BIOLOGY

©PLOS

COMPUTATIONAL

CrossMark

click for updates

E OPEN ACCESS

Citation: Vattikuti S, Thangaraj P, Xie HW, Gotts SJ,
Martin A, Chow CC (2016) Canonical Cortical Circuit
Model Explains Rivalry, Intermittent Rivalry, and

Rivalry Memory. PLoS Comput Biol 12(5): £1004903.

doi:10.1371/journal.pcbi.1004903

Editor: Peter E. Latham, University College London,
UNITED KINGDOM

Received: August 26, 2015
Accepted: April 6, 2016
Published: May 3, 2016

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CCO public
domain dedication.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the Intramural
Research Program of the NIH, NIDDK and NIMH.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Canonical Cortical Circuit Model Explains
Rivalry, Intermittent Rivalry, and Rivalry
Memory

Shashaank Vattikuti'*, Phyllis Thangaraj', Hua W. Xie', Stephen J. Gotts?, Alex Martin?,
Carson C. Chow'*

1 Mathematical Biology Section, Laboratory of Biological Modeling, National Institutes of Diabetes and
Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland, United States of America,
2 Cognitive Neuropsychology Section, Laboratory of Brain and Cognition, National Institute of Mental Health,
National Institutes of Health, Bethesda, Maryland, United States of America

* vattikutis @ mail.nih.gov (SV); carsonc @ mail.nih.gov (CCC)

Abstract

It has been shown that the same canonical cortical circuit model with mutual inhibition and a
fatigue process can explain perceptual rivalry and other neurophysiological responses to a
range of static stimuli. However, it has been proposed that this model cannot explain
responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where
maintenance of a percept when the stimulus is absent is required. This challenges the uni-
versality of the basic canonical cortical circuit. Here, we show that by including an over-
looked realistic small nonspecific background neural activity, the same basic model can
reproduce intermittent rivalry and rivalry memory without compromising static rivalry and
other cortical phenomena. The background activity induces a mutual-inhibition mechanism
for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation
or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove exis-
tence conditions for the mechanism and show that it can explain experimental results from
the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.

Author Summary

When the brain is presented with an ambiguous stimulus like the Necker cube or what is
known as the quartet illusion, the perception will alternate or rival between the possible
interpretations. There are neurons in the brain whose activity is correlated with the per-
ception and not the stimulus. Hence, perceptual rivalry provides a unique probe of cortical
function and could possibly serve as a diagnostic tool for cognitive disorders such as
autism. A mathematical model based on the known biology of the brain has been devel-
oped to account for perceptual rivalry when the stimulus is static. The basic model also
accounts for other neural responses to stimuli that do not elicit rivalry. However, these
models cannot explain illusions where the stimulus is intermittently switched on and off
and the same perception returns after an off period because there is no built-in mechanism
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to hold the memory. Here, we show that the inclusion of experimentally observed low-
level background neural activity is sufficient to explain rivalry for static inputs, and rivalry
for intermittent inputs. We validate the model with new experiments.

Introduction

Perceptual rivalry is the subjective experience of alternations between competing percepts
when an individual is presented with an ambiguous stimulus. It has been suggested that rivalry
between neurons may be a ubiquitous property and competition between neural representa-
tions occurs throughout the brain [1]. Evidence for this includes: 1) neural correlates of visual
rivalry found at multiple regions of visual processing (e.g., V1, V4, MT, IT) [2-5], 2) most sen-
sory modalities exhibit rivalry suggesting similar biophysical processes [6], 3) brain regions
that do not receive specific sensory inputs, such as the inferior frontal and parietal lobe, exhibit
activity that is correlated with perceptual switches [7], and 4) independent rivalry can occur at
different spatial locations, with different senses, and under different modalities [6,8-10].
Rivalry provides a unique window into cortical function because it directly accesses an internal
computation elicited by but distinct from an external sensory input. Many experiments on
rivalry utilize stimuli that are always in view although possibly moving. We refer to these situa-
tions as static rivalry. In intermittent rivalry, the stimulus presentation is periodically removed
while the perception alternates with a longer period. Rivalry memory refers to the return of the
last dominant percept after an extended time duration without stimulus.

Computational and mathematical work has shown that a neurophysiologically-constrained
cortical model whose primary features are mutual inhibition between pools of neurons and a
fatigue process can reproduce the basic experimental properties of static rivalry, winner-take-
all behavior, normalization, and decaying oscillations induced by distractors under different
input conditions [11-14]. These findings support the universality of a simple neuronal model
that can be used to explain a myriad of basic cortical behaviors and as such is a candidate
canonical circuit for simple cognitive functions (e.g. see [15-17] for discussion of such func-
tions). A canonical circuit is universal in the sense that it does not imply a single function but
can exhibit multiple operating regimes under a change in parameter values (including just a
change in the type of stimulus). The biophysical dynamics can be inferred from behavioral
observations such as rivalry, decision-making, working memory, and contrast-sensitivity
[1,6,13,18] making them potential clinical endophenotypes (simple biomarkers associated with
and possibly underlying a more complex trait of interest). As such, rivalry has been suggested
as a diagnostic tool for probing cognitive dysfunction such as in autism, bipolar disorder, and
major depressive disorder [19-21].

