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Abstract

Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative

measures remain elusive. Conventional imaging typically detects no abnormalities despite

post-concussive symptoms. In the present study, we recorded resting state magnetoence-

phalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of rest-

ing state activity was performed for 90 cortical and subcortical regions, and calculation of

inter-regional oscillatory phase synchrony at various frequencies was performed. We dem-

onstrate that mTBI is associated with reduced network connectivity in the delta and gamma

frequency range (>30 Hz), together with increased connectivity in the slower alpha band (8–

12 Hz). A similar temporal pattern was associated with correlations between network con-

nectivity and the length of time between the injury and the MEG scan. Using such resting

state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classifica-

tion confidence was also correlated with clinical symptom severity scores. These results

provide the first evidence that imaging of MEG network connectivity, in combination with

machine learning, has the potential to accurately detect and determine the severity of mTBI.

Author Summary

Detecting concussion is typically not possible using currently clinically used brain imag-

ing, such as MRI and CT scans. Magnetoencephalographic (MEG) imaging is able to

directly measure brain activity at fast time scales, and this can be used to map how various

areas of the brain interact. We recorded MEG from individuals who had suffered a
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concussion, as well as control subjects who had not. We found characteristic alterations of

inter-regional interactions associated with concussion. Moreover, using a machine learn-

ing approach, we were able to detect concussion with 88% accuracy from MEG connectiv-

ity, and confidence of classification correlated with symptom severity. This potentially

provides new quantitative and objective methods for detecting and assessing the severity

of concussion using neuroimaging.

Introduction

Detection of mild traumatic brain injury (mTBI) using neuroimaging remains a challenge, as

no abnormalities are typically apparent using routine MRI [1, 2]. Accordingly, diagnosis is

usually a clinical judgement based on self-report measures and behavioural assessments.

Despite the lack of apparent injury on conventional clinical scans, many patients with mTBI

suffer post-concussive symptoms (PCS). Although such symptoms typically resolve within a

few months, a subset of individuals continue to experience long-term cognitive and beha-

vioural impairments [3–5], underscoring the need for quantitative and objective methods for

detecting and determining the severity of mTBI. The presence of lingering PCS indicates the

presence of subtle brain injuries, with significant functional consequences that cannot be

detected using current clinical techniques; there is a need to develop new imaging approaches

for the detection of mTBI using quantitative and objective evidence.

Recent advances in magnetoencephalographic (MEG) imaging indicate that identification

of mTBI is possible through detection of excessive slow-wave activity [6] and that this

approach can localize the foci of the damage [7]. MTBI is associated with altered white matter

microstructure as indicated by diffusion tensor imaging (DTI), in agreement with the view

that mTBI results in axonal injury [8]. The focal excessive MEG slow wave activity has been

shown to be related to the location of white matter injury, consistent with the supposition that

oscillatory slowing can occur from deafferentation [9].

Disruption of inter-regional oscillatory synchrony in mTBI has been reported using EEG

[10]. Oscillatory synchrony among brain areas is understood to play a vital role in network

connectivity supporting cognition and behaviour [11, 12], and the expression of such neuro-

physiological network connectivity at rest relates to the intrinsic organization of brain activity

pertinent for brain function and its dysfunction in clinical populations [13]. Converging evi-

dence now indicates that traumatic brain injury is associated with diffuse axonal injury, which

disrupts intrinsic functional network connectivity, thereby contributing to associated cognitive

sequelae [14].

Machine learning approaches have been successfully combined with imaging of intrinsic

functional brain connectivity during resting state to accurately classify single individuals [15,

16]. Moreover, electrophysiological recordings from subjects have also been shown to be effec-

tive for accurately determining group membership of individuals [17, 18]. We used MEG to

investigate alterations in resting state oscillatory network synchrony in adults with mTBI, and

investigated the hypothesis that machine learning algorithms could accurately detect mTBI in

individual subjects.

Results

Two groups participated in this study: adults with mTBI and adult healthy controls. Resting

state MEG data were recorded, and neuromagnetic activity was reconstructed at anatomically-

guided, a priori defined locations representing cortical and subcortical brain sources from the
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Automated Anatomical Labeling (AAL) atlas. The time-frequency representation of the source

dynamics was derived using wavelet decomposition. Functional connectivity between the neu-

romagnetic sources was estimated in terms of frequency-specific phase-locking values. A linear

support vector machine (SVM) algorithm in combination with cross-validation was applied to

classify the subjects into two groups: mTBI and controls. Classification analyses were per-

formed on different sub-sets of features, associated with different oscillatory frequencies. Clas-

sification accuracies were estimated. Associations between confidence of classification and

self-reported clinical scores were investigated in the mTBI group. In addition, Partial Least

Squares analysis was applied to evaluate the statistical reliability of group differences in func-

tional connectivity.

Detection of TBI using MEG network synchrony

Frequency and source resolved imaging of resting MEG network synchrony was able to accu-

rately detect whether individual participants had been diagnosed with mTBI or not. Fig 1

shows the predictive power of phase synchrony measured at 30 specific frequencies points cov-

ering the range between 1Hz and 75Hz. Specificity remains stable around 80% and fluctuates

slightly (76–83%) within a relatively wide range of frequencies: from 3Hz to 50Hz. Conversely,

sensitivity and hence total accuracy have a local maximum around 8-13Hz (α rhythms), reach-

ing 80%.

Fig 2A provides a more aggregated view of the results shown in Fig 1. Specifically, predic-

tion accuracy is given as functions of frequency bands, each including the features from several

frequency points (wavelets). Fig 2B illustrates the same prediction accuracies with respect to

the random chance prediction, wherein the distributions of accuracies were generated by shuf-

fling the labels (mTBI or not) across subjects, and repeating the same procedure 500 times.

Fig 1. Prediction accuracy of classification. (A) sensitivity; (B) specificity; and (C) total accuracy, as functions of

frequency (wavelets). Classification with cross-validation was performed separately for 30 subsets of features—

connectivity matrices computed at specific frequency points.

doi:10.1371/journal.pcbi.1004914.g001
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With an accuracy of 80% (p< 0.01), inter-regional resting state phase synchrony in the α band

carries the most discriminative information for inferring the presence or absence of mTBI

within a single individual. Accordingly, the remainder of the results presented in this section

pertain to phase synchrony in the α band, using features that individually provided the highest

separability between mTBI and controls under the ROC criterion.

