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Abstract
Branching is an important mechanism by which axons navigate to their targets during neural

development. For instance, in the developing zebrafish retinotectal system, selective

branching plays a critical role during both initial pathfinding and subsequent arborisation

once the target zone has been reached. Here we show how quantitative methods can help

extract new information from time-lapse imaging about the nature of the underlying branch

dynamics. First, we introduce Dynamic TimeWarping to this domain as a method for auto-

matically matching branches between frames, replacing the effort required for manual

matching. Second, we model branch dynamics as a birth-death process, i.e. a special case

of a continuous-time Markov process. This reveals that the birth rate for branches from zeb-

rafish retinotectal axons, as they navigate across the tectum, increased over time. We

observed no significant change in the death rate for branches over this time period. How-

ever, blocking neuronal activity with TTX slightly increased the death rate, without a detect-

able change in the birth rate. Third, we show how the extraction of these rates allows

computational simulations of branch dynamics whose statistics closely match the data.

Together these results reveal new aspects of the biology of retinotectal pathfinding, and

introduce computational techniques which are applicable to the study of axon branching

more generally.

Author Summary

The complex morphologies of neurons present challenges for analysis. Large data sets can
be gathered, but extracting meaningful data from the hundreds of branches from one axon
over a few hundred time points can be difficult. One problem in particular is matching a
single unique branch through several images, when the branches can extend, retract, or be
removed entirely. In addition, if the imaging is done in vivo, the environment itself can
grow and shift. Here we introduce Dynamic Time Warping (DTW) analysis to follow the
complex structures of neurons through time. DTW identifies individual branches and
therefore allows the determination of branch lifetimes. Using this approach we find that
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for retinal ganglion cell axons, the branch birth rate increases over time as axons navigate
to their targets, and that blocking neural activity slightly increases the branch death rate
without impacting the birth rate. From the estimated birth and death rate parameters we
create simulations based on a continuous-time Markov chain process. These tools expand
the techniques available to study the development of neuronal structures and provide
more information from large time-lapse imaging datasets.

Introduction
Amajor question in neuroscience is how the early wiring of the brain is generated. Neurons
extend axons and dendrites both locally and over long distances to create complex patterns of
connections [1, 2]. The early connections must maintain a balance of precision and adaptability
in their targeting [3]. Patients with developmental disorders, including autism and Tourette’s
syndrome, show alterations in brain wiring [4, 5] and disruptions in axon guidance genes [6].
Late onset neurological conditions including Huntington’s, Parkinson’s and schizophrenia, can
also be linked to changes in brain connectivity [7, 8] and axon guidance defects [9–12]. An
understanding of how the wiring initially develops in normal and altered conditions is thus
critical to understanding both neurodegeneration and potential treatment options.

The morphology of early axons is an important basis for their later function. Axons and
dendrites often branch as they search for connecting partners [13–20]. Transitive, exploratory
branching can also be a dynamic way to search a large swath of the environment en route to
the target in order to read a wide variety of navigational cues [15]. Branching can also be
focused in a small region in order to increase the number and density of synaptic contacts
between cells. In both instances, these patterns of branches are dynamic and change with time.

Accordingly, the quantitative analysis of these complex branching patterns can be challeng-
ing. Between two static images taken minutes apart, branches can be born, extend, retract or
die, as well as shift in space, since the surrounding environment also grows. Significant changes
in the axon morphology must be separated from background noise in the image. Massive quan-
tities of time-lapse data can be generated from developmental studies of cell morphology and
connectivity [21–23]. Merely counting changes in the total number of branches between each
time point [21, 23, 27–30] does not capture important aspects of branching, such as branch
lifetimes. To measure these aspects requires matching of branches between frames. Currently,
this is usually done manually [24–26]. However, manually matching branches throughout a
video can take as long as initially tracing them, thus doubling the time requirement for direct
user input. These movies can be hundreds of frames long, and each frame can contain many
branches. Manual branch matching thus requires a lengthy human time commitment, and
with high volumes of data there is a significant chance for human error. There is thus an imme-
diate need for a way to automatically identify matched branches between frames.

Once matched branches have been identified, it is also desirable to have a statistically well-
founded method to analyze the underlying patterns and changes over time. Patterns in these
rapid morphological changes can yield deeper insights into the mechanisms behind the com-
plex connective changes and adaptations. Statistical analysis can aid in determining patterns
that may not be immediately or visually apparent through long time-series.

For testing connectivity theories, a seminal example of wiring is the development of the reti-
notectal connection. With its topographic organization and superficial location, the retinotectal
system is a paradigm model for studying early neural wiring of patterned connectivity [31–37].
The zebrafish retinotectal system shares fundamental molecular pathways with other
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vertebrates (including mammals), and provides the additional qualities of being small, develop-
ing rapidly, and easy to image [38]. Retinal ganglion cells (RGCs) are the sole output cells of
the eye. Their axons exit the eye, cross the midline, and the majority enter the contralateral
optic tectum, where they seek out an appropriate termination zone to form a dense arbor of
synapses. Branching of RGC axons on the optic tectum can be divided into two phases. The
first phase, which we term pathfinding, occurs as axons extend dynamic branches as they travel
caudally and search for an appropriate termination zone (TZ). The second phase occurs in
early arborisation, as the axons cease to move forward through the tectal neuropil and instead
focus on extending and retracting branches in a local area to develop appropriate synaptic con-
nections. The branches that form this terminal arbor remain plastic [39, 40]. The plasticity ini-
tially sharpens the topographic map in response to visual input in a period with high levels of
branch turnover [41]. In a similar manner to frogs and other fish, zebrafish retain connective
plasticity throughout growth and adulthood, allowing newborn cells on the periphery of the
retina to connect to appropriate locations on the topographic map in the tectum, which adds
cells to the medial and caudal edges [42–44].