The canonical circuit and similar models have been validated against a set of nontrivial obser-
vations in static rivalry including Levelt’s propositions [11,22-26]. Although mutual inhibition
acting as a positive feedback has been proposed as a memory mechanism in other contexts [27],
it has been argued [22,28] that a circuit with mutual inhibition and fatigue cannot reproduce
intermittent rivalry nor rivalry memory because presumably there is no mutual inhibition when
the stimulus is absent and the fatigue process would give the opposite result of what is observed,
favoring the suppressed percept (i.e. masking not priming). The question then is whether a single
circuit model can account for all of the aforementioned behaviors (including non-rivalry dynam-
ics) or whether independent or additional circuits are required to explain all the phenomena.

Here, we show that the same cortical circuit model can also be applied to time-varying
inputs in intermittent rivalry and rivalry memory. We explore various possible mechanisms
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and show that just the inclusion of a previously neglected phenomenon—namely low, nonspe-
cific, background activity—is sufficient to provide a unified account of static rivalry, intermit-
tent rivalry, rivalry memory and all previously accounted for phenomena. The background
activity at arbitrarily low values can provide sufficient drive to the neurons such that the mem-
ory can be held by mutual inhibition alone and withstand the effects of fatigue. The memory
persists over a wide range of parameter values, is robust to noise, and does not require the
inclusion of another process. The memory is topological in the sense that the total number of
memory states is invariant to a range of changes to the input and network properties. Impor-
tantly this memory preserves all of the previously known behaviors of the basic model since the
background activity does not play a role under the static conditions. This is in contrast to
recurrent excitation models of short-term memory where neural activity is bistable between an
active and inactive state, which is generally antagonistic to rivalry [29], may conflict with local
balanced states [30], and relies on fine-tuning [31].

The circuit model can reproduce two main features of rivalry memory and intermittent
rivalry that we observed in the ambiguous quartet illusion: 1) a dynamic Levelt’s fourth propo-
sition (dynamic L4), where the dominance duration increases with increasing stimuli presenta-
tion intervals and 2) habituation, where the initial percept durations (epochs) decrease upon
repeated stimulus presentations until a steady state is reached after several epochs. Dynamic L4
has been shown in prior work with other intermittent paradigms [32]. Habituation has also
been reported for rivalry; although, not necessarily intermittent rivalry [33-35]. We provide a
theoretical explanation for these behaviors. The theory suggests that for the observed habitua-
tion to occur, local fatigue such as spike-frequency adaptation or recurrent synaptic depression
is the dominant form of fatigue rather than synaptic depression between pools, and that the
interval between pulses is shorter than the fatigue time constant.

Results
Experiment Results

We informed our model with experiments on the ambiguous quartet illusion, which is a proto-
typical example of intermittent rivalry and has the advantage of naturally incorporating a peri-
odic stimulus (see Fig 1). The inputs are time dependent and the perceived motion only occurs
when the frame presentation (input) is switched from one parity (e.g. dots in upper-right and
lower-left corners (UR-LL)) to the other (e.g. lower-right and upper-left corners (LR-UL)). The
motion is ambiguous because the transition has two possible interpretations. For example, in
the transition from UR-LL to LR-UL, the dot located at UR could be interpreted as “sliding”
vertically down to LR, while the dot at LL simultaneously slides up to UL. The alternative inter-
pretation is that the dot at UR slides horizontally leftwards to UL, while the other dot at LL
slides horizontally rightward to LR. If one imagines a bar connecting the dots then the vertical
interpretation corresponds to a bar rotating clockwise from 45° to —45° (like a seesaw) while
the horizontal interpretation corresponds to the stick rotating counterclockwise from 45° to
135°. Hence, the perceived motion in the quartet illusion is characterized by two degrees of
freedom—orientation and direction. Orientation refers to whether the dot motion is aligned
along the vertical (V) or horizontal (H) axis and direction refers to whether the motion is
clockwise (+) or counterclockwise (-) (see Fig 2a).

We presented the illusion to subjects with different frame presentation intervals (Tgame). We
examined dynamic L4 by testing if the perception dominance duration (Tp) (inverse of the percept
alternation rate) was correlated with T, In our first experiment we tested two subjects across a
wide range of Tgme inputs. The subjects showed a dramatic response to the stimulus parameter,
which occurred at different ranges for each subject (different sensitivities). In Fig 3a and 3b we
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Fig 1. Quartet illusion. We presented a variant of the quartet consisting of nested quartets. A single quartet
frame consists of two dots located at opposing corners of a square, across the diagonal. In the next frame the
other set of opposing dots is shown. A single transition between frames is perceived as either a motion with
the dots moving vertically together as an illusory bar rotating clockwise (top right frame), or horizontally as a
bar rotating counterclockwise (bottom right frame).

doi:10.1371/journal.pcbi.1004903.9001

plotted the T, distributions to give the qualitative picture. We also observed some evidence of a
habituation effect (Fig 3c), where the dominance durations decreased to a steady state value.

