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Abstract
A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic

expression associated with the mutation of a second gene. Genome-wide efforts to map

GIs in yeast revealed structural and functional properties of a GI network. This provided

insights into the mechanisms underlying the robustness of yeast to genetic and environ-

mental insults, and also into the link existing between genotype and phenotype. While a sig-

nificant conservation of GIs and GI network structure has been reported between distant

yeast species, such a conservation is not clear between unicellular and multicellular organ-

isms. Structural and functional characterization of a GI network in these latter organisms is

consequently of high interest. In this study, we present an in-depth characterization of

~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six dis-

tinct classes of GIs by examining a wide-range of structural and functional properties of

genes and network, including co-expression, phenotypical manifestations, relationship with

protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biologi-

cal functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes

within pathways and display distinctive properties, specifically towards PDS. It suggests a

model in which pathways are composed of PDS-centric and PDS-independent GIs coordi-

nating molecular machines through two specific classes of GIs involving pleiotropic and

non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI

network within pathways of a multicellular organism. It also suggests a model to understand

better how GIs control system robustness and evolution.

Author Summary

Network biology has focused for years on protein-protein interaction (PPI) networks,
identifying nodes with central structural functions and modules associated to bioprocesses,
phenotypes and diseases. Network biology field moved to a higher level of abstraction, and
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started characterizing a less intuitive kind of interactions, called genetic interactions (GIs)
or epistasis. Mostly due to technical challenges associated to the genome-wide mapping of
GIs, these studies primarily focused on unicellular organisms. They uncovered modules
embedded within the structure of these networks and started characterizing their relation-
ship with PPI-network and biological functions. We provide here the first in-depth charac-
terization of a network composed of ~600 GIs within signaling and metabolic pathways of
a multicellular organism, the nematode Caenorhabditis elegans. We characterize the struc-
ture of this network, and the function of GI classes found in this network. We also discuss
how these GI classes contribute to the genomic robustness and the adaptive evolution of
multicellular organisms.

Introduction
The behaviour of biological systems and their adaptation to environmental changes depend on
many factors on the path from genomic structure, through gene expression, molecular and
functional interactions, to phenotypic manifestations. To simplify studies of these different lev-
els of information, systems biologists may build a theoretical framework where biological sys-
tems are decomposed into six abstraction levels [1]: the genome structure (level I), the gene
expression (level II), the physical interaction between systems elements (protein, DNA, RNA,
etc. level III), the functional relationship between these elements (level IV), their biological and
molecular function (level V) and the phenotypical manifestations (level VI). Within this frame-
work, genetic interactions (GIs) are located at the level IV together with signaling and meta-
bolic pathways [1].

The identification of a GI between two genes reveals that a mutation on the first one alters
the biological consequences (the phenotype) associated to a mutation on the second one. Map-
ping GIs represents an important approach in understanding the link between genotype and
phenotype. It is also a critical step to understand the robustness of biological systems–i.e. how
the system compensates for the alteration of a function. Mapping GIs in human also recently
emerged as a necessity to identify biomarkers from Genome-wide association studies (GWAS)
and consequently, move the medical field towards a more personalized practice [2].

To date, only few (primarily unicellular) organisms have been amenable to experimental
genome-wide screening approaches for mapping GIs. Thus, most of our information on the
structure and the function of GI networks has been restricted to yeast (reviewed in [1] and [3]).
Extensive studies on GIs in these systems showed clear relationships between GI networks and
networks located at other abstraction levels. These studies revealed the relationship of GIs with
signaling and metabolic pathways [4–7], between co-expressed genes, and between genes cod-
ing for interacting proteins [8,9]. They also identified the relationship between GIs, biopro-
cesses and phenotypes [10–12]. They characterized the degree of connectivity of genes within
GI networks and assessed their enrichment in genes with high connectivity (GI-Hubs) as well
as in multifunctional and essential genes [4,6,10,13]. Importantly, these studies identified
dense subnetworks within the GI network (GDS) [10]. They showed that GDS tend to lay
between molecular machines, that we will define in this study as dense subnetworks of protein-
protein and protein-DNA interactions [6,8,9]. They also showed that GDS are monochromatic,
i.e. they are composed of either positive (suppressive/alleviating) or negative (synergistic/
aggravating) GIs [14–17], and are functionally biased [6,18]. These studies connect four
abstractions levels (levels II to V), showing that GI networks coordinate molecular machines
within bioprocesses.
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These studies using yeast as a model brought also precious information on the role played
by GIs in genomic robustness and evolutionary processes [7,19,20]. For example, these studies
identified two separate groups of duplicated genes within distinct GDS: a group composed of
redundant genes playing an important role on genomic robustness of systems and a group of
redundant genes with divergent biological functions and with expected reduced impact on
robustness [7]. In addition, they revealed that positioning of GIs within or between PPI-dense
subnetworks (PDS) had an impact on their evolutionary conservation: GIs within PDS being
more conserved than GIs between PDS [19,20].

To date, the structure and the function of GI networks are still largely unknown in multicel-
lular organisms. Characterizing these networks is therefore required to better understand the
genomic robustness of these systems and also how functional relationships between alleles
influence phenotypical outcomes and evolutionary processes in multicellular contexts. To
address this problem, we provide the first deep characterization of a network composed of
~600 GIs in a multicellular organism, the nematode Caenorhabditis elegans. This study aims to
identify functional properties associated with GIs and groups of GIs and to understand better
how the structural and functional organization of a GI network links molecular machines
(abstraction level III) to bioprocesses, phenotypes and diseases (abstraction levels V and VI) in
a multicellular context. Our results indicate that GIs form a heterogeneous group of entities
when considering biological data located at different abstraction levels in C. elegans. We
describe the specific characteristics of GI classes with respect to the connectivity degree within
the GI- and the PPI-networks, their relationship with protein-protein interaction dense subnet-
works (PDS), signaling and metabolic pathways and with phenotypic manifestations (essential-
ity, pleiotropy). We also discuss the impact of this structure on C. elegans genome robustness
and evolution.

Results

Defining six classes of genetic interactions
Considering that the function and the structure of genetic interaction networks are mainly
unknown for multicellular organisms while being of increasing interest, we characterized a net-
work composed of ~1,500 GIs of the nematode C. elegans. To do so, we first investigated
whether GIs constitute a heterogeneous group of entities in this organism and consequently,
whether we could identify several GI classes with distinctive biological properties in this
network.

We retrieved 1,514 genetic interactions (GIs) fromWormbase, Biogrid and the literature as
described in the Methods section and in S1 Table. This set of GIs, called GIs-all, is composed of
750 (49.5%) interactions identified as experimentally validated GIs by either Wormbase and
Biogrid curation systems (see Methods) or manually curated from the literature in our labora-
tory [21]. The remaining 764 GIs (50.46%) were identified using Textpresso, an automatic text
mining system [22]. To test the false-positive rate in this later GI set, we manually curated 261
of these interactions and found that 252 of them (96.55%) were true-positives (experimentally
validated GIs; S1 Table). Overall, GIs-all is predicted to contain at least 98% of validated GIs.