Here we address the issue of automatic branch matching by introducing Dynamic Time
Warping (DTW) analysis as a method for automatically matching branches between frames.
DTW is an algorithm that measures similarities between two sequences, which may occur over
different time scales or speeds. DTW was originally a method to match patterns in time series
data, however it has been applied to diverse two-dimensional spatial data, including fingerprint
matching [45], walking patterns [46], speech recognition [47], and computerised handwriting
recognition [48, 49]. Here we apply DTW to a novel situation; the changing branch structure
of axons. DTW follows branches between frames where individual branches may elongate,
retract, appear or disappear. This creates an automated method of identifying the branches
that are the same in subsequent frames, and allows the collection of a large data set of branch
dynamics.

Once branches are uniquely identified, we then apply a theory of birth-death processes to
the changes in branch number over time. A birth-death process is a type of Markov chain,
which describes a set of random variables in a countable state space that satisfies the Markov
property: the probability of the next state depends only on its current state. A continuous-time
Markov chain is where the time between jumps is continuous, defined as t in (0,1) [50]. Thus,
this type of stochastic model describes a random process where future transitions between dif-
ferent finite states over time are dependent only on the current state of the model. This type of
model has previously been used to describe such diverse applications as population size [51],
queueing theory [52], bacterial evolution [53], and epidemiology [54]. In our model, we define
the state as the number of branches in the axon at each time point. Each branch of an axon is
generated by a “birth” event, a branch can be removed by a “death” event, and in solving for
the steady state we can determine the equilibrium number of branches produced by an axon.
We can then look at how this state changes with time and behaviour. We investigate the rates
of branch addition and deletion and their influence on the shape of the developing RGC axon
over time in both normal conditions and after treatment with TTX to block neural activity.

We show that the birth rate changes over an axon’s life, especially between the pathfinding
and arborisation phases of growth. The birth rate increases as axons reach a target zone,
becoming higher as the axons build arbors. The death rate remains stable over the entire imag-
ing period. Treatment with TTX causes a slight increase in the death rate of branches, but not
the birth rate, providing a novel explanation for the differences found in a previous study [21].
Simulations driven by a constant death rate and an increasing birth rate generate numbers of
branches through time that are consistent with the in vivo data. Thus, the transition between
the pathfinding phase and arborisation phase of RGC axons is driven by a change in the birth
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rate of branches, which may be an important factor in determining axon morphology and con-
nectivity in early brain development.

Materials and Methods

Ethics statement
All zebrafish procedures were performed with approval from The University of Queensland
Animal Ethics Committee (approval SBMS/305/13/ARC). For more specific experimental
details see [21].

Biological data
We reanalysed a previously acquired data set [21]. Briefly, zebrafish were genetically labelled
with a Brn3c:GAL4; UAS:mGFP transgene [55] resulting in sparse mGFP labelling of RGC
axons. Half of the larvae were injected with tetrodotoxin (TTX), a paralytic toxin that disrupts
neural activity. Pulled glass pipettes were used to inject 4.5–9 nL of 1 mM TTX into the yolk of
anesthetized and immobilised zebrafish 1 to 6 hours before imaging. Fish with no spontaneous
scooting behavior and that were non-responsive to touch were considered effectively paralyzed.
The lack of neural activity was optically confirmed by confocal imaging of larvae carrying a
genetically encoded calcium reporter gene in separate experiments [21]. Controls were injected
with embryo media E3 (carrier alone). Zebrafish larvae were then immobilised in 1.5% agarose
and positioned so that one tectum was roughly orthogonal to the imaging plane as in [23].
Confocal image stacks up to 60 μm deep were taken through the optic tectum using a Zeiss
LSM 510 inverted confocal microscope. The time-lapse movies covered up to 48 hours of zeb-
rafish development between 2.5 and 4.5 days post fertilisation (dpf). Axons could begin grow-
ing into the imaged area on the optic tectum at any point after the recording started and were
therefore temporally aligned using the time they reached their arborisation target zone/ termi-
nation zone (TZ) and ceased growing forward. Examples of these time-lapse movies have been
included showing axon growth under control conditions (S1 Video) and after treatment with
TTX (S2 Video).

The TZ position was defined by the convex hull linking the distal branch endpoints of the
arbor in the final frame of each time-lapse movie. This arbor position was confirmed to be rela-
tively stable when its position was compared between the final movie frame and images taken
24 hours later [23]. The time at which an axon reached the TZ was defined as the frame where
the centroid of the convex hull first entered the TZ.

After imaging was complete, the larvae were removed from the agarose. Larvae which had
been injected with TTX were monitored for movement. If any spontaneous or touch-respon-
sive movement appeared, data from that larva were discarded. Typically, TTX-injected larvae
regained spontaneous movements starting from 24 hours after the imaging ended [21].

Arbors on the tectum are mostly planar [25], and therefore time-lapse image stacks were
flattened by maximum intensity projection. While arbors may have been curved along the dor-
sal surface, or been on slight angles from a true orthogonal image, these deflections were con-
sistent between consecutive frames and would not alter branch matching or quantitative
counts of branch numbers in each frame.

Ten control axons and ten TTX axons were traced using a custom built, semi-automated
MatLab (Mathworks) program and the coordinates of each branch imported into Matlab.
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Dynamic TimeWarping
Branches were traced manually. We then used Dynamic Time Warping (DTW) to identify
branches that were maintained between two consecutive frames. We attached unique identifi-
ers to the hundreds of branches that appeared and disappeared over 20–40 hours of growth for
each axon. Tracings of two branches, k and l, in consecutive frames, t and t + 1, were defined as
Bk;t ¼ fbk;tðxi; yiÞ; i ¼ 1; :::; ng and Bl;tþ1 ¼ fbl;tþ1ðxj; yjÞ; j ¼ 1; :::;mg. Here bk,t(xi, yi) gives

the ith coordinates of the pixels in the branch k tracing at time t. The length of the two vectors
bk,t and bl,t+1 were n andm respectively.