The list of ranked features reflects an estimate of how valuable a given feature was found to

be for classification. We can choose the best number of features, i.e. the number that

Fig 2. Prediction accuracies of classification as functions of frequency bands, wherein individual

wavelet frequencies were grouped into 5 subsets (A), and corresponding accuracies of classification

based on randomized labels representing presence or absence of mTBI (B). The red marks in panel B

represent the same accuracies as in panel A.

doi:10.1371/journal.pcbi.1004914.g002
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maximizes prediction accuracy. In this case, the dimensionality of the feature space will corre-

spond to the number of source-pairings within the alpha range. Note that in this study the fea-

tures were ranked using training data at each round of leave-one-out cross-validation. While

the number of features to keep was set a priori, the best features themselves were determined

within each round of cross-validation. Fig 3 shows accuracy values as functions of the number

of best features selected for classification analysis with cross-validation. As can be seen from

Fig 3C, classification accuracy can be improved with a proper threshold on the number of vari-

ables k with two peaks around k = 8−15 and k = 30−35. For example, for k = 33 accuracy is

88%, with 90% specificity and 85% sensitivity (all p< 0.01).

To investigate potential relations between SVM classification and symptom severity

obtained from the concussion assessment tool (SCAT2), we quantified the distance to the deci-

sion boundary for each subject, and correlated these values with clinical scores for participants

within the mTBI group. Note that the larger the distance that an individual is from the decision

boundary, the higher our confidence that a subject with mTBI is classified correctly as mTBI.

Similar to the procedure shown in Fig 4, for each subset of features k = 1, . . ., 100, we com-

puted the distances to the decision boundary for mTBI patients, and correlated these distances

with the severity and symptom scores, shown in Fig 4A and 4B, respectively. Two scatter plots

with superimposed least-squares regression lines illustrate relations between these variables at

two peaks, k = 11 for severity (Fig 4C), and k = 33 for symptoms (Fig 4D). Note that negative

distances at the scatter plots reflect cases of misclassification, when the learning function F(x)

projects the feature vectors x of mTBI subjects to other side of the optimal hyperplane, corre-

sponding to controls. Moreover, the confidence of classifying a subject as mTBI positively cor-

related with the self-reported severity scores (Fig 4A), reaching a local maximum (r = 0.54,

Fig 3. Prediction accuracy of classification. (A) sensitivity; (B) specificity; and (C) total accuracy, as functions of the

number of best features ranked before training. All the features were extracted from a subset representing phase

synchrony at α frequencies (see Fig 2A).

doi:10.1371/journal.pcbi.1004914.g003
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p< 0.05) at k = 11. It also correlated positively with the symptoms scores with a peak of

r = 0.34 (p-value< 0.10) around k = 33.

Finally, Fig 5 illustrates a distribution of the connections extracted from the pool of the best

k = 33 features in the α band. It plots connections within a transparent template of the brain in

the MNI space, using the BrainNet Viewer [19]. The width of the connections represents the

weights are between −1 and 0, where being close to −1 implies a robust contribution of a spe-

cific connection to classification, and zero means no contribution. Specifically, for each wave-

let frequency within the α range and each round of cross-validation (m = 1, . . ., 41), we

assigned −1 to a connection if this feature survived the threshold and participated in classifica-

tion, otherwise it was 0, subsequently averaging across subjects and wavelets frequencies. The

ability to predict evidence of injury of a subject is largely based on synchrony between frontal

and parietal/temporal sites, located mainly in the left hemisphere.

Altered neurophysiological network connectivity in mTBI

We also employed PLS to characterize and test the statistical reliability of differences in resting

state network synchrony between adults with and without mTBI. This analysis revealed the

existence of one significant latent variable (p = 0.002) which indicated alterations of resting

MEG network synchrony in mTBI (Fig 6A). The overall distribution of all the bootstrap ratio

values, each associated with a pair-wise connection between the sources and frequencies, is

shown in Fig 6B. As can be seen, there are relatively large positive and negative bootstrap ratio

Fig 4. Correlations between the classification confidence (MEG-based measures) and self-reported clinical

scores. (A) severity; and (B) symptoms for mTBI patients. The higher confidence that a given subject is classified as

having mTBI, the higher the corresponding clinical scores. The correlations are shown as functions of the number of best

features extracted from alpha connectivity and ranked before training. Scatter plots between classification confidence and

clinical scores are shown at specific thresholds: k = 11 and k = 33 for (C) severity score; and (D) symptoms scores,

respectively.

doi:10.1371/journal.pcbi.1004914.g004
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values, which reflect phase-locking and phase scattering effects, respectively, in controls with

respect to mTBI.

The difference between increased and decreased phase locking is broken down further in

Fig 6C and 6D, which shows how the strength of these effects varies across frequencies. Specifi-

cally, we identified the 1% tails, cut off by the 0.01− and 0.99-quantiles of the overall distribu-

tion of the bootstrap ratio values in Fig 6B. At each frequency, the number of connections with

the bootstrap ratio values larger than the 0.99-quantile (right tail) was computed and plotted

in Fig 6C. The strongest effects are robustly expressed at δ and lower γ frequencies, directly

supporting higher phase locking in controls compared to mTBI at these frequencies. Similarly,

the number of connections in the left tail defined by the 0.01-quantile is plotted in Fig 6D, as a

function of frequency. These connections also support the contrast in Fig 6A, but in a reverse

way, representing hyper-connectivity in the mTBI which were strongest at α frequencies.

