for the GWAVA [25] tool, which is based on a random for-
est classifier and is designed for the analysis of regulatory variants. FunSeq2 [32] uses an empir-
ical scoring system that integrates evolutionary constraints, epigenetic data and knowledge of
transcription-binding motifs to assess the impact of variants. The weights of selected features
were derived from mutation patterns observed in the 1000 Genomes polymorphism data.
Finally, FitCons [28] defines clusters of similar functional genomic signals, which are termed
fingerprints, and then estimates the functional impact of variants with the same fingerprint on
the basis of allele frequency distributions in human populations. To help users navigate the
wide range of available online data sources, the analyzed variants are supplemented with links
to the corresponding entries in eight separate databases (S2 Table): dbSNP [46], which pro-
vides general information about individual variants; ClinVar [35] and Online Mendelian
Inheritance in Man (OMIM) [47], which provide interpretations of the variants’ relationships
with human health; HaploReg [48] and RegulomeDB [49], which provide access to a variety of
ENCODE annotations [10]; NCBI GenBank [50], which provides the sequence corresponding
to the variant; and the UCSC Genome browser [51] or Ensembl Genome browser [52], which
display the sequence together with information from various biological databases.

Performance evaluation

The performance of the six nucleotide-based tools and the consensus predictions generated
with PredictSNP2 was evaluated using standard statistical metrics, as summarized in the sup-
porting information (S1 Text). Because only FATHMM and GWAVA provide binary predic-
tions, we derived optimal decision thresholds for all pairs of tools and categories of variants that
can be used to obtain binary predictions from the output of CADD, DANN, FitCons and Fun-
Seq2. These thresholds were set to provide the highest normalized accuracy with the training
subsets for any given category. We also compared the performance of selected nucleotide-based
prediction tools to that of some protein-level tools, which were selected on the basis of our pre-
vious study [33] that focused on identifying disease-related amino acid mutations. The chosen
protein-level tools were MAPP [53], PhD-SNP [54], PolyPhen-1 [55], PolyPhen-2 [56], SIFT
[57], SNAP [58], and meta-tool PredictSNP1 [33]. To enable this comparison, ANNOVAR was
used to convert original nucleotide variants in non-synonymous exonic categories present in
our datasets into amino acid format, and to retrieve identifiers of the amino acid sequences of
the corresponding gene products. These sequences were retrieved using NCBI eUtils (http://
eutils.ncbi.nlm.nih.gov), and represent a necessary input for protein-based tools. To avoid
potential bias in favor of the protein-based tools, all amino acid mutations at positions overlap-
ping with the training datasets of the protein-based tools were discarded. The final dataset used
in this comparative analysis is provided in the supporting information (54 and S5 Datasets).

Consensus classifier

The five best-performing tools were integrated into the consensus classifier PredictSNP2 using
the method developed previously [33]. Briefly, the consensus was determined on the basis of a
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majority vote, with the individual tools’ votes being weighted by their confidences. In the pres-
ent study, the uniform confidences were derived separately for each tool and category of vari-
ants using a relationship between the tool’s raw score and its accuracy when tested against a
training subset representing the category of interest. All of the evaluated mutations from the
training subset were sorted by their raw score and partitioned into 66 bins of equal size. These
bins were subsequently averaged over eleven neighboring bins. Two separate transformation
functions were developed for deleterious and neutral predictions to account for differences in
the relationships between the confidence score and the observed accuracy for these two predic-
tion classes. The category-specific decision thresholds for the individual integrated tools were
used to distinguish between the neutral and deleterious cases. In this way, the scores of inte-
grated tools were normalized onto a single scale, facilitating comparisons. After the overall
predictions and corresponding transformed confidence scores had been obtained, the Pre-
dictSNP2 consensus score was calculated. Finally, the corresponding binary prediction and
uniform confidence score was obtained also for the PredictSNP2 consensus score in the same
way as described for the individual integrated tools.