To verify the phenomenon we recorded dominance durations on a group of 16 hypothesis-
naive subjects. We probed the system over a range of Tgame: 300, 350, 400, and 450 millisec-
onds (minimum chosen to avoid photosensitive epilepsy). Individuals were told to report on
any change of motion and were trained on biased H and V motion stimuli prior to the quartet
stimulus (see Methods). From our post-task survey we found that all individuals observed
oscillating V motion (seesaw) and H motion (seesaw rotated by 90 degrees). For a majority of
subjects, these were the only reported percepts but a subset occasionally observed rotation (H,
V, H,. ..). There were also infrequent reports of the dots disappearing or changing size and the
dots moving toward and away from the subject (three-dimensional motion). The stimulus used
in the experiments can be seen in S1 Movie.

To test for the presence of dynamic L4, we analyzed the pooled data across subjects and across
percept-types (H, V, rotation). We observed a weak effect across subjects. The qualitative results
are shown by the Tp, distributions and their means (see Fig 4a and 4b). We quantified the rela-
tionship with a Cox proportional hazards mixed effects model. The statistical model treats the
dominance time as the survival time for a percept and evaluates the effects of factors on the sur-
vival probability (see Fig 4c). There was a significant but weak positive relationship of T, with
Terame With P =2 x 10™* (Wald test using 1,322 samples and 1,266 recorded switch events) and
hazard ratio 0of 0.996 (s.e. 0.001). We used these preliminary findings together with previously
reported effects for another rivalrous stimulus [32] as support for the dynamic L4 constraint.

For the hypothesis-naive experiment we discovered a larger habituation effect of the percept
durations over percept epochs. The initial percept epochs had longer T, as shown by Fig 5,
and we estimated a hazard ratio of 1.024 (s.e. = 0.008) (P = 2 x 107>; Wald test using 1,322 sam-
ples and 1,266 recorded switch events). We used this habituation effect as a second constraint
for the model.

Model Results

Model equations. Given the degrees of freedom and the symmetries in the quartet illu-
sion, as seen in Fig 2a, a minimal model of the quartet illusion involves competition between
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Fig 2. Paths of motion and neural network for the quartet illusion. (a) Each frame transition of the quartet illusion (to, t1, t5,. . .) induces an ambiguous
percept of one of two possible motions characterized by an orientation—horizontal (H) or vertical (V)—and a direction of rotation—clockwise (+) or counter-
clockwise (-). During a frame transition there is competition (mutual inhibition) between the two possible perceived motions—V+ competes with H- and V-
competes with H+. In the illusion, once an orientation becomes dominant, there is an oscillation in direction on each frame presentation, e.g. V+, V-, V+, etc.
Eventually, the other orientation becomes dominant and the oscillations in direction will continue, e.g. H+, H-, H+, etc. The rivalry refers to the alternation
between orientations. (b) A table of the allowed transitions due to the symmetries in the illusion. Each row indicates the perceived motion at the current
transition and each column the perceived motion at the next transition; a value of one in a column indicates a possible path. (¢) The circuit can be reduced by
averaging over the fast direction oscillations into a two pool circuit with mutual inhibition between competing neuronal pools representing H and V orientations
with an intermittent drive (dashed lines).

doi:10.1371/journal.pcbi.1004903.9002

four types of neuronal pools representing H+, H-, V+ and V- in the presence of fatigue pro-
cesses. The rate-model dynamics of the canonical cortical circuit for pool i are described by:

du, N
Tu% = U +fi(si + Zj:1 Sijﬂzjuj - "/ai)
da.
o , 1
T, It a; + u, (1)
dsl.j
Pk 1—s;— os;u;
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distribution for a dominance duration. (a-b) Increased Tp with Trame (dynamic L4). (¢) Decreased Tp across percept epochs (habituation) for pooled Tame

data.
doi:10.1371/journal.pcbi.1004903.9003

where N is the number of pools, f; is a gain function that is zero below a threshold and mono-
tonically increasing above the threshold, u; is the activity of pool i, S; is the effective input

strength to pool 7, B;; is the synaptic strength from pool j onto i, s;; is a nonlocal fatigue variable
that results in an activity dependent decrease of synaptic strength such as synaptic depression
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Fig 4. Dynamic L4 survival analysis for pooled hypothesis-naive subject data. (a) Violin plots with means (diamonds) for Tp versus Tgame. Tp is the
reported uninterrupted duration of either horizontal or vertical motion (or for a few subjects rotational motion), in units of the number of presented movie
frames. Tiame is the interval between movie frames. (b) Mean of the pooled data. (¢) Trame Tp-survival plots. There is a small but significant difference in
survival probabilities.

doi:10.1371/journal.pcbi.1004903.9004

[36], ¢ governs the nonlocal fatigue strength, a; is a local fatigue variable that decreases the
activity of the pool through negative feedback such as due to spike-frequency adaptation or
synaptic depression of recurrent connections within a pool [12,36,37], and ¥ is the local-fatigue
strength. In our ensuing simulations and analysis we assumed that the gain functions are the
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doi:10.1371/journal.pcbi.1004903.9005

same for all pools. We also used a gain function that is a square root for positive argument and
zero for negative but we probed arbitrary gain functions theoretically. Also, without loss of gen-
erality, we can rescale time so that 7, = 1 and choose the gain threshold to be zero by shifting f.
We verified that the value of 7, does not affect our results as long as it is much smaller than 7,
or T,, as in the static rivalry analysis [38]. For both local and nonlocal fatigue we use time
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constants on the order of seconds consistent with prior static rivalry papers [11,22]. This falls
within the wide physiological range for fatigue analogs such as spike-frequency adaptation or
synaptic depression [39-41].

