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Abstract
Biological systems use a variety of mechanisms to deal with the uncertain nature of their

external and internal environments. Two of the most common motifs employed for this pur-

pose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical

and experimental studies suggest that these circuits play very different roles in providing

robustness to uncertainty in the cellular environment. Here, we use a control theoretic

approach to analyze two common FB and IFF architectures that make use of an intermedi-

ary species to achieve regulation. We show the equivalence of both circuits topologies in

suppressing static cell-to-cell variations. While both circuits can suppress variations due to

input noise, they are ineffective in suppressing inherent chemical reaction stochasticity.

Indeed, these circuits realize comparable improvements limited to a modest 25% variance

reduction in best case scenarios. Such limitations are attributed to the use of intermediary

species in regulation, and as such, they persist even for circuit architectures that combine

both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with

dynamic input variability, the most significant difference between the two topologies lies not

in the structural features of the circuits, but in their practical implementation considerations.

Author Summary

Essential to the survival of biological organisms is their ability to decipher and respond
accordingly to stress scenarios presented by a changing and often unpredictable environ-
ment. Cellular noise, present due to the inherently random nature of both the external and
internal environments, can obfuscate and corrupt the information found in the environ-
mental cues, thus necessitating the development of mechanisms capable of repressing the
noise and recovering the true information. Understanding these noise suppressing
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mechanisms is an important step toward the general understanding of adaptation and sur-
vival in biology. Here we present ideas that have broad implications for the understanding
of the role and prevalence of two such mechanisms: the feedback and incoherent feedfor-
ward motifs. Using computational and analytical tools commonly employed in engineer-
ing applications, we characterize the performance and limitations of these two motifs, as
well as establish their equivalence in dealing this several types of noise. We show that the
effectiveness and preference of one motif over the other lies mostly in the practical imple-
mentation details and not in their structural properties.

Introduction
Biological organisms grow in environments that, apart from tightly controlled laboratory con-
ditions, tend to be highly diverse, unpredictable and changing. Essential to their survival is the
ability to adapt and perform tasks necessary for life in such environments. This often involves
robustly maintain desirable concentrations of a variety of molecular species [1]. This task is
made even more difficult by the fact that biological processes are inherently stochastic and
individual components are often imprecise. To provide robustness to such uncertainty, two
mechanisms seem to be often employed by biological systems as part of the solution: feedback
(FB) motif and incoherent feedforward (IFF) motif [2], [3].

Many studies show that IFF architectures provide robustness to noise and environmental
uncertainty. In particular, native and synthetic microRNA (miRNA) mediated IFF circuits
have been shown to provide gene expression robustness to gene dosage and other perturbations
in mammalian cells [4], [5], [6]. Numerical studies have shown the potential for these circuits
to reduce some of the inherent stochasticity of gene expression as well [7]. In a FB architecture,
feedback regulation can be performed directly by the species of interest or alternatively through
an intermediary species which serves as a proxy. Theoretical and experimental studies of direct
feedback implementations show that such circuits provide robustness to noise [8], [9]. This
holds true for proxy-regulated FB implementations as well, but such implementations are
shown to be inferior at reducing overall gene expression noise compared to those of direct reg-
ulation topologies [10]. Other synthetic implementations of proxy-regulated FB architecture in
mammalian cells highlight the limitations of such topologies in gene dosage invariance [6].
Other studies suggest that such FB circuits can suppress heterogeneity in gene expression by
linearizing dose-response curves [11].

There are several different possible topological implementations of both IFF and FB motifs.
In this paper, we consider two of the most commonly implemented of these topologies (one for
each motif) and investigate their ability to suppress both extrinsic sources of variability and
inherent stochasticity of chemical reactions. We make use of the control theoretic concept of
gain, numerical simulations and analytical results to arrive at a deeper understanding of these
two topologies and to show that different biological roles are not dictated by the structural
properties of these circuits but are rather a result of the particular implementations. We high-
light the limitations of each architecture and the mechanisms that give rise to such limitations.

Results
Given a species of interest Y and an intermediary regulator species X, feedback (FB) and inco-
herent feedforward (IFF) circuits can be used to maintain the population of the Y close to a
desired concentration in the presence of noise due to variations in the inputs to the circuits or
due to the inherent stochasticity of chemical reactions. Here we examine how each circuit

Noise Properties of Feedback and Incoherent Feedforward Circuits

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004958 June 3, 2016 2 / 16



accomplishes this goal and what are the limitations of each of the architectures. Is any of the
circuits better suited for this task?