Pair-wise connections that show decreased phase synchrony in the δ and lower γ bands in

mTBI are depicted in Fig 7. The bootstrap ratio values were averaged across wavelet frequen-

cies within corresponding frequency bands. A threshold of>1 was used for the figures to

emphasize the spatial distribution. Reduced δ and γ resting phase synchrony in mTBI was

Fig 5. Spatial distribution of 33 best features (connectivity at alpha frequencies), which were used for prediction (see

Fig 3). The red spheres indicate the location of the 33 best features (connections) for detection of mTBI, while the blue lines

represent the inter-regional alpha connections (features). Line thickness denotes the robustness of contribution of specific

features across subjects. The same connectiones are plotted in Fig 8B in a matrix form.

doi:10.1371/journal.pcbi.1004914.g005
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Fig 6. Differences in phase synchrony between the mTBI and Controls in the PLS analysis. Panel (A) illustrates the

contrast between two groups. Expression of this contrast is shown in (B) as the distribution of all the bootstrap ratio values

for phase-locking value between each pair of regional neuromagnetic sources at all frequencies. The distribution of these

effects across frequencies, related to a decrease (C) and increase (D) in phase synchrony in mTBI participants relative to

controls is plotted as the number of connections whose bootstrap ratio values belong to the corresponding 1% tails. The

mTBI participants expressed reduced connectivity in the δ and γ band and hyperconnectivity at α frequencies.

doi:10.1371/journal.pcbi.1004914.g006

Fig 7. The 90 x 90 maps of the z-scores (bootstrap ratio values) reflecting higher phase synchrony in controls with

respect to mTBI patients (see Fig 6C) in two canonical frequencies bands. (A) delta frequencies; and (B) gamma

frequencies. Plotted are the connections associated with the bootstrap ratio values that are larger than 1.

doi:10.1371/journal.pcbi.1004914.g007
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most pronounced between occipital areas and other brain regions, and also preferentially

involved temporal lobe connections. Similar to Figs 7 and 8A was created with a threshold of

<−1, and shows the distribution of pair-wise connections associated with increased phase syn-

chrony in mTBI at α frequencies. It is interesting to note that the distribution of connections

which carry discriminative information between mTBI and controls, as illustrated on the

transparent brain in the MNI space (Fig 5) and its matrix version (Fig 8B), is part of the spatial

pattern representing hyper-connectivity of α rhythms in mTBI (Fig 8A), which involved

numerous temporal and parietal connections.

To quantitatively compare the contribution of individual frequency bands to the contrast

depicted in Fig 6A, we performed a series of steps testing difference in proportions. First, we

identified the wavelets closest to the central frequencies of five canonical frequency bands: 2

Hz (delta), 6 Hz (theta), 11 Hz (alpha), 23 Hz (beta), 48 Hz (lower gamma). Then, for a given

z-sore threshold (1% tails), at each central wavelet frequency, we counted connections (out of

the total 90�89/2 = 4005) within the positive and negative tails of the overall distribution of z-

scores (see Fig 6C and 6D).

For the effects defined by the tail with negative z-scores, where we observed a peak around

8 Hz (Fig 6D), we ran two-sample proportion z-tests between the alpha and other frequencies.

Specifically, we tested if the numbers of connections within the negative tail at two frequency

points were statistically different. We found that the number of connections was significantly

higher at alpha relative to delta (p = 0.0013), beta (p = 0.0238), and lower gamma (p<0.0001),

but not theta (p = 0.757).

For the positive tail of z-scores (Fig 6D), where we identified two peaks around 2 Hz and 75

Hz, we performed a series of similar two-sample proportion z-tests. We found that the number

of connections from the positive tail was statistically higher at delta relative to theta

(p = 0.0035) and alpha (0.0013), whereas the number of connections at gamma was higher

than theta (p<0.001), alpha (p<0.001), and beta (0.0015), but not delta (p = 0.1211).

In addition, Fig 9 provides an example of the effects shown in Fig 6C and 6D, indicating the

range of absolute values of PLV for specific connections at the characteristic frequencies.

Fig 8. The 90 x 90 maps of increased phase synchrony at alpha frequencies in mTBI. (A) z-scores associated with the

increases in connectivity in mTBI; and (B) connections cotributing to classification, robustrly across frequencies and subjects.

Similar to Fig 7, panel A shows only the connections associated with the bootstrap ratio values less than -1. To compare the hyper-

connectivity in mTBI at alpha frequencies with classification results, Panel B represents a matrix version of the 3D spatial pattern

(Fig 5), which corresponds to the situation wherein 33 best features are used for prediction (see Fig 3).

doi:10.1371/journal.pcbi.1004914.g008
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Specifically, Fig 6 depicts a spatiotemporal interplay between synchronizations and de-synchro-

nizations in the delta, gamma, and alpha frequency bands, and we chose three connections

with the largest z-scores to illustrate the effects: i) between the left middle occipital gyrus

(Occipital Mid L) and the left median cingulate and paracingulate gyri (Cingulum Mid L) at 2

Hz; ii) between the temporal pole of the left middle temporal gyrus (Temporal Pole Mid L) and

the left gyrus rectus (Rectus L) at 8 Hz; and iii) between the left inferior temporal gyrus (Tem-

poral Inf R) and the right calcarine fissure and surrounding cortex (Calcarine R) at 75 Hz.

Finally, we explored the effect of the length of time between injury and scan acquisition on

resting MEG connectivity. We applied the behavioural PLS analysis to correlate the phase lock-

ing value with the time between brain injury and scanning. PLS analysis revealed a significant

latent variable (LV) with p = 0.016, which is plotted in Fig 10A as an overall correlation (first

component of LV) and a distribution of all the bootstrap ratio values (second component of

LV), each associated with a unique combination of frequency and source pairing. The right

(red) and left (blue) tails of the histogram in Fig 10B represent robust positive and negative

Fig 9. Phase-locking values for three specific connections at three characteristic frequencies. i)

between the left middle occipital gyrus (Occipital Mid L) and the left median cingulate and paracingulate gyri

(Cingulum Mid L) at 2 Hz; ii) between the temporal pole of the left middle temporal gyrus (Temporal Pole Mid

L) and the left gyrus rectus (Rectus L) at 8 Hz; and iii) between the left inferior temporal gyrus (Temporal Inf R)

and the right calcarine fissure and surrounding cortex (Calcarine R) at 75 Hz. Shown are the means across

subjects and corresponding standard errors.

doi:10.1371/journal.pcbi.1004914.g009
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correlations, respectively, between the length of time between injury and scan and phase syn-

chronization. Frequency-specific number of connectins in these tails are shown in Fig 10C and

10D, respectively. As can be seen from Fig 10D, the effect for negative correlations between the

connectivity at alpha frequencies and time of scanning is strongest at alpha frequencies. In

other words, the more time that has passed since injury, the less connectivity we observed in

the alpha frequency band. It is worth noting that mTBI patients, when compared to controls,

were characterized by increased connectivity at alpha frequencies (Fig 6D).