Results
Construction of the Mendelian disease dataset

The dataset consisted of Mendelian disease-related variants and their neutral counterparts; in
total, it included 25,480 variants. These variants were divided into separate categories accord-
ing to their location and type, i.e. into regulatory, splicing, missense, synonymous and non-
sense variants (Fig 2). This step is justified by the large differences in the numbers of variants
representing each category, which ranged from the low hundreds to over ten thousand, as well
as by the different characteristics of individual categories [38]. Each category was then subdi-
vided into training and testing subsets. The training subsets were used to compute category-
optimal thresholds for individual tools and to derive the procedure for computing the consen-
sus score, while the test subset was used to independently evaluate their performance. For the
missense and synonymous variant categories, an additional criterion of at most 50% protein
sequence identity was imposed to ensure that all variants representing highly similar protein
sequences were placed in the same subset.

Development of category-optimal thresholds

All variants present in the constructed datasets were evaluated using the six investigated tools
separately. There were important differences between the raw score distributions obtained with
the individual tools for different categories of variants in the Mendelian diseases dataset (Fig
3A). That is to say, the score distribution achieved for a given variant category with a particular
tool differed substantially from the distributions assigned to other categories by the same tool.
More importantly, these category-specific distributions were frequently observed for both dele-
terious and neutral variants, suggesting a need for category-specific thresholds to achieve opti-
mal separation of deleterious and neutral variants. Category-optimal thresholds were derived
from the training subsets of all categories for all six individual tools to adjust the binary predic-
tions with respect to observed differences in the raw scores between the individual categories.
The positive effect of category-specific optimization was detected for at least half of the tool-
category pairs (Fig 3B and S3 Table). The most prominent effects were observed for the catego-
ries that exhibited the most dissimilar score distributions for a given tool (Fig 3A). The greatest
increase in the average accuracy resulting from the use of category-optimal thresholds was
observed in the case of regulatory variants, for which accuracy increased by 9%. Smaller
increases between 1% and 4% were observed for all remaining variant categories (Fig 3B and
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all variants except | pathogenic or 192,571 variants | overlapping with

likely pathogenic | removed ClinVar, GWAS or | COSMIC removed

only variants | evaluated by only variants | evaluated by
all tools | retained all tools | retained

Mendelian diseases dataset

Category Size training / testing
1. Regulatory 1,056 358
2. Splicing 1,998 1,582
3. Missense 14,024 2,692
4. Synonymous 818 816
5. Nonsense 1,068 1,068

Fig 2. Workflow diagram describing the construction of the dataset of variants related to Mendelian diseases. The dataset was prepared by
combining deleterious variants from the ClinVar database with neutral variants from the VariSNP database. The resulting dataset was then divided into
independent training and testing subsets for each individual category of variants.

doi:10.1371/journal.pcbi.1004962.9002

S3 Table). The tools whose predictive power was most strongly increased by the use of cate-
gory-specific thresholds were FunSeq2 and DANN, whose average accuracies rose by 9% and
8%, respectively (53 Table). Conversely, the threshold optimization generally had negligible
effects on the performance of GWAVA. The greatest increases in accuracy were observed for
regulatory variants in the case of DANN (25%), CADD (17%) and FunSeq2 (13%), and for
splicing variants in the case of FunSeq2 (18%; see Fig 3B).

Performance of individual nucleotide-based prediction tools with
category-optimal thresholds

A comprehensive evaluation of the integrated tools revealed that most were well capable of dif-
ferentiating between Mendelian disease-related variants with neutral and deleterious effects
(Table 1 and S1 Fig). However, GWAVA and FitCons exhibited significantly lower accuracies
and areas under the receiver operating characteristic curve (AUC) than the other tools. The
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Fig 3. The use of category-optimal thresholds improves the predictive performance of individual tools by increasing their
ability to capture differences in the distribution of prediction scores for the different categories of variants. (A) Distribution of
scores for deleterious and neutral variants provided by each evaluated tool for individual categories of variants from the training subsets
of the Mendelian diseases dataset. The locations of the general and category-optimal thresholds used to obtain predictions are shown
for each tool. (B) Normalized accuracies achieved by individual tools when using category-optimal (blue bars) and general (red bars)
thresholds, evaluated using testing subsets of the Mendelian diseases dataset.

doi:10.1371/journal.pcbi.1004962.9003
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Table 1. Performance of individual prediction tools employing category-optimal thresholds and their PredictSNP2 consensus score for individual
variant categories, evaluated using the testing subset of variants associated with Mendelian diseases.