We assume that the relevant input to the pools is a brief stimulus during the transition
between frame presentations and that there exists a network that detects change, which is
known to exist physiologically (i.e. computes a derivative) [42]. The details of the change detec-
tor are not important for the model. Two of the four pools receive an input during a transition
from one stimulus parity to the other. For example, a transition from UR-LL to LR-UL pro-
vides stimulus to V+ and H- whereas in the following transition from LR-UL back to UR-LL,
V- and H+ are stimulated. We implemented intermittent stimuli by periodic square-wave
input pulses, and define the on-state as the time during the input stimulus pulse and the off-
state as the time between pulses. Thus S; alternates between the on-state input S,,, and a back-
ground off-state input S,¢. The background input S,¢ was modeled as either a fixed low-level
input (which can be zero) or a random input given by S,~N(0, 0%). Consistent with neuronal
recordings, we presume that the activity imbalance between the pools determines which object
dominates perception (i.e. the most active pool corresponds to the percept) [2,3].

For the quartet illusion, we used four pools, each representing one of V+, V-, H+, and H-. If
mutual inhibition between pools (negative j) is sufficiently strong then only one of the pools is
active in an on-state. Given that one of two states is possible at any given on-state, there are 2"
possible orbits for a train of n on-states (with possible transitions shown in Fig 2b). However
empirically, subjects tend to observe only two and occasionally four of these possible orbits; i.e.
H or V oscillations, or + or—rotations. This constrained pattern of activation indicates a strong
restriction of orbits in the system. The rivalry between orbits suggests the action of a fatigue
process. By the symmetries of the quartet model, the persistence of one degree of freedom
(direction or orientation) immediately implies oscillations in the other. This can be achieved
by biasing the positive connection weights between like-orientations (V+ to V- and H+ to H-)
and like-directions (V+ to H+ and V- to H-) as shown in Fig 2a.

In the following, we examine three possible mechanisms in this quartet model for holding
the memory required for rivalry between a restricted set of orbits in the presence of biased con-
nections. In the first mechanism, the memory is held by the fatigue variable, in the second, the
memory is held by persistent activity due to excitatory connections, and in the third, the mem-
ory is held by mutual inhibition driven by nonspecific background activity. We argue that the
third mechanism is the most plausible.

Fatigue-based mechanism. Persistent V or H orientation illusory motion is automatically
obtained if a switch in direction is forced on each frame presentation. This can be achieved by
positive lateral connections between the like-direction pools that allow fatigue to suppress
activity in the opposite-direction pools. For example, suppose H+ is dominant when both H
+and V- are stimulated and this induces more fatigue in V+ than H-. On the next presentation,
H- will dominate over V+. If on the next presentation H+ dominates over V-, then orientation
H will persist. Eventually, the fatigue builds in the dominant orientation so that the opposite
orientation becomes dominant resulting in alternations (rivalry) between orientations at a
slower time scale. Thus there are two fatigue induced alternation processes, one between direc-
tions at short times scales and one between orientations at long time scales. Although rivalry
between orientations can occur in such a system, there is a trade-off between the short time
oscillations and the long time alternations and we were unable to find a set of parameters that
could reproduce dynamic L4 and habituation as observed in our experiments. Additionally, the
mechanism relies on the symmetries inherent in the quartet illusion and thus the mechanism
does not easily generalize to all forms of intermittent rivalry and rivalry memory. For these rea-
sons, we find that the fatigue-based mechanism to be implausible.
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Persistent activity mechanism. A possible mechanism to hold a memory is persistent
activity induced by recurrent excitation [43]. This type of mechanism has been explored exten-
sively for short-term memory[14,18,27,37]. Like recurrent excitation, strong reciprocal excita-
tion can also induce bistability in our model. If the strength is within a critical window, we
observed rivalry memory and intermittent rivalry. Fig 6a shows the simulated percept dura-
tions (Tp) measured in the number of pulses (on-states) as a function of percept epoch, on-
state interval (Tgame), and fatigue time-constant. T, is seen to increase with Ti.me at a given
epoch exhibiting dynamic L4. The decrease in Tp, as a function of epoch shows that habituation
is observed for a number of stimulus conditions. As shown in Fig 6b, like-oriented pools take
on one of two activity states (a low or high state).
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Fig 6. Persistent activity maintains memory. a) Dominance durations (Tp) as a function of percept epochs starting from rest for different Tf4me intervals
and fatigue time constants. A subset of the Tyame conditions tested showed habituation. When the fatigue time constant was increased there was both an
overall increase in dominance durations and all of the rivalry states showed habituation. See S2 Text for model specifications. b) Like-orientated pools are
bistable. When dominant (and receiving nominal inhibition from the suppressed pools) one set of like-orientated pools (H or V) can have persistent activity.
Here the pools were initialized with zero activity (no input), then one of the two (green) was given a brief input (pulse), followed by no input, and then a hard
reset of their activity to zero. The pulse elicited non-zero activity in both pools but was greater for the pool with direct input. Then instead of falling back to zero
activity, both pools remained in an elevated state despite a lack of input. When their activity was forced to zero (reset), they then remained inactive.