Discussion

The present study provides the first evidence for altered resting state neuromagnetic phase

synchrony in a group of patients with mTBI, and showed that these alterations were associated

with the amount of time elapsed between injury and scan acquisition. More importantly, we

demonstrate that atypical MEG network connectivity, in combination with SVM learning, can

accurately detect mTBI. This is an important step forward as mTBI is typically not detectible

using conventional imaging. Our findings indicate that neurophysiological network imaging

using MEG may provide an objective method for detection of mTBI. Moreover, we show that

the distance of individual participants from the classification decision boundary was correlated

with clinical symptom severity. These results demonstrate that MEG imaging of resting state

Fig 10. Characteristic temporal scales of the correlations between the phase synchronization and and the

length of time elapsed between injury and scan, as revealed by behavioural PLS analysis. (A) overall

correlation (similar to the contrast in contrast PLS); (B) overall distribution of all the bootstrap ratio values, each

associated with a unique combination of frequency point and source pairing (the tails represent the most robust

effects); (C) strength of the effects of positive correlations between phase-locking and time of scanning, expressed

as frequency-specific number of connections from the right (red) tail in Panel B; and (D) frequency-specific number

of connections from the left (blue) tail in Panel B, reflecting the negative correlations between phase synchrony and

time of scanning.

doi:10.1371/journal.pcbi.1004914.g010
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functional connectivity may offer new approaches for assessing and tracking injury severity in

mTBI.

Using a data-driven approach, we showed that group differences can be characterized in

terms of interplay between synchronizations and desynchronizations at different frequencies.

Specifically, we observed more increases in connectivity around theta/alpha frequencies in

mTBI, whereas more decreases in connectivity in mTBI were detected for delta rhythms. This

fits the hypothesis that processing of information in the brain requires both phase synchrony

and phase scattering. Speculatively, phase synchronization can be viewed as a mechanism for

long-range integration, whereas phase scattering can be a strategy to allow different local neu-

ral ensembles to share the same frequency channel by assigning specific neural signals to their

own timeslots. Furthermore, we also found that the length of time elapsed between injury and

scan tended to be negatively correlated with alpha synchronization and positively correlated

with delta connectivity. These results may indicate that brain plasticity, a fundamental prop-

erty for functional recovery from brain injury [20], may potentially be described in terms of

redistribution of phase synchronyzation and phase scattering at different rhythms.

A similar pattern of the interplay between increases and decreases in functional connectiv-

ity was reported in an MEG study of TBI patients in two conditions: following an injury and

after a rehabilitation treatment [21]. Noticeably, the study reported an opposite pattern, as

increases in connectivity at higher frequencies such as alpha and beta, and conversely

decreases in connectivity for delta and theta rhythms were associated with recovery from TBI.

One of the key differences between the two studies was the time since injury. In our study,

MEG data were recorded from mTBI patients, who were all within 3 months of injury (on

average, one month). In [21], the mean time since injury was almost 4 months, and the reha-

bilitation program lasted for about 9 months.

Prior studies have indicated that resting state MEG can be used to detect mild and moderate

TBI at the level of single individuals, but rather than focusing on inter-regional oscillatory syn-

chrony, such research focused on the regional expression of excessive slow-wave activity [6, 7].

It has been proposed that axonal sheering caused by rapid deceleration and rotational forces

plays a critical role in the pathology of TBI as well as its impact on functional networks and

cognition [14]. Interestingly, regional expression of increased slow-wave activity has been

shown to be either proximal to white matter abnormalities revealed by DTI, or in some cases,

remote if micro-structural abnormalities occur in a major tract innervating that region [8].

Furthermore, this implies that excessive slow-wave activity reported in prior studies may be

related to alterations in functional connectivity reported in the present investigation. Recent

evidence indicates that regional concentrations of oscillatory slowing also correspond to par-

ticular symptoms expressed [7], raising the question of whether region-specific differences in

functional connectivity may relate to specific patterns in post-concussive symptoms.

Research using EEG has also reported that electrophysiological interactions among brain

regions are atypical in mTBI. Reduced inter-hemispheric phase synchrony among EEG scalp

electrodes has been reported, and it was shown that such connectivity reductions in the beta

and gamma frequency ranges were associated with alterations in white matter microstructure

[10]. The network organization of resting state EEG connectivity has also been shown to be

altered in mTBI [22]. An MEG investigation of patients with mild, moderate and severe TBI

reported functional network disconnection in this group [23]. Using the data set employed in

the present study, we previously showed that resting state correlations in the amplitude enve-

lope of MEG activity is elevated in the delta, theta and alpha bands in mTBI, and that these

alterations are associated with cognitive and affective sequelae in this group [24]. Interestingly,

this pattern of alteration is different from MEG network alterations associated with PTSD

(which is often a co-morbidity of mTBI) which was associated with high-frequency increases

Detecting MTBI Using Resting MEG Connectivity
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in resting phase synchrony [25]. Neural oscillations and their synchronization among brain

areas are thought to play a critical role in cognition [11, 21], and resting neuromagnetic syn-

chrony and amplitude correlations are presently thought to reflect intrinsic functional net-

works underpinning cognition, perception and their disturbance in clinical populations [13].

EEG research has also indicated that reduced electrophysiological interactions among brain

areas may contribute to cognitive and behavioural problems associated with PCS. Reduced

EEG coherence, for example, has been observed during visuospatial working memory in

mTBI [26] and disrupted organization of network synchronization during episodic memory

processing has also been reported [27]. Such reports of altered task dependent connectivity are

congruent with reports of atypical electrophysiological and hemodynamic responses during

cognitive processing following mTBI [28].

MRI studies have indicated altered functional network connectivity in mTBI [29–31], in

the very low hemodynamic frequency oscillations measured by fMRI, which have been related

to cognitive problems and recovery in this group [32]. During resting state, fMRI abnormali-

ties have been reported which encompass visual, limbic motor and cognitive networks [29].

Altered default mode network connectivity [32] and regulation have been reported in mTBI.