Performance metrics @ Category CADD DANN FATHMM FitCons FunSeq2 GWAVA PredictSNP2
consensus °
Accuracy 1. Regulatory 0.82 0.76 0.82 0.52 0.66 0.70 0.86
2. Splicing 0.64 0.69 0.69 0.55 0.69 0.63 0.75
3. Missense 0.68 0.73 0.74 0.50 0.64 0.51 0.77
4. Synonymous  0.83 0.95 0.81 0.50 0.96 0.59 0.96
5. Nonsense 0.62 0.65 0.71 0.62 0.67 0.63 0.72
Overall 0.69 0.73 0.74 0.53 0.70 0.58 0.79
Area under the receiver operating 1. Regulatory 0.88 0.83 0.89 0.52 0.70 0.76 0.87
characteristic curve ©
2. Splicing 0.69 0.74 0.74 0.49 0.72 0.70 0.80
3. Missense 0.77 0.76 0.79 0.53 0.66 0.51 0.80
4. Synonymous  0.90 0.96 0.86 0.51 0.96 0.61 0.98
5. Nonsense 0.65 0.69 0.75 0.65 0.72 0.70 0.78
Overall 0.73 0.74 0.76 0.51 0.68 0.61 0.83

& For a detailed evaluation, see S4 Table.
® The performance of the optimal consensus for given category, for details see Table 2 and S7 Table.
° Receiver operating characteristic curves are depicted in S1 Fig.

doi:10.1371/journal.pcbi.1004962.1001

overall accuracies of these two tools across all individual categories were 58% and 53%, respec-
tively. The performance of FitCons was considered insufficient to warrant its further use in the
remainder of the study. The very low performance of GWAVA for the missense and synony-
mous mutation categories can be partially explained by its focus on the evaluation of regulatory
variants, the only category for which it achieved a good accuracy (70%). The four remaining
tools exhibited very satisfactory overall accuracies between 69% and 74%. Across the five best-
performing tools, variants from the synonymous and regulatory categories were discriminated
with appreciably higher average accuracies (82% and 75%, respectively) than variants of other
types.

To investigate the diversity of predictions provided by the five best-performing tools, we
compared them in a pairwise fashion. S5 Table shows the correlations of the raw scores within
the individual variant categories. The highest correlations were observed for the CADD &
DANN, CADD & FATHMM, and DANN & FATHMM pairs, reaching Spearman correlation
coefficient over 0.6 across all categories on average. Such high correlation could be considered
undesirable because we wanted to include a diverse set of tools whose predictions err on differ-
ent subsets of variants [59]. However, the high correlations of those three couples were mainly
due to their agreement on correctly predicted cases, which represented around 63% of the total
on average (S6 Table). More importantly, we only rarely observed agreement between any pair
of the five best-performing tools on an incorrect prediction (56 Table). This observation cou-
pled with the good overall performance of the five individual tools provided a sound basis for
their integration into a consensus classifier.

Development of PredictSNP2 consensus score

In our previous work on protein-based tools, we noted that classification based on a “majority
vote” of individual tools, weighted by their uniform confidence values, offered consistently
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Table 2. Performance of different consensus scores for specific variant categories, evaluated using the testing subset of variants associated with
Mendelian diseases.

Performance metrics @ Category PredictSNP2 consensus ° The best
individual tool ¢
5 tools © 4 tools © 3 tools ¢ 2 tools °©

Accuracy 1. Regulatory 0.84 0.85 0.86 0.85 0.82 CADD
2. Splicing 0.75 0.74 0.75 0.70 0.69 FATHMM
3. Missense 0.76 0.76 0.76 0.77 0.74 FATHMM
4. Synonymous 0.95 0.96 0.96 0.95 0.96 FunSeqg2
5. Nonsense 0.72 0.71 0.71 0.70 0.71 FATHMM

Area under the receiver operating characteristic curve 1. Regulatory 0.88 0.89 0.87 0.87 0.89 FATHMM
2. Splicing 0.80 0.80 0.80 0.72 0.74 FATHMM
3. Missense 0.80 0.82 0.81 0.80 0.79 FATHMM
4. Synonymous 0.97 0.98 0.98 0.97 0.96 DANN
5. Nonsense 0.78 0.76 0.75 0.72 0.75 FATHMM

2 For a detailed evaluation, see S7 Table.

® The best-performing consensus in each category is highlighted in bold.