Statistical attributes using expression, protein-protein interaction (PPI) and phenotypic
data were previously described as powerful tools to segregate GIs-all from a set of gene-pairs
randomly selected from the genome [21]. GIs being shown as rare events [10], we expect the
latter set of gene-pairs to be mostly composed of “true” negative examples of GIs (see Meth-
ods). Attributes used in this study capture the level of co-expression between interacting genes
(Exp, Fig 1A and 1B), the enrichment of shared phenotypes (Ph, Fig 1A and 1B), their ability
to encode proteins that interact physically (I, Fig 1A and 1B) and/or have more common
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interacting-partners than expected by chance alone (CI, Fig 1A and 1B). Two attributes were
also designed to identify GIs within functional modules (N and NPh, Fig 1A and 1B). The attri-
bute called "Neighborhood" (N) identifies the enrichment of phenotypes in the neighborhoods
of gene-pairs within a network where genes are linked when they are significantly co-expressed,
or code for interacting proteins (see Methods for details; [21]). The attribute "Neighborhood
with Phenotype" (NPh) identifies pairs of genes with a positive value for the attribute N and
the association of both genes with the phenotype enriched in their neighborhood (see Methods
for details; [21]). We used these attributes to assess whether GIs display distinctive dependency
towards data located at different abstraction levels. To do so, attribute values were used to clus-
ter GIs-all together with 1,500 gene-pairs randomly chosen in the C. elegans genome. If GIs
were forming a homogeneous group of entities with unique distinctive properties when consid-
ering negative sets of examples, we would expect them to cluster as a group from these negative

Fig 1. Identifying GI classes. (a) Positive (GIs, black lines) and negative (Random gene pairs, white lines) examples of genetic interactions were clustered
based on their attribute scores using unsupervised methods. Columns show values for the six attributes used to predict interactions in [54]. Each individual
attribute is either a measure of genes co-expression levels (Exp) or enrichment of shared phenotypes (Ph). They are also indicator for whether the
neighborhoods of the genes of interest are enriched with the same phenotype (N). Here we define the neighborhood of a given gene as the set of genes that
show significant co-expression with it (P� 0.05, see Methods) and/or encode proteins that exhibit a PPI with the product of this gene.NPh is an indicator like
N with the additional requirement that the genes of interest themselves must also exhibit the phenotype enriched in their neighborhoods. Attributes I and CI
indicate that interacting genes code for interacting proteins or for proteins sharing a significantly high number of common protein-protein interaction partners.
Scores correspond to the following valuation: 1 or 0 (on a binary system) for N, NPh and I attributes. (1 –(P-value <0.05)) for Exp, Ph andCI attributes. (b)
Positive examples of genetic interactions were clustered and identified by the color code on the left.

doi:10.1371/journal.pcbi.1004738.g001
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examples. However, GIs-all tend to cluster into groups of GIs (using Euclidean distance-based
dissimilarities; see Methods) with some dispersion among the negative examples (Fig 1A). This
suggests that GIs-all can be subdivided into GIs groups with potential distinctive biological
properties.

In an attempt to characterize the function of these GI groups, we used a cluster selection
algorithm to identify GI classes from GIs-all (Fig 1B), while controlling the robustness of this
classification (see S1 Text and S1 Fig). This study identified ten GI classes, six of them (C1-C6)
being significantly different from gene-pairs randomly selected from the genome (see S1 Text).
Analysis of the proportion of missing data supporting each class revealed that missing expres-
sion, phenotype and/or PPI data could not explain the classification by itself. We conclude
from this analysis that GI classes with similar combination of attribute values would still be
identified from a GI set exempt of missing data S2 Fig.

GI classes have different functions
Two main classes of GIs have been identified in the yeast genome: positive (alleviating interac-
tions) and negative (synergistic interactions) [8,12,23–25]. Monochromaticity of GI dense sub-
networks (GDS), enriched in either positive or negative interactions, has also been identified in
yeast [7,18]. These monochromatic GDS were described as being functionally biased—i.e. they
tend to be associated with specific biological functions [7,18]. This characterization of GI net-
works in yeast was critical to understand better the role of GIs in coordinating gene function
within biological processes.

To characterize the potential distinctive biological properties of GI classes and their ability
to control different bioprocesses, we first assessed whether GIs tend to form dense subnetworks
(GDS) in C. elegans. We also tested whether these GDS may be monochromatic or multichro-
matic—if they were enriched in one or several GI classes. Lastly, we assessed whether these GI
classes are functionally biased.

This analysis revealed that GIs from GIs-all form few GDS (see S1 Text and S3A Fig). How-
ever, while the number of GDS formed is too small to assess their enrichment in unique class
or combination of classes as done in yeast, clustering of classes based upon the GDS composi-
tion, revealed that GI classes tend to form GDS in a biased manner: C1 with C2, C4 with C5
and C3 with C6 (see S1 Text and S3A Fig). Analysis of the gene composition of GI classes also
revealed that C4 GIs share more genes with C5 than with the other classes (see S1 Text and S4
Fig) supporting the hypothesis that GI classes may assemble into GDS in a biased way.

Enrichment of GI classes in Gene Ontology annotations (GO, [26]) was also measured. GO
annotations were found enriched for all GI classes except C2 (Fig 2A and S2 Table and S5–S11
Figs). This analysis was done first by considering gene repetition within classes (some genes
being involved in more than one GI in a given class) and secondly, without considering gene
repetition (asterisk indicates enrichment observed without considering gene repetitions; Fig 2A
and S2 Table). Similar results were obtained for both analyses, suggesting that GI classes are
functionally biased as detailed below.

C1 interactions were enriched in genes involved in cell division (P = 0.01, Fisher’s exact test;
Fig 2A and S2 Table). For example, C1 GIs were identified between spd-2, spd-5 and dhc-1 con-
trolling centrosome assembly and maturation [27] (S5 Fig). We expect genes involved in cell
division to be essential. To test a potential enrichment of essential genes in C1, we measured
the enrichment of two gene sets of 294 and 1,259 essential genes identified using systematic
RNA silencing by Kamath et al. [28] and Sonnichsen et al. [29] in GI classes when compared to
GIs-all using a hypergeometric test (bars above the red line indicate a significant enrichment;
P< 0.05; Fig 2B). These data showed that C1 and C2 display the highest enrichment level in
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Fig 2. GI classes have different functions. (a) Summary of Gene Ontology (GO) term enrichments for interacting genes in individual genetic interactions
(GIs) classes when compared to interacting genes from GIs-all. Only the statistically significant enrichments are shown with adjusted P-values. An asterisk
(*) means that the GI class is also enriched with the functional annotation when gene repetitions were not considered (S2 Table). (b) Enrichments of
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essential genes when compared to GIs-all and other classes. These data support the functional
bias of C1 towards cell division and also associate GDS enriched in C1 and C2 interactions to
essential biological functions. Enrichment analysis of GO terms within GI classes also revealed
that C4 and C5 were enriched in genes coding for kinases (P< 0.0001, Fisher’s exact test; Fig
2A and S2 Table). A kinase-centric study of the GI network in yeast showed that genes coding
for kinases are often redundant and are involved in either kinase-kinase (K-K) or kinase-sub-
strate (K-S) GIs [18]. We assessed whether GI classes were enriched in these two kinds of inter-
actions when compared to GIs-all. In this study, kinases were identified based on their GO
annotation (S2 Table) and substrates were identified as non-kinases. This analysis revealed that
C4 is significantly enriched in K-K (P = 0.004, Fisher’s exact test) and K-S (P = 0.03, Fisher’s
exact test). Considering that K-K interactions were primarily observed between redundant
kinases [18], we assessed whether C4 was also enriched in GIs between redundant genes. We
thus measured the enrichment in GI classes of 306 genes identified as redundant (linked by a
synthetic sick or lethal interaction) and evolutionarily conserved genes [30]. This analysis
revealed that both C4 and C5 were enriched in evolutionarily conserved redundant genes (Bars
above the red line indicate significant enrichments; P< 0.05; Fig 2C). In order to assess
whether C4 and C5 were enriched in interactions involving only redundant kinases or redun-
dant genes at large, we measured this enrichment after removing kinases from both the Tisch-
ler et al. list of conserved redundant genes and from GI classes. This analysis revealed that only
C4 was enriched in GIs involving non-kinase redundant genes (Fisher’s exact test; P = 9 x
10−6). This suggests that C5 GIs involve mainly conserved redundant kinases while C4 GIs
involve conserved redundant genes coding for kinases or not. Examples of C4 GIs between
conserved genes coding for redundant kinases and non-kinases are the interactions between
the type I and type II TGF-beta receptor coding genes daf-1 and daf-4 [31–33]; and between
the three Rho GTPases ced-10,mig-2 and rac-2 shown to control cell migration [34] (S5 Fig).
Moreover, GO annotation enrichments revealed that C3 was enriched in genes involved in cell
signaling (P = 0.01, Fisher’s exact test; Fig 3A) and C6 in small GTPase signaling (P = 0.001,
Fisher’s exact test; Fig 3A).