Spontaneous BOLD correlations have also been shown to be atypical in thalamocortical net-

works in mTBI patients, and these alterations are correlated with both clinical symptomatol-

ogy and cognitive performance [30]. That altered connectivity is prominent in both

neurophysiological and hemodynamic imaging studies is not surprising, as damage to white

matter tracts in the form of diffuse axonal injury is common in severe brain injury [32–35].

Investigations of brain microstructure in such populations indicate altered axonal structure in

both gray and white matter [36–38].

The present study capitalizes on rapidly emerging methods combining analysis of brain

network connectivity with machine learning approaches supporting classification at the level

of individual participants. This provides new insights into complex spatiotemporal shifts in

intrinsic coupling in neurophysiological brain networks following mTBI. More importantly,

the present work provides potentially clinically translatable methods that will permit the detec-

tion of mTBI in single individuals where conventional radiological imaging approaches are

inconclusive. The finding that classification confidence is associated with self-reported symp-

tom severity indicates that these methods may provide quantitative and objective measure-

ments of brain changes underlying PCS. This could have significant impact on current clinical

practice. An objective, quantitative method for diagnosing brain dysfunction after mTBI

would allow identification of patients at risk for a subsequent injury, be invaluable for develop-

ing parameters around return to play / work / duty, and assist in developing guidelines for pro-

viding care, monitoring treatment efficacy and tracking recovery.

Materials and Methods

Participants

MEG data were recorded from 20 men with mTBI (21–44 years of age, mean = 31±7 years, 2

left-handed), all within three months of injury (days since injury = 32 ± 18 days). Participants

with mTBI were recruited through the Emergency Department of Sunnybrook Health Science

Centre in Toronto. The inclusion criteria were: concussion symptoms while in emergency;

Glasgow Coma Scale�13 (within 24 hours of injury); if loss of consciousness occurred, then

less than 30min; if post-traumatic amnesia occurred, then less than 24 hours; causes of head

injury were clear (e.g., sustaining a force to the head); no skull fracture; no abnormalities on

Computer Tomography (CT) scan and no previous incidences of concussion. Participants in

the mTBI group completed the Sports Concussion Assessment Tool 2 (SCAT2) Symptom
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Checklist and Symptom Severity Score; were able to tolerate the enclosed space of the MRI;

were English speaking and able to complete tasks during MEG and MR scans and able to give

informed consent. The mean Severity score of mTBI patients was 20 ± 19, whereas the Symp-

tom score was 9 ± 6. The MEG and MRI scans were obtained, on average, on 32nd day since

injury: 32 ± 18 days. Potential participants were screened prior to recruitment and none of the

mTBI participants reported any post-traumatic stress disorder, neurological or psychiatric

symptoms, and psychoactive medication use. All of the MRI scans were read by a neuroradiol-

ogist, and there were no abnormalities noted.

An age- and sex-matched control group without any history of TBI included 21 participants

(20–39 years of age, mean = 27±5 years, 1 left-handed). The control group had no history of

TBI (mild, moderate or severe), no neurological or psychiatric disorders, and were not on psy-

choactive medications. None of the participants had MRI contraindications such as metallic

implants or metal dental work. Data acquisition was performed with the informed consent of

each individual and with the approval of the Research Ethics Board at the Hospital for Sick

Children (SickKids).

Data acquisition

MEG data were acquired in a magnetically shielded room at SickKids using a whole-head

CTF system (MISL Ltd., Coquitlam, BC, Canada) with 151 axial gradiometers as well as ref-

erence sensors for gradient correction. For each subject, 5 minutes of MEG data were contin-

uously recorded at 600Hz using third-order spatial gradient noise cancellation. 60Hz and

120Hz notch filters were applied to MEG recordings. Data were also band-pass filtered

between 1Hz and 150 Hz with a fourth-order Butterworth digital filter applied first in a for-

ward, and then in a reverse direction so as to produce zero phase distortion. Head position

during testing was monitored via three localization coils, positioned at the nasion, and the

left and right pre-auricular points.

Anatomical MRI was performed on the same day at SickKids on a 3T MR scanner (MAG-

NETOM Tim Trio, Siemens AG, Erlangen, Germany) with a 12-channel head coil. The three

fiducial coils used in the MEG were replaced with radio-opaque markers for all participants.

These markers can be seen on their T1-weighted images for co-registration of the MEG source

locations to the MRI images. Anatomical images were collected by whole-brain T1-weighted

MRI scans (3D SAG MPRAGE: GRAPPA = 2, TR/TE/TI/FA = 2300/2.96/900/9, FOV/

Res = 192x240x256, 1mm isotropic voxels).

Reconstruction of neuromagnetic source activity

Individual MRI scans were normalized into Montreal Neurological Institute (MNI) space

based on the ICBM 2009c Nonlinear Symmetric 1 × 1 × 1mm template [39]. We applied a

nonlinear diffeomorphic registration, as implemented in the ANTS toolbox [40,41]. This

transformation to MNI space was additionally used to warp a manually segmented inner skull

surface from the MNI ICBM template to subject space. Using this inner skull surface, a multi-

sphere head model was fit for each subject [42].

MEG data were co-registered to each participant’s individual anatomical MRI to constrain

neuromagnetic sources to subject-specific head shape and structural anatomy. To reconstruct

neuromagnetic source activity, we first selected 90 seed locations in MNI space, which repre-

sented all cortical and subcortical brain regions in the Automated Anatomical Labeling (AAL)

atlas [43]. Regions specified by the AAL atlas and located in the cerebellum were excluded

from the further analysis. For visualization purposes, the regions were re-ordered according to

which lobe each region belongs to. The new order of the regions is given in Table 1 (the left
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Table 1.