° Tools included in a particular consensus are listed in S7 Table.

9 The performance metric and name of the best-performing tool in a given category.

doi:10.1371/journal.pcbi.1004962.t002

better performance than any integrated tool when tested against three independent and diverse
datasets [33]. We therefore decided to utilize a similar confidence-weighted majority vote
approach to develop a consensus scoring procedure for the five best-performing nucleotide-
based tools (CADD, DANN, FATHMM, FunSeq2 and GWAVA). Since the predictive perfor-
mance of the individual tools varied significantly over the different categories, we first tested
the value of adding more tools into the consensus for each category (Table 2). Most of the
developed consensus scores, which were constructed by combining two to five tools, performed
better than the best individual tool for the evaluated category (Table 2). For individual catego-
ries, the best consensus was more accurate than the best integrated tool by 1% to 6%, with the
exception of synonymous category where the consensus performed equally well as the best
integrated tool. For splicing category, the best consensus exhibited higher accuracy (by 6%)
and AUC (by 0.06) than the best integrated tool. It was not always beneficial to include all of
the tools in the consensus, however. For regulatory, missense and synonymous categories, we
even observed that including less accurate tools reduced the accuracy of the consensus. This
was especially pronounced in the case of regulatory variants, for which the inclusion of
GWAVA and FunSeq?2 tools reduced the accuracy of the consensus by 2%. Such decrease
could be expected due to the much low predictive power of both these tool for this category. In
addition to the improvements in accuracy and AUC values, the benefit of combining predic-
tions from individual tools into robust PredictSNP2 consensus scores is demonstrated by the
fact that the individual tools that perform best for one variant category often perform only
moderately well or even poorly for others, whereas the PredictSNP2 consensus consistently
provides the most accurate predictions (Tables 1 and 2).

Comparison of nucleotide-based and protein-based tools

The performance of five integrated nucleotide-based tools and their PredictSNP2 consensus
scores was compared with that of six protein-based prediction tools and their PredictSNP1
consensus scores using the testing subset of missense variants. The accuracies of the protein-
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based tools (66-76%) were greater than those for the nucleotide-based predictors on average
(51-74%; see Fig 4 and S8 Table). On the other hand, the performance of the best nucleotide-
based tools, FATHMM and DANN, was comparable to the second and third best-ranked pro-
tein-based tools SIFT and PolyPhen-1, respectively. Moreover, the performances of the Pre-
dictSNP1 and PredictSNP2 consensus scores were similar for the evaluated missense variants
(Fig 4 and S8 Table). Similar trends were observed in two recent comprehensive evaluations of
various protein- and nucleotide-based predictors [18,60].

Venturing beyond Mendelian variants

In addition to variants associated with Mendelian diseases, we wanted to assess the extent to
which the integrated tools and their consensus scores can be utilized to evaluate variants impli-
cated in complex diseases and somatic cancers because in these ailments the signal from genetic
factors is often suppressed by the effects of external environmental factors [9,34]. To this end,
we constructed two additional datasets containing variants associated with either complex dis-
eases (12,050 variants) or somatic cancers (142,722 variants) by following the same protocol as
for Mendelian diseases (S2 Fig). Although the disease-associated variants present in the three
compiled datasets originated from different sources, there were partial overlaps among them
(S3 Fig). The largest one was observed between the datasets of Mendelian and cancer diseases,
which shared 140 deleterious variants. The presence of such overlaps is unsurprising because
the clinical co-occurrence of certain Mendelian diseases and cancers can be tied to the same
genetic variants [61,62]. In contrast to the situation with the Mendelian disease dataset, some
of subsets representing the individual categories were assigned only a very low number of vari-
ants (S2 Fig), preventing any sensible performance evaluation for these categories