A warping path w of the two branches was given by the set ofH pairs of indices,

w ¼ ððið1Þ; jð1ÞÞ; :::; ðiðHÞ; jðHÞÞÞ: ð1Þ

The warping path in Eq 1 describes H pairs of coordinates between branch k and branch l,
such that all coordinates in branch k are matched to a coordinate in branch l at least once and
vice versa. The warping path was determined such that the following cost function C[56] was
small:

CðBk;t;Bl;tþ1;wÞ ¼
XH
h¼1

dðbk;tðxiðhÞ; yiðhÞÞ; bl;tþ1ðxjðhÞ; yjðhÞÞÞ: ð2Þ

H was determined by the number of steps in the warping path. As the warping path must be
non-decreasing [56], the branch tracings were oriented to be in the same direction (connected
branch point to free end point) if they were not already. A warping path might be for example
((1,1) (1,2) (1,3), (2,4), . . . , (n,m)), so the first coordinate in branch k was matched with the
first, second and third coordinate in branch l. A warping path therefore also met the boundary
conditions of i(1) = j(1) = 1, i(H) = n and j(H) =m. The distance function used was the Euclid-
ean distance between the two coordinates.

The overall DTW value was given by

DðBk;t;Bl;tþ1Þ ¼ min
w

CðBk;t;Bl;tþ1;wÞ: ð3Þ

Eq (3) thus finds the minimum of the warping paths described by C. That is, the final DTW
value D for each branch is equal to the minimum cost function (Eq (2)) that can be found in
the subset of all possible warping paths for a branches in one frame matched against the
selected branch in the previous frame.

The DTW value for all branch pairs between two frames was calculated, and then a match
was made between two branches if the DTW value was a minimum for both branches. For
example, frame tmight have two branches i and j that could plausibly match to branch k in
frame t + 1, such that the minimum DTW values for branches i and j are both with branch k.
However, if the minimum DTW value for branch k is for branch j, then k and j will be matched,
and branch i will be matched to its next closest branch or designated as being deleted between
frames.

To confirm the accuracy of the DTWmethod, branch matching between randomly chosen
pairs of consecutive frames was visually assessed. In the example described above, if branch i
was sufficiently small then the minimum DTW value for branch k would be with branch i
rather than branch j, even though it would be clear visually that branch j and k were more simi-
lar in length and position and more likely to be a correct match. To overcome this bias of
shorter length branch selection, we included the heuristic threshold that a matched pair of
branches must have a DTW value smaller than the squared length of the shortest branch in the
pair (Fig 1F). This meant that shorter branches must be a closer ‘fit’ (that is, have a short
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warping path) to be matched compared to longer branches, which are more likely to have
larger DTW values since they may retract part of their length or have slight changes in shape
due to the original image quality.

Interarrival time calculations
After each branch was uniquely identified, we modelled the stochastic processes of branch
addition, deletion of branches and the time between two new branches appearing to determine
how these parameters influenced the branch patterns of RGC axons during pathfinding and
arborisation.

Branch statistics were modelled as a continuous-time Markov chain process using parame-
ters for the forward transition probability λ and state-dependent backward transition probabil-
ity, μi, where μ is a constant and i is the current number of branches on the neurite (not
including the original axon shaft). This is equivalent to queuing theory models containing a

Fig 1. The Dynamic TimeWarping (DTW) algorithmmatched branches between frames based on location and length. (A): Stills froma time-lapse
video at 530 and 540 minutes. Brn3C+ RGC axons were genetically sparsely labelled with mGFP. (B): Overlapped axon tracings at 530’ (blue) and 540’
(red). (C): Comparison of branches from 530’ (blue) to one branch from the 540’ frame (red). For clarity, the primary axon shafts are not shown. The number
next to each blue branch is the DTW cost between it and the one red branch. Branches that are likely to be the same between two consecutive traced frames
have the smallest DTW distance values. (D): DTW joins coordinates on the two branches (black lines) and assigns the lowest value (14) to the warping path,
suggesting a correctly matched branch. This was confirmed by visual assessment of the tracings. (E): DTW comparison between the selected branch from
540’ and a branch further away gives a higher DTW value (67). (F): The log of the DTW distance between pairs of branches near the end of the time-lapse
movie (1700’ and 1710’) versus the log of the length of the branches. The length of several branches could be similar, resulting in columns of matches that
nearly overlap. The red points indicate correct matches as determined by visual inspection. The blue dotted line gives the maximum value for an acceptable
branch match between consecutive frames, DTW = Length2, (the length of the branch in the first frame). This was included as a threshold for the automated
matching of branches, and improved the reliability of the DTW algorithm. The branches with no corresponding red dot were correctly identified (compared to
visual inspection) as having no match (deleted).

doi:10.1371/journal.pcbi.1004813.g001
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multi-server queue with a constant probability of a new arrival, and any individuals in the sys-
tem may be the next to exit (as opposed to a single-server queue, where only one selected indi-
vidual may be the next to exit) [15]. For our system, the arrivals were the branch ‘births’, and
any branch had an equal probability of ‘dying’, or being eliminated from the arbor. Therefore,
the birth rate (λ) is proportional to the probability that a new branch will appear during each
time step. The death rate (μ) is proportional to the probability of deletion for each individual
branch at every time step, since every branch has a possibility of deletion at any given time.
Thus, the overall rate of branch deletion for an axon is μi, which increases with the number of
branches, i.

The steady-state solution of the number of branches on the neuron is given by a Poisson dis-
tribution with mean l

m [15]. This is derived using the Kolmogorov flow-balance equations,

where the probability of the number of branches j once the stochastic process was in steady-
state, is given by πj:

ðlþ jmÞpj ¼ lpj�1 þ ðjþ 1Þmpjþ1; ð4Þ

X1
j¼1

pj ¼ 1: ð5Þ

Solving this gave the Poisson distribution,

pj ¼
e�

l
m l

m

� �j

j!
j � 0: ð6Þ

Therefore, the number of axon branches has a Poisson distribution, which has an expected
value of l

m.

In order to estimate the birth rate (λ) and the death rate (μ) for each axon the branch life-
times and interarrival times were calculated. An exponential distribution was fit to these two
variables to find the parameters 1

l and
1
m. The exponential lifetime and interarrival times of our

data indicated a Markovian process where the next state of the system depends only on its
current state (that is, the current number of branches), since the exponential distribution is
memoryless.