Region X, mm Y, mm Z, mm Lobe

Frontal Inf Orb L(R) -37(40) 31(32) -12(-12) Frontal

Frontal Inf Oper L(R) -49(49) 13(15) 19(21) Frontal

Rectus L(R) -6(7) 37(36) -18(-18) Frontal

Frontal Inf Tri L(R) -47(49) 30(30) 14(30) Frontal

Frontal Mid L(R) -34(37) 33(33) 35(34) Frontal

Frontal Mid Orb L(R) -32(32) 50(53) -10(-11) Frontal

Frontal Med Orb L(R) -6(7) 54(52) -7(-7) Frontal

Frontal Sup Orb L(R) -18(17) 47(48) -13(12) Frontal

Frontal Sup Medial L(R) -6(-8) 49(51) 31(30) Frontal

Frontal Sup L(R) -19(20) 35(35) 42(44) Frontal

Supp Moror Area L(R) -6(8) 5(0) 61(62) Frontal

Precentral L(R) -40(40) -6(-8) 51(52) Frontal

Rolandic Oper L(R) -48(52) -8(-6) 14(15) Frontal

Insula L(R) -36(38) 7(6) 3(2) Frontal

Temporal Pole Mid L(R) -37(43) 15(15) -34(-12) Temporal

Temporal Pol Sup L(R) -41(47) 15(15) -34(-32) Temporal

Temporal Sup L(R) -54(57) -21(-22) 7(7) Temporal

Temporal Mid L(R) -57(56) -34(-37) -2(-1) Temporal

Temporal Inf L(R) -51(53) -28(-31) -23(-22) Temporal

Olfactory L(R) -9(8) 15(16) -12(-11) Limbic

Cingulum Ant L(R) -5(7) 35(37) 14(16) Limbic

Cingulum Mid L(R) -6(7) -15(-9) 42(40) Limbic

Cingulum Post L(R) -6(6) -43(-42) 25(22) Limbic

Hippocampus L(R) -26(28) -21(-20) -10(-10) Limbic

ParaHippocampus L(R) -22(24) -16(-15) -21(-20) Limbic

Amygdala L(R) -24(26) -1(1) -17(-18) Limbic

Caudate L(R) -12(14) 11(12) 9(9) Limbic

Putamen L(R) -25(27) 4(5) 2(2) Limbic

Pallidum L(R) -19(20) 0(0) 0(0) Limbic

Thalamus L(R) -12(12) -18(-18) 8(8) Limbic

Paracen7tral Lobule L(R) -9(6) -25(-32) 70(68) Parietal

Postcentral L(R) -43(40) -23(-25) 49(53) Parietal

Parietal Sup L(R) -24(25) -60(-59) 59(62) Parietal

Parietal Inf L(R) -44(45) -46(-46) 47(50) Parietal

SupraMarginal L(R) -57(5) -34(-32) 30(34) Parietal

Angular L(R) -45(45) -61(-60) 36(39) Parietal

Precuneus L(R) -8(9) -56(-56) 48(44) Parietal

Cuneus L(R) -7(13) -80(79) 27(28) Occipital

Lingual L(R) -16(15) -68(-67) -5(-4) Occipital

Fusiform L(R) -32(33) -40(-39) -20(-20) Occipital

Calcarine L(R) -8(15) -79(-73) 6(9) Occipital

Occipital Sup L(R) -18(23) -84(-81) 28(31) Occipital

Occipital Mid L(R) -33(36) -81(-80) 16(19) Occipital

Occipital Inf L(R) -37(37) -78(-82) -8(-8) Occipital

AAL-based regional map with reference to the MNI atlas.

doi:10.1371/journal.pcbi.1004914.t001
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region goes first, followed by the right one). Specifically, for each region from the AAL parcel-

lation, the seed location was defined as a voxel within the region, which was closest, in the

mean-square sense, to the means of x-, y-, and z-coordinates, averaged across all the voxels in

this brain region [44]. Source estimation was performed at these 90 locations, using an adap-

tive spatial filter (vector beamformer) [45]. For each subject, 27 non-overlapping epochs of 10

seconds duration were extracted such that head motion within each epoch did not exceed

3mm in any direction for any of three head location coils.

Phase synchronization analysis

The time-frequency representation of the original time series for each reconstructed source

was derived from the wavelet decomposition, using a time-frequency toolbox [46]. Thirty fre-

quency points equally spaced on a logarithmic scale were selected to cover the range between

1Hz and 75Hz. The analysis of phase synchronization between the neuromagnetic sources was

performed on spectrally decomposed data. We computed phase-locking values [47], which are

known in the literature under different names such as mean phase coherence [48] or phase

synchronization index [49]. Phase synchronization emerged from studying coupled nonlinear

systems [50], and is based on an idea that the existence of correlations between the phases of

coupled systems does not imply correlation between their amplitudes.

A common method for obtaining phase dynamics for analyzing phase synchronization

between brain signals is based on wavelet transformation [51]. A signal can be decomposed

into a set of brief oscillatory patterns called wavelets. Specifically, wavelet coefficients Wx(τ, f)
at time τ and frequency f are obtained by convolving a given signal x(t) with a zero-mean spe-

cial function or wavelet ψτ, f(t):

Wxðt; f Þ ¼

ðþ1

� 1

xðtÞct;f ðtÞdt ð1Þ

where ψτ, f(t) is a short segment of a oscillatory signal (wavelet) obtained from an elementary

function called the mother wavelet by dilutions and translations. Often, a specific form of the

mother wavelet is used, known as the Richer wavelet or Mexican hat function, which is defined

as the negative normalized second derivative of a Gaussian function. To decompose a signal at

a specific frequency f and time τ, the mother wavelet is compressed or dilated, and then trans-

lated such that ψτ, f(t) is centered at time τ. To maintain a consistent frequency resolution, the

bandwidth of the envelope is set to be inversely proportional to f, such that each wavelet con-

tains the same number of cycles.

In general, the coefficients Wx(τ, f) are complex numbers. The transformation Eq (1) thus

defines both the amplitude of signal x(t) and the phase over a range of times τ and frequencies

f. The instantaneous phase ϕx(τ, f) is the angular component (phase angle) of Wx(τ, f).
The relative phase Δϕx(τ, f) of two signals, x(t) and y(t), is defined as a time series of the dif-

ference between the instantaneous phase of each signal, namely

D�x;yðt; f Þ ¼ �xðt; f Þ � �yðt; f Þ ð2Þ

which can be computed from the wavelet coefficients at time τ and frequency f from

eiD�x;yðt;f Þ ¼
Wxðt; f ÞW�

y ðt; f Þ
jWxðt; f ÞjjWyðt; f Þj

ð3Þ

where W�
y ðt; f Þ is the complex conjugate of Wy(τ, f).
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The phase differences can be projected as a series of two-dimensional vectors onto the unit

circle, one per time point τ = τ1, . . ., τN. The phase-locking value PLV x, y(f), which reflects the

amount of phase-synchrony between two signals across time, is computed as the length of the

resultant (mean) vector:

PLV x;yðf Þ ¼ he
iD�x;yðt;f Þit ¼

1

N

XN

k¼1

eiD�x;yðtk;f Þ

�
�
�
�
�

�
�
�
�
�

ð4Þ

By construction, PLV x, y(f) is limited between 0 and 1. When the relative phase distribution

is concentrated around the mean, the PLV is close to one, whereas phase scattering will result

in a random distribution of phases and PLV close to zero.