The specific FB and IFF architectures we consider consist of two species X and Y whose pro-
duction is regulated by the same input signal u. Examples include genes that share the same pro-
moter, mRNA and microRNA (miRNA) encoded in the same transcript, or proteins that are
activated by the same environmental cues/signals. Because of the co-regulated nature of the pro-
duction, the concentration of species X contains information about the concentration of species
Y and can be used as a proxy for Y, analogous to how a reporter gene contains information
about a gene of interest it has been transcriptionally fused to. The knowledge about Y thus con-
tained in X can be used to control the concentration of Y when direct access to Y is not possible
or impractical. When such knowledge is used to control Y by inhibiting its production, we get a
FB circuit (Fig 1A, left). When it is used to control Y by either inhibiting Y directly or enhancing
its degradation, we get an IFF circuit (Fig 1A, right). What makes this topology an IFF motif is
that u both up-regulates and down-regulates Y (directly or through X respectively). The reaction
schemes for both are shown in Table 1. For each circuit, there are two different implementations
to consider, depending on whether the production of X and Y is coupled (X is produced anytime
Y is produced) or decoupled (X and Y are produced by different reactions but with the same
reaction rates). Fig 1B gives an illustrative example of differences between the two types of pro-
duction: in both cases X and Y represent genes whose expression is under the control of the
same promoter, but their production is considered coupled only if they are on the same tran-
script. We denote by x and y the population abundance (or concentration) of species X and Y
respectively. For the FB circuit, X and Y have natural degradation rates l1x and l2y respectively
(l1, l2> 0) and production rate f(u)g(x) where g(x) (the inhibition function) is nonnegative
monotone decreasing in x and f(u) is positive monotone increasing in u. Similarly for the IFF
circuit, X and Y have natural degradation rates k1x and k2y respectively (k1> 0, k2� 0) and pro-
duction rate f(u). Furthermore Xmediates the degradation of Y with rate k12 xy (k12� 0).

We consider two main sources of noise that result in variations in y: variations/changes in
the input u, and inherent stochasticity of the chemical reactions that compose the circuits
themselves. We are going to distinguish between two different types of variations on u. The
first kind is when u varies from cell to cell, but it changes very little over the lifetime of the cell.
Such scenario might arise if u depends on plasmid abundance in the cell. Different cells have
different plasmid concentrations and these concentration tend to change slowly over time, as is
the case when plasmid are introduced into mammalian cells by transient transfection. A second
kind of variation arises when u is dynamic and its fluctuations over the lifetime of the cell are
not negligible. For example u can represent a dynamic signal that cells are exposed to (such as
environmental stress signals) or depend on a dynamic molecular species concentration.

Next, we investigate the ability of each circuit to reduce variations in the output due to each
of the sources. We examine each circuit under conditions for which each source of noise can be
studied in isolation (i.e., one of the sources is dominant). This allows us to characterize analyti-
cally the capacity and limitation of each of these circuit to suppress each source of noise sepa-
rately. We then look at the more general case when both contributions to output variance are
comparable.

Suppression of Variations Due to Input Noise
Consider the case when the number of molecules of X and Y is high and the inherent stochasti-
city of the chemical reactions is negligible (i.e., the dynamics of the loops are close to their mac-
roscopic deterministic counterparts). We treat x and y as deterministic variables and examine
how well the circuits respond to variations in u. Under these conditions, the coupled and
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decoupled implementations are indistinguishable and yield the same ODE model, shown in
Table 1. In order to compare the performance of the two models in a meaningful way, we nor-
malize them using the following criterion: for a given nominal value �u of u, the production
rates and the expected values of x and y at steady state (denoted by �x and �y respectively) must
be the same in both models. This normalization, which results in the normalization conditions
listed in Table 1, allows for a fair comparison since enforces both architectures to make use of

Fig 1. Adaptation in feedback (FB) and incoherent feedforward (IFF) architectures. A. Cartoon representation of FB and IFF
architectures. Input u positively regulates species X and Y (black arrows). X inhibits the production of both X and Y in the FB architecture (red
line, left panel) and mediates the degradation of Y (negative regulation) in the IFF architecture (red line, right panel). Both X, Y degrade at rates
proportional to their respective populations (black arrows).B. Illustration of coupled and decoupled production. X and Y represent genes
whose expression is under the control of the same promoter, but their production is considered coupled only if they are on the same transcript.
C. Product inhibition functions considered in the FB implementations.D. The distribution of y at steady state for different values of regulation
strength α. As the strength of regulation α increases, the distribution of y gets tighter around the nominal value �y ¼ 50. u is a Poisson
distribution with mean �u ¼ 10. The distribution is the same distribution for both FB and IFF, with g = gR used for FB.E. The distribution of y at
steady state for different classes of inhibition functions, gR and gH. F. Circuit response to white noise. kGk2H2

is shown by black stars (for FB)
and red stars (for IFF). The bars show the corresponding variance of y(t) of 10000 sample runs at t = 20. The noise in umodeled by addingffiffiffiffiffi
50

p ½1; 1�T _w to the right-hand side of the ODEmodels, where _w is the standard Brownian motion.G, H Circuit response to input u given by a
birth-death process (with birth rate br = 10 and death rate 1). Left panel shows sample trajectory in response to u for different gain
implementations. Right panel shows the empirical probability distribution derived from each sample trajectory until final time t = 1000. Panel G
shows the response of FB implementations using g = gH and panel H that of IFF implementations. I. Log plot of the coefficient of variation (cv)
of sampley-trajectories in response to u given by a birth-death process with birth rate br and death rate 0.1br (t 2 [0, 1000]). Parameters used
in D-I: �u ¼ 10, k1 = l1 = 5, l2 = 1, f(u) = 5u. For gH≔ 11

1þ10ðx=10Þn, n = 1.1 (for α = 1), n = 11(for α = 10), n = 110 (for α = 100).

doi:10.1371/journal.pcbi.1004958.g001
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the same resource amounts. Additionally, it provides a level of robustness of the results to the
choice of noise measure [12]. We define a measure of the strength of regulations (i.e. how
much control X has on Y) at steady state for each circuit by

afb≔� �x
@g
@x

ð�xÞ

aff≔�x
k12
k2

:

ð1Þ

αfb is the “effective feedback gain” of feedback and is given by the slope of the inhibition func-
tion—see S1 Text for more details. αff is the “effective feedforward gain” of feedforward regula-
tion (see S1 Text) and is given by the ratio of the mediated degradation of Y to the unmediated
degradation of Y. Let yss(u) be the steady state concentration of y at any input value u. We are
interested in quantifying how variations in u affect yss.