The recorded lifetime and interarrival times of branches were discrete, as they were captured
at each movie frame taken ten minutes apart. Each branch birth or death could therefore have
occurred at any time during the previous ten minutes. To account for this, we added (to the
interarrival time following birth) or subtracted (from the lifetime following death) a random
interval from zero to ten minutes for each branch.

Continuous estimates of branch addition and deletion
To obtain estimates of the birth and death rates of an axon at different time points, branches
were binned in ten-frame intervals (100 minutes). The initial interval was 0 to 100 minutes,
then 10 to 110 minutes, and so on until the last frame. Similar estimates were obtained with an
interval of six frames (1 hour), but we found that using a ten-frame interval resulted in a more
robust measurement of averages. The birth and death rates were then estimated for the
branches observed in these intervals, and branches still present at the end of the interval were
treated as censored data.

Linear mixed effect models were fit using the lme4 package in R, with approximations of the
significance of terms found using the lmerTest package [57]. Backward selection of variables
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was used, with higher order interaction terms removed first. Marginal and conditional R2 val-
ues were found using methods from [58].

Simulations
Simulated axon branches over time were used to test the effects of different types of birth and
death rates on the steady state (i.e., number of branches at any given time). The simulations
were based on a birth-death process, where both the birth and death rates were exponentially
distributed with various birth and death rates that were either constant, state-dependent or
time-dependent. The time to the next event was given by log(u)/(λ� + μ�), where u* U(0, 1)
and λ�, μ� are different birth and death rates, respectively. The probability of this next event
being a branch addition is given by λ�/(λ� + μ�).

Results

Dynamic TimeWarping robustly identified branches through time
The branched structures of pathfinding and arborizing axons were first manually traced from a
time-lapse confocal movie using a customMatlab program and the coordinates and properties
of each branch were recorded. We applied DTW to the resulting branch patterns (Fig 1).
Briefly, DTW compared the similarities of two sequences (in this case, the branch coordinates)
and found an optimal match between them by compressing or stretching aspects of one
sequence to match the other. In our case, the warping and stretching allowed the unique identi-
fication of branches based on location and length, both of which could change due to branch
elongation and retraction, movement in the imaging samples, and overall brain growth. DTW
thus allowed a comparison of the structure of axon branches through time and uniquely identi-
fied the branches that remained present between movie frames, as well as those branches lost
or gained. In a growing axon, branches can change substantially within 10 minutes (Fig 1A and
1B). Every branch in each frame was compared to the branches in the consecutive frame to
determine whether the branch survived or was retracted between frames. When comparing a
branch from a later frame (red line in Fig 1C) to the branches present at a previous time (blue)
there may not be an exact overlap. DTW assigns each previously present branch a number D
representing the difference between that branch and the branch from the next frame. Branches
with low DTW values are considered matched (Fig 1D) while ones with high DTW values are
considered different (Fig 1E). Examples of DTW values between one branch in one frame and
all branches in the succeeding frame are shown in Fig 1C, and it is clear there is one best-
matching branch.

One problem was that shorter branches could be biased towards being matched to incorrect
branches in later frames, as they have lower DTW values in general. In principle, visual inspec-
tion can be used to rule out these incorrect matches. However, to automate the process, com-
paring log(DTW value) to 2log(branch length) provided a heuristic length threshold for
automated branch matching (Fig 1F). For the 31 branches shown in Fig 1F, the smallest DTW
value for any possible branch pairing (columns of black points) matched the branch chosen as
a match by visual inspection (point shown in red). For several branches on the preceding
frame, there was no correct match found (columns with no red points) indicating a branch that
was retracted completely. This threshold was selected as it created an upper limit for DTW val-
ues that meant a relatively stricter criteria for a match between shorter branches compared to
longer branches.

For each automated or visual comparison, two sequential frames were contrasted (Fig 2).
DTW analysis successfully identified branches that were removed (Fig 2A) or added (Fig 2B)
between frames. From this, lifetime data was gathered from the branches matched between
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Fig 2. Branchmatching using DTW identified branches that were removed, added or maintained between consecutive frames 10 minutes apart.
(A) & (B): The original images of a control axon in two consecutive frames. (C): Seven branches (red) were removed completely or “died” between the two
frames. (D): Thirteen new branches (cyan) were added or “born” in the ten minutes between the frames. Nineteen branches (numbered in both A and B)
survived the interval (black), though they could have extended, retracted or shifted. (E): The branch birth rate for the DTW identified branches (automated,
red line) was similar to that of two human users (dashed blue lines) who manually identified branches in one movie. (F): The death rate was comparable for
branches either identified by DTW (automated, red line) or manually by two human users (dashed blue lines).

doi:10.1371/journal.pcbi.1004813.g002
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frames. Each individual branch was assigned times for its birth and death, marking the appear-
ance and disappearance of that particular branch, with the time between these events defining
the branch lifetime. Interarrival time measured the elapsed time between branch ‘births’ on
each axon arbor.

In order to test how reliably the automated DTW identified the same branch in different
frames, we compared the DTW results to manual branch identification done by two individu-
als for one movie containing 88 time-lapse frames (14 hours 40 minutes of axon growth and
branching). The branch birth and death rates over time produced by the DTW algorithm did
not vary more than the two individuals matching branches by hand. The pattern of peaked
branch birth rate and near constant death rate were maintained in all cases (Fig 2C and 2D).
The total number of branches defined by each of the two users and the DTW algorithm dif-
fered only slightly (643, 673, or 727 unique branches). The DTW algorithm therefore did not
depart markedly from the variation present between two human individuals.

The reliability of the DTW algorithm was also tested by randomly selecting traced frames
from the 10 control axon movies, and then attempting to match branches between these
pseudo-consecutive frames. The coordinates of the axon tracings were shifted so the traced
frames had the same centre, and thus the two sets of branches close together, similarly to genu-
inely consecutive frames. The average matched number of branches over 230 random frames
was 1.04 (±1.40 standard deviation). As a comparison, the control axon movies which had not
been shuffled had an average of 11.44 matched branches over 230 frames (± 5.41 standard devi-
ation). Thus, the rate of false matching between unrelated frames was very low.