Altogether, these data suggest that GI classes may assemble in GDS in a “class-biased”man-
ner and also display a functional bias. Genes interacting through C1 and C2 GIs tend to be
essential genes, more particularly involved in cell division. Genes interacting through C4 or C5
GIs tend to code for evolutionarily conserved redundant kinases and non-kinases. This study
also suggests a potential function for genes interacting through C3 and C6 GIs in cell signaling.

GI classes have different positions in the PPI network
The coordination of molecular machines by GIs has been intensively investigated in yeast
through characterization of the relationship existing between GIs and protein-protein interac-
tion (PPI) networks [5,8,9]. Four out of the six attributes used in this study are built, even par-
tially, on PPI data (N, NPh, CI, I; see Methods). GI classes, displaying positive values for
different combinations of attributes (Fig 1B), may exhibit distinct relationship with the PPI
network. To assess the relationship between GI classes and molecular machines we measured
the average PPI-degree of proteins coded by genes within GI classes and GIs-all (Fig 3A). This
revealed that C4 and C5 GIs involve genes with a median PPI-degree significantly higher
than the other classes and GIs-all (P< 10−3 and P< 10−6 respectively, Wilcoxon rank-sum

essential gene sets (Kamath et al. and Soninchsen et al. taken from [28] and [29]) in GI classes when compared to GIs-all. (c) Enrichment of redundant and
evolutionarily conserved genes in GI classes when compared to GIs-all. The redundant gene list was made of 306 genes taken from [30]. (b-c) -Log10 of P-
values obtained using Fisher’s exact tests are indicated. The area over the red dashed line indicates significant enrichment (P < 0.05).

doi:10.1371/journal.pcbi.1004738.g002
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test; Fig 3A). We then assessed whether this was due to a significant enrichment of genes cod-
ing for PPI-Hubs—defined as the 20% proteins with the highest PPI-degree within the PPI net-
work (Fig 3B and S12 Fig). This revealed that C4 and C5 were indeed significantly enriched in
PPI-Hubs when compared to GIs-all (P< 10−4 and P< 10−11 respectively, Fisher’s exact test;
Fig 3B).

The structure of the PPI networks has been extensively studied in unicellular and multicel-
lular organisms [35]. As shown for GIs, PPI tend to assemble into PPI-dense subnetworks
(PDS) orchestrated around nodes. These nodes can either be Hubs or non-Hubs, with distinct

Fig 3. GI classes have different position in PPI-network. (a) Physical interaction degree of gene products
in the protein-protein interaction (PPI) network (only genes coding for proteins with at least one interacting
partner were considered). *P < 10−3, Wilcoxon rank-sum test, indicates significant difference when compared
to GIs-all and other GI classes. (b) Enrichment of PPI-Hubs in GI classes when compared to GIs-all. -Log10 of
P-values obtained using Fisher’s tests are indicated. The area over the red dashed line indicates significant
enrichment (P < 0.05). (c) Illustration of bottlenecks and the different type of nodes in the protein-protein
interaction (PPI) network (adapted from [36]). (d-e) Betweenness centrality of non-Hub and Hub gene
products. *P < 10−3, Wilcoxon rank-sum test, indicates significant difference when compared to other GI
classes. The box plots (a, d-e) represent the min, max, 25th, 50th (median) and 75th percentile of either PPI
Degree (k) or betweenness centrality values.

doi:10.1371/journal.pcbi.1004738.g003
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structural functions within the PPI network [35,36]. The betweenness centrality metric was
previously defined to identify network nodes playing a critical role in the PPI network organi-
zation (called “bottleneck nodes”) [36]. These nodes were characterized by their positioning in
many shortest paths within the PPI network ([36], Fig 3C). Measurement of the betweenness
centrality of PPI-non-Hubs and PPI-Hubs in the different GI classes revealed that C5 non-
Hub proteins tend to be bottlenecks with a significantly higher betweenness centrality than
GIs-all (P< 10−9, Wilcoxon rank-sum test; Fig 3D). The betweenness centrality of PPI-Hubs
was not significantly different between GI classes and GIs-all (Fig 3E).

Altogether, these data clearly show that GI classes have distinctive properties with respect to
the PPI network and may consequently coordinate differently molecular machines in biological
processes. They identify C4 and C5 interactions as enriched in genes coding for PPI-Hubs that
tend to be non-bottlenecks (green node; Fig 3C), suggesting that these Hubs may be embedded
within PDS rather than at their periphery. C5 also appear to be enriched in non-Hub Bottle-
neck nodes (Blue nodes, Fig 3C) thought to play a critical role in PDS coordination [36].
Therefore, these data suggest, C4 and C5 interactions may play a critical role in controlling the
assembly and the coordination of PDS.

GI classes are either PDS-centric or PDS-independent
The data presented above suggest that C4 and C5 GIs link genes coding for proteins within or
between PDS while C1, C2, C3 and C6 may link genes coding for proteins outside PDS. To test
this hypothesis we used the Cytoscape “MINE” plugin [37] to identify PDS within the PPI-net-
work as previously done [8,9] (see Methods). This approach identified 106 PDS containing at
least four proteins. We then assessed whether GIs-all and GI classes were enriched in genes
coding for proteins: (i) in the same PDS (GI within-PDS; red lines / bars; Fig 4A and 4B); or (ii)
between PDS (pairs of proteins located in different PDS; GI between-PDS; blue lines / bars; Fig
4A and 4B). To evaluate this enrichment level, we compared the frequencies obtained for the
different scenarios (within-PDS and between-PDS) with those for randomized GI networks of
similar size and structure, and computed log-ratio transform (LR) scores (see Methods, Fig
4B). Consistently with previous studies [38], GIs-all was enriched in within-PDS connections
while being depleted in between-PDS connections (Fig 4B), confirming that GIs in C. elegans
are more frequently observed within-PDS than between-PDS. Interestingly, C2 and C3 GIs
tended to occur between-PDS, and C4 and C5 GIs occur both within- and between-PDS, while
GIs in C1 and C6 appear to be independent from PDS (Fig 4B). We assessed whether this PDS-
independency results from a dependency of C1 and C6 towards connected 3-protein triangles,
called bistable motifs, which are not considered as PDS in our study (see Methods). However,
no bistable motif was found in GIs-all suggesting that C1 and C6 GIs are independent from
PDS.

These data confirm our hypothesis that C4 and C5 GIs are enriched in within- and
between-PDS. We will consequently, characterize them as PDS-centric interactions, and C1
and C6 GIs as PDS-independent. Moreover, C2 and C3 GIs appeared to be enriched in
between-PDS connections suggesting some kind of functional relationship with the PDS-cen-
tric interactions. Taken together these data suggest that GI classes display distinct relationships
towards PDS and consequently, may coordinate differently molecular machines within biologi-
cal processes.

PDS and pathways constitute different functional modules
In the yeast S. cerevisiae, subgroups of GIs have been identified and characterized based on
their relationship with physical interaction networks–mainly protein-protein (PPI) and
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protein-DNA (PDI) interactions [5,8,9]. In these studies, a " pathway " was defined as a dense
subnetwork or a connected graph module of PPIs (defined as PDS in our study) and PDIs.
These studies showed that GIs tend to occur rather between- than within-pathways [5,8,9].
Interestingly, a similar study was done on GI networks in C. elegans and showed the opposite–
GIs occur more frequently within- than between-pathways [38,39]. These results are in agree-
ment with data obtained in this study for GIs-all (Fig 4B).