doi:10.1371/journal.pcbi.1004903.9006
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Although the persistent activity mechanism is able to reproduce the experimental observa-
tions for the quartet illusion, the amount of excitation must be restricted to a very narrow
range. Too little excitation eliminates the memory and too much eliminates plasticity. Recur-
rent excitation also reduces or even eliminates the region for static rivalry and can induce self-
oscillations (i.e. rhythmogenesis) [29,38]. Persistent activity would thus call for some mecha-
nism to finely tune the excitatory strength and moderate the effects of synaptic plasticity. The
third mechanism detailed below explains all the experiments with fewer constraints.

Background activity mechanism. The third mechanism exploits the fact that low-level
background neural activity is the norm experimentally. In vivo recordings find that neurons
exhibit nonzero resting firing rates in the absence of input and even during suppression
[2,7,44-46]. As shown in the top panel of Fig 7a, below the critical persistent activity level posi-
tive coupling between like-orientation pools is insufficient to maintain memory of the last ori-
entation. However, in the presence of background activity (see bottom panel of Fig 7a), the
previously dominant pool (or reciprocally coupled pools such as like-orientation sensitive
pools) in the on-state remains dominant in the off-state even in the presence of fatigue. This
dominance is extremely robust to parameter changes, can persist for arbitrarily long off-state
durations and represents a true memory state (as we explain in the next section). The model
with background activity and local fatigue exhibits both dynamic L4 and habituation (see Fig
7b). Positive coupling in the model biases the circuit towards V/H oscillations rather than rota-
tion but as we show in detail below, it is the background activity together with mutual inhibi-
tion that maintains the memory.

Reduced two-pool circuit. The background-activity mechanism for memory is best
understood in a reduced two-pool model using Eq (1) where N = 2 and we average over the
fast directional oscillations, only considering mutual inhibition between orientation (H, V)
pools as in Fig 2c. The excitatory connections between like-orientation pools have been sub-
sumed within the pool. They could have been explicitly included as a recurrent (self-to-self)
excitatory connection and the persistent activity mechanism would require its presence. How-
ever, we show below that the background activity mechanism does not require it. The model
with background activity exhibits dynamic L4 for a wide range of parameters (see Fig 8). The
background activity could be due to either a constant input, a low threshold of the gain func-
tion or even adding zero-mean noise. Zero-mean noise is able to induce a background activity
because the nonlinear gain function acts like a rectifier and biases the contribution of the noise
to positive fluctuations for durations that are long relative to the time constant of the neural
activity. Rivalry memory can also be achieved using a subtractive adaptation-only (local
fatigue) model; shunting adaptation is not necessary for rivalry memory as previously proposed
[28]. The results held for a system with nonlocal fatigue such as cross-synaptic depression and
a more biologically detailed model with conductance-based neurons. We observed habituation
for local fatigue but the opposite for nonlocal fatigue (see Fig 9), which we explain below.
While the dynamic L4 effect was very robust to model conditions and noise, the habituation
effect was somewhat less robust. Habituation was not found in the parameter regimes we
searched when background activity was induced by zero-mean noise alone in the rate model.
The parameter regime that exhibits both dynamic L4 and habituation was also smaller in the
conductance-based model than the rate model, probably because we did not have enough neu-
rons in our spiking model. Our conductance-based model only used a small number of neu-
rons for computational expediency and thus is subject to strong finite-size noise effects.

Explanation of background-activity memory mechanism. The bifurcation plot of u;-u,
versus a static S for the reduced two-pool circuit model is shown in Fig 10. The bifurcation
structure for static input is pertinent when the model is applied to intermittent rivalry and the
quartet illusion as seen next. For negative S there is a symmetric phase (u4; = u,). As Sis
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increased there is a pitchfork bifurcation to an asymmetric phase (winner-take-all state) at
S =0, where the sign indicates the dominant pool. For larger S there is a saddle node on a limit
cycle bifurcation (SNIC) to static rivalry. Depending on the parameters, including the shape of
the gain function, the static rivalry state can cease on a supercritical Hopf bifurcation or, as
seen in Fig 10, on a SNIC with a region of bistability between rivalry and a symmetric state,
which ends on a subcritical Hopf bifurcation. These phases can be stretched, shifted, or not
exist. Additional features can also appear such as another Hopf bifurcation or period doubling
bifurcations depending on the parameters (see [22,38] for more detailed review). As we will
show, the presence of the asymmetric state at very low levels of input is the crucial feature for
intermittent rivalry and rivalry memory.