Cell to cell input variability. The first case we consider is when the variability in u comes
from cell to cell variability, i.e., each cell has a different u but such u is constant over time. How
do differences in u affect the steady state expression levels of y for different cells? For example,
how does cell A having δumore plasmids then cell Bmanifest itself in the steady state expression
levels of Y (denoted by yss) in cell A versus cell B? An answer to this question can be provided by

the sensitivity of yss with respect to u, denoted by
@yss
@u
, which describes how small changes in u are

transmitted into changes in yss. For both circuits, this sensitivity near �u is given by

@yss
@u

�uð Þ ¼ 1

1þ a
f 0ð�uÞ
f ð�uÞ �y ð2Þ

where α = αfb for the FB and α = αff for the IFF. It is clear from Eq (2) that higher effective gains
αfb and αff (i.e., more aggressive control) make yss less sensitive to cell to cell variations in u and
for high enough effective gains the effects of such variation can be suppressed almost completely.

It should be noted that @yss
@u

�uð Þ, though a local measure of sensitivity, it can still provide an overall

picture of the sensitivity of the system to changes in u by varying �u and recalculating. A more
direct way is to explicitly calculate the dependence of yss to u. For the FB an explicit formula is
not possible for the most general classes of inhibition functions g. Consider a specific class of
inhibition functions g given by gR

gRðx; afbÞ≔max 1þ afb � afb
l1

f ð�uÞ x; 0
� �

; ð3Þ

Table 1. Feedback and incoherent feedforward models.

feedback incoherent feedforward

coupled decoupled coupled decoupled

degradation reactions X
l1x�! ;;Y l2y�! ; X

k1x�! ;; Y k2y�! ;
X þ Y

k12xy��! X

production reactions ; fðuÞgðxÞ����! X þ Y ; fðuÞgðxÞ����! X;

; fðuÞgðxÞ����! Y

; fðuÞ�! X þ Y ; fðuÞ�! X;

; fðuÞ�! Y

ODE model _x ¼ fðuÞgðxÞ � l1x

_y ¼ fðuÞgðxÞ � l2y

_x ¼ fðuÞ � k1x

_y ¼ fðuÞ � k12xy � k2y

Normalization Condition l1 ¼ k1; l2 ¼ k2 þ k12�x; gð�xÞ ¼ 1

doi:10.1371/journal.pcbi.1004958.t001
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i.e., gR is a nonlinear function composed of a linearly decreasing part for x < x0≔
1þafb
afb

f ð�uÞ
l1
and an

identically 0 part for x> x0 (i.e., a ramp—see Fig 1C, solid gray line). Notice that this parametri-
zation of the inhibition function g is consistent with the definition of αfb in Eq 1. For this choice
of g and with the normalization applied, both circuit topologies produce the same functional
form for the dependence relation:

yss ¼
1þ að Þf ðuÞ
1þ a

f ðuÞ
f ð�uÞ

� � �y
f ð�uÞ ; ð4Þ

where α = αFB for the FB and α = αFF for the IFF. This implies that for the same level of regula-
tion, both circuits have the same ability to adapt to variations in u, and that stronger regulation
ensure better adaptation. As an illustration, consider the following numerical example. Let the
distribution of u from cell to cell be a Poisson distribution with mean 10, and let f(u) = 5u, l1 = 5,
l2 = 1. Fig 1D shows the distribution of yss for different values of α (same distribution for both FB
and IFF). As the strength of regulation α increases, the distribution of yss gets tighter around the
value �y ¼ 50 (nominal yss), which means that even large cell to cell variations of u will result in
small variations of yss.

It is important to note that the goal of using gR, here and in the rest of this paper, is to ana-
lytically derive properties of the feedback architecture, not necessarily as a computational sub-
stitute of other classes of inhibitions functions. At the same time, use of gR is not merely an
analytical/computational tool, but there is strong evidence of systems, such as cAMP regulation
of carbon uptake in E. coli, that are best described by this type of inhibition function [13]. In
this systems, the data in the data range produced by the experiments is best described by a lin-
ear inhibition function (Fig 2A in [13]), which matches the linear part of a ramp, and with no
available data outside of the linear range of the ramp. For more general classes of inhibition
functions g, the results can numerically be shown to be similar to that of g = gR, as long as varia-
tions in u do not push the operating point of the feedback away from the active region of regu-
lation (the values for which the graph of g is not flat—see Fig 1C). For example, when g is

parameterized by a Hill type functions gH≔
1þkx

1þkxðx=�xÞn, the differences in the resulting distribu-

tions of yss for g = gH and g = gR are minor (Fig 1E) and the same general conclusions about sys-
tem behavior hold. Unless otherwise stated, in this paper we use the parametrization g = gR.
Notice that this is not an linearization of a general nonlinear system, but a specially parameter-
ized nonlinear system. In most numerical simulations we also test the validity of our results by
using Hill-type functions (g = gH) to provide evidence that the nature of the results is not
dependent on the particular choice of the class of inhibition functions.