The pathway described above is quite different from the definition used by developmental
geneticists for whom a pathway consists in a group of genes functioning together to control a
given biological process [40]. Characterization of the relationship between PDS and pathways
is consequently required to clarify the relative positioning of GIs and pathways (both located at
the abstraction level IV) between molecular machines (level III) and biological processes (level
V). To do so, 61 pathways were retrieved from the KEGG database [41] along with 33 pathways
controlling the embryonic and larval development of C. elegans that we manually curated from
the literature (S3 Table; see Methods). We then assessed whether gene-pairs involved in a given
pathway (within-pathway interactions) tend to code for proteins, which are part of the same
PDS (within-PDS; orange lines / bars; Fig 5A and 5B) or of two distinct PDSs (between-PDS;
green lines / bars; Fig 5A and 5B). We compared the frequencies obtained for these scenarios

Fig 4. GI classes define PDS-depend and -independent modules. (a) Schematic representation of
possible relationships between genetic interactions (GIs) and protein-protein dense subnetworks (PDS).
Each node represents a gene being part of PDS1 or PDS2. A red line indicates a within-PDS GI and a blue
line, a between-PDS GI. (b) Log-Ratio scores for within-PDS (red bars) and between-PDS (blue bars)
relationships observed between genes interacting through different GI classes, or present in GIs-all. A
positive Log-Ratio score means that the frequency of within- or between-PDS GIs occurring in the GI class is
significantly higher than the frequency of similar situations witnessed in relevant randomized GI networks with
a probability of 0.99 (see Methods).

doi:10.1371/journal.pcbi.1004738.g004
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Fig 5. PDS and pathways are different functional modules. (a) Schematic representation of possible
relationships between Pathways and protein-protein interaction dense subnetwork (PDS). Each node
represents a gene product connected by a PPI (black lines) or by a functional relationship within a pathway P
(back arrows). The grey nodes represent gene products involved in a pathway P. An orange line linking two
grey nodes indicates that these two genes/proteins interact within-pathway and also within-PDS. A green line
linking two grey nodes indicates that these two genes/proteins interact within-pathway and between-PDS. (b)
Log-Ratio scores for within-PDS and between-PDS relationships occurring within-pathways. A positive Log-
Ratio score means that the frequency of within-pathway relationships occurring also within-PDS (orange
bars) or within-pathway relationships occurring between-PDS (green bars) is higher than the frequency of
similar situations witnessed in relevant randomized pathway networks.

doi:10.1371/journal.pcbi.1004738.g005
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with those resulting from randomization of pathways (see Methods, Fig 5B). Interestingly, pro-
teins coded by gene-pairs in the same KEGG or pathways from the literature (KEGG and Lit.
respectively; Fig 5B) are enriched in within- and between-PDS interactions (orange and green
bars respectively; Fig 5B). We also confirmed that this enrichment of within- and between-PDS
observed within-pathways did not depend on the topology of the PDS network but instead
depend upon the interactions themselves (see S1 Text and S14 Fig).

These data suggest that pathways and PDSs are distinct functional modules. They also sug-
gest that pathways are composed of several PDS and that proteins involved in a given pathway
may be part of the same PDS or of different PDSs. We confirmed these assumptions through a
close examination of genes/proteins involved in pathways and PDSs as shown in S4 Table and
detailed in supplementary information (S1 Text).

GI classes are enriched in within-pathway interactions
Considering that pathways and PDS are distinct functional modules and that GI classes have
distinct relationships towards PDS, we were interested to test whether this would also be the
case for pathways. We thus investigated if GI classes and GIs-all were enriched in within-path-
ways (pairs of genes functioning in at least one common pathway, see Methods) and/or
between-pathways (pairs of genes involved in at least one pathway but not involved in any
common pathway, see Methods; Fig 6A). As detailed for PDS in the previous sections, we com-
pared the frequencies obtained for the different scenarios (within-pathways and between-path-
ways) with those for randomized GI networks (Fig 6B and 6C, see Methods). GI classes and
GIs-all were enriched in within-pathway interactions for both pathways retrieved from the
KEGG database and from the literature (Fig 6B and 6C respectively). Remarkably, GI classes
were depleted in between-pathway interactions while GIs-all was enriched in this kind of inter-
actions (Fig 6B and 6C). These results suggest that non-selected clusters, C7 to C10 (Fig 1B),
are enriched in between-pathway interactions. Characterization of these later GI classes
revealed that it was indeed the case: except for C10 that was enriched only in within-pathway
interactions, C7, C8 and C9 GIs were enriched in both within- and between-pathways interac-
tions (S13 Fig).

Together, these data show that C1/C6 PDS-independent, C4/C5 PDS-centric and C2, C3
GIs are enriched in within-pathways interactions. This implies that pathways involve both
functional interactions that are organized around PDS and other that are independent from
PDS.

C3 and C6 GIs involve connectors
Highly connected genes called connectors, or GI-Hubs, are genes whose alteration impacts on
a large number of genes. Their function is consequently expected to be central within pathways
and bioprocesses [5,6,39]. GI-Hubs are defined here as the 20% genes with the highest GI
degree within the GI-network (S16A Fig). In order to understand better the function of GI clas-
ses within pathways, we characterized the distribution of GI-Hubs/connectors within GIs-all
and their potential enrichment in GI classes. Therefore, we computed the average GI degree of
interacting genes in GI classes and GIs-all (Fig 7A), and also measured their enrichment in
GI-Hubs (Fig 7B). This analysis revealed that C3 and C6 showed a median GI-degree signifi-
cantly higher than GIs-all and are enriched in GI-Hubs (Fig 7A and 7B). These results suggest
C3 and C6 are enriched in connectors that may play a critical role in the coordination of gene
functions within pathways. Such a function for C3 and C6 GIs is consistent with their expected
involvement in cell signaling (Fig 2A).
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Identifying pleiotropic and non-pleiotropic GIs
Our study supports a model in which four out of the six classes of GIs coordinate the function
of genes either in a PDS-centric or in a PDS-independent manner. They also identify two

Fig 6. GI classes are enriched in within-pathways interactions. (a) Schematic representation of possible
relationships between genetic interactions (GIs) and pathways. Each node represents a gene being part of
pathways 1 or 2. A red line indicates a within-pathway GI and a blue line, a between-pathway GI. (b-c) Log-
Ratio scores for within-pathway (red bars) and between-pathway (blue bars) relationships observed between
genes interacting through different GI classes, or present in GIs-all. A positive Log-Ratio score means that
the frequency of within- or between-pathways GIs occurring in the GI class is significantly higher than the
frequency of similar situations witnessed in relevant randomized GI networks with a probability of 0.99 (see
Methods).

doi:10.1371/journal.pcbi.1004738.g006
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additional classes of GIs with central coordination function through the involvement of con-
nectors/GI-Hubs. C. elegans being a multicellular organism, one may ask whether some parts
of this organization may be organ or process specific while others may be ubiquitous. To
answer this question, we assessed whether GI classes are enriched in pleiotropic genes–i.e.
genes whose genetic alteration is associated to multiple phenotypic expressions and conse-
quently, whose function is required in several organs and/or at different developmental stages
of the animal. To do so, we divided the C. elegans phenotype ontology into 22 groups of pheno-
types (S15 Fig). We computed a pleiotropic index (PI) for each gene as the number of pheno-
type groups containing at least one phenotype expressed upon genetic alteration of the gene of
interest (see Methods). The PI median genome-wide (2 ± 1.48 MAD) is smaller than in GIs-all
(5 ± 2.97 MAD; S16B Fig), and its distribution revealed that a large number of genes displayed
a low PI while a small number of genes have a high PI (S16B Fig). Using this distribution of PI,
we defined a class of highly pleiotropic genes (High-PI) as the 20% genes displaying the highest
PI genome-wide (S16B Fig).