First, consider the case where the two pools have no background activity in the off-state as
in the standard static rivalry model. This corresponds to below threshold input in Fig 10 (the
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activities need not be zero but can be any symmetric state where u; — u, = 0 is the fixed point).
For this case there is a switch in the dominant percept with each pulse because each pulse
weakens the dominant pool and this persists until the next pulse. Thus there is an initial bias
favoring the last suppressed pool. Under these conditions, the standard rivalry model would
not explain rivalry memory or intermittent rivalry, agreeing with previous assertions that this
model is insufficient for rivalry memory and must be augmented [28,47,48].

However, including background activity during the off-state (as in the four pool model
above) produces rivalry memory since it maintains the activity asymmetry at an arbitrarily low
activity level. This can be appreciated in the bifurcation diagram by the existence of the asym-
metric state close to zero (see Fig 10). There are two competing biases in the system. One is
held by the fatigue variable and the other is held by the low-activity asymmetric state due to
mutual inhibition and low-level background activity. Initially, the low-activity memory will
dominate and thus the previously dominant state will remain dominant. However, the fatigue
variable will become stronger for each subsequent on-state and thus after a sufficient number
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of on-states, it will eventually overcome the low-level activity bias and the dominance will
switch. The model also preserves all of its original properties like static rivalry and normaliza-
tion, since the low level activity does not play a role during the on-state.

We can make these observations more mathematically precise. A requirement for mutual-
inhibition memory is that the asymmetric state must exist at low levels of input strength. This
is easily achieved if the inhibition is strong enough and the gain function is concave like a
square root function. The gain function need not be concave everywhere but just over some
range. From Eq (1), the fixed point is given by

u, = f(S = s,pu, — a,)

u, = f(S—s,pu, —a,)

where we set s;; to s; for notational simplicity. Consider the asymmetric state (one pool is
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dominant) where u; > 0 and u, = 0. This requires
spf(S—a,)+a,>S>a (2)

First consider the case of no fatigue (i.e. set s = 1 and a = 0) in which case Eq (2) becomes f
(S) > S > 0. If fis a concave function and f(x) = 0 (i.e. f (tx) > #f (x),0 < ¢ < 1) then if this con-
dition is satisfied for S, then it will also be satisfied for any 0 < S¢ < S, As shown in the S1
Text, there is still a wide range of S, that satisfies Eq (2) in the presence of fatigue. Thus the
asymmetry in the on-state can be held in the off-state by the background activity. The memory
is topological because the state is a discrete invariant for a wide range of parameter values.

The percept dominance will switch when condition Eq (2) no longer holds. During the off-
states the fatigue variables tend to relax to a background but during the on-state a; will increase

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004903 May 3, 2016 15/22
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and s; will decrease. Thus a dominance switch can occur through a decrease in s;5f (S — a;) + a,
below S, or an increase in a; above S,g. The former mechanism has been called escape since
the amount of inhibition becomes too small to suppress the inactive pool and the latter release
since the dominant pool can no longer remain active [22,38]. In both mechanisms an increased
frequency of on-state presentations will lead to a faster increase in the fatigue variable and hence
a shorter dominance time. This is in contrast to static rivalry where increasing input strength
shortens dominance time for escape but lengthens it for release. Also note while static rivalry
can only occur if fatigue and input is sufficiently strong to produce a limit cycle, this is unneces-
sary for intermittent rivalry. Intermittent rivalry can occur for either an asymmetric on-state or
a limit cycle as long as there is asymmetry in the off-state. If the on-state is a limit cycle, then for
pulses longer than the limit cycle period we expect to see mixed static and intermittent rivalry
results with alternations during the on-state. This is consistent with prior experiments [32]. The
dominance time will also have a strong nonlinear dependence on Tf,me when the maximal
fatigue is near threshold. We give detailed proofs in the S1 Text.

For the rested system, local fatigue is sufficient to reproduce habituation, but nonlocal
fatigue gives the opposite results. We tested if the model exhibited the slow habituation we
observed in the experiment without any fine-tuning of the parameters (see Fig 5) in the local
and nonlocal fatigue models for the fully rested system (local fatigue variables initialized to
zero or nonlocal fatigue to one). As shown in Fig 9, only local fatigue produces habituation
over several epochs. For nonlocal fatigue the first epoch is generally shorter than the rest
although for some initial conditions the first epoch can be longer. We show below that the dif-
ference between local and nonlocal fatigue is due to how the two fatigue variables induce domi-
nance alternations.