In the case of complex diseases, only the regulatory variants category included enough cases
for analysis (S2 Fig). Interestingly, none of the five tested tools exhibited any discriminatory
power whatsoever for this category (S9 Table), which stands in stark contrast to their very
good performance for Mendelian variants in the same category (Table 1). Slightly better results
were observed for somatic cancers, for which all categories bar that of splicing variants con-
tained enough entries for evaluation (S2 Fig). For regulatory, missense and nonsense variants,
the best tools achieved accuracies exceeding 60% as well as AUCs above 0.6 (S10 Table). How-
ever, such performance could still limit the tools” applicability even for the purpose of variant
prioritization. We also evaluated the performance of the protein-based tools with the missense
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Fig 4. Performance of nucleotide-based and protein-based prediction tools and their consensuses, evaluated using the dataset of variants
associated with Mendelian diseases. (A) Observed normalized accuracy and (B) area under the receiver operating characteristic curve (AUC) values
are shown as blue and red bars for nucleotide- and protein-based tools and their consensuses, respectively. The horizontal dashed lines represent
average performance values for each tool type.

doi:10.1371/journal.pcbi.1004962.9004
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variants from the cancer dataset (S8 Table and S4 Fig). In this case, neither protein-based tools
nor their consensus score PredictSNP1 provided more reliable predictions than their nucleo-
tide-based counterparts. The considerably lower predictive power of the investigated nucleo-
tide-based tools on the complex disease and cancer datasets indicates that these tools and the
PredictSNP2 consensus should only be applied to Mendelian diseases in order to ensure reli-
able predictions. More specialized tools and strategies focused on complex diseases [16] and
cancers [63,64] should be used in other cases.

Description of the web server

Three of the five integrated prediction tools evaluated in this study are currently available as
web servers. However, only CADD and FunSeq2 permit the uploading of files containing lists
of variants to be analyzed and are thus suitable for large-scale queries. In contrast, FATHMM
and GWAVA only permit variant querying via their web forms. DANN results are only avail-
able as pre-calculated files, which reduces the tool’s user-friendliness. To facilitate access to the
predictions of all five integrated tools, we developed a web interface that enables the comfort-
able submission of large batches of variants. The interface also provides easily interpretable
results for all individual tools together with the links to the relevant databases and on-line ser-
vices (Fig 5). The variants to be analyzed can be input into a web form as a plain text or
uploaded as a file. Variant data in multiple formats can be detected automatically, including
the Variant Call Format (VCF) [65], Human Genome Variation Society (HGVS) format [66],
and Genome Variation Format (GVF) [67]. Moreover, the user can switch between the two

variants Input variants
variants
A 4 Y A\ 4
Identification of category Evaluation by integrated tools Queries of databases
ANNOVAR CADD DANN FATHMM dbSNP ClinVar OMIM
FunSeq2 GWAVA GenBank ucsc Ensembl
RegulomeDB HaploReg
categories of variants raw scores of variants
\4

> Binary prediction and calculation of confidence for integrated tools

category-optimal predictions
and confidences of variants

A 4

Consensus prediction by PredictSNP1 [¢--1 Consensus prediction by PredictSNP2
1
1 I
PredictSNP1 consensus | : missense PredictSNP2 consensus
predictions and confidences : | variants predictions and confidences
1 ! v v
! annotations of variants
Lo———p Output <

Fig 5. Workflow diagram of the PredictSNP2 webserver. Upon submission of input variants, evaluation is performed with the integrated prediction
tools. The raw scores produced by individual tools are transformed into overall decisions about deleteriousness and interpretable confidence scores
according to the category of variants detected by ANNOVAR. In addition, links to relevant databases and on-line tools are provided to allow the user to
better understand the genomic context and potential function of the corresponding genome region. Optionally, evaluation of missense mutations by
PredictSNP1 can be requested.

doi:10.1371/journal.pcbi.1004962.9005
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A

types of reference genome assemblies [68], GRCh37/hg19 and GRCh38/hg38, of which only
the former is natively supported by the integrated tools. To obtain results in a time-efficient
manner, we merged pre-calculated files for all the prediction tools into a single database file
indexed with Tabix [69] to avoid any need for multiple queries per analyzed variant. An esti-
mated execution time is provided for each user submission based on the number of evaluated
variants and the predicted time demands of jobs already waiting in the queue. Raw scores pro-
duced by integrated tools and their PredictSNP2 consensus values are transformed onto a sin-
gle scale ranging from 0 to 99%, corresponding to observed accuracies measured against the
testing subsets of individual categories of variants [33]. On the output page (Fig 6), the predic-
tions of individual tools and their consensus are complemented with their confidence scores
and are reported together with links to the relevant databases and on-lines services. The user
can download the output in human- and machine-readable formats as PDF and VCF files,
respectively. Since we found that protein-based predictors could provide improved perfor-
mance for missense variants, we also added an interlink to the PredictSNP1 web server that
enables the user to obtain predictions with these tools for any selected missense variant.