We measured the PI of genes involved in GI classes and found that only genes involved in
C1, C2 and C6 GIs displayed significantly higher median PIs than GIs-all (P< 10−4, Wilcoxon
rank-sum test; dark grey boxes; Fig 7C) and are significantly enriched in High-PI genes
(P< 10−5; Fisher’s exact test; Fig 7D). We further characterized the distribution of GI classes at
different PI ranges and the ability of these classes to link genes between ranges (see S1 Text and
S17 Fig). This study revealed that while C5 connects genes only within an average PI range,
other classes connect genes across PI ranges, especially C3 and C6 that tend to link genes
within an average PI range to either genes with low (C3 class) or high PI (C6 class).

Fig 7. Defining pleiotropic and non-pleiotropic connectors. (a) Box plots showing distributions of genetic interaction (GI) degrees for GIs-all and the six
classes of GIs. Distributions were found to be significantly higher (Dark grey boxes) or lower (white boxes) than GIs-all (P < 0.05, Wilcoxon rank-sum test).
Light grey boxes indicate classes with GI degree not significantly different than GIs-all. (b) Enrichment in GI-Hubs (defined as the 20%most connected genes
in GIs-all) for GI classes when compared to GIs-all. (c) Distribution of pleiotropic indices (PIs) for GIs-all and the six classes of GIs. Dark grey, white and light
grey boxes are designated as in panel (a). (d) Enrichment in High-PI (defined as the top 20% of genes with the highest PIs genome-wide) for GI classes when
compared to GIs-all. The box plots (a, c) represent the min, max, 25th, 50th (median) and 75th percentile of either GI Degree (a) or pleiotropic indices (c). (b, d)
-Log10 of P-values obtained using Fisher’s tests are indicated. The area over the red dashed line indicates significant enrichment (P < 0.05).

doi:10.1371/journal.pcbi.1004738.g007
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These data suggest that PDS-independent GIs tend to involve pleiotropic genes while PDS-
centric GIs involve genes with an average to low pleiotropy. They also further characterized the
properties of connectors involved in C3 and C6 GIs, linking genes within different pleiotropic
ranges: C6 and C3 GIs link genes from an average to a high-pleiotropy and from a low to an
average pleiotropy respectively. These data show that the organization of the characterized GI
network within pathways is more complex when considering the multicellular nature of C. ele-
gans. They imply that genetic mutations within a given pathway may either lead to pleiotropic
or tissue/developmental stage-specific phenotypic manifestations. This also implies that such
mutation may be compensated by a mutation of a genes involved in the same pathways but
with pleiotropic or non-pleiotropic effect.

Integration of different kind of data is required to identify GI classes
PDS-centric GIs (C4 and C5) are GI classes displaying positive values for I and CI attributes
(Fig 1B), which are attributes mainly built on PPI network. We, consequently, wondered
whether these two classes of GIs could have been identified considering PPI data alone. In
order to test the value of the data integration strategy used in this study to identify the GI clas-
ses, we assessed whether functional characteristics observed for each class may depend on one
or a combination of the attributes used for the classification (Fig 1A and 1B). To answer this
question, we defined a threshold value for each attribute (S6 Table), allowing us to identify
groups of GIs associated to a positive or a negative value per attribute. We subsequently
assessed the enrichment in GI-Hubs, PPI-Hubs, redundant genes, essential genes, genes with
high PI (High-PI; Figs 8A and S18), within- and between-PDS (W-PDS and B-PDS; Figs 8B
and S19) as well as within- and between-pathway interactions (W-Path and B-Path respec-
tively, Fig 8B) in these GI groups. We clustered GI groups and GI classes (C1-C6) based on
these enrichment levels using Euclidean distances (Fig 8A and 8B). This analysis revealed that
the enrichment of a given GI property is not associated to a positive or a negative value for a
single attribute but for several of them (Fig 8A and 8B). For example, enrichment of genes with
High-PI was observed in groups of GIs with positive or negative values for Ph (enrichment of
phenotypic manifestations), with negative value for CI (high number of common partners
within the PPI network), and positive value for NPh (enrichment of a phenotype associated to
interacting genes in their respective neighborhoods). This suggests that integration of a set of
attributes defines the biological functions of identified GIs.

This analysis also revealed that the biological characteristics observed for GI-classes are not
found in GI groups associated to either a positive or a negative value for an attribute. For
instance, when comparing C4 and C5 with the GI group positive for CI (interacting genes cod-
ing for proteins sharing a significantly high number of common PPI partners), these GI
groups/classes displayed similar enrichment of redundant genes, PPI-Hubs and essential genes
(blue square; Fig 8A) but have different enrichment profiles when considering their relative
positioning towards pathways and PDS (blue square; Fig 8B). This suggests that the enrich-
ment of essential genes, PPI-Hubs and redundant genes in C4 and C5 may be significantly
influenced by a positive value for the CI attribute (Fig 1B). Positive value for this attribute does
not, however, explain the depletion of C4 and C5 in GIs between-pathways and their enrich-
ment in GI between-PDS (Fig 8B).

Altogether, this study demonstrates that the biological characteristics identified for GI clas-
ses depend on combination of attributes identified through data integration strategy. Impor-
tantly, it indicates which combination of attributes is appropriate in integration to identify
classes of GI with specific biological functions.
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Discussion
Extensive mapping and characterization of the yeast genetic interaction network has revealed
precious information on the still mysterious genetic interactome. These studies identified

Fig 8. Data integration is required to identify GI classes.Hierarchical clustering of (a) Enrichment in GI
classes and GI groups of Genetic interaction-Hubs (GI-Hubs), redundant genes, protein-protein interaction-
Hubs (PPI-Hubs), Highly pleiotropic genes (High-PI) and essential genes -log of P-values from Fisher’s exact
test are indicated. GI groups are associated to a positive value (+; above a threshold) or a negative value (-;
below the threshold) for indicated attributes. Threshold values for each attributes are indicated S6 Table. (b)
Log-Ratios profiles for GI classes and GI groups associated to a positive (+) or a negative (-) values for
indicated attributes. Blue boxes indicate enrichment of biological characteristics for C4 and C5 GI classes
and CI(+) GI group.

doi:10.1371/journal.pcbi.1004738.g008
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multiple classes of GIs with distinctive properties when considering the protein-protein inter-
action network and biological processes (bioprocesses) [5,7,8]. Therefore, these studies sug-
gested that GIs display a certain level of heterogeneity. Whether such heterogeneity could also
be observed in higher organisms was however still unknown.

In this study, we characterized the structure of a GI network composed of ~1,500 GIs in the
nematode Caenorhabditis elegans. We showed that GIs form a heterogeneous group of entities
with respect to attributes computed from expression, protein-protein interaction (PPI) and
phenotype data. From this set of GIs, we identified six classes covering ~600 GIs, named C1 to
C6 that cluster apart from gene-pairs randomly picked from the genome. Characterization of
these GI classes revealed that they are either centered on protein-protein interaction dense sub-
networks (PDS) and called PDS-centric interactions, or independent of these PDS (PDS-inde-
pendent interactions) (Fig 9). The current study shows that PDS-centric interactions are
composed of C4 and C5 GIs, and tend to involve redundant genes, particularly kinases, PPI-
Hubs and non-Hub bottlenecks, which also display average to low pleiotropy (Fig 9 and S20
Fig). PDS-independent interactions are mainly composed of C1 GIs. They tend to involve
essential and pleiotropic genes and also genes involved in cell division (Fig 9 and S20 Fig). Our
data also suggest that PDS-centric and PDS-independent interactions coordinate gene