Birth and death rates predict the steady state distribution of branches
To model finite, countable states, such as the number of branches on an axon, a continuous-
time Markov chain process can be used [15]. The expected number of branches on an axon
can be predicted from the birth and death rate of the branches. The death rate of an axon’s
branches is the inverse of the average lifetime of the branches, and is a measure of how long an
individual branch is expected to survive. The birth rate is the inverse of the average interarrival
time between new branches on the axon. Intuitively, higher birth rates indicate a higher num-
ber of added branches in a given interval of time.

Initially, we characterised the distributions of the branch lifetimes, branch interarrival
times, and number of branches for individual axons, as determined from the DTW analysis.
For individual axons, both the lifetime and interarrival times were well fit by exponential distri-
butions. Fig 3 shows the exponential distribution fit of branch lifetimes (Fig 3A), interarrival
times (Fig 3B) and the Poisson distribution fit of the number of branches (Fig 3C) from one
representative control axon (n = 787 branches total). The example axon had branches with a
death rate of m̂ ¼ 0:044 ð0:041; 0:047Þ (where the numbers in brackets represent the 90% con-

fidence interval) and a birth rate of l̂ ¼ 0:49 ð0:46; 0:52Þ branches per minute. The ratio of

the exponential parameters (l̂m̂ ¼ 11:22 ð10:70; 11:74ÞÞ was close to the mean value of the
number of branches over frames. Thus, the distribution of the branch number over time
matched the prediction from a birth-death process (see Materials and Methods).

In Fig 3D and 3E, all branches from the ten control axons were combined. The lifetimes and
interarrival times of the grouped results were also well represented by an exponential distribu-

tion. Furthermore, for each of the ten control axons taken individually, the ratio of l̂ to m̂ was
close to the average number of branches for all axons (Fig 3F). This indicated that the fitted
birth rate and death rate estimates were good indicators of the steady state distribution of
branches.
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However, a Poisson distribution was not a good fit to the mean number of branches (11.88)
averaged across all grouped axons. The ratio of the parameter estimates from the grouped
results was 12.22, greater than the mean number of branches. The grouped results therefore

did not appear to follow the same trend as for individual axons (e.g. Fig 3C), where l̂
m̂ was nearly

the same as the mean number of branches per frame. This may be due to the large variation in
total branch numbers between axons.

Branch birth rates increased closer to the termination zone
So far we assumed that the birth and death rates were time homogeneous (constant over
time), although the death rate of the axon overall was state dependent and proportional to the
number of branches on the axon at any given time (μi, where i is the number of current
branches). However, during the time that the RGC axons were imaged, branches were first
extended when the axon was navigating towards a final termination zone (TZ) where axons
stopped moving forward and established an initial arbor. The two growth phases observed in
axons on the optic tectum (navigation and arborisation) have different morphological

Fig 3. The lifetime and interarrival statistics from control axons fit an exponential distribution, and the number of branches on an axon is well
represented by a stochastic birth-death process. (A): The histogram of the lifetime of the branches and the fitted exponential distribution with death rate
(m̂ ¼ 0:044 (with a 90%CI of 0.041, 0.047)) from one axon with 787 branches. (B): The histogram of the interarrival time between branches and the fitted
exponential distribution with birth rate (l̂ ¼ 0:49 (0.46,0.52)) from the same axon. (C): The distribution of the number of branches in each frame (10 minutes
apart) for one axon. The red line shows the fitted Poisson distribution with parameter 11.22 (10.70,11.74). (D): The lifetime distribution of branches from 10
control axons with 8876 total branches. The fitted exponential parameter for the death rate was m̂ ¼ 0:048 (0.047, 0.049). (E) The interarrival time distribution
of branches from the 10 control axons. The fitted exponential parameter for the interarrival time was l̂ ¼ 0:5883 (0.5761, 1.503). (F): The ratio of the lifetime
and interarrival parameter estimates against the average number of branches for 10 axons. The red line shows l̂=m̂ equal to the average number of
branches, demonstrating that the average number of branches the axon has depends on the unique birth and death rates of its branches.

doi:10.1371/journal.pcbi.1004813.g003
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structures, with axons that have reached their TZ having larger numbers of branches and
more elaborate arbors [23, 59–61].

We did not observe a significant difference in the death rates of branches before or after
reaching the TZ (Fig 4A) (p = 0.5, paired t-test with n = 10; p = 0.3, Anderson-Darling (AD)
test of normality). However, we found that the estimated birth rates for branches were signifi-
cantly different when branches were categorized into those born before the TZ was reached, or
afterwards (Fig 4B) (p = 0.004, paired t-test with n = 10; p = 0.2, AD test of normality). This
indicated that the birth rates of an axon’s branches were dependent on the overall time that the
axon had been growing, or alternatively, on its distance to the termination zone. Thus the dif-
ferences in axon structure between the pathfinding and arborisation growth phases were due to
changes in the rate of branch addition rather than the death rate.

Next, we investigated how branch birth and death rates changed over time continuously,
regardless of the axon’s distance to the TZ. In order to establish a continuous estimate of the
branch birth and death rates, branches were grouped within windows of ten time-lapse frames
(each spanning 100 min) and exponential distributions were fit to these 100 min subsets in
order to investigate whether these rates varied between subsets, i.e. were time inhomogeneous.
This revealed that the birth rate of the axon branches increased with time, as the axon
approached the termination zone. About 100 min before the termination zone was reached,
the branch birth rate increased to greater than one branch per minute (Fig 5A). The death rate
of branches from this representative axon stayed relatively constant over time.

The numbers of branches counted in each frame over time (Fig 5B) followed a pattern simi-
lar to the branch birth rate (Fig 5A). This again indicated that the total number of branches
was controlled by a change in the birth rates of branches rather than the death rate. At periods
of low branch birth rate, such as around 1250 minutes in the example axon, the total numbers
of branches also decreased.

When averaged, the combined results of all control axons showed an increasing birth rate
until 500 minutes after the termination zone was reached, and then a gradual decline (Fig 5C).
The averaged death rates declined slightly, but, although significant, this was small compared
to the change in the averaged birth rate. For the grouped axons, the average number of
branches over time also followed a similar trend to the birth rate (Fig 5C and 5D).