Availability and Future Directions

To the best of our knowledge, PredictSNP2 represents the first unified platform for nucleotide-
based predictions of deleterious variants. This tool is freely available to the scientific and medi-
cal community at http://loschmidt.chemi.muni.cz/predictsnp2. The developed datasets (S1-S5
Datasets) and user guide (S2 Text) are also available from the website.

In future, scores for all missense variants will be pre-calculated with the six protein-based
tools used in PredictSNP1 to allow instant access to their results. We also plan to assess new
tools for predicting the effect of nucleotide variants as they emerge, and will consider integrat-
ing such tools into the platform based on the results of these evaluations.

B
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Fig 6. The graphical user interface of the PredictSNP2 webserver. (A) On the input page, variants to be analyzed can be provided in several
established formats using one of two reference genome assemblies. (B) On the output page, the predictions of individual tools and their PredictSNP2
consensus score are reported together with links to the eight relevant databases.

doi:10.1371/journal.pcbi.1004962.9006
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Supporting Information

S1 Dataset. Dataset of nucleotide variants associated with Mendelian diseases.
(XLSX)

S$2 Dataset. Dataset of nucleotide variants associated with complex diseases.
(XLSX)

S3 Dataset. Dataset of nucleotide variants associated with somatic cancers.
(XLSX)

S$4 Dataset. Dataset of amino acid variants associated with Mendelian diseases.
(XLSX)

S5 Dataset. Dataset of amino acid variants associated with somatic cancers.
(XLSX)

S1 Fig. Receiver operating characteristic curves of prediction tools and their consensuses
evaluated using the dataset of variants associated with Mendelian diseases. (A) Training
and (B) testing subsets of all investigated categories.

(TIF)

S2 Fig. Workflow diagram describing the construction of the datasets composed of variants
related to complex diseases and somatic cancers. The datasets were prepared by combining
deleterious variants from the GWAS catalog or the COSMIC database with neutral variants
from the VariSNP database. The resulting datasets were then divided into independent training
and testing subsets for each individual category of variants. N/A indicates that not enough vari-
ants were assigned to the category to enable the performance evaluation. See S9 and S10 Tables
for particular numbers of variants.

(TTF)

S3 Fig. Numbers of disease-associated variants overlapping among the three constructed
datasets.
(TTF)

S4 Fig. Performance of nucleotide-based and protein-based prediction tools and their con-
sensuses evaluated using the dataset of variants associated with somatic cancers. (A)
Observed normalized accuracy and (B) area under the receiver operating characteristic curve
(AUC) values are shown as blue and red bars for nucleotide- and protein-based tools and their
consensuses, respectively. The horizontal dashed lines represent average performance values
for each tool type.

(TIF)

S1 Table. Principles and training datasets of six evaluated prediction tools.
(PDF)

S2 Table. Description of eight databases and on-line services employed within PredictSNP2
framework.
(PDF)

S3 Table. Effect of general and category-optimal thresholds on accuracies of six individual
prediction tools evaluated using the testing subset of variants associated with Mendelian
diseases.

(PDF)
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S5 Table. Pairwise correlation of raw scores of the five best-performing prediction tools
within the individual categories of variants evaluated using the Mendelian diseases dataset.
(PDF)

S6 Table. Pairwise correlation of binary predictions of the five best-performing prediction
tools within the individual categories of variants evaluated using the Mendelian diseases
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S$7 Table. Performance of the developed PredictSNP2 consensus scores evaluated using the
Mendelian diseases dataset.
(PDF)

S8 Table. Performance of nucleotide- and protein-based prediction tools compared using
the Mendelian diseases and cancer datasets.
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§9 Table. Performance of the five best-performing prediction tools employing category-
optimal thresholds for individual variant categories evaluated using the complex diseases
dataset.

(PDF)
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