Fig 9. Structure and function of a GI-network within-pathway inCaenorhabditis elegans. Three
abstraction levels are represented as plan from the bottom to top: Level III, level IV and level VI. PDS-centric
interactions (C4 and C5 classes) are organized around Protein-protein interaction dense subnetworks (PDS)
located at level III. They tend to involve non-pleiotropic and redundant genes (level VI). PDS-independent
interactions (C1 and C2 classes) tend to involve pleiotropic and essential genes. GIs involving pleiotropic
(PC; C6 class) and non-pleiotropic connectors/GI-Hubs (NPC; C3 class). They tend to link genes from an
average to a high range of pleiotropy and to an average to a low rang of pleiotropy respectively.

doi:10.1371/journal.pcbi.1004738.g009
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functions within-pathways and that two classes of GIs, C3 and C6 are highly involved in this
coordination due to their association with connectors/GI-Hubs. These later GI classes were
shown to connect genes across ranges of pleiotropy. C6 GIs tend to connect genes with an aver-
age to genes with a high pleiotropy while C3 GIs connect genes with an average to genes with a
low pleiotropy. We call GI-Hubs involved in C6 and C3 GIs, pleiotropic connectors (PC) and
non-pleiotropic connectors respectively (NPC; Fig 9 and S20 Fig). Our study built a structural
and functional model for GI-networks in C. elegansmainly composed of GIs within signaling
and metabolic pathways. This network may be representative for a fraction of the GI network
genome-wide (the union of C1-C6 GI corresponds to ~40% of GIs-all). Our data showed that
GIs within C7-C10 are composed of both within and between pathway interactions that could
not be distinguished from gene-pairs randomly selected from the genome using our classifica-
tion strategy. Another classification strategy may consequently, be required to characterize
these prominent classes of GIs. Nevertheless, our characterization of within-pathway GI classes
raises critical questions relative to the coordination of genes and their protein products within
pathways as well as on the role played by the individual GI classes on genomic robustness and
on network evolution as discussed below.

Coordination of molecular machines by GIs within-pathways
We showed in this study that PDS and pathways are different structural/functional modules,
consistent with their respective positions at abstraction levels III (physical interactions) and IV
(functional interactions) [1]. Furthermore, we showed that both PDS-centric and PDS-inde-
pendent GIs contribute to pathways. While, the function of PDS and protein complexes within
pathways has been extensively studied (reviewed in [42]), the function of PDS-independent
GIs is quite unexplored. The apparent independence of C1 interactions towards PDS is intrigu-
ing. It may be explained by the possibility that physical interactions between protein products
of genes involved in C1 GIs have not been identified yet. Interestingly, physical interactions
between proteins controlling early embryogenesis, including that controlling cell division have
been the subject to special attention [43], suggesting that this portion of the PPI network may
be less prone to missing data than other parts. This supports the idea that cell division-associ-
ated interactions found in C1 define true PDS-independent GIs. PDS-independence of C1 GIs
may also result from a potential enrichment of transcriptional regulatory elements in this class
(and consequently, protein-DNA interactions instead of PPI). As an example of this possibility,
C1 GIs include interactions between the chromatin modifying enzymes coding genesmes-4,
mes-2/3/6 andmep-1, which were shown to differentially modify histones and consequently, to
bind to DNA and not physically to each other [44] (S6 Fig).

Our study also revealed that C3 and C6 GI classes are enriched in GI-Hubs and may play a
critical role in coordinating molecular machines within pathways. GI-Hubs have been previously
proposed to constitute connectors with high modifier potential–i.e. the ability to modify the
expression of phenotypes resulting from genetic alterations of multiple genes–both in C. elegans
and in yeast [39]. Our study also characterized C6 GIs as involving pleiotropic connectors (PC,
Fig 9) and C3 GIs as involving non-pleiotropic connectors (NPC, Fig 9). The involvement of PC
in the coordination of molecular machines within pathways is consistent with a study of pleiotro-
pic genes in C. elegans suggesting that genes involved in early embryogenesis are organized into
partially overlapping functional modules and that pleiotropic genes represent connectors
between these modules [45]. Our data, while supporting this model, suggest that non-pleiotropic
genes may also have an organizational role within pathways through C3 interactions.

Intriguingly, genes interacting using C3 and C6 GIs, while being associated individually to
several phenotypes did not present any significant correlation in their phenotypic profiles. This
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is the major distinctive property of C3 and C6 GIs, when compared to other classes. A study
investigating the tissue specificity of PPI-network identified both housekeeping/pleiotropic
and "local" PPI-Hubs [46]. It also documented the way housekeeping/pleiotropic Hubs interact
with tissue-specific proteins, being consequently involved in different biological processes than
other housekeeping Hubs [46]. Such a scenario transposed to GI-networks may partially
explain how a connector may be associated to a panel of phenotypes which is significantly dif-
ferent than that of its partners.

Overall, our study establishes an organizational model for pathways suggesting that they are
built around both pleiotropic PDS-independent and non-pleiotropic PDS-centric GIs coordi-
nating molecular machines together with both pleiotropic and non-pleiotropic connectors.
Such an organization suggests that mutations in genes of a given pathway may lead to either
pleiotropic or non-pleiotropic effect. These effects may then be modulated at the organism or
at the tissue level, through selection of compensative mutations [47] or through buffered pleiot-
ropy effect [48]. Further characterization of the GI-network structure within and between
pathways will thus certainly provide a better understanding of the abundant pleiotropy effect
found in human complex diseases and traits [49].

GI-network modularity and genomic robustness
C5 and C4 GIs involve genes with an average to a low pleiotropy. This is consistent with their
enrichment in genes coding for kinases (Fig 2A) and also evolutionarily conserved redundant
genes that are mostly kinases in C5 and either kinases or non-kinases in C4. While these genes
may be involved in more than one bioprocess, their redundancy may highly limit the number
of phenotypes expressed upon perturbation, thus reducing their apparent pleiotropy. While
compensatory functions between duplicated genes were shown to be evolutionarily unstable
for most of the duplicated gene-pairs [50], a small fraction of them are submitted to natural
selection that stabilizes their functional overlap [45]. These selected pairs tend to have a high
propensity of clustering into the same protein complexes, and share common interaction part-
ners [45]. Protein complexes were identified form PPI networks as dense subnetworks with
methods similar to that used in this study to identify PDS [51]. Altogether, these data are in
agreement with C4 and C5 GIs displaying positive values for the CI attribute (gene pairs coding
for proteins with a significant high number of common PPI partners; Fig 1B).They are also
consistent with C4 being enriched in evolutionarily conserved redundant genes. Gene duplica-
tion, when associated to functional redundancy, was associated to genomic robustness–i.e.
increased resistance of the system to genetic alterations [52]. The PDS-centric within-pathway
GIs involving redundant and conserved genes within- or between-PDS may then contribute to
the robustness of C. elegans genome.

GI-network modularity and evolution
The present study shows that C1 to C6 GIs classes are enriched in within-pathway interactions
while C7 to C9 classes are enriched in both within- and between-pathways GIs. Interestingly,
these later GI classes could not efficiently be dissociated from gene pairs randomly picked from
the genome based on the six attributes used for the classification. While attribute values may be
highly influenced by missing data for these GI classes, it is intriguing to observe that the vast
majority of between-pathways interactions lay in these classes. It was shown in yeast that both
positive and negative GIs within functional modules (protein complexes, gene belonging to the
same biological process) are significantly more conserved between S. cerevisiae and S. pombe,
than wiring between these modules [19,20,53]. Considering that a pathway is a functional
module, it would then be interesting to assess whether C1 to C6 GIs would be more

Structural and Functional Characterization of a Genetic Interactome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004738 February 12, 2016 19 / 31



evolutionarily conserved than C7 to C9. Similarly, it would be interesting to assess whether
interactions within-PDS would be more evolutionarily conserved than between or outside PDS
interactions.

The organization of the within-pathway GI-network described here is consistent with the
evolution theory model called selection, pleiotropy and compensation (SPC) recently built
from quantitative genetics studies (reviewed in [47]). This model predicts that adaptive change
in one character (through functional alterations of a pleiotropic gene) is associated with delete-
rious pleiotropy in others and subsequent selections to compensate for these pleiotropic effects.
This compensation involves the genetic alteration of non-pleiotropic/“private” gene(s). This
model relies upon the existence of functional interaction between pleiotropic and non-pleiotro-
pic genes within pathways targeted by evolution. Interestingly, such interactions have been
identified in tissue-specific PPI-networks [46] and are also consistent with the model proposed
here, in which pleiotropic Hubs are connected to genes displaying average pleiotropy through
C6 GIs within pathways.

We showed that integration of attributes based on data located at different abstraction levels
(in this study, levels II, III and VI), identified GI classes with distinctive biological properties
from a GI-network. Similar classification strategy applied to gene-pairs found within-pathways
of systems inappropriate to a genome-wide experimental mapping of GIs would be interesting
to interrogate the evolutionary conservation of functional interactions in multicellular organ-
isms. Integrative genomics approaches using a selected subset of statistical attributes may also
be used to improve predictors for specific classes of GIs such as connectors/GI-Hubs, which
are of high interest for health-oriented research.

Conclusions
Our study provides the first deep structural and functional characterization of a GI-network
enriched in within-pathways interactions in a multicellular organism. It proposes a model in
which PDS-centric and PDS-independent interactions coordinate molecular machines within
pathways together with pleiotropic and non-pleiotropic connectors. This study demonstrates
the value of integrative genomics approaches, using data from several abstraction levels to
characterize genetic interaction networks, their relationship with networks located at different
abstraction levels and to study the systems basis of complex biological phenomena, including
genomic robustness, pleiotropic effects and adaptive evolution.

Methods

Dataset of genetic interactions
The complete set of genetic interactions (GIs-all) consists of 1,514 GIs retrieved fromWorm-
base, Biogrid and/or curated manually from the literature ([54] and this study S1 Table). Five
GIs were curated using the curation and blind re-curation procedure of BIOGRID [55]; 689
GIs (45%) were curated by an author-based curation approach used by Wormbase to insure
the accuracy of their data [56]; 56 and 261 GIs were manually curated in our laboratory in the
context of [54] and this study respectively (S1 Table). The 261 GIs curated in this study cover
GIs identified from the literature by Textpresso [22] and found in GI classes (C1 to C6) (S1
Table). References to an experimental validation were found in the literature for 252 of these
GIs, leaving nine of them without experimental evidences (3.57%). Less than 3.3% of GIs lay in
that category of non-validated interactions per class. GIs-all was used to build a GI network
analyzed and visualized using Cytoscape v2.8.2 [57]. GI degree was computed for each gene
using the network statistic tool.
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Attributes used to cluster GIs into classes
Attributes and data used to compute them have been described previously [54]. Briefly, The
co-expression attribute Exp(A, B) is the P-value derived for the Pearson correlation of genes A
and B across 514 microarray experiments (retrieved from [58]) relative to the empirically esti-
mated probability distribution of correlation for all gene pairs (i.e. a fitted normal). The co-
phenotype attribute Ph(A, B) uses 107 phenotypes (retrieved fromWormBase release WS141)
and measures the statistical significance of the number of shared phenotypes between the two
genes (A and B) via a standard Fisher’s exact test (N = the number of phenotypes observed for
at least two genes). The multispecies PPI network was taken from [54]. Briefly, PPIs were
obtained from all C. elegans, Saccharomyces cervisiae, Drosophila melanogaster, andHomo
sapiens yeast two-hybrid datasets stored in BioGRID v2.0.37 (http://www.thebiogrid.org/) and
from two additional yeast two-hybrid datasets [59,60]. To create a multi-species PPI network,
we used the orthology mappings generated by InParanoid v1.35 [61] (non-default parameters:
score cutoff 10, in-paralog confidence cutoff 0.025, sequence overlap cutoff 0.2). The interac-
tion attribute I(A, B) indicates whether the proteins encoded by A and B exhibit a PPI in the
multi-species PPI network as defined in [54]. Similarly, the common interactors attribute, CI
(A, B), considers the statistical significance of the observed number of common physical inter-
actors of the proteins encoded by A and B, in the multi-species PPI network. The attribute CI is
then assigned a P-value derived from a one-tailed Fisher’s exact test (N = the number of genes
encoding proteins that are in the multi-species PPI network). For the other attributes, a biologi-
cal network called the PhEP was created where two genes A and B are connected by an edge if
the Pearson correlation coefficient of their gene expression exceeds 0.35 or if their gene prod-
ucts exhibit a PPI in the multi-species PPI network. For both A and B, we measured how sur-
prising it is to witness the observed number of their neighbors (i.e. genes connected to it by one
edge) in the PhEP network labeled with a specific phenotype identified by RNAi in C. elegans.
This was measured using a one-tailed Fisher’s exact test (N = the number of genes with some
assigned phenotype). If the derived P-value is less than or equal to 0.05 for A and B for at least
one phenotype, we assign a value of 1 to a categorical variable N(A, B), and 0 otherwise. Simi-
larly, if A and B exhibit a phenotype that is also enriched in both their neighborhoods in the
PhEP network, a value of 1 is assigned to a categorical variable NPh(A, B), and 0 otherwise.
Missing values for any of the derived attributes (due to missing values in the underlying data-
sets) were replaced with the expected value (i.e. the sample mean) of the attribute before train-
ing. See [54] for additional information regarding the attributes and datasets used to derive
them.

Heatmaps
Unless otherwise specified, heatmaps were the result of hierarchical clustering using Ward’s
agglomerative method with a distance metric between x and y based on Euclidean distance and
is given by:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðxi � yiÞ
2

s

The Canberra distance is given by:

dx;y ¼
X

i

jxi � yij
jxij � jyij

where dx,y is the Canberra distance between two GI classes x and y, xi and yi is the number of
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genes that occur in the classes. The binary distance is defined as the fraction of the n genes that
is present in only one of classes x and y.

GI classes identification
GIs-all was hierarchically clustered, and uncertainty in the resulting clusters was judged with
approximately unbiased (AU) P-values acquired after a multiscale bootstrap resampling of the
data (10,000 resamples) using the R package “pvclust” v1.2–2 with the default parameters [62].
The dendrogram was cut at each height with the R function cutree. Clusters with AU>0.95 were
retained for further analysis. For each remaining cluster of genetic GIs (positive set), a logistic
regression model was tested using leave-one-out cross-validation (LOOCV) against a negative set
(randomly selected gene pairs) of equal size with the requirement that one of the genes found in a
negative pair was included in the cluster of genetic interactions. For all clusters, the six attributes
were used in the regression models. True and false positive rates were computed at 20 equally
spaced model score cutoffs in [0,1], resulting in a receiver operating characteristic (ROC) curve
for each model. The area under the ROC curve (AUC) was used as an indicator of how well a clas-
sifier model could discriminate GIs found in our positive training sets from negative examples.

Enrichment calculation
Gene Ontology (GO) term, essential gene, redundant genes, PPI-Hubs, GI-Hubs and High-PI
genes enrichments were evaluated using a one-tailed Fisher’s exact test. Measurement of
enrichment in groups of GIs defined by positive or negative values for a single attribute
required the identification of a threshold above which the attribute value is considered as posi-
tive. These thresholds are indicated in the S6 Table as well as the number of GIs within GIs-all
associated to a positive value to the attribute. For GO term enrichments, the reference universe
N was constituted of all terms associated to genes (with or without repetition) found in genetic
interactions of GIs-all (see Dataset of genetic interactions section). Note that certain genes are
involved in more than one GI within GI classes. As indicated in the result section, GO enrich-
ment was done considering the gene frequency within classes (each repetition being considered
as an independent gene) or without considering the gene frequency (each gene is used only
once per class and in GIs-all to calculate the enrichment). The universe N for the other enrich-
ment tests contained all genes (with repetition) found in GIs-all.

Monochromaticity index
To evaluate the monochromatic index of each GI class, we first partitioned the GIs-all network
into several dense subnetworks using the Cytoscape plugin “MINE” v1.5 [37] with the default
parameter values. The resulting network contained a total of 42 GIs subnetworks (GDS) (S3A
Fig). To assess the proportion of interactions from a GI class within a particular GDS, we calcu-
lated a monochromatic score (MS) in a similar way than described previously [6]. Let BR repre-
sent the ratio of GIs from a given class within GIs-all andMR, the ratio of GIs from the same
GI class within a GDS. The monochromatic scores of a GI class and for a GDS is given by:

if MR > BR;MS ¼ ðMR � BRÞ
ð1� BRÞ

if MR ¼ BR;MS ¼ 0

if MR < BR;MS ¼ ðMR � BRÞ
BR
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Protein-protein interaction (PPI) network analysis
PPI-Hubs were identified as the 20% proteins with the highest PPI-degree (k� 22) as previ-
ously done [36]. The degree and the betweenness centrality were assessed for all genes, Hubs
and non-Hubs using the network statistic tool in Cytoscape v2.8.2 [57]. Distribution of interac-
tion degrees and betweenness centralities was computed for all the genes (considering the fre-
quency of involvement for each gene in GIs of the class) in a given set of GIs.

PPI dense subnetworks and pathways
The modular partitioning of PPI-networks was done using the Cytoscape plugin “MINE” v1.5
[37] with the default parameter values. Significant PPI dense subnetworks (PDS) were selected
by taking all complexes with a score (Density � Number of Proteins)� 4, giving a total of 106
PDS covering 1,760 proteins connected by 17,430 edges. The size distribution of all PDS is
given in S14A Fig. Significant GI-dense modules (GI-modules) were selected by taking all com-
plexes with a score (Density � Number of Proteins)� 3. KEGG pathways were retrieved from
the Kyoto Encyclopedia of Genes and Genomes database 61.1 release [41]. Pathways from the
literature were manually curated from [63] (S3 Table).

Within- and between- PDS/pathway assessments
To measure the enrichment of within-PDS/pathway and between-PDS/pathway within classes
of GIs and pathways, we defined several networks. Networks UCi are composed of genes and
interactions found in GI classes Ci. A networkWPa is composed of genes found in pathways,
which are linked by an edge if these genes are found in at least one common pathway. We also
defined a network WPDS, which is composed of proteins and PPI found within PDS. The net-
works BPa and BPDS are composed of nodes found in WPa andWPDS respectively and all possi-
ble edges between these nodes from which were removed the edges found respectively in WPa

andWPDS. (note that BPDS do not overlap with the PPI-network). We then computed the fre-
quency F in these networks with respect to the mean frequency calculated for a random net-
work V as follows:

FX;V ¼
X

ðTX \ TYÞX
TX

,X
ðTV \ TYÞX

TV

where TX, TY and TV represent all edges in network X, Y and V respectively.
To compute the frequency of within-PDS and between-PDS interactions found in pathways,

we defined the following: X =WPa, Y =WPDS and BPDS respectively, and V is a random net-
work with the same structure as WPa (detailed in the Network randomization section below).

To compute the frequency of within-PDS and between-PDS found in GI classes, we defined
the following: X = UCi. Y =WPDS and BPDS respectively, and V is a random network with the
same structure as UCi.

To compute the frequency of within-pathways and between-pathways found in GI classes,
we defined the following: X = UCi, Y =WPa and BPa respectively and V is a random network
with the same structure as UCi.

We then computed the log10-ratio (LR) transform score of the frequency for network X
relative to randomized network V. To avoid the log-ratio of a zero value, we used a simple
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transform that took care of any undetermined possibilities as follows:

LRðFX;VÞ ¼
log10 if FX; FV > 0

�1 if FX > 0&FV ¼ 0

0 if FX ¼ 0&FV ¼ 0

��������
Network randomization
The following randomization procedure was used to randomize GI networks (Figs 4 and 6 and
S13 Fig) and pathways (Fig 5). To do so, for each network being randomized, all connected
gene-pairs were split in two groups. The order of genes and the number of edges in the first
group were kept unchanged. Genes in the second group were randomly reordered. This aims
to preserve the degree of connectivity for any gene present in the network and its randomized
version. Restriction was applied to make sure that a pair of gene could not be composed of
twice the same gene. The number of randomized networks generated was determined giving
Hoeffding’s inequality [64]. Basically, by increasing the number (n) of random networks, we
minimize the relative error ρ and get a better estimation of p, the real mean frequency of edges
in within- or between-pathways/PDS. Since the calculated mean μ is an estimation of the real

mean p and ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2� lnð1� cÞ

.
2n

r
, let μ− = max{0,μ−ε} and μ+ = max{1,μ+ε} and with

probability c = 0.99, μ- < p< μ+. And if μ-> 0, we get with probability c, the maximum value
of ρ:

r ¼ jm� pj
p

� maxfjm� m�j; jm� mþjg
m�

For all networks being randomized, 100,000 randomizations were sufficient to obtain a
reasonably small value of the relative error ρ with a probability of 0.99. As a consequence,
error bars cannot be seen (because they are too small) and are not indicated on bar graphs in
Figs 4–6.

The second randomization method, used to validate within- and between-PDS relationships
(S14 Fig), aimed at randomizing all the PDS node labels to create new PDS (Random; S14D
Fig) with the exact same topology than that extracted from the PPI network (Original; S14C
Fig), but with different node labels. In short, for a given PDS, we permuted the node labels by
randomly selecting labels from a list of nodes present in another PDS and not already been
reassigned. The procedure was done iteratively until more than 90% of labels in a given PDS
were permuted. Edges were unchanged to preserve the degree distribution, PDS size, within-
and between-PDS connectivity (as seen in S14C and S14D Fig). After the randomization pro-
cess, the resulting network contained less than 3% overlapping edges with the original PDS
newtork. Note that all PPI used in our study have been generated using yeast two-hybrid sys-
tems which use protein bait to identify preys. However, the bait/prey orientation of PPIs was
not considered in this study.

Distribution pleiotropic indices (PIs)
IDs of observed phenotypes for every gene found in the C. elegans genome, and their hierarchi-
cal relationships, were downloaded fromWormBase (release WS220-bugfix). Relationships
between phenotypes were visualized in Cytoscape, where a node represents a phenotype, and
an edge between two nodes, the hierarchical relationship between two phenotypes. Groups of
phenotype corresponding to the 22 most general phenotypes, covering in 1 step the entire net-
work, were identified (S15 Fig). The pleiotropic index (PI) of a gene was computed as the

Structural and Functional Characterization of a Genetic Interactome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004738 February 12, 2016 24 / 31



number of these 22 classes containing at least one phenotype associated with the gene. This
strategy was used to ensure that we identify the involvement of a gene in different tissues and
at different developmental stages without being biased by the extensive characterization of cer-
tain developmental stages and/or biological processes. As seen in S15 Fig, some groups of phe-
notypes, for example, "Developmental variant" and "morphology variant" are associated to a
much larger number of specific phenotypes than other groups. Several specific phenotypes of
highly populated groups may be attributed to individual genes. Our strategy avoids having
those genes being pleiotropic if not associated to other phenotypic groups.

Each distribution of PIs was computed from a given set of genes, e.g. all C. elegans genes, or
genes in a given set of GIs. Odds ratios (OR), used to measure the enrichment of GIs between
genes within or across certain PI ranges, are defined as:

log10ðORÞ ¼ log10
nx;i=nall;i

Nx=Nall

� �

where nx