Fig 11 shows the simulated fatigue variables of the two populations i and j across percept
epochs. Note that the fatigue orientations are reversed in Fig 11 since local-fatigue increases
with increased input; whereas, the nonlocal fatigue variable (cross-pool synaptic strength)
decreases with increased input. Recall that a switch is triggered either due to the dominant pop-
ulation falling below the threshold (release) or the suppressed population rising above thresh-
old (escape). For local fatigue, the threshold required to erase the low level off-state activity is
fixed (as seen in Fig 11, the variable increases to approximately the same value for each switch).
The dominance time is given by the time it takes the local fatigue variable to reach the fixed
release threshold and this time depends on its starting value, which is low for the first epoch
when the system is well rested. Thus, the dominance time will scale linearly with the fatigue
decay time (7, or 7,) and logarithmically with S,¢ (where log is negative and can vary quickly).
The suppressed pool fatigue does not relax back to its previous starting value if its rate of recov-
ery is slower than the rivalry rate. Hence, the dominance time for subsequent epochs will
shorten until a steady state is reached. The gradual decrease in dominance time matches the
experimentally observed habituation.

Nonlocal fatigue behaves differently. It cannot erase the dominant pool off-state activity;
instead, it works by decreasing the inhibition on the repressed population until it can escape. A
switch occurs when the ratio of the inhibition on the dominant pool to that on the suppressed
pool drops below a critical value. The dominance time is given by the time it takes this ratio to
reach the critical value starting from some initial condition. In the completely rested state,
fatigue of the first dominant population has a shorter distance to traverse to reach the critical
ratio than the dominant pool in the second epoch (see Fig 11b). Hence, after the first epoch the
dominance time is relatively constant because any global accumulation of depression on both
synapses effectively cancel out, which is not in agreement with the experimental observation
(see S1 Text for details). The initial ratio could be manipulated such that the first epoch is lon-
ger but this still does not match the data. In summary, the mathematical analysis explains the
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conditions for intermittent rivalry and suggests that local fatigue, for example by spike fre-
quency adaptation or local synaptic depression, is the dominant form of fatigue for intermit-
tent rivalry that exhibits gradual habituation like the quartet illusion.

Discussion

We examined several intermittent rivalry and rivalry memory mechanisms in a canonical cortical
circuit model and concluded that the inclusion of experimentally observed low-level, nonspecific
background neuronal activity that induces a mutual-inhibition memory is the most plausible.

The mechanism preserves all the phenomena of static rivalry as shown in previous studies

[11,12,22]. Mutual inhibition has been proposed before as a mechanism for short-term memory
[27]. However, it was not considered for rivalry since it was assumed that the circuit could not
maintain the memory in the absence of a stimulus and the presence of fatigue would favor the
suppressed percept. Even if neurons are not completely inactive during the oft-states, it is not a
priori obvious that an asymmetric state would exist and persist indefinitely in the presence of
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fatigue. We show that for reasonable conditions, this form of memory is topological (holds for a
wide range of parameters) and stable for arbitrarily low input. Topological mutual-inhibition
memory can exist as long as inhibition is strong enough and the gain function (i.e., frequency-
input curve) has a non-increasing slope, which is experimentally observed [36,49]. Thus, it may
not be limited to rivalry and could be the mechanism for other forms of memory in the brain.

The model explains the two intermittent rivalry phenomena of dynamic L4 and habituation
in the quartet illusion. Dynamic L4 is similar to what Leopold et al. (2002) found for the rotat-
ing sphere (RS) stimulus using manually inserted blank periods. A habituation effect similar to
what we found for the quartet has also been noted for other stimuli (e.g., static images, motion)
and sensory domains (e.g., visual, auditory) [33-35]. However, binocular rivalry shows the
opposite effect where the switch rate decreases over epochs. This has been attributed to contrast
adaptation [50] and can be accounted for in the rivalry model by reducing input over time. The
dynamics of our model are geometrically similar to the model proposed by Noest et al. 2007
[28]. However, instead of requiring a subthreshold current with shunting adaptation, we show
that the activity itself acts as the memory with the property of persisting indefinitely. There are
many possible mechanisms for the background activity and perhaps the most interesting is
that zero-mean noise is sufficient. While either local (e.g., spike-frequency adaptation, recur-
rent synaptic depression) or nonlocal (e.g., cross-pool synaptic depression) is sufficient to
explain intermittent rivalry, local fatigue in particular reproduces habituation.

Prior experimental designs of intermittent rivalry introduced the off-states by either manually
removing a static stimulus or by utilizing a more complex protocol such as combining motion-
induced blindness with a static stimulus, or by instructing the subject to independently attend to
mixed “static, intermittent” epochs[10,32]. It is possible that some of these more complex para-
digms involve higher order processing that makes replication difficult. We propose that the quar-
tet is a robust self-contained system for the study of intermittent rivalry since periodicity in the
quartet invokes natural motion processing. In retrospect, our experimental design was suboptimal
for detecting dynamic L4, but the model provides guidance for future experiments. Further study
is necessary to determine whether different fatigue modes are important for different rivalry sti-
muli. This could be predicted with the model and tested experimentally by behavioral and
electrophysiological measurements, perhaps combined with pharmacological manipulation of
K*-channels that modulate adaptation effects [51]. Finally, the role of background activity in the
theory predicts that perturbing or suppressing the activity bias will extinguish rivalry memory.