Fig 4. The birth rate of new branches increased after the axon reached the termination zone (TZ). The fitted exponential parameters of branches that
appeared before or after the TZ was reached were compared for ten axons. (A): There was no difference detected in the estimated death rate, m̂, of branches
before or after the TZ was reached (p = 0.52, paired t-test). (B): There was a difference in the birth rate, l̂, of branches before and after the TZ was reached
(p = 0.004, paired t-test).

doi:10.1371/journal.pcbi.1004813.g004
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As the birth rates of branches were not constant over time, a time-homogeneous Poisson
process was not adequate to describe the number of branches in these axons. We therefore
used a time-inhomogeneous Poisson process, where the birth of new branches was more likely
when the axon is closer to the TZ. The probability of a branch deletion changed very little over
the same time frame.

TTX increased the death rate of axon branches
In control conditions, a time-dependent birth rate and a constant but state-dependent death
rate described the number of branches over an axon’s navigation and arborisation (Fig 5). The
experimental data also included a group of ten axons that navigated and arborised while neural
activity was abolished with tetrodotoxin (TTX), originally presented in [21]. We investigated
whether the loss of neural activity affected the birth and death rates of branches. Similar to

Fig 5. The branching rate estimates over time showed that the branch birth rate increased prior to the axon reaching the TZ. (A): A typical example
control axon where the death rate (blue) was relatively constant compared to the birth rate (red). There was an increase in the branch birth rate before the
axon reached the TZ, at which point the rate becamemore constant. (B): The number of branches (green) of the axon in (A), and the moving average of the
branch number (black) with a window of 100 minutes. The number of branches followed a similar pattern to the birth rate. (C): The averaged rates over all
control axons, after times were aligned such that zero was the point the TZ was reached. Mean branch birth rate (red) with shaded SEM showed that the birth
rate peaked after the TZ was reached. The average death rate (blue) stayed relatively constant, with a SEM too small to be visible. (D): The average number
of branches for all axons over time, with shaded SEM, reflected the increase in the birth rate of branches.

doi:10.1371/journal.pcbi.1004813.g005
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controls, these axons were analyzed using DTW to determine branch lifetimes and death rates.
The ten axons treated with TTX displayed similar patterns in continuous birth rate estimates
as the control axons (Fig 6A). However, the death rates were higher in the TTX axons than the
controls (Fig 6B). The average number of branches in the TTX axons also decreased more than
that of control axons after the TZ was reached (Fig 6C), consistent with the higher death rate of
the TTX branches. Thus a decreased branch lifetime was responsible for the lower numbers of
branches in TTX treated conditions.

Linear mixed effect models were fit to both the l̂ and m̂ estimates in order to treat time as a
continuous variable and include the substantial variation between the axons. (e.g. individual
variation shown in Fig 6D and 6E). The fitted models are shown in Table 1. Individual axons
were chosen to be a random effect on both the intercept (the starting estimated rate) and the
slope dependent on time, due to the observed variance of the slope and intercepts between
axons. The slope and intercept will always be different between different sampled axons from
the entire population. However, despite this random starting point, the response (number of
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Fig 6. TTX treatment increased the death rate of branches but did not alter the birth rate. (A): The averaged (± SEM) branch birth rate for TTX-treated
(red) and control (blue) axons increased until the TZ was reached and then plateaued. Times were aligned to the point the TZ was reached. (B): The
averaged branch death rate (± SEM) was slightly higher for TTX-treated conditions (red) than for controls (blue), particularly after the TZ was reached. (C):
The number of branches were averaged for each group over time (± SEM) and axons under control conditions had a higher number of branches than axons
in TTX-treated environments after the TZ was reached. (D): The fitted model (including fixed effects only) of the birth rates (black). The slope and intercept of
the birth rate changed after the TZ was reached. The individual axon results are shown for controls (blue lines) and axons in TTX-treated environments (red)
in the background. (E): The fitted model for the average death rates of the TTX axons (bold red) was higher than that of controls (bold blue), shown over a
background of the raw traces (thin lines). The fitted intercept for the TTX branches was higher than the control branches. See Table 1 for statistical tests
relating to this figure.

doi:10.1371/journal.pcbi.1004813.g006
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branches) for each individual sample axon did change consistently with time. The estimated
fixed effects of time and the intercept on the model are shown in Fig 6D.

The best model for the estimated birth rate, l̂, was not dependent on the treatment condi-
tion of the axon. It did, however, determine that whether the axon had reached the TZ or not
did influence the branch birth rate. Both the intercept term for the TZ (p< 0.001) and its inter-
action with time (p< 0.001) were significantly different from zero, and thus included in the
model. This confirmed the pattern that was observed in the mean results across axons seen in
Fig 5. There was an increase in the birth rate of branches as the axon reached the TZ, and a
decline in that increase over time. This was unchanged with TTX treatment.

For the selected model of estimated branch death rate, m̂, the treatment condition of the
axons was significant (p< 0.001). The death rates for the TTX axons were higher than the con-
trol (0.055 per minute for TTX axons versus 0.050 per minute for control axons at the time the
TZ is reached). The interaction effect of time and the axons arrival at the TZ was also significant
(p< 0.001), such that the death rate was slightly higher for axons before the TZ was reached.
Thus, branches were less likely to disappear after the TZ was reached for both treatment groups,
and the TTX axon branches died at a slightly higher rate than the control branches.

Simulations of inhomogenous birth-death processes reproduced
experimental results
Under control conditions, the state of the axon, i.e. the number of branches, increased with
time, before reaching a plateau. Several explanations could account for the observed increase.
To conceptualise the possible differences in the birth and death rates of the axons, and to con-
firm the observations on the in vivo axons, birth-death processes were simulated using biologi-
cally plausible rates taken from observations on the in vivo axons. We investigated three
possible models.

• Model 1 had a constant branch birth rate and a state-dependent death rate, which increased
along with the number of branches.

• Model 2 had a death rate that was both time-dependent and state-dependent.

• Model 3 had a state-dependent death rate and time-dependent birth rate.

All three models produced similar steady state results (the average number of branches once
the axon reached the TZ), but there were differences in the patterns of branch numbers prior

Table 1. Linear mixed effect models were fit to μ and λ estimates using backward stepwise variable selection, with random intercept and slope
terms due to the variance between individual axons. The table shows the coefficient, the standard error and the p-value, with degrees of freedom esti-
mated by Satterthwaite approximations. m̂ does change between control and TTX axons, while l̂ does not. Both l̂ and m̂ have a strong interaction between
time and whether the axon has reached the TZ or not. Models were only fit to time points when there were at least two TTX and two control axons (-13 hours
to +13 hours). Marginal R2 for m̂ is 0.11 (considering fixed effects only), conditional R2 is 0.48 (including random effects). Marginal R2 for l̂ is 0.27, conditional
R2 is 0.66.

Rate Fixed effects Random effects
(variance)

Time TZ Type TZ*Time Time*Type Intercept Time

m̂ 1.3 × 10−6 −3.0 × 10−4 4.7 × 10−3 −1.4 × 10−5 −2.2 × 10−6 3.4 × 10−5 4.4 × 10−11

2.7 × 10−6(0.64) 6.3 × 10−4(0.63) 4.1 × 10−4(< 0.001) 1.8 × 10−6(< 0.001) 1.2 × 10−6(0.053)

l̂ 2.8 × 10−4 −6.9 × 10−2 1.6 × 10−4 3.3 × 10−2 9.7 × 10−8

1.1 × 10−4(0.021) 1.6 × 10−2(< 0.001) 4.5 × 10−5(< 0.001)

doi:10.1371/journal.pcbi.1004813.t001
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to reaching the TZ, which suggested that the three models differed in their ability to replicate
pathfinding related branching during axon navigation.

For the Model 1 simulation (Fig 7A and 7B) the birth rate, λ, and probability of a branch
death, μ, were constant over time. The steady-state solution to this process was a Poisson distri-
bution with a mean λ/μ of 1/0.06 = 16.67. These rates were not time dependent and thus Model

Fig 7. Simulations of simple birth-death processes showed that a changing birth rate and constant
death rate are most consistent with the data. Each simulation had a forward transition rate of λ, and
backward transition rate of μi (where i is the number of branches). Time axis is relative to arrival at the TZ.
Model 1:(A): Number of branches over time with constant arrival rate of 1 branch per minute, and constant
death rate of 0.06 branches per minute. The number of branches reached steady state with a mean of 1/
0.06 = 16.67 branches. (B): The estimated birth rate (red) and death rate (blue) for the simulated number of
branches in Model 1.Model 2: (C): Number of branches over time with constant birth rate of 1 branch per
minute, and death rate of 1/(0.0167t) for t < TZ and 0.06 for t� TZ. (D): The estimated rates for the simulated
branches in Model 2.Model 3: (E): Number of branches over time with constant death rate of 0.06 branches
per minute, and birth rate of 0.001t for t < TZ and 1 for t� TZ. (F): The estimated rates for the simulated
branches in Model 3. This simulation best reflects the observations from the experimental branch data.

doi:10.1371/journal.pcbi.1004813.g007
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1 represents a time-homogeneous process. Branch number over time did not increase; it
reached a quasi-steady state far from the TZ, soon after the simulation was started (Fig 7A).
This model suggested that the time-dependency of the experimental data was a necessary
component.

One way to gain an increasing number of branches over time is through a time-dependent
decrease in the death rate, coupled to a constant birth rate. This is demonstrated by the simula-
tion of Model 2 (Fig 7C and 7D). In this model the death rate initially decreased with time
before becoming constant after the axon’s arrival at the TZ. Simulating the branching birth and
death rates in this manner allowed for number of branches to be similar to the experimentally
observed measurements of axons.

However, our data suggested that the death rate of branches stayed relatively constant while
the birth rate increased closer to the TZ. This is reproduced by the simulations for Model 3
(Fig 7E and 7F). The branch number over time for the simulations was similar to the measures
of control axons (e.g. Fig 3C).

Thus, the simplest description of axon branching matching the data was an inhomogenous
birth-death process with forward transition rate of adding branches λ(t) and backward transi-
tion rate of deleting branches μi (where i is the current number of branches). The likelihood of
a branch addition increases with time (that is, as the axon moves closer to the TZ), and the like-
lihood of the deletion of any single branch remains relatively constant.

Discussion
Axon branching is an essential step in the establishment of neural circuits [62]. In this study,
we used quantitative methods to extract new information about the nature of dynamic branch
behaviours. We introduced Dynamic Time Warping as a method to automatically match
branches between frames. We also modelled the branch dynamics as a birth-death process, i.e.
a special case of a continuous-time Markov process. From this model, we determined that the
birth rate of branches of zebrafish retinotectal axons increased over time. Under control condi-
tions, the death rate remained constant. After activity was blocked with TTX, the death rate of
branches increased slightly, however the birth rate was unchanged. Additionally, we extracted
average birth and death rates from the data and used them to parameterize computational sim-
ulations of branch dynamics, and the statistics of the simulations closely matched the statistics
of the biological data. Together these results revealed underlying features of the biology of reti-
notectal pathfinding and arborisation.

Branching and molecular guidance cues
What biological factors could underlie the patterns we observed? A variety of guidance cues
present on the optic tectum are known to affect both branching and axon guidance. The
increasing branch birth rates and subsequent rate plateau as the axon arrives at the TZ (and
therefore stops moving through the gradients) could be caused by the growing axon encounter-
ing changing levels of Ephrins [63, 64], Semaphorins, [65–67], Netrin-1 [68, 69], or Slit pro-
teins [62, 70–73] found on the optic tectum. Additionally, the presence of target derived
growth factors could encourage the increasing branch birth rates, including tectal sources of
fibroblast growth factor (FGF) [74, 75], nerve growth factor (NGF) [76], and brain derived
neurotrophic factor (BDNF) [77–80]. These extrinsic cues may act exclusively on the branch
birth rates, while the unchanging death rate may be derived from a more intrinsic process. Reti-
nal axons have previously been shown to respond to topographic cues even in the presence of
TTX [81]. Our similarities in the branch birth rate with and without TTX show independence
from activity in a similar manner.
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Branching and neural activity
Besides molecular cues, neural activity also plays an important role in the development of con-
nectivity. For retinal ganglion arbors, neural activity sculpts the final morphology [25, 41, 82–
85]. Transient branches become more stable in the presence of their synaptic targets [86, 87],
and the maturation of synapses stabilizes branches [41, 88]. Therefore, the higher death rate
that we observed when using TTX may be due to interference with target identification and
synaptic maturation caused by the lack of activity.