For each epoch, for all pairs of 90 regions of interest (ROIs), frequency-specific phase differ-

ences were computed as functions of time. The phase-locking value, PLV x, y(f), was calculated

as relative stability of the phase differences between two signals at a given frequency, subse-

quently averaging across epochs. Thus, 30 90-by-90 matrices were produced for each subject,

representing functional connectivity in terms of phase-locking between 90 neuromagnetic

sources at 30 frequency points.

Classification

In the present study, Support Vector Machine (SVM) learning was used to predict the clinical

status Y of a subject (mTBI or control) from a set of features X obtained from the subject’s

MEG data [52]. These features are represented by frequency-specific phase-locking values

(PLV) between the neuromagnetic activity reconstructed for 90 regions of interest (ROIs).

Each of the samples (subjects) i = 1, . . ., m, where m = 41, can be treated as a point xi in a n-

dimensional feature space, where n is the total number of features—unique combinations of

all the connections and frequencies of interest.

A learning machine can be seen as a function F, which determines a learning model:

F : X ! Y ð5Þ

The function F transforms vectors xi from the feature domain X to the set Y of possible out-

come values. When Y is a set of only two symbols (mTBI and control), the learning problem

Eq (5) is called a binary classification, and Y is called the set of class labels.

Learning machines encompass many computational approaches. For classification prob-

lems, they can produce models with various types of decision borders. In this study, we applied

a linear version of a SVM to determine a linear border between the classes [52]. Depending on

which side of the border the sample xi is located, it can be assigned to one of two classes:Y = {1,

−1} coding mTBI and control groups, respectively. Samples used to define the border are called

training data. The clinical status of new cases (test data) can be predicted based on their loca-

tions with respect to the decision border. If we know the true status of the test data, we can esti-

mate the accuracy of that prediction. In practise, the entire data with known labels are typically

divided into two sets: training data to learn the function (5) and test data to validate it.

Mathematically, learning the model (5) with a linear SVM is equivalent to finding the opti-

mal hyperplane ωTx + b = 0 in the feature space, where ω is an n-dimensional weight vector,

and–b defines the threshold. Optimal here means separating the two classes Y = {1,−1} with

maximal margin. Mathematically, training the model (5) is reduced to an optimization
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problem, maximizing the minimum distance between vectors xi and the hyperplane:

max
w;b

minf kx � xik such that wTx þ b ¼ 0; i ¼ 1; . . . ;m g ð6Þ

If a vector x satisfies F(x) = ωTx + b> 0, then the model (5) will assign the label 1 (class

mTBI) to it, otherwise the label −1 (class Controls) is assigned. The distance from the decision

boundary F(x) = ωTx + b can serve as a measure of confidence in the classification.

Leave-one-out cross-validation was used in this study to estimate prediction accuracies of

the classification. During this procedure, all samples xi, i = 1, . . ., j − 1j + 1, . . ., m except one xj

were designated as the training data to determine the optimal model (5) for separating the clas-

ses, whereas ability of this model (5) to correctly predict the outcome was tested with the

remaining sample xi. This procedure was repeated m times such that each subject served as the

test sample only once. The prediction accuracies such as sensitivity and specificity were then

computed by comparing the predicted and true statuses of m subjects.

Until now, we assume that all features, i.e. all frequencies and connections, were used for

classification. However, predictive accuracy could be improved by selecting the most relevant

and informative features. In general, feature construction and selection is a critical step in clas-

sification. In practise, it is essentially heuristic. Fig 11 schematically illustrates one round of

cross-validation used to learn a model from the training data, and then predict the group status

of the test data. Feature selection was based on supervised learning, wherein the features were

the phase synchrony estimates with three feature selection schemes: i) individual wavelet fre-

quencies, ii) canonical frequency bands, and iii) best representative features within the α band.

As a first-pass analysis, contribution of individual wavelets to the classification was estimated.

Then, five frequency bands, namely δ (1-4Hz), θ (4-8Hz), α (8-14Hz), β (14-28Hz), and lower

γ (28-75Hz) were a priori selected, and all the wavelets representing more fine grained fre-

quency bins were assigned to one of these canonical bandwidths. Further, for the frequency

band that carried the most discriminative information (namely, α), the features were ranked

in a univariate manner. Specifically, for each feature (PLV for a given frequency and connec-

tion), overlapping probability distribution functions for two classes were compared, and the

area under the resulting receiver operating characteristic (ROC) was computed [53]. The area

under the ROC (AUR) provides an estimate of how valuable a feature can be for separating the

two classes.

Accordingly, the feature selection can be summarized as follows. First, the features that

were computed to quantify the brain state were separated into 30 sub-sets, each associated

with a wavelet frequency. Classification analysis with leave-one-out cross-validation was

applied separately for each subset, using linear SVM [54] as implemented in a Matlab statistics

toolbox (MATLAB and Statistics Toolbox Release 2012a, The MathWorks, Inc., Natick, Mas-

sachusetts, USA). Next, total accuracy as well as specificity and sensitivity were computed. The

features were then regrouped in an alternate way, and the classification process was repeated.

Specifically, the features were separated into 5 subsets, each associated with a frequency band

(δ, θ, α, β, lower γ), containing phase-locking values calculated for a set of wavelets within a

specific frequency range. Further, the features representing phase synchrony in the α band

were ranked, computing the area under the ROC curve (AUR). In the next step, leave-one-out

cross-validation was applied for every number k = 1, . . ., 100 of features with the highest AUR,

and classification accuracy was estimated as a function of the number of selected features. Sig-

nificance of accuracy values was tested with respect to the distribution created by shuffling 500

times the labels (mTBI and Control) among the subjects.