Methods
Ethics Statement

Ethics approval for this study was granted by the NIH Combined Neuroscience Institutional
Review Board under protocol number 10-M-0027 (ClinicalTrials.gov ID NCT01031407).

Subjects

The naive-subject study consisted of 16 adult male participants from the National Institutes of
Health campus and DC metropolitan region. The data were screened such that at least two per-
cept switches were reported in a test block. One subject did not have adequate data and was
removed, leaving 15 subjects. Author data was collected on SV and PT for the quartet.

Task Design

Naive-subjects were tested on the standard quartet task. The standard quartet animation con-
sists of two alternating still frames where a single frame consists of one set of dots located at
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opposing corners of an upright square as shown in Fig 1. The task was administered in a dark
room with maximum screen and keyboard brightness (approximately 2 lux) on a 15 inch 2010
MacBook Pro with 60 Hz frame rate. Our stimulus consisted of three nested quartets centered
on the viewing screen as shown in Fig 1 (also see S1 Movie); chosen to mitigate the Troxler
effect and to induce motion perception over a large receptive field. The dots were outlined with
the RGB color = 46, 55, 254 and set on a black background. For a typical viewing distance of 24
inches, although this was not rigidly enforced, the square length visual angle (dot diameter
visual angle) of each nested quartet were 5.5 (1), 3.5 (0.5), 1.5 (0.25) degrees. There was a fixed
orange, central dot with RGB color = 255,127,0. This was the instructed focal point for the sub-
ject. These parameters were arbitrarily chosen. During the task, subjects were instructed to
maintain fixation on this central dot and report a change in motion by pressing the Return-
key. To give feedback that a switch was recorded, the central dot briefly changed color from
orange to green (RGB = 0,255,0) to orange when the subject reported a change.

The task consisted of 7 blocks: a tutorial, a task-comprehension block, and 5 frame-period
(T frame) blocks with a two second black screen period between blocks. Participants were told
that the task would test their ability to detect changes in motion and were not informed that
the motion was ambiguous. They were also shown examples of the types of motions to expect:
horizontal or vertical, consisting of unbiased apparent motion animations, where a set of three
frames was repeatedly presented such that the dots progressed from corner, to center, to cor-
ner, to center. This was done for vertical and horizontal orientations of motion. The task-com-
prehension block used this same biased motion stimulus and the direction was changed at
fixed intervals that were known to the experimenter. The first frame-period block was set to
300 millisecond frame intervals and lasted six minutes (we refer to this as the practice block).
This was followed by four blocks with frame periods (and block durations) of 300 (5), 350 (5),
400 (6), and 450 (8) ms (minutes). The order of the last four blocks was shuffled between
participants.

Author-data was collected on the quartet task. The quartet task was similar to the above but
without the tutorial, task-comprehension, or practice blocks. These sessions consisted of ran-
domized Tame with 2-3 sampled frame periods and the duration was based on reporting 11
switches (some Ty ,me Were repeated in separate sessions).

Statistical Analysis

Data from the naive-subject group was analyzed using a Cox proportional hazards model (see
[52,53] for review). It is a semi-parametric model that is robust to the distribution of the data,
which was non-normal for our case. The analysis calculates statistics across all time points and
accounts for right-censored data. We chose this approach since it accounts for percept duration
that may extend beyond the test block, including those that may span the majority of a block.
The frequency of percepts that remained dominant after T, dotted frame presentations were
fit to a baseline survival model for each test condition (e.g., Tgame) and normalized (the non-
parametric component of the model). The hazard ratio is the exponential adjustment to the
baseline survival for the conditioned effects, which is the parametric component. An increased
hazard ratio means there was an increased probability of percept extinction over a time period
as the parameter was increased. To be considered a valid model fit, there were two statistical
tests: 1) test whether the estimated coefficient for the effect is non-zero, and 2) that the distri-
bution of the residuals has zero slope across time (is flat).

We used the coxme mixed effects R function to estimate the hazard ratios. The mixed effects
model was used so we could account for subject- or Tgam.- specific deviations. A Wald test was
used to estimate a P-value for the hazard ratio. The coxme library does not have a test for the
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residuals. To check this we calculated a noise vector (z) from the coxme fit given by z =y — 0Ox,
where 9 is the linear model prediction, 8 is the estimated coefficient, and x is the predictor vec-
tor. The noise vector z was used as an offset in the R function coxph and the residuals from this
were checked with cox.zph. We used a criterion of no significant deviation of the residual slope
from zero (i.e., P>0.05), in order for the proportionality assumption to apply.

Numerical Analysis

Bifurcation analysis was performed in XPPAUT [54]. Rate models were simulated using
Python. Conductance-based model simulations were performed with circuit of two mutually
inhibiting neuron pools with a calcium activated spike frequency adaptation-like current and
synaptic depression. This model was simulated in XPPAUT and the output was analyzed in
Python. All code used for simulations and numerical analysis including parameters are
attached as S2 Text.

Supporting Information

$1 Text. Mathematic analysis.
(PDF)

$2 Text. Numerical analysis.
(Z1P)

S$3 Text. Data.
(Z1P)

S1 Movie. Stimulus example.
(Z1P)
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