If depolarisation is suppressed, axons may have fewer branches and maintain immature
morphologies [89]. Previously, we likewise found fewer numbers of branches after treatment
with TTX [21] and here we show that this is due to the higher probability of branch death
when neural activity is blocked. Over time, this increase in death rate may prevent the more
complicated mature morphologies from forming. It is possible that the lower numbers of
branches seen in mammalian cortical slice cultures after neuronal silencing could also repre-
sent a lower proportion of surviving branches rather than a lower number of branches initiated
[90, 91].

Our current work did not address correlated activity, as neural activity was globally silenced,
however, under control conditions it is likely that correlations between pre- and post- synaptic
activity also play an important role. When correlated activity is detected pre- and post-synapti-
cally, NMDA receptors and retrograde messengers stabilize RGC axon branches and suppress
new additions and deletions [92–94]. Thus, the lack of global activity in our experiments leads
to the loss of correlated activity and may therefore increase the death rate through an active
deletion process for mismatched branches.

Biological significance
The increase in the death rate with the application of TTX is small. This agrees with previous
assessments where TTX had limited effects on the morphologies of pathfinding axons, which
showed small but significant decreases in branch numbers, length and area covered at certain
times during pathfinding and early arborization. [21]. However, an important caveat is that
our imaging conditions may have reduced the effects of blocking activity. The imaging took
place inside a darkened room, where visual input was extremely limited. Under natural condi-
tions, zebrafish receive visual input during this time period, as functional connections develop
by 72 hpf and our imaging analysed larvae from approximately 60 to 100 hpf [21, 95–97]. The
restoration of natural visual input during this time might therefore increase the effect of block-
ing activity. In control cases, if wiring followed Hebbian learning rules and stabilized the corre-
lated connections, the difference when TTX increased the death rate would likely result in
more profound morphological changes. Without visual input as a positive force driving stabili-
zation of the ‘proper’ connections, the resulting differences in dynamics between control and
TTX treated larvae may remain more subtle.

Extensions for DTW and Markov chain modeling
DTW represents a novel way to extract information about movement and growth of living tis-
sue when imaging for long periods in vivo. DTW will likely be useful for systems where the
neurons have large arbors or are imaged for long periods of time, and could also be used to ana-
lyze older data sets to extract new information. Several recent studies have examined the alter-
ations in dendritic spines during learning, navigation and memory [98, 99]. DTW could be
expanded to include spine analysis, and contribute to studies on the growth and stabilization of
dendritic spines during learning. It could also be useful for examining changes in structure,
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which along with activity patterns, may underlie behaviors including decision making, learn-
ing, and memory [100], as well as experience dependent structural reorganization [101].

Regarding the reliability of DTW, we found that comparing random frames of axons pro-
duced a very low branch matching rate, and that the DTWmethod was correct in labelling the
majority of the branches as ‘deleted’ in each frame. Measuring a rate of true positive branch
matching is difficult, since there is no ‘ground truth’ of correct branches due to the variance in
the axon morphologies. The DTW estimates for the branch birth and death rates were slightly
higher than both manual users (Fig 2E and 2F), suggesting the possibility of a consistent failure
to match branches across time points. However, we have insufficient data to conclude that the
DTW results were outside the range of human variability.

Even the manual users were somewhat inconsistent. The continuously estimated birth and
death rates for the branches matched by the two manual users were slightly smaller than the
estimated birth and death rates for the DTWmatched branches (from Fig 2E and 2F). This
suggests that there was a consistent failure rate at matching branches across time points,
assuming that the DTW results are outside the range of human variability.

We found that our axon branches followed a continuous-time Markov chain model, specifi-
cally a birth-death process model. This model allowed us to alter experimentally derived
parameters to determine the changes in the output state (the numbers of branches at each time-
point). We found that there were two different solutions, depending on whether the axons
were pathfinding or had reached their TZ. Applying this type of model to other neurons and
different experimental situations will allow a richer quantitative analysis. In particular, similari-
ties and differences across different neurons can be compared to yield insights into the mecha-
nisms underlying neuronal guidance, branching, and connectivity.

Conclusions
We have applied DTW to a novel field and found it to be a powerful tool in matching complex
dynamic structures against a growing and shifting in vivo environment. This tool will be of
benefit to studies on the development of neurons over time. Additionally, we showed that the
addition and deletion of RGC branches could be well matched by a continuous-time Markov
chain process, and that this model could separate changing phases of growth over a neuron’s
development. These models could potentially be applied to other brain areas. Indeed, it will
be intriguing to characterise the progression of branching in other brain regions, to determine
the interplay between general rules for growth over time and individual, intrinsic axon
programming.

Supporting Information
S1 Video. RGC axons growing into the optic tectum in control conditions. Compressed
video representing 42 hours of development in 252 time-lapse frames starting around 2.5 dpf.
Confocal stacks are represented with maximum intensity projections. RGC axons were geneti-
cally labelled with a Brn3c:GAL4; UAS:mGFP transgene. Oblique dorsal view focused on the
optic tectum, anterior to the left. File: control.mp4
(MP4)

S2 Video. RGC axons growing into the optic tectum in a zebrafish larva injected with TTX.
TTX was injected into the yolk sac at 2 dpf. Compressed video showing 41 hours and 40 min-
utes of development in 250 time-lapse frames starting around 2.5 dpf. Confocal stacks are rep-
resented with maximum intensity projections. RGC axons were genetically labelled with a
Brn3c:GAL4; UAS:mGFP transgene. Oblique dorsal view focused on the optic tectum, anterior
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