Detecting MTBI Using Resting MEG Connectivity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004914 December 1, 2016 18 / 24



Partial Least Squares

Partial Least Squares (PLS) analysis was used to further explore possible group differences in

connectivity (PLV) between the neuromagnetic sources across groups, as well as how these dif-

ferences are expressed across frequencies and specific connections [55]. In contrast to the pre-

diction analysis with linear SVM, wherein the learning model F was estimated for a subset of

subjects (training data), PLS analysis was performed on the entire data in a single analysis.

PLS is a multivariate technique, which decomposes the covariance between the neurophysi-

ological data and a discrete variable coding a contrast (between groups, for example) or a con-

tinuous variable (such as the time since injury) into mutually orthogonal factors (latent

variables), similar to the principal component analysis [55]. In practice, PLS analysis can iden-

tify data-driven contrasts between groups or test specific a priori contrasts, and finds optimal

Fig 11. A diagram illustrating one round of leave-one-out cross-validation to estimate classification

accuracies.

doi:10.1371/journal.pcbi.1004914.g011
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relations among these contrasts and features (combinations of individual connections and fre-

quencies in our case). Significance of the contrast can be tested with permutation tests,

whereas the robustness of the contribution of specific connections and frequencies to the iden-

tified contrast can be tested with bootstrap procedures. Here we give a brief description of the

technique [55–58], which was previously applied in a number of EEG and MEG studies to

characterize changes in the brain signals [59–61].

PLS operates on the whole data matrix at once. Typically the rows of the data matrix corre-

spond to participants within groups, whereas the columns correspond to voxels in functional

MRI, electrodes in EEG, sensors or sources in MEG. These features (voxels, electrodes, sen-

sors) can be called the elements. In our case, the elements were represented by all the possible

combinations of a pair of neuromagnetic sources and a frequency point. Specifically, to pre-

pare for the PLS analysis, the data matrices were organized in the form of subjects within

groups by elements, each associated with a connection and a frequency point (30 × 90 × 89/

2 = 120, 150 elements in total). Thus, the neuroimaging data were organized as a matrix: sub-

jects within groups by all the possible combinations of connections and frequencies. Then, the

covariances were computed between the data matrix and the vectors representing either the

contrast between groups or the length of time elapsed between injury and scan.

Next, singular value decomposition (SVD) was used to project the covariances to a set of

orthogonal latent variables (LVs), mathematically described as a products of three vectors: the

left-singular vectors, the non-zero singular values, and the right-singular vectors. Each latent

variable (LV) thus had three components: (a) a singular value, representing how much vari-

ance can be explained by this LV, similar to principal component analysis; (b) weights within

the left singular vector, representing an underlying contrast between groups or an overall cor-

relation between imaging and clinical data; (c) weights within the right singular vector (ele-

ment loadings), representing the robustness of contribution of all the elements to the group

contrast or overall correlations.

The overall significance of each LV and the importance of the individual elements within a

specific LV was assessed using resampling procedures. First, we randomly reassigned subjects

between groups, performing a permutation test. This global permutation test assessed the

overall significance of a given LV, measuring how it is different from random noise. Specifi-

cally, we computed a measure of significance as the number of times the singular values from

permuted data were higher than the observed singular value (500 permutations). In the second

step, we tested the element loadings for stability across subjects by bootstrap resampling of

subjects within groups (500 bootstrap samples). A measure of stability (bootstrap ratio value)

was calculated as the ratio of the original element loading to the standard error of the distribu-

tion of the element loadings generated from bootstrapping. This is approximately equivalent

to a z-score: a bootstrap ratio value of 3 or -3 corresponds to 95%-confidence under the

assumption of a Gaussian distribution. Elements (all the combinations of connections and fre-

quencies) with positive bootstrap ratio values directly support the contrast or overall correla-

tion associated with the left-singular vector of a given LV. Negative bootstrap ratio values also

indicate the robustness of the effects, but in the reverse direction. In other words, to correctly

interpret the output, the bootstrap ratio values (or z-scores) need to be reported with respect

to the contrast or overall correlation in order to correctly understand the direction of the

loadings.

We distinguish two types of PLS analysis: so called “contrast” and “behavioural” PLS

[55,56]. In the contrast PLS, there are groups of subjects (in our case, mTBI and healthy con-

trols), and the PLV data are projected to an a priori defined contrast. In this case, the weights

within the left singular vector are equivalent to the group contrast. The “behavioural” PLS,

which is typically based only on one group of subjects, explores the covariance between the
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brain data and some continuous, subject-specific variables, such as time of scanning since

injury. In this case, the weights within the left singular vector represent the overall correlations

(one correlation per variable) between the PLV and time-of-scanning matrices. Both in the

contrast and behavioural PLS, the right singular vector reflects the contribution of the individ-

ual elements to the tested effects.

Limitations of the study

One assumption of our study is that the volume conduction effects do not represent a signifi-

cant confounding factor. It is not entirely true that MEG is not sensitive to effects of volume

conduction. It has been shown, however, that secondary currents resulting from volume con-

duction do not contribute to the radial component of the magnetic field under the assumption

of a dipolar source in a spherical homogeneous conductor [62]. For our study, we used a first

order axial gradiometer system, which is mainly sensitive to the radial component of the mag-

netic field (that is, the field of a source dipole with tangential orientation). In this setting, esti-

mating PLV, which may capture the couplings with a phase shift close to zero, seems

reasonable. Using a more conservative measure such as weighted phase lag index (PLI) would

further minimize the volume conduction effects, but it would also remove some physiologi-

cally meaningful couplings, which may reduce both the sensitivity and specificity.

Another point is related to the segmentation of MEG recording. The original data were

epoched into 10s segments. We choose 10s as a compromise between our intent to estimate

phase synchrony at the lowest frequencies and to increase the robustness of the estimation by

averaging across different epochs. Specifically, we believe that 10s is, on the one hand, long

enough to robustly estimate the phase locking effects at the frequencies close to 1Hz, and on

the other hand, is short enough to allow us to extract relatively large number of segments. The

latter helps to increase the robustness of the results by averaging the phase synchrony across

segments. Furthermore, the segments should be relatively short to not introduce large move-

ment artefacts. Please note that the segments were extracted from 5 minutes of recordings

using a rather conservative threshold of less than 3mm of movement.
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