Eqs (2) and (4) imply that both FB and IFF circuits have the same ability to suppress this
type of extrinsic variability. Furthermore, for the same strength of regulation (αfb = αff) their
performance based on this criteria is indistinguishable. They also suggest that performance for
both systems can be improved by faster reactions, i.e., by having higher inflow (production
rates) and by implication higher outflow (total degradation rates). The special case of k2 = 0 (αff
=1) the IFF model, studied in detail in [14], displays perfect adaptation. This is indicative of
integral-like feedback [15], and implies that for large but finite αff (i.e., k2 > 0 small) the IFF
can be viewed as leaky integral control. It should be mentioned that for the IFF implementation
considered in the main text, the role of the proxy X in the mediated degradation of the species
of interest Y is purely catalytic (i.e. the species X is not consumed). However, even if the effect
is not purely catalytic, the nature of this section’s results does not change (see S1 Text).

Dynamic input fluctuations. Consider the case when u is dependent on a dynamic signal,
i.e., uðtÞ ¼ �u þ dðtÞ where δ(t) is a mean 0 process, which can be deterministic or stochastic.

Noise Properties of Feedback and Incoherent Feedforward Circuits
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For small magnitude δ and when y(t) is close to �y , how fluctuations in u are reflected in fluctua-
tions in y is captured in the frequency domain by a function G (called a transfer function, see
S1 Text for details). This type of approach of analyzing the effects of noise/disturbances by
examining the signal frequency components has been successfully used in several biological
systems such as cell lineage pathways [16], the glycolysis pathway [17] and the hyperosmolar
signaling pathway in yeast [18]. A quantity of interest is the so-calledH2-norm of G, denoted
by kGkH2

, whose square is equal to the variance of y(t) as t!1 when δ is given by the stan-

dard Brownian motion [19]. Analysis of G and kGkH2
reveals that regulation (especially aggres-

sive regulation) can reduce the variance of y due to the variance of u, but also that the FB
topology is better suited for the task. Indeed, high gain FB implementations can drive the vari-
ance of y(t) to zero while for any IFF implementation there exist a lower bound on the variance
of y given by 1

2ðl1þl2Þ (see S1 Text for details). This is illustrated in Fig 1F, where the noise in u is

modeled by adding a scaled Brownian motion term to the right-hand side of the equations in
ODE models in Table 1. The theoretical predictions based on kGkH2

are shown by red and

black stars, while the bars show the corresponding variance of y(t) for sample runs of imple-
mentations with different regulation strengths α. The figure shows that kGkH2

can be a good

predictor of the variance of y even in the full system implementation and such predictions are
not sensitive to the choice of the class of the inhibition function g. We should note that the
information content provided by G is not dependent on the nature of δ(t),—i.e., whether δ(t)
is given by the Brownian motion or even if it is not stochastic at all -, and the results do not
depend on the process assumptions on δ. In fact, G captures how each individual frequency
component of δ(t) is attenuated or amplified by the circuit. Fig 1G and 1H shows how different
implementations of the circuits respond when u is given by a birth-death process. The corre-
sponding means and standard deviations of the sample trajectories are also shown. The pres-
ence of even low levels of regulation does reduce the variations on y-trajectories for both
circuits. In general, for different u(t) the high gain FB implementations outperform their IFF
counterparts as illustrated in Fig 1I. The figure shows the coefficient of variation of typical sam-
ple trajectories in response to u, where u is given by a birth death process with birth rate br and
death rate 0.1br. An intuitive explanation of why FB outperforms IFF, is that both steady state
robustness and the transient dynamics matter under these conditions. In both topologies the
transient dynamics of y depend on x, but it is only the FB implementations that regulate the
dynamics of x in addition to those of y. It is this additional robustness of the intermediary spe-
cies X that accounts for the better performance.

Suppression of Chemical Reaction Stochasticity
In this section x and y are random variables that refer to the population of X and Y respectively.
We study how different effective gain αfb and αff change the noise properties of FB and IFF
respectively, by looking at the variance of the stationary distribution of y. Throughout the rest
of this section we will assume that the value of the input u is fixed at u ¼ �u. The stochastic
models are constructed based on the reaction schemes shown in Table 1. Similar to the previ-
ous section, in order for the comparisons between the different topologies to be meaningful, we
require that the different implementations have the same expected steady state values (steady
state means) for both x and y and same propensities for the production reactions at the steady
state mean values. We denote by< �> and var(�) the expected value and the variance with
respect to the stationary distribution.

Feedback architecture. Consider the case when for a given αfb, the inhibition function
g is parametrized by Eq (3) (i.e., g = gR). We consider the set of feedback gains αfb for which
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x0 ¼ 1þafb
afb

f ð�uÞ
l1
is an integer. For this particular choice of g, we can analytically compute the exact

steady state mean and variance of x and y for both coupled and uncoupled stochastic model of
the FB architecture using the moment equations.

In order to better understand the various terms in the expressions for the variances, we first
examine an even simpler case of feedback inhibition architecture. Consider the case when Y
directly inhibits its own production (Fig 2A) with inhibition function g(y) = gR(y;αfb) (i.e., the

reaction scheme is given by ; f ðuÞgRðyÞ����! Y ; Y
l2! ;). This architecture is similar to that of [9]

with the burst size exactly 1. At steady state y is distributed according to a binomial distribution

(see S1 Text, Lemma 1) with mean �y≔ < y >¼ f ð�uÞ
l2
and variance varðyÞ ¼ 1

1þafb
�y . This implies

that high feedback gain αfb always improves the variance and very large αfb can almost
completely suppress stochastic fluctuations. This is to be expected since Y directly inhibits its
own production and for large αfb and y near �y , it is unlikely for either one of the production or

Fig 2. Suppression of intrinsic fluctuations in FB and IFF architectures. A. Cartoon representation of direct feedback regulation
architecture. B, C. Suppression of inherent stochastic fluctuation in FB architecture. Shown is the coefficient of variation (cv) as a function of
the effective gain αfb. (B) Direct regulation (green line) can completely suppress the fluctuations for high enough gains. The coupled
implementations (red line) can reduce the cv, but such reductions are moderate and best for small gains. The decoupled implementation
always increases the cv. Shown are also the penalty terms Pfp

couple, Pfp
proxy. Parameters used: �y ¼ 50, �x ¼ 50. Shown are FSP solutions (black

dots) for implementations with f(u) = 50, l1 = 1, l2 = 1gðxÞ ¼ 11

1þ10ðx=50Þh, h = 0, 1, . . ., 10). (C) The benefits of coupled implementation (red lines)

and the penalties of the decoupled implementation (blue lines) are reduced as �x increases (compared to �y). Shown is cv for �y ¼ 50,
�x ¼ 5; 50; 100. D, E. Suppression of inherent stochastic fluctuation in IFF architecture. Shown is the cv as a function of the effective gain αff.
(D) The coupled implementations (red line) can reduce the cv, but such reductions are moderate and best for small gains. The decoupled
implementation always increases the cv. Parameters used �y ¼ 50, �x ¼ 50. Shown are FSP solutions (black dots) for implementations with
f(u) = 50, k1 = 1, and k2 and k12 as shown in Table A in S1 Text. (E) The benefits of coupled implementation (red lines) and the penalties of
the decoupled implementation (blue lines) are reduced as �x increases. Shown is cv for �y ¼ 50, �x ¼ 5; 50; 100. F, G. Comparison of FB and
IFF architectures. For the same gains, FB coupled implementation (solid red line) performs slightly better than the IFF counterpart (dotted
red line), and the FB decoupled implementation (solid blue line) performs slightly worse than the IFF couterpart (dotted blue line). Such
differences are emphasized for smaller �x. Shown are implementations with �y ¼ 50; �x ¼ 50 (panel E) and �y ¼ 50; �x ¼ 10 (panel F).

doi:10.1371/journal.pcbi.1004958.g002
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degradation reactions to fire twice in a row (since y > �y implies that degradation reaction is
much more likely to fire and y < �y implies the production reaction is much more likely to fire).

Consider now the original FB architecture (Fig 1A left). In the case when the production of

X and Y is coupled, y has the same steady state mean �y ¼ f ð�uÞ
l2
, but an additional penalty term

appears on the expression for the steady state variance of y

varðyÞ ¼ 1

1þ afb
�y þ Pfb

proxy

where

Pfb
proxy ¼

afb afb þ �x=�y
� 	

1þ afb
� 	

1þ afb
� 	

þ �x=�y
� 	 �y; ð5Þ

and �x≔ < x >¼ f ð�uÞ
l1
. Pfb

proxy is the “price” paid for using the population abundance of X to esti-

mate that of Y. As a consequence, larger values of αfb do not guarantee improvement in the var-
iance of y (Fig 2B). In fact, because of the “proxy penalty” relatively small gain
implementations minimize the variance. Such improvements are biggest when the ratio �x

�y
is

smallest (Fig 2C). An intuitive explanation is that a proxy in low copy numbers senses better
the fluctuations in the firing rate of the production reaction, and consequently makes the feed-
back controller better at responding to those fluctuations. In fact when �x is very large (�x

�y
! 1)

any gain produces the same variance as the uncontrolled case (αfb = 0). When �x is comparable
to �y (�x

�y
¼ 1), the most feedback can reduce the steady state variance is by�17% compared to

the uncontrolled case. The biggest achievable reduction in variance is 25%, when �x is very
small compared to �y (�x

�y
! 0).

In the case when the production of X and Y is decoupled, we get the same values for �y as in
the coupled case, but a decoupling penalty term appears on the expression for the steady state
variance of y

varðyÞ ¼ 1

1þ afb
�y þ Pfb

proxy þ Pfb
decouple

where

Pfb
decouple ¼

afb

1þ afb þ �x=�y
�y: ð6Þ

In this case, the best implementation is that of gain aoptfb ¼ 0 (i.e., no feedback). Therefore,

when the productions of X and Y are separate reactions, any feedback would result in higher
steady state variance of y (Fig 2B). This indicates that when decoupled in production, fluctua-
tions in x do not provide useful information on the fluctuations on y and any action on that

information content would amplify the noise. Unlike the proxy penalty term, Pfb
decouple gets larger

for smaller ratios �x=�y causing the variance of the decoupled system to increase as the �x gets
small (Fig 2C).

The above results extend well numerically even for different classes of inhibition functions
g. Consider the case when g is given by a Hill type function gH. We use finite state projection
(FSP) solutions [20] with g = gH to compare the steady state values of the moments of x and y
to those of analytical results derived using g = gR, with the same slope at the steady state value

(�x ¼ f ð�uÞ
l1
). The numerical solutions show that the moment values derived using g = gR capture
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the overall trend and are a good approximation for the values with g = gH as shown in Fig 2B.
FSP solutions provide strong evidence that for these models, gR captures the features of the
network and the results derived using gR extend to other types of monotone decreasing inhi-
bition functions g.

Incoherent feedforward architecture. For the IFF stochastic models based on the reaction
scheme in Table 1, the lower order moments dynamics of y depend on the higher order
moments dynamics. As a consequence it is not possible to get exact analytical expressions for
the steady state mean and variance of y. However, one can get approximate expressions for the
moments by approximating the higher order moment terms in the moment equation using
approximations schemes known as moment closure methods [21]. Here we use one such
method called derivative matching [22] to get analytical expressions for the approximated
mean and variance of the stationary distribution of y.

First, we consider two special cases: (1) no regulation (k12 = 0, αff = 0) and (2) infinite gain
regulation (k2 = 0, αff =1, equivalent to integral control and perfect adaptation in the determin-
istic case). For no regulation case αff = 0, both the coupled and decoupled production topology

result in varðyÞ ¼ �y where �y ¼ f ð�uÞ
k2

(y is a simple birth death process). For the second case

αff =1, for a given mean �y , varðyÞ ¼ �y for the coupled topology and varðyÞ ¼ �y þ Pff
decouple;1,

where Pff
decouple;1≔

�yþ1

1þ�x=�y
is a decoupling penalty term. The penalty term gets worse as �x ! 0,

causing the variance to more than double. As �x ! 1 (x behaves more deterministically) the
penalty term vanishes.

For the general case (k2 > 0, k12> 0), the explicit approximate analytic solutions for the
mean and variance of y at stationary are too messy to be useful in providing any direct insight
on how different gains and other parameter combinations affect performance. The behavior is
similar to that of the FB mean and variance. For the coupled IFF, effective feedforward gains αff
can reduce the variance (compared to αff = 0, no control), but such reduction is limited (maxi-
mum 30% improvement—indeed maximum 25% improvement when average populations are

no smaller than 2) and best for small values of αff aoptff ¼ �xþ�y
1þ�xþ�y

�
). In the case of the decoupled

IFF, any regulation (αff> 0) increases the variance (Fig 2D). [7] have made similar observation
by exploring the parameter space of a different model implementation of miRNA mediated
feedforward loops using numerical simulations and approximate analytical formulas (derived
through linearization of the propensity functions).

For a fixed �y , smaller �x improves the performance of the coupled IFF (reduces variance),
but hurts the performance of the decoupled IFF (Fig 2E). This type of behavior is not surpris-
ing. Similar to the FB case, for the coupled IFF low copy numbers of Xmeans IFF senses better
the fluctuations in the firing rate of the production reaction and consequently responds better
to those fluctuations. However, when X and Y are decoupled, IFF is simply responding to unre-
lated variation in x due to the inherent stochasticity of chemical reactions (which is larger for
low copy numbers of X). FSP solutions of the stochastic models show the steady state values of
the moments derived using derivative matching are good approximation to the actual values of
these moments (Fig 2D).

Comparing the different architectures. Both FB and IFF circuits respond in a similar
manner to chemical reaction stochasticity and achieve comparable reductions in steady state
variance (no more than 25% in all but a few extreme scenarios). Direct comparison of coupled
FB and IFF reductions for optimal values of gains, shows that for average molecule counts of X
and Y that are no smaller than 2, the FB realizations achieve larger reductions than the IFF
counterparts. The larger the average population of X, the more FB outperforms the IFF. Notice
also that the optimal gain for the FB is larger than the optimal gain for the IFF.
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We already gave some intuitive reasons on why such hard limitations on the ability of these
circuits to deal with inherent chemical stochasticity of the reactions. To gain some more
insight, we approximate the stochasticity of each reaction by a Brownian motion term using
Linear Noise Approximation (LNA) [23] and look at theH2-norm of the corresponding trans-
fer function (see S1 Text for details). This way we can decompose the total variance based on
the contributions of each individual reaction, and evaluate the limitation imposed on the con-
troller. A first observation is that 50% of the (uncontrolled) variance is contributed from reac-
tions that are independent of α, so the controller can only improve on the remaining 50%.
Another observation is that any action on information content from uncorrelated noise sources
will amplify the variance, while action on correlated noise will reduce the variance. For the
decoupled topology the controllers are acting on two sources of uncorrelated noise (both pro-
duction and degradation of X are uncorrelated with that of Y), hence any action will result in
an increase of the overall variance. For the coupled topology the controllers are acting on one
source of correlated noise (production of X and Y) and one source of uncorrelated noise (deg-
radation reactions), resulting on a tradeoff and values of α for which the controller is maxi-
mally beneficial will result in a maximum 50% reduction of the controllable portion of the
variance (25% overall). (see S1 Text for more details).

Concurrent Suppression of Both Sources of Variability
So far we have shown that if the stochasticity of the chemical reactions can be ignored (i.e., the
dynamics of the circuit can be faithfully represented by their macroscopic representation), regula-
tion always reduces variations due to input noise or even completely suppress such variations for
strong enough levels of regulation. On the other hand, if the input noise can be ignored and the
primary source of noise is the randomness of the chemical reactions, regulation (especially strong
regulation) is not always beneficial and at best can only reduce the variance by 25%. However
such reductions of the extrinsic and intrinsic noise cannot be achieved simultaneously by the
same circuit realization since such improvements require different effective gains which are hard-
encoded by the reaction propensities. How aggressively the circuits should regulate the produc-
tion (for the FB) or the degradation (for the IFF) of Y for noise suppression is determined by the
tradeoff between suppressing the various sources of noise. We illustrate this idea with an example.

Consider three different FB circuit realizations: (1) no feedback regulation (αfb = 0, g(x)�1)
(2) maximum level of regulation (very large effective gain, αfb !1) with coupled production
and (3) maximum level of regulation (αfb !1) with decoupled production. For the last two
realizations, the feedback inhibition function g is given by Eq (3). Let the input u be a random
variable distributed according to a Poisson distribution with mean �u > 0, and let f(u) = au + b.

The first realization (no feedback) results in

varðyÞ ¼ C þ b
l2|fflffl{zfflffl}

chemical reaction stochasticity

þ C2

l22

1

�u|ffl{zffl}
input variability

;

where C≔a�u. Each of the terms in the expression correspond to the contributions to the
variance due to each noise source. For a fixed C and b (which guarantees fixed average inflow
f ð�uÞ), smaller �u implies larger total variance. This is to be expected since smaller �u means that
Poisson variable u becomes more “noisy”. Note that for this realization, both coupled and
decoupled implementations yield the same var(y).

The second FB realization (coupled with very strong feedback) results in a smaller variance,
varðyÞ ¼ ðC þ bÞl�1

2 for any finite �u. This is a result of strong feedback completely suppressing
the variance term due to stochasticity in u but not changing the variance term due to stochasticity
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of the chemical reactions. It is clear that this realization is preferable to no feedback for all param-
eter values.

The third FB realization (decoupled with very strong feedback) results in variance
varðyÞ ¼ 2ðC þ bÞl�1

2 . Strong feedback again completely suppresses the variance term due to
randomness in u but it also doubles the variance term due to randomness of the chemical reac-

tions. So this realization would be preferable to no feedback only if �u < C2

lðbþCÞ, i.e. the input

noise level is above a specific threshold.
In general, for both FB and IFF circuits the best regulation strategy is dependent on the rela-

tive dominance of the noise sources. Fig 3 shows numerical stochastic simulation algorithm
(SSA) results [24] for different circuit realizations and different input noise scenarios. As the
input noise level is high, the noise term due to input noise is dominant and stronger regulation
is preferred. For low levels of input noise, the noise term due to chemical reaction stochasticity
becomes dominant and small levels of regulations are preferred especially for the decoupled
realizations.

Fig 3. Simultaneous suppresion of both sources of fluctuations. For all panels, shown in the main
window is the variance as a function of the strength of regulation and shown in the inset is the mean as a
function of the strength of regulation. Low �u implies noisier input u and higher extrinsic variability. When the
dominant source of variability is input fluctuations, then a strong regulation strategy is preferable. However
when the contributions of input fluctuations and chemical reaction stochasticity are comparable, then
strategies with smaller gains are preferable. This is especially true for the decoupled implementations. A.
Coupled FB implementationB. Coupled IFF implementation C. Decoupled FB implementation D. Decoupled
IFF implementation. Values were obtained using 40,000 SSA simulations of models shown in Table B in S1
Text.

doi:10.1371/journal.pcbi.1004958.g003
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Combining the FB and IFF into a Single Circuit
What happens if the intermediary species controls both the production and the degradation of
y simultaneously? Would it result in better adaptation/noise suppression than the correspond-
ing FB or IFF circuit? To answer this questions we consider here a combined architecture
described in more detail in S1 Text. To fairly compare between all architectures, the same nor-
malization criteria, captured by the conditions listed in Table 1, is applied and the performance
of the combined circuits in response to the same sources of variability is examined.

If we define the “effective gain” αcomb of the the combined architecture by

acomb≔afb þ aff þ afbaff ; ð7Þ

then we observe that in adapting to cell-to-cell variability, both eqs 2 and 4 hold, for α =
αcomb. Since adaptation to this type of variability is dependent on implementations with high
effective gains circuits, the combined architecture offers the advantage that it can implement
gains that might not be possible biologically in each of the FB or IFF circuits individually. Simi-
larly, in suppression of dynamic input variability, the combined architecture also takes advan-
tage of the best of both FB and IFF topologies in improving the performance (see S1 Text for
details).

On the other hand the combined topology does not offer any extra benefits in suppressing
inherent stochasticity of the chemical reactions. LNA approximation of the stochastic dynam-
ics reveals that the maximum improvement achievable is still at 25% of the variance (as
�x=�y ! 0, for optimal gains satisfying αcomb = 1). This theoretical result suggests that the limita-
tions arise from the use of the intermediary (“a noisy sensor”) and not from the regulation
strategy.

Discussion
The feedback (FB) and incoherent feedforward (IFF) circuits studied here control the concen-
tration of a species of interest (denoted Y) by making use of an intermediary species (denoted
X) that serves as a proxy for Y. The two circuits differ in how the information contained in the
proxy is used: FB uses it to control the production of Y, while IFF uses it to control its degrada-
tion. Employing a control theoretic approach, we quantified the strength of regulation of each
circuit implementation by evaluating its “effective gain”, which measures how aggressively X
regulates the production of Y (FB circuit), or its degradation (IFF circuit). When we compare
implementations with the same effective gains we observe that both architectures have similar
properties in adaptation and noise suppression. We considered three basic types of variability
that the circuits need to deal with: static extrinsic cell-to-cell variability, dynamic input variabil-
ity, and intrinsic chemical reaction stochasticity.

FB and IFF circuits Are Equally Effective in Adapting to Cell-to-Cell
Variability
This includes scenarios when static cell-to-cell variations, such as plasmid abundance variabil-
ity in a cell, which result in variability to the input of the circuits. A common performance
objective is the minimization of variability in steady-state expression levels of Y in the presence
of such input variability. Under this objective, implementations of both architectures with the
same “effective gains” perform identically. In particular both architectures can almost entirely
suppress these types of variations in the input provided that high enough effective gain imple-
mentations are realizable.
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Our study establishes that the main differences between the two motifs involves practical
considerations, such as what effective gains are biologically feasible to implement in the system
of interest and the cost of such implementations. Biological constructs, such as micro-RNA
(miRNA) post-transcriptional regulation, make the implementation of high gain IFF imple-
mentations practical. Such implementations simply require high ratios of mediated degrada-
tion to the native degradation of the species of interest Y. Furthermore, these constructs allow
for tunable synthetic implementation, which indeed have shown better adaptation for stronger
mediated degradation (i.e., higher effective gain) [5]. On the other hand, high gain FB imple-
mentations require inhibition functions with high slopes in the operating regime which are
generally harder to realize. The range of achievable gains in the operating regime of interest
might account for why many synthetic implementations of IFF circuits provide adaptation
while FB implementations do not [6].

FB Circuits Are Better Suited to Deal with Dynamic Variations of the
Input
This includes scenarios where the main source of variation is the dynamic nature of the input,
such as when the input to the circuits is dependent of time-varying environmental stress sig-
nals. Under this type of variation, the variance over time of the expression level of the species
of interest can be made as small as needed using high gain FB implementations. On the other
hand, this is not true for IFF since there exists a lower bound for how small this variance can be
made by any IFF implementation.

FB and IFF Circuits Are Not Effective in Reducing Fluctuations Due to
Inherent Chemical Reaction Stochasticity
The performance of same strength implementations of both circuits are comparable and both
are severely limited on how much reduction in variance they can achieve. Such reduction is
restricted to a maximum of 25% (when the expected abundance of both species is no smaller
then 2), and is a result of the use of the intermediary X to control the species of interest Y. Vari-
ations in X due to extrinsic variability of the input are perfectly correlated to those in Y, and
such knowledge can be leveraged to reduce these variations almost completely. However, this is
not true for variations due to chemical reaction stochasticity. In the case of the decoupled pro-
duction implementations, the variations in X due to this source of stochasticity are uncorre-
lated to those of Y. Any action by the circuits will result in noise amplification, and hence leads
to an increase in the variance of Y. For the coupled production implementations, the variations
in X are correlated to those in Y, but such correlation is not perfect due to the degradation of
the species being decoupled. As such X acts as a “noisy sensor” of Y, and there is a limit to how
much useful information content is in X and how aggressively it can be exploited. The best
improvement comes from low expected abundance of X compared to Y (more “sensitive” sen-
sor) and for small levels of effective gain.

Therefore, when trying to suppress both extrinsic and intrinsic sources of variation, there
are tradeoffs to consider in both architectures since the best results occur at different gains
(regulation strengths). In most applications, the more aggressive implementations would gen-
erally work best since the main source of variability tends to be extrinsic and that is where
these circuits are most effective.

Noise Properties of Feedback and Incoherent Feedforward Circuits

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004958 June 3, 2016 14 / 16



A Circuit that Combines both FB and IFF Regulation Can Be More
Effective in Dealing with Input Variability, but Is Just as Ineffective in
Dealing with Chemical Reaction Stochasticity
Our work demonstrates that the combined circuit has an effective gain that is greater than the
sum or product of the gains of the individual components. This allows for implementation of
large effective gains even when high-gain implementation of separate IFF and FB components
are infeasible, making higher adaptation to extrinsic variability possible. On the other hand the
limitations in suppressing chemical reaction stochasticity do not rise from the inability to
implement high gains circuits, but rather from the use of an intermediary in regulation. Indeed
the optimal implementation for suppressing chemical reaction stochasticity has the same small
effective gain as the optimal IFF and FB implementations.

Our analytical and computational analysis reveal that FB and IFF architectures, though at
first glance can appear very different, can be considered as two sides of the same coin. They
both have the capability to provide adaptation to changes in the input and some suppression of
chemical reaction stochasticity through similar mechanism: exploiting the information con-
tained in the proxy to control either the production or degradation of the species of interest.
The main differences between the two lie in the ability to adapt to dynamic input fluctuations
and the biological constrains in their implementations.

Materials and Methods
Simulations were done using the SPSens software package [25] and the ode solver ode45 in
MathWorks Matlab 8.1. The derivations of the transfer functions are shown in the Supporting
Information.

Supporting Information
S1 Text. More details on derivation of results.
(PDF)
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