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Abstract
We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple

sequence alignment (MSA) that, as implemented in the program GISMO and applied to

large numbers of diverse sequences, is more accurate than the popular MSA programs

MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are:

(i) It employs a “top-down” strategy with a favorable asymptotic time complexity that first

identifies regions generally shared by all the input sequences, and then realigns closely

related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions

or deletions (indels) within each sequence at alignment positions in which indels are

invoked in other sequences. This favors the placement of insertions between conserved

blocks, which can be understood as making up the proteins’ structural core. (iii) It uses a

Bayesian statistical measure of alignment quality based on the minimum description length

principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions

only when statistically justified. This is unlike methods based on the ad hoc, but widely
used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a

system for exploring alignment space that provides natural avenues for further experimenta-

tion through the development of new sampling strategies for more efficiently escaping from

suboptimal traps. GISMO’s superior performance is illustrated using 408 protein sets con-

taining, on average, 235 sequences. These sets correspond to NCBI Conserved Domain

Database alignments, which have been manually curated in the light of available crystal

structures, and thus provide a means to assess alignment accuracy. GISMO fills a different

niche than other MSA programs, namely identifying and aligning a conserved domain pres-

ent within a large, diverse set of full length sequences. The GISMO program is available at

http://gismo.igs.umaryland.edu/.
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Author Summary

Existing multiple alignment programs typically utilize (i) bottom-up progressive strategies,
which require the time-consuming alignment of each pair of input sequences, (ii) ad hoc
measures of alignment quality, and (iii) pre-specified, uniformly-defined gap penalties.
Here we describe an alternative strategy that first provisionally aligns regions generally
shared by all the input sequences, and then refines this alignment by iteratively realigning
correlated sequences in tandem. It infers position-specific gap penalties directly from the
evolving alignment. It avoids suboptimal traps by stochastically traversing the complex,
correlated space of alignments using a statistically rigorous measure of alignment quality.
For large sequence sets, this approach offers clear advantages in alignment accuracy over
the most popular programs currently available.

This is a PLOS Computational BiologyMethods paper.

Introduction
A common starting point for the computational analysis of proteins is the construction of a
multiple sequence alignment (MSA). Insofar as they result from protein functional similarities
and differences, the patterns of residue conservation and divergence within such an alignment
provide clues to biological function. Of course the biological relevance of any observed patterns
depends upon an alignment’s accuracy, and alignments of larger sequence sets have greater sta-
tistical power. For biologically appropriate scoring systems applied to more than a very small
number of sequences, however, no optimization procedures are known that are both tractable
and rigorous; thus all practical MSA programs rely upon heuristic methods.

The most widely used general approach to multiple alignment is the progressive technique
[1], which constructs an MSA by combining sub-alignments, beginning with similar pairs and
progressing to more distantly related groups. Many progressive alignment programs are slowed
by the need to construct a “guide tree”, which specifies the order in which sequence subgroups
are aligned, from pairwise alignment scores. For n sequences of a fixed average length, it
requires O(n2) time to compute such scores, and this becomes the time-dominating step for
large n. One way around this problem is to iteratively refine a guide tree and MSA starting
from an initial crude guide tree, an approach used in the popular MUSCLE [2] and MAFFT
[3–5] programs. The MAFFT PartTree [6] and Clustal-ΩmBed [7] algorithms yield guide tree
construction times of nlog n. A recent O(n) approach [8] is to use a simple chained guide tree,
and add individual sequences to a growing alignment in an arbitrary order.

An alternative O(n) method that avoids aligning all sequences to one another is to use Mar-
kov chain Monte Carlo (MCMC) sampling to iteratively align sequences to an evolving hidden
Markov model (HMM) [9–11]. Our approach initially uses a block-based HMM to represent
islands of similarity within otherwise dissimilar sequences. The number of the blocks and their
lengths are first sampled randomly from a prior distribution, and placed randomly but co-line-
arly within each sequence. Posterior HMM parameters are derived from this alignment. Next,
an arbitrary sequence S is removed from the alignment, and the model’s parameters are
updated and then used to sample new locations for its blocks within S. This process may be
iterated an arbitrary number of times. Also, both blocks and columns at the edges of each block
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are iteratively sampled in or out of the alignment and of the corresponding model. Sampling
continues in this way until the log-likelihood ratio (LLR) implied for the evolving HMM fails
to improve over a specified number of iterations. All alignments are sampled using probabili-
ties proportional to their LLRs. Note that the hmmt program iteratively refines an HMM in a
similar manner [12].

Aligning distantly related sequences presents major algorithmic and statistical challenges
because such sequences typically share similarity only within a common structural core, with
sizable insertions often occurring between core elements. Classical dynamic programming
alignment algorithms typically have difficulty spanning these insert regions because the log-
odds scores associated with weakly conserved core elements are often too low to offset the gap
penalties incurred. Fortunately, even when the conserved blocks are very subtle, an MCMC
strategy can take advantage of a large number of input sequences to detect weak yet statistically
significant similarities.

Two factors have tended to slow previous MCMC sampling procedures, or to trap them in
local optima. The first is the inclusion of correlated sequences within the input. When a set of
such sequences is misaligned to the main body of sequences, it favors recurring misalignment
when individual sequences from the set are resampled. This problem may be partially
addressed by removing from the program’s input all but one sequence among closely related
sets; these sequences may be added to the alignment at the program’s end. The second factor is
the difficulty in accurately identifying the number and locations of aligned columns corre-
sponding to the structural core, and the corresponding placement of indels. A previous sampler
addressed this problem with only partial success by splitting or joining contiguous blocks,
extending or trimming blocks, and by allowing short indels within a block [10].

A critical issue for multiple alignment programs is how they internally assess sequence
alignment quality. One widely used measure is the sum of the implied pairwise scores, but this
measure lacks a good mathematical justification. Previous MCMC programs introduced mea-
sures with a rigorous statistical basis by sampling over the posterior probability distribution
defined by a statistical model for aligned columns [9, 13]. However, they employed uniform
HMM transition probabilities (i.e., gap penalties) [10], which fail to model position-specific
indels with comparable generality.

In this article, we describe a new approach to MSA, whose main features are as follows. (a) It
uses a top-down strategy andMCMC sampling to align n sequences of a fixed average length in
O(n) time. It achieves this by first globally aligning input sequences to a block-based model, then
generalizing this model by converting aligned blocks into a continuous, gapped alignment and
refining it by repeated Markov chain resampling. (b) It employs a Bayesian generative statistical
model and the minimum description length (MDL) principle [14] to measure the quality of align-
ments, and seeks to optimize this measure. (c) It employs Dirichlet mixture priors [15, 16] con-
structed using recently described optimization procedures [17]. (d) It dynamically infers HMM
position-specific transition probabilities (i.e., gap penalties) based on the evolving alignment. (e) It
uses new sampling strategies for correlated sequences to efficiently escape from local optima. We
have implemented this approach in a program called GISMO (Gibbs Sampler for Multi-alignment
Optimization) and demonstrate here that it can align large numbers of diverse protein sequences
on average more accurately than existing methods.

The GISMO sampler
GISMO shares certain algorithmic and statistical features with an earlier version of this sampler
[10], including the optimization of a hiddenMarkov model (HMM); the corresponding statistical
model is reviewed in Methods. In this section we describe features key to our new sampler.
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Top-down alignment strategy
Most multiple alignment methods utilize a “bottom-up” progressive alignment strategy. That
is, they start by aligning the most closely-related sequences and progressing to those more dis-
tantly related. GISMO takes an inverted, “top-down”MCMC approach that starts by aligning,
among all sequences, the core regions they share. It first generates a random alignment consist-
ing of many short (5- to 15-column) co-linear aligned blocks (Fig 1A). It then samples
sequences, columns and blocks into and out of this alignment, proportionally to their likeli-
hoods as implied by the underlying statistical model. The resulting relatively crude block-based
alignment is then converted into a single HMM (Fig 1B) with position-specific transition prob-
abilities that are allowed to evolve as the sampler progresses (see below). Finally, GISMO
applies various sampling strategies to optimize the number of columns and the locations of
indels and to realign clusters of correlated sequences that, if sampled individually, could trap
the sampler in a suboptimal alignment.

Ameasure of alignment quality
A program’s measure of multiple alignment quality, either explicit or implicit, plays a vital role
in determining the alignments it will produce. GISMO’s measure corresponds to an underlying
generative statistical model, specifically an HMM, and, to the extent that it can efficiently

Fig 1. GISMO block-based and hiddenMarkovmodels. A. Schematic of a hypothetical GISMO phase 1 block based
alignment, which is initialized to consist of many short, ungapped aligned blocks.B. Architecture for the GISMO phase 2 HMM.
Red transition arrows between states emit residues. Transition probabilities are inferred from the sequence data. Note that the
HMM is local with respect to each sequence but global with respect to the model.

doi:10.1371/journal.pcbi.1004936.g001
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explore alignment space, GISMO will converge on an optimal solution (assuming that
sequence weights remain the same; see below). GISMO’s statistical model has several features
worth noting. (i) To counter redundancy or bias among the input sequences, GISMO down-
weights closely correlated sequences [18]. Early on as the alignment evolves so do the
sequences’ inferred weights; in the final stage of sampling these weights remain constant. (ii)
GISMOmodels the tendency for amino acid residues to substitute for one another using
Dirichlet mixture priors [15, 16], whose calculation has recently been refined [17]. This
improves the statistical model’s sensitivity to biological relationships. See Methods for mathe-
matical details.

Inferred position-specific gap penalties
As described in Methods, GISMO infers HMM transition probabilities at each model position
based on the evolving alignment itself. More specifically, the observed numbers of each type of
transition, along with specified prior probability distributions for these transitions, imply pos-
terior probabilities for each transition at each position. These correspond to implicit gap penal-
ties, which favor insertions or deletions (indels) within a given sequence that vary in tandem
with where indels have been inferred within other sequences. This tends automatically to favor
near block-based alignments—a characteristic that the following column-sampling strategy
exploits.

Column sampling strategies
The HMM’s evolving position-specific transition probabilities tend to align conserved regions
of the proteins as contiguous blocks, separated by insertions of varying lengths. To improve the
alignment, however, it is desirable for the sampler to explore alternative configurations of
aligned columns. To determine the proper extent of an implied block, GISMO adds or removes
columns based on their Bayesian Integral Log-odds (BILD) scores [19]. The BILD formalism
arises from theMinimum Description Length (MDL) principle [14], which provides a crite-
rion for choosing among alternative models for describing a set of data. Conceptually, it sug-
gests that the best model, among a set of alternatives, is that which minimizes the description
length of the model, plus the maximum-likelihood description length of the data given the
model. Note, however, that early in our sampling, we retain columns that, based on their BILD
scores, fail marginally to be statistically supported, in order to allow the sampler time to con-
verge on an accurate alignment. GISMO also will move model columns from one side of a set
of insertions to the other, if this improves the aggregate BILD score

Sequence sampling strategies
When individual sequences are realigned to the evolving HMM, they may be sampled (as
described in Methods) one at a time, with the HMM parameters recomputed after each
sequence is removed from the alignment. However, this approach encounters difficulties when
an alignment consists of distinct clusters of more closely related sequences, because a sampled
sequence is biased by the remaining sequences of its cluster to realign as before. Sampling all
the sequences of a cluster in tandem can overcome this “stickiness”. GISMO does this in two
distinct ways. First, for a cluster C of extremely closely related sequences whose mutual align-
ment lacks indels: (i) GISMO constructs a consensus sequence S to represent the sequences in
C, and prealigns S to these sequences; (ii) It removes all the sequences of C from the general
alignment, and adjusts the implied HMM parameters accordingly; (iii) It aligns S to the HMM
by sampling; (iv) Using S as a template, it places the sequences of C back into the general
alignment.
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Alternatively, for a cluster C of somewhat more distantly related sequences: (i) GISMO
removes all the sequences of C from the general alignment and adjusts the implied HMM
accordingly; (ii) It realigns the sequences of C in turn to the HMM by sampling. GISMO
applies this latter realignment procedure not only to sets of sequences clustered by sequence
similarity, but also to groups of sequences that share congruent insertions or deletions or that
share a non-consensus residue in an otherwise well conserved column (see S1 Fig). In all these
cases, by sampling ‘sticky’ sequences in tandem, GISMO is able to escape many local traps in
alignment space.

Finally, GISMO applies three different coordinated sampling strategies: (i) It realigns
sequences using a ‘purged’ set as follows: first, it groups all sequences into closely-related clus-
ters; second, it retains in the alignment only the one sequence from each cluster closest to the
cluster’s consensus sequence; third, it realigns by sampling each of the remaining sequences;
finally, it resamples into the alignment each of the sequences that were originally excluded.
This step resembles another, recently-described MSA strategy [20]. (ii) It removes in tandem
the poorest scoring sequences and then resamples them, under the assumption that poor scores
may arise from alignment errors. And (iii) it removes in tandem and then resamples randomly
chosen sequence subsets.

Competitive selection strategy
Given the stochastic nature of MCMC sampling, it is advantageous to focus on refining the
best alignment among several initial candidate alignments. GISMO does this as follows. (i) It
generates a rough block-based alignment for all input sequences, which it uses to construct
clusters of closely related sequences, and then selects one sequence from each cluster for further
preliminary alignment. (ii) For these sequences, it independently generates a population of
block-based alignments, ten by default. (iii) It converts each of these alignments into an HMM
alignment and resamples its sequences permitting the introduction of gaps. (iv) It scores each
alignment by its similarity to the other alignments (see Methods). The assumption is that the
best alignments will share more similarity with other alignments. Moreover, such agreement
may indicate, in the absence of structural information, that a more accurate alignment has
been found. (v) It further refines the highest scoring alignments, five by default, and then
selects the best of these by the same criterion. (vi) It samples back the remaining sequences,
performs additional refinement, and returns a final, full alignment.

Results
The GISMO program was implemented in C++. We tested GISMO on 408 protein sequence
sets; these correspond to those domain alignments within version 3.14 of the NCBI Conserved
Domain Database (CDD) [21] that contain at least 50 sequences, at least 10 of which share less
than 70% identity to each other. (The CDDMSA identifiers are listed in S1 Charts.) These MSAs
have been manually-curated in the light of available crystal structures and serve here as gold stan-
dards, against which GISMO and other programs’MSAs may be benchmarked. These align-
ments contain up to 2,399 sequences and contain in aggregate between 3,583 and 3,929,595
residues. This test set focuses on the principle application motivating the development of
GISMO, the accurate alignment of a conserved domain shared by a relatively large number of
diverse, full-length sequences that, outside of the shared domain, are otherwise unrelated.

Comparisons with other programs
GISMO was compared to four widely used MSA programs, MUSCLE (v3.8.31) [2], MAFFT
(v7.158b) [3–5], Clustal-O (v 1.2.0) [22, 23] and Kalign (v2.04) [24, 25] as well as to Dialign
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(v2.2) [26, 27], which, like GISMO, is designed to align conserved regions in sequences that
share local homology but are otherwise unrelated [28]. For all programs, we obtained the latest
versions and used the default parameter settings; for MAFFT this involved using the–auto
option, which allows the program to choose the best settings.

Alignment quality
We assess alignment accuracy using SP-scores, with the CDD alignments as benchmarks. In
brief, an SP-score (from "Sum of the Pairs") is the proportion of aligned pairs of residues within
a benchmark multiple alignment, that are similarly aligned within a test multiple alignment.
Note that the term "SP-score", with a related but distinct meaning, frequently describes else-
where an objective measure of multiple alignment quality, as opposed to a measure of align-
ment accuracy with reference to a benchmark, its meaning here. Note also that our benchmark
CDD alignments leave many residues in many sequences unaligned, and these are ignored in
calculating SP-scores, so a program that aligns these residues is neither penalized nor advan-
taged. In practice, GISMO leaves many of these residues unaligned as well, in contrast to most
other multiple alignment programs. To the extent that one is not merely agnostic about these
residues’ proper alignment, but believes they should in fact be left unaligned, GISMO's perfor-
mance is underestimated here.

To compare GISMO to other programs, we define the GISMO ΔSP-score as the SP-score
for GISMOminus the SP-score for the other program. Fig 2 plots GISMO ΔSP-scores as a
function of several MSA features, namely the number of aligned sequences (Fig 2A and 2B),
the ratio of domain to mean sequence length (Fig 2C), and the relative entropy as an indicator
of sequence diversity (Fig 2D). The plotted scores are averages for each of four equal-sized par-
titions of the 408 CDD test sets (i.e., 102 in each partition); the first through fourth partitions
contain those test sets having the lowest to highest values, respectively, for the various indepen-
dent variables. For comparison, Fig 2A and 2B also include a fifth partition consisting of 162
Balibase 3 [29] test sets, which contain fewer aligned sequences (35 on average) than do CDD
MSAs, are less diverse and are typically truncated versions of the full-length sequences. Fig 2A
reveals that GISMO performs worse than all of the other programs on the Balibase 3 sequence
sets, but progressively better on the progressively larger CDD sequence sets. A plausible expla-
nation for this is that, as the number of sequences increases, so does GISMO’s statistical power
to infer subtle sequence properties leading to higher quality alignments. These properties
include both residue and indel probabilities at each position in each alignment, with indel
probabilities likely to depend on the number of sequences to a greater extent because more
observations are required for their accurate estimation. For the 408 CDDMSAs GISMO ΔSP-
scores were statistically significant based on a one-tailed Wilcoxon signed rank test [30] with
p< 10−5 for all five programs (see S1 Statistics); based on the corresponding Z-scores, CLUS-
TAL-Ω (Z = +4.31) and MAFFT (Z = +6.02) performed better than MUSCLE, DIALIGN and
KALIGN (Z = 8.87, 11.73, and 10.70, respectively).

GISMO’s enhanced alignment quality for larger sequence sets may be due either to
improved detection of the conserved domain within full-length sequences or to improved
placement of indels within the domain or both. The analyses in Fig 2B–2D examine the degree
to which GISMO’s superior performance may be due to each of these factors. Fig 2B repeats
the analysis of Fig 2A using truncated versions of the input sequences, which consist of the
aligned domain region within each CDDMSA plus ten residues on each side of this region (or
as many as exist, if less than ten). On the rightmost partition, containing the largest sets of
truncated-sequences, GISMO performs better than the other programs. This indicates that,
even when the conserved regions are predefined, GISMO yields more accurate MSAs on
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sufficiently large data sets. Fig 2C plots average GISMO ΔSP-scores as a function of the ratio
between conserved domain length and the average sequence length. This ratio corresponds to
the relative size of the alignment space over which each MSA program needs to search for the

Fig 2. Comparison of GISMO to five other MSA programs. As described in the text, for each analysis the CDD test sets were first
ordered based on the property specified on the x-axis and then split into four equal-sized partitions. The x-coordinates for all data
points are averages, for the property in question, over the test sets assigned to the various partitions; similarly, the GISMO ΔSP-
scores for each program are averages taken over these partitions.A. GISMO ΔSP-scores as a function of the number of sequences.
For comparison, an additional, leftmost set of data points (shown with back-glow) corresponds to 162 out of 218 Balibase 3 test sets;
for the remaining 56 Balibase sets, GISMO failed to find a statistically significant alignment presumably due to sparse data: some of
these sets have as few as 4 sequences. B.GISMO ΔSP-scores as a function of the number of truncated sequences, as defined in the
text. C. GISMO ΔSP-scores as a function of the ratio between the domain length and mean sequence length. For sequence sets with
low ratios, the shared domain is more challenging to align due to a larger search space.D. GISMO ΔSP-scores as a function of
average relative entropy (with respect to a standard background amino acid distribution and expressed in nats, with 1 nat = 1/ln(2)
bits) over all column positions in each benchmark MSA; sequence diversity can be understood as inversely related to relative entropy.
For sequence sets with low relative entropy, the shared domain is more difficult to align due to weaker conservation.

doi:10.1371/journal.pcbi.1004936.g002
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conserved region, and therefore provides a measure of alignment difficulty. On average,
GISMO alignment quality relative to these other programs improves as this ratio decreases,
that is, as the level of difficulty increases. GISMO’s performance relative to these other pro-
grams likewise improves as the level of sequence diversity increases (Fig 2D). Together, these
analyses suggest that, for large sets of diverse, full-length sequence sets, GISMO is superior
both at identifying and aligning conserved domains.

Also worth noting about the analyses in Fig 2 is MUSCLE’s much improved relative perfor-
mance on the truncated versus the full-length sets as a function of the number of aligned
sequences (compare Fig 2A and Fig 2B). This suggests that MUSCLE is better at properly
aligning conserved regions than at identifying them within full-length sequences. This also
illustrates how each program’s relative performance may be better on some sequence sets and
worse on others. In this regard, we surmise that the reliance on benchmark sets with a rather
limited range of properties has tended to favor certain MSA program niches over others. In
particular, our analysis suggests that programs for aligning large sets of diverse full-length
sequences are underrepresented.

Run-to-run variability
Unlike most MSA programs, GISMO is stochastic and therefore will return a different MSA
for each run. This raises the question of GISMO’s run-to-run SP-score variability, as well as
how this compares to the variability in SP-scores among distinct deterministic programs. To
start, Fig 3A plots the range of SP-scores, computed for all of the 408 CDDMSAs, and sorted
from lowest to highest values separately for each program. Note that there are many low SP-
scores corresponding to sequence sets that are particularly difficult to align correctly. Consis-
tent with the Fig 2 analyses, GISMO SP-scores are comparatively higher for its more challeng-
ing CDD benchmark sets. Fig 3B illustrates the run-to-run variability in GISMO's SP-scores,
and thus in the alignments it produced. Some may find this variability disturbing, in contrast
to the consistent results returned by deterministic programs. However, the consistency of
results does not imply reliability. In Fig 3C and 3D we plot the range of SP-scores produced by
the six programs we have analyzed. The independent variable in these figures corresponds to a
position within an array of the 408 CDD test sets; in Fig 3C this array is ordered by the (single-
run) GISMO SP-score and in Fig 3D by the CLUSTAL-Ω SP-score. Comparing these graphs
to Fig 3B, we see that the results produced by a collection of widely-used programs are consid-
erably more variable than those produced by separate GISMO runs. Also, in Fig 3C, it is evi-
dent that the SP-scores for other programs are more frequently smaller rather than greater
than GISMO's SP-scores. The variability of GISMO's results reflects the inherent uncertainty
present in constructing alignments for most real sequence sets, and may provide a sense of the
degree of this uncertainly.

Program runtimes
Log-log plots of each program’s runtimes for each of the 408 CDD test sets are given in Fig 4,
which shows runtimes as a function of the sum of the input lengths for each test set. The aver-
age runtime for GISMO was 204 minutes, which is the slowest. GISMO took 971 and 89 times
longer to run, on average, than the two fastest programs Kalign and MAFFT, respectively;
GISMO took 13 and 4 times longer, on average, than Clustal-Ω and MUSCLE, respectively.
However, GISMO’s runtime t is roughly estimated to be a linear function of N� the total
input length based on the slopes of the trendlines in Fig 4. The MAFFT data points lack a
trendline because MAFFT applies one of several different algorithmic strategies based on the
input set, which led to the discontinuity evident in Fig 4. The trendlines for the remaining
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programs indicate runtimes roughly proportional to N1.6 and N2.2. There is considerable vari-
ability in GISMO runtimes for a given N, presumably due to differences in alignment difficulty:
the subtlety and length of conserved regions can vary substantially between test sets having the
same N. GISMO continues to perform sampling iterations as long as the evolving alignment
continues to improve significantly based on its log-likelihood (see Methods). This potential
increase in sampling time may be offset by an increase in statistical power with increasing
numbers of sequences, thereby allowing the sampler to converge more rapidly due to a higher
signal-to-noise ratio. This can explain why the trendline for GISMO runtimes as a function of
N remains roughly linear. Runtimes for most of the other programs also exhibit a fair amount
of scatter for a given N (Fig 4), but their alignment quality fails to improve with increasing N
relative to GISMO. GISMO's slowly increasing runtimes and its enhanced alignment quality

Fig 3. Variability in SP-scores among six GISMO runs and among the six programs GISMO, MAFFT,
CLUSTAL-Ω, MUSCLE, Dialign and Kalign. SP-scores are based upon the CDDMSAs as benchmarks and
vary from 0 (no correctly aligned sequence pairs) to 1 (all pairs aligned correctly). A. The sorted SP-scores for
a single GISMO run (red line with yellow back-glow) compared with the sorted scores for the five other
programs. B. Run-to-run variability in SP-scores over six GISMO runs. Test set data points are sorted along
the x-axis by the SP-score obtained for each set on the first run (red data points) of six.C. SP-scores for the
six programs analyzed, sorted by the GISMO score on each test set. GISMO SP-scores (for a single run) are
shown in red. Each red data point and the five black data points (one point for each program) plotted in the
same column correspond to the same test set.D. SP-scores for the six programs, sorted by the CLUSTAL-Ω
score on each test set. Data points for GISMO and for CLUSTAL-Ω are shown in red and green, respectively.

doi:10.1371/journal.pcbi.1004936.g003
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relative to that of other programs for the progressively larger data sets examined here (Fig 2)
places it among the methods of choice for even larger data sets consisting of tens of thousands
of sequences.

Fig 4. Log-log plots of program runtimes as a function of the total input length. Each data point
corresponds to one MSA generated by the program indicated. Estimated time complexities based on
trendline slopes were for: GISMO, t/ N0.96; Clustal-Ω, t/N1.6; Kalign, t/ N1.6; MUSCLE, t/N2.1 and
Dialign t/ N2.2, where N is the total number of residues in the aligned sequences. A trendline is not shown for
MAFFT because (with the–auto option) it uses one of several different algorithms depending on the input
sequence set; this produces a discontinuity in the data points.

doi:10.1371/journal.pcbi.1004936.g004
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Prefab benchmarking
Because GISMO is designed to align only those regions conserved by all of the sequences
included in the input set, it is most appropriate to benchmark it against CDD alignments,
which likewise only align the common conserved region. However, we were curious to know
how it performs against a benchmark set designed for MSA programs that globally align all of
the input sequences. For this we selected the Prefab benchmark set [31], which consists of
1,682 pairs of structurally aligned sequences. To enlarge each Prefab input set we added up to
1,000 representative homologous sequences (based on how many were available for each fam-
ily); these expanded Prefab sets (collectively termed Prefab+) are available from the GISMO
website. Inasmuch as GISMO will leave unaligned those regions within each Prefab pair that
are not conserved in the other sequences, it is disadvantaged relative to the MAFFT, MUSCLE,
Clustal-Ω and Kalign programs, which will globally align the input sequences. This is especially
true for closely related Prefab sequence pairs, as is illustrated in S1 Text. Despite this handicap,
GISMO scores about as well as these other programs on the 1,682 Prefab+ alignments overall
(see Wilcoxon signed rank test results in S2 Statistics). Consistent with our CDD benchmark
test results, GISMO performs significantly better than these programs on the 841 largest
Prefab+ input sets and on the 841 most distantly related Prefab+ input sets; significantly worse
on the 841 smallest sets; and significantly worse than MAFFT and Kalign and about the same
as MUSCLE and Clustal-Ω on the 841 most similar sequence sets.

GISMO example alignments
An example of how GISMO aligns representative proteins of known structure for acetylase
domain proteins is shown in Fig 5. This illustrates how GISMO’s inferred position-specific gap
penalties tend to align sequences as conserved indel-sparse “blocks”, which typically correspond
to the proteins’ structural core. In contrast, alignments generated by other programs typically
have more gaps. This is seen, for example, in S2–S7 Figs, which compare the GISMO and
MAFFT alignments for representative proteins containing PH, α,β-hydrolase fold and SH2
domains. We chose MAFFT for comparison because it obtained the best GISMO ΔSP-scores
when aligning conserved regions within much longer sequences (leftmost data points in Fig 2C).

Discussion
By eliminating the need for a guide tree, our earlier MSA Gibbs samplers [10, 11] constituted a
fundamental shift away from conventional progressive alignment methods. They also placed
the multiple alignment problem on a firm statistical foundation. However, these samplers
modeled indels and amino acid residue prior probabilities inadequately, and often became
trapped in misaligned states due to sequence correlations. As a result these samplers were slow
and often converged on alignments that were far from optimal. Here we address these inade-
quacies by incorporating adaptive, position-specific gap penalties, Dirichlet mixture priors and
correlated-sequence sampling strategies. As implemented in the GISMO program and illus-
trated here, these enhancements have yielded improvements in alignment quality.

GISMO’s advantage over progressive alignment methods is most noticeable when a shared
domain is present within long, multi-domain proteins. Consider, for example, the MAFFT and
GISMOMSAs in S2 and S3 Figs, which consist of 582 PH domain protein sequences ranging
in length from 94 to 7968 residues with an average length of 891 residues. By iteratively align-
ing each sequence to a relatively short HMM (the PH domain model consists of about 100 resi-
dues) GISMO avoids the problem of aligning pairs of long sequences, consisting mostly of
unrelated regions. Moreover, it appears that these unrelated regions can easily mislead progres-
sive alignment methods: Other than GISMO, all of the programs analyzed here will readily
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align even random sequences. A MAFFT alignment of shuffled PH protein sequences is shown
in S8 Fig. Clustal-O, MUSCLE, Dalign and Kalign likewise will align these same random
sequences, although quite differently from MAFFT.

Fig 5. GISMO acetylase domain alignment. Representative proteins of known structure are shown—no two of which share more
than 27% sequence identity over the domain footprint. The full alignment consists of 2,125 sequences.

doi:10.1371/journal.pcbi.1004936.g005
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In contrast, due to its statistical basis, GISMO will align only sequences sharing significant
similarity. This feature also allows GISMO to identify the HMM architecture and parameters
most likely to generate the input sequences and to thereby define the extent of the core align-
ment more precisely. Sampling from the Bayesian posterior probability distribution leads to
output alignment variability, which some biologists might find troubling. However, we believe
that this allows a more realistic assessment of what can reliably be inferred from the input
sequences than does repeatedly returning the same suboptimal alignment. As illustrated in Fig
3, independent sampling runs can also provide some sense of alignment uncertainty.

For some domains, different runs of the current version of GISMO (or runs of different pro-
grams) generate significantly differing alignments, some of which appear to be far from opti-
mal. However, the statistical and algorithmic foundations laid here provide avenues for further
improvement: Close examination of misaligned regions can suggest new sampling strategies
for escaping suboptimal traps. Such strategies may yield more than merely incremental
improvement to alignment results. With this in view, we anticipate many further enhance-
ments to GISMO. In particular, there is a large body of literature on MCMC sampling strate-
gies [32] that, when applied, could lead to more rapid convergence on near optimal
alignments. More generalized sampling strategies could allow the alignment of multiple copies
of a conserved domain within individual sequences, or the automated exclusion of input
sequences lacking the conserved domain. Thus far, we have not focused on optimizing GIS-
MO’s code, which lends itself readily to parallelization, and we anticipate being able to increase
its speed substantially.

Finally, we ask: What is the benefit of a large, high quality alignment of evolutionarily-
related sequences? We suggest an answer through an analogy to physical chemistry: Statistical
thermodynamics describes the macroscopic properties of matter as average molecular proper-
ties arising from probability distributions over quantum mechanical states. Its central concept
is the Boltzmann distribution, which specifies the most probable population of molecular states
for a system in thermodynamic equilibrium. This distribution defines all of the thermodynamic
properties central to our understanding of chemistry—such as entropy, heat capacity, enthalpy
and free energy.

Likewise, the biological properties of proteins may be better understood by considering
average properties implied by probability distributions over polypeptide states, with the central
concept being a distribution specifying the most probable population of sequences for a protein
class in evolutionary equilibrium. GISMO can be used, in combination with a companion
MCMC sampler for protein classification [33, 34], to define such a distribution and, by impli-
cation, the sequences that arise due to their underlying biochemical properties. Thus, by anal-
ogy to thermodynamics, identifying the most statistically striking features of protein sequences
indirectly elucidates these biological properties. With this as partial motivation, the GISMO
program is being incorporated into a broader project for modeling protein domains [35].

Methods

Notation and definitions
The following notation is used for vectors v = (v1,. . .,vn)

T andw = (w1,. . .,wn)
T: |v| = |v1|+. . .+|vn|,

v+w = (v1+w1,. . .,vn+wn)
T, v/w = (v1/w1,. . .,vn/wn)

T, vw ¼ v1
w1 . . . vn

wn , and Γ(v) = Γ(v1). . .Γ(vn).

Given K proteins, their sequences are defined byR ¼ ðRT
1 ; . . . ;R

T
KÞT where each vector Rk ¼

ðrk;1; . . . ; rk;nkÞ corresponds to the k-th sequence, nk is the k-th sequence’s length and the rk,i corre-
sponds to the i-th residue in that sequence. h( ) defines a counting function where, for example,
h(Rk) returns a length 20 vector of the counts for the residue types in Rk.
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A block-based alignment of the input sequences is defined by w columns. The set of vari-
ables defining the sequence positions for column j is defined by Aj = {a1,j,. . .,aK,j}. We define
Aj[−k] � Aj − {ak,j} to denote the set Aj without ak,j. An alignment is defined by the matrix A =
(A1,. . .,Aw)

T and {A}� {ak,j: k = 1,..,K, j = 1,. . .,w} denotes the set of residues indices for the
alignment variable A. We represent the collection of residues indexed by elements in a set C as
RC. For instance, R{A} = {ak,j: k = 1,. . .,K; j = 1,. . .w} represents the set of residues in the align-
ment defined by A.

GISMO statistical model
The residue frequencies observed for column c are modeled as a multinomial distribution with

parameters θc = (θ1,c,. . .,θ20,c)
T where

X20

i¼1
yi;c ¼ 1 and θi,c > 0 for all i. That is, the vector

Θ = (θ1,. . .,θw) defines a product multinomial model corresponding to the full alignment. The
vector θ0 corresponds to a background amino acid residue distribution. Hence, the complete-
data likelihood function is given by

pðRjθ0;Θ;AÞ / θhðRÞ
0

Yw
j¼1

θj

θ0

� �h RfAjgð Þ

where it is assumed that Θ* D(B) and θ0 * D(α) (where D denotes the Dirichlet distribu-
tion), and where B = (β1,. . .,βw) specifies the Dirichlet distribution parameters (commonly
interpreted as numbers of pseudocounts) at each column position j, and α specifies the
parameters for the background distribution. (Recall that the alignment is specified by the
matrix A = (A1,. . .,Aw) = (ak,j)K×w where ak,j indicates the position of the j-th column, which
is assumed to be present in all of the sequences.) The likelihood of A with the θ’s integrated
out is

pðRjAÞ / GðhðRfAgcÞ þ αÞ �
Yw
j¼1

GfhðRfAjgÞ þ βjg: ð1Þ

The conditional predictive probability distribution of this conserved region occurring at
position i in sequence k is given by

pðak ¼ ijA½�k�;RÞ /
Yw
j¼1

θ̂ j

θ̂0

 !hðrk;ak;j Þ

where the θ̂ are the posterior means of the θ, given the observed sequence data R and the cur-
rent alignment A[−k]. This statistical model serves as the foundation for the HMM [10] used in
later stages of sampling.

Dirichlet mixture priors
In order to capture the fact that certain biochemically or structurally similar amino acid resi-
dues are more likely to occur together we have incorporated Dirichlet Mixture priors [15, 16],
as refined by [17]. In order to speed up sampling, GISMO uses a 20 component mixture in the
first (competitive) phase of sample, inasmuch as the goal is to merely obtain a reasonable start-
ing alignment without overtraining the evolving HMM. After this initial phase GISMO applies
a 58-component mixture.
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Down weighting for sequence redundancy
Sequences are down weighted for redundancy using the following procedure. For each
sequence k a non-integer weight is computed using the method of Henikoff and Henikoff [18]
as:

wtðkÞ ¼
Xw
j¼1

ðNtj
� Nrk ; j

Þ�1

where Ntj
is the number of residue types at each position j and where Nrk;j

¼ jfrax;j j1 � x �
K ^ rax;j ¼ rak;jgj is the number of sequences with the same residue at position j as for sequence

k. The rationale for this formulation is that if a sequence matches lots of sequences at most
positions, then it should receive a lower weight than a sequence that matches few sequences at
most positions. These weights are then normalized and integerized as:

WtðkÞ ¼ d100 �WtðkÞ � wtmaxe
where wtmax corresponds to the maximum non-integer sequence weight. Because these weights
depend upon the evolving alignment, they are updated after each sampling cycle.

Inferred HMM transition probabilities
Wemodel the transition probabilities for the HMM shown in Fig 1B using a generalization of
our previous formulation [10] as follows. The probability matrix for transitions from column j
states in the HMM is:

Mjþ1 Ij Djþ1

Mj 1� io½j� � do½j� io½j� do½j�
Ij 1� ie½j� ie½j� 0

Dj 1� de½j� 0 de½j�

where 1� j� w and where M, I, and D denote match, insertion and deletion states, respec-
tively. The probability matrix for transitions out of the start state is:

M1 D1

Start 1� do½0� do½0�

Transitions into M and I states emit a residue as specified by the Θ of our statistical model.
Inference of transition probabilities. For a given alignment A, each sequence Sk is associated

with a “path” through the HMM indicating its alignment against the model Θ. We denote
the collection of these paths by Λ and the total number of HMM transitions of type M!M,
M!I, . . ., D!D at position j by

Nmm½j�; Nmi½j�; Nmd½j�; Nim½j�; Nii½j�; Ndm½j� and Ndd½j�:

Ignoring the indexing variable j for clarity, the likelihood of the transition probability
parameters at each position is

hðLji; dÞ ¼ ð1� io � doÞNmm iNmi
o dNmd

o ð1� ieÞNimiNii
e ð1� deÞNdmdNdd

e :

with independent prior distributions

ðio; do; 1� io � doÞ � Dðnmi; nmd; nmmÞ; ie � Betaðnii; nimÞ; and de � Betaðndd; ndmÞ;
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where nmi, nmd, nmm, nii, nim, ndd, ndm are corresponding prior pseudo counts. The correspond-
ing maximum a posteriori probability (MAP) estimates for the transition probabilities at each
position j are computed from these observed and prior counts. These define the position spe-
cific gap penalties. The joint posterior distribution for the alignment and transition probability
parameters is

gðA;L; ι!; δ
!Þ / PðRjA;LÞ 	 hðLj ι!; δ

!Þ 	 Pð ι!; δ
!Þ;

where P(R|A,Λ) is a generalization of Equation (1), and where ι! and δ
!

are length w vectors
representing the column-specific transition probabilities with prior probability:

Pð ι!; δ
!Þ ¼ ½Dðnmi; nmd; nmmÞ 	 Betaðnii; nimÞ 	 Betaðndd; ndmÞ�w:

Given the alignment and thus the paths Λ, we have the conditional posterior distribution

pð ι!; δ
!jA;LÞ /

Yw
j¼1

½io½j�Nmi ½j�þnmi�1 � do½j�Nmd ½j�þnmd�1 � ð1� io � do½j�ÞNmm ½j�þnmm�1	

ie½j�Nii ½j�þnii�1ð1� ie½j�ÞNim ½j�þnim�1 � de½j�Ndd ½j�þndd�1ð1� de½j�ÞNdm ½j�þndm�1�

Sampling on the distribution for each position j is done by drawing the random variables:

do½j� � BetaðNmd½j� þ nmd;Nmm½j� þ Nmi½j� þ nmm þ nmiÞ;

de½j� � BetaðNdd½j� þ ndd;Ndm½j� þ ndmÞ;

io½j� ¼ ð1� do½j�Þi
o½j�; where i
o½j� � BetaðNmi½j� þ nmi;Nmm½j� þ nmmÞ;

and ie½j� � BetaðNii½j� þ nii;Nim½j� þ nimÞ:

For computational efficiency, the ι and δmay be integrated out [10] to get

hðLÞ ¼ ∬hðLj ι!; δ
!ÞPð ι!; δ

!Þd ι!d δ
!

¼
Yw
j¼1

GðNmi½j� þ nmiÞGðNmd½j� þ nmdÞGðNmm½j� þ nmmÞGðnm�Þ
GðNm�½j� þ nm�ÞGðnmiÞGðnmdÞGðnmmÞ

�

	GðNii½j� þ niiÞGðNim½j� þ nimÞGðni�Þ
GðNim½j� þ Nii½j� þ ni�ÞGðniiÞGðnimÞ

	 GðNdd½j� þ nddÞGðNdm½j� þ ndmÞGðnd�Þ
GðNdd½j� þ Ndm½j� þ nd�ÞGðnddÞGðndmÞ

#
:

This gives rise to a new posterior distribution g(A, Λ)/ P(R | A, Λ) × h(Λ), for which the
transition probability parameters need not be fixed or updated and which allows the optimal
indel penalties to be determined from the sequence data.

Sampling algorithm
GISMO’s MCMC sampling algorithm explores the space of possible alignments by executing
Markovian transitions between alignments. This involves sampling alternative alignments of
either individual sequences or groups of sequences. In either case, such sampling is done as
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follows: First, the sequence or sequences are removed from the alignment and the posterior
parameters of the HMM are recalculated based on the retained aligned sequences and the pri-
ors. Next, emission probabilities for the twenty amino acids at each position are sampled from
the posterior emission probability distributions defined by the HMM parameters; note that
these sampled probabilities define a sampled HMM. Finally, the previously removed sequences
are optimally realigned to the sampled HMM.We explored sampling transition probabilities in
the same way, but found little benefit of doing so; instead, the MAP estimates for transition
probabilities are used. GISMO applies simulated annealing [36] to favor convergence on an
optimal alignment in later stages of sampling. Sampling starts at a “temperature” of T = 1 (i.e.,
sample each transition directly proportional to its actual probability p) and ends at T = 0 (i.e.,
always take the highest probability transition); between these two extremes the temperature is

dropped in ΔT = 0.1 increments with sampling probabilities set to p
1

T= . Sampling iteratively
through all of the sequences continues until this fails to find a new highest probability state.

Availability
The GISMO program and the CDD benchmark MSAs and sequence sets used for this study
are available at http://gismo.igs.umaryland.edu/.

Supporting Information
S1 Statistics. Excel file with one-tail Wilcoxon signed rank tests for CDD runs.
(XLSX)

S2 Statistics. Excel file with one-tail Wilcoxon signed rank tests for Prefab+ runs.
(XLSX)

S1 Text. Explains why Prefab sets are poorly designed for benchmarking GISMO.
(PDF)

S1 Charts. Excel file containing SP-score data and charts for full length sequence sets.
(XLSX)

S2 Charts. Excel file containing SP-score data and charts for truncated sequence sets.
(XLSX)

S3 Charts. Excel file containing SP-score data and charts for multiple GISMO runs.
(XLSX)

S1 Runtimes. Excel file containing data and charts for program runtime analyses.
(XLSX)

S1 Fig. Misaligned, correlated sequences within an alignment of enolases. The nine
sequences between the two lines are misaligned; the insert residues shown in red correspond
structurally to the first 10 columns shown. Note that these misaligned sequences share two dis-
tinguishing features: (i) they contain 27–30 residue insertions that the other sequences lack and
they conserve a glycine (G) residue in the seventh column instead of the consensus arginine
(R) residue. GISMO relies on such features to identify and realign clusters of correlated
sequences.
(PDF)

S2 Fig. Representative sequences of known structure from a GISMO alignment of 532 PH
domains. This corresponds to the same sequences and domain footprint as the MAFFT

Top-Down Alignment with Inferred Position-Specific Gap Penalties

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004936 May 18, 2016 18 / 21

http://gismo.igs.umaryland.edu/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s009


alignment in S3 Fig.
(PDF)

S3 Fig. Representative sequences of known structure from a MAFFT alignment of 582 PH
domains. This corresponds to the same sequences and domain footprint as the GISMO align-
ment in S2 Fig.
(PDF)

S4 Fig. Representative sequences of known structure from a GISMO alignment of 836 α,β-
hydrolase fold domains. This corresponds to the same sequences and domain footprint as the
MAFFT alignment in S5 Fig.
(PDF)

S5 Fig. Representative sequences of known structure from the MAFFT alignment of 836
α,β-hydrolase fold domains. This corresponds to the same sequences and domain footprint as
the GISMO alignment in S4 Fig.
(PDF)

S6 Fig. Representative sequences of known structure from a GISMO alignment of 2,193
SH2 domains. This corresponds to the same sequences and domain footprint as the MAFFT
alignment in S7 Fig.
(PDF)

S7 Fig. Representative sequences of known structure from the MAFFT alignment of 2,193
SH2 domains. This corresponds to the same sequences and domain footprint as the GISMO
alignment in S6 Fig.
(PDF)

S8 Fig. MAFFT alignment of 99 randomly shuffled PH domain proteins.
(PDF)

Acknowledgments
We thank L. Aravind for critical assessment of the GIMSO program and helpful discussions.

Author Contributions
Conceived and designed the experiments: AFN. Performed the experiments: AFN. Analyzed
the data: AFN. Contributed reagents/materials/analysis tools: AFN SFA. Wrote the paper: AFN
SFA. Designed and implemented routines for Dirichlet mixture priors and BILD scores: SFA.
Designed and implemented other aspects of the GISMO program: AFN.

References
1. Feng DF, Doolittle RF. Progressive sequence alignment as a prerequisite to correct phylogenetic trees.

J Mol Evol. 1987; 25(4):351–60. PMID: 3118049.

2. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.
BMC Bioinformatics. 2004; 5(1):113.

3. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment
based on fast Fourier transform. Nucleic Acids Res. 2002; 30(14):3059–66. PMID: 12136088

4. Katoh K, Standley DM. MAFFTmultiple sequence alignment software version 7: improvements in per-
formance and usability. Mol Biol Evol. 2013; 30(4):772–80. doi: 10.1093/molbev/mst010 PMID:
23329690; PubMed Central PMCID: PMC3603318.

5. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;
1079:131–46. doi: 10.1007/978-1-62703-646-7_8 PMID: 24170399.

Top-Down Alignment with Inferred Position-Specific Gap Penalties

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004936 May 18, 2016 19 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004936.s015
http://www.ncbi.nlm.nih.gov/pubmed/3118049
http://www.ncbi.nlm.nih.gov/pubmed/12136088
http://dx.doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://dx.doi.org/10.1007/978-1-62703-646-7_8
http://www.ncbi.nlm.nih.gov/pubmed/24170399


6. Katoh K, Toh H. PartTree: an algorithm to build an approximate tree from a large number of unaligned
sequences. Bioinformatics. 2007; 23(3):372–4. doi: 10.1093/bioinformatics/btl592 PMID: 17118958.

7. Blackshields G, Sievers F, Shi W, Wilm A, Higgins DG. Sequence embedding for fast construction of
guide trees for multiple sequence alignment. Algorithms Mol Biol. 2010; 5:21. doi: 10.1186/1748-7188-
5-21 PMID: 20470396; PubMed Central PMCID: PMC2893182.

8. Boyce K, Sievers F, Higgins DG. Simple chained guide trees give high-quality protein multiple
sequence alignments. Proc Natl Acad Sci U S A. 2014; 111(29):10556–61. doi: 10.1073/pnas.
1405628111 PMID: 25002495; PubMed Central PMCID: PMID: PMC4115562.

9. Liu JS, Neuwald AF, Lawrence CE. Markovian structures in biological sequence alignments. J Am Stat
Assoc. 1999; 94:1–15.

10. Neuwald AF, Liu JS. Gapped alignment of protein sequence motifs through Monte Carlo optimization of
a hidden Markov model. BMC Bioinformatics. 2004; 5(1):157. PMID: 15504234.

11. Neuwald AF, Liu JS, Lipman DJ, Lawrence CE. Extracting protein alignment models from the sequence
database. Nucleic Acids Research. 1997; 25(9):1665–77. PMID: 9108146

12. Eddy SR. Profile hidden Markov models. Bioinformatics. 1998; 14(9):755–63. PMID: 9918945

13. Liu JS, Neuwald AF, Lawrence CE. Bayesian models for multiple local sequence alignment and Gibbs
sampling strategies. J Am Stat Assoc. 1995; 90(432):1156–70.

14. Grunwald PD. The minimum description length principle. Boston: MIT Press; 2007.

15. Brown M, Hughey R, Krogh A, Mian IS, Sjolander K, Haussler D. Using Dirichlet mixture priors to derive
hidden Markov models for protein families. Ismb. 1993; 1:47–55. PMID: 7584370

16. Sjolander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, et al. Dirichlet mixtures: a method for
improved detection of weak but significant protein sequence homology. Comput Appl Biosci. 1996; 12
(4):327–45. PMID: 8902360.

17. Nguyen VA, Boyd-Graber J, Altschul SF. Dirichlet mixtures, the Dirichlet process, and the structure of
protein space. Journal of computational biology: a journal of computational molecular cell biology.
2013; 20(1):1–18. doi: 10.1089/cmb.2012.0244 PMID: 23294268; PubMed Central PMCID:
PMC3541698.

18. Henikoff S, Henikoff JG. Position-based sequence weights. J Mol Biol. 1994; 243(4):574–8. PMID:
7966282

19. Altschul SF, Wootton JC, Zaslavsky E, Yu YK. The construction and use of log-odds substitution scores
for multiple sequence alignment. PLoS Comput Biol. 2010; 6(7):e1000852. Epub 2010/07/27. doi: 10.
1371/journal.pcbi.1000852 PMID: 20657661; PubMed Central PMCID: PMC2904766.

20. Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T. PASTA: Ultra-Large Multiple Sequence
Alignment for Nucleotide and Amino-Acid Sequences. Journal of computational biology: a journal of
computational molecular cell biology. 2015; 22(5):377–86. doi: 10.1089/cmb.2014.0156 PMID:
25549288; PubMed Central PMCID: PMC4424971.

21. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's con-
served domain database. Nucleic Acids Res. 2015; 43(Database issue):D222–6. doi: 10.1093/nar/
gku1221 PMID: 25414356; PubMed Central PMCID: PMC4383992.

22. Sievers F, Higgins DG. Clustal Omega, accurate alignment of very large numbers of sequences. Meth-
ods Mol Biol. 2014; 1079:105–16. doi: 10.1007/978-1-62703-646-7_6 PMID: 24170397.

23. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality
protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539. Epub 2011/10/
13. doi: 10.1038/msb.2011.75 msb201175 [pii]. PMID: 21988835; PubMed Central PMCID:
PMC3261699.

24. Lassmann T, Frings O, Sonnhammer EL. Kalign2: high-performance multiple alignment of protein and
nucleotide sequences allowing external features. Nucleic Acids Res. 2009; 37(3):858–65. doi: 10.
1093/nar/gkn1006 PMID: 19103665; PubMed Central PMCID: PMC2647288.

25. Lassmann T, Sonnhammer EL. Kalign—an accurate and fast multiple sequence alignment algorithm.
BMC Bioinformatics. 2005; 6:298. doi: 10.1186/1471-2105-6-298 PMID: 16343337; PubMed Central
PMCID: PMC1325270.

26. Morgenstern B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence
alignment. Bioinformatics. 1999; 15(3):211–8. PMID: 10222408.

27. Morgenstern B, Frech K, Dress A, Werner T. DIALIGN: finding local similarities by multiple sequence
alignment. Bioinformatics. 1998; 14(3):290–4. PMID: 9614273.

28. Morgenstern B. Multiple sequence alignment with DIALIGN. Methods Mol Biol. 2014; 1079:191–202.
doi: 10.1007/978-1-62703-646-7_12 PMID: 24170403.

Top-Down Alignment with Inferred Position-Specific Gap Penalties

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004936 May 18, 2016 20 / 21

http://dx.doi.org/10.1093/bioinformatics/btl592
http://www.ncbi.nlm.nih.gov/pubmed/17118958
http://dx.doi.org/10.1186/1748-7188-5-21
http://dx.doi.org/10.1186/1748-7188-5-21
http://www.ncbi.nlm.nih.gov/pubmed/20470396
http://dx.doi.org/10.1073/pnas.1405628111
http://dx.doi.org/10.1073/pnas.1405628111
http://www.ncbi.nlm.nih.gov/pubmed/25002495
http://www.ncbi.nlm.nih.gov/pubmed/PMC4115562
http://www.ncbi.nlm.nih.gov/pubmed/15504234
http://www.ncbi.nlm.nih.gov/pubmed/9108146
http://www.ncbi.nlm.nih.gov/pubmed/9918945
http://www.ncbi.nlm.nih.gov/pubmed/7584370
http://www.ncbi.nlm.nih.gov/pubmed/8902360
http://dx.doi.org/10.1089/cmb.2012.0244
http://www.ncbi.nlm.nih.gov/pubmed/23294268
http://www.ncbi.nlm.nih.gov/pubmed/7966282
http://dx.doi.org/10.1371/journal.pcbi.1000852
http://dx.doi.org/10.1371/journal.pcbi.1000852
http://www.ncbi.nlm.nih.gov/pubmed/20657661
http://dx.doi.org/10.1089/cmb.2014.0156
http://www.ncbi.nlm.nih.gov/pubmed/25549288
http://dx.doi.org/10.1093/nar/gku1221
http://dx.doi.org/10.1093/nar/gku1221
http://www.ncbi.nlm.nih.gov/pubmed/25414356
http://dx.doi.org/10.1007/978-1-62703-646-7_6
http://www.ncbi.nlm.nih.gov/pubmed/24170397
http://dx.doi.org/10.1038/msb.2011.75
http://www.ncbi.nlm.nih.gov/pubmed/21988835
http://dx.doi.org/10.1093/nar/gkn1006
http://dx.doi.org/10.1093/nar/gkn1006
http://www.ncbi.nlm.nih.gov/pubmed/19103665
http://dx.doi.org/10.1186/1471-2105-6-298
http://www.ncbi.nlm.nih.gov/pubmed/16343337
http://www.ncbi.nlm.nih.gov/pubmed/10222408
http://www.ncbi.nlm.nih.gov/pubmed/9614273
http://dx.doi.org/10.1007/978-1-62703-646-7_12
http://www.ncbi.nlm.nih.gov/pubmed/24170403


29. Thompson JD, Koehl P, Ripp R, Poch O. BAliBASE 3.0: Latest developments of the multiple sequence
alignment benchmark. Proteins. 2005; 61(1):127–36. PMID: 16044462

30. Wilcoxon AF. Individual comparisons by ranking methods. Biometrics. 1945; 1:80–3.

31. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
Acids Res. 2004; 32(5):1792–7. Print 2004. PMID: 15034147

32. Liu JS. Monte Carlo Strategies in Scientific Computing. New York: Springer-Verlag; 2008.

33. Neuwald AF. A Bayesian sampler for optimization of protein domain hierarchies. Journal of Computa-
tional Biology. 2014;21(3):269-86. doi: 10.1089/cmb.2013.0099 PMID: 24494927.

34. Neuwald AF. Protein domain hierarchy Gibbs sampling strategies. Statistical applications in genetics
and molecular biology. 2014; 13(4):497–517. doi: 10.1515/sagmb-2014-0008 PMID: 24988248.

35. Neuwald AF, Lanczycki CJ, Marchler-Bauer A. Automated hierarchical classification of protein domain
subfamilies based on functionally-divergent residue signatures. BMC Bioinformatics. 2012; 13:144. doi:
10.1186/1471-2105-13-144 PMID: 22726767; PubMed Central PMCID: PMC3599474.

36. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983; 220:671–80.
PMID: 17813860

Top-Down Alignment with Inferred Position-Specific Gap Penalties

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004936 May 18, 2016 21 / 21

http://www.ncbi.nlm.nih.gov/pubmed/16044462
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://dx.doi.org/10.1089/cmb.2013.0099
http://www.ncbi.nlm.nih.gov/pubmed/24494927
http://dx.doi.org/10.1515/sagmb-2014-0008
http://www.ncbi.nlm.nih.gov/pubmed/24988248
http://dx.doi.org/10.1186/1471-2105-13-144
http://www.ncbi.nlm.nih.gov/pubmed/22726767
http://www.ncbi.nlm.nih.gov/pubmed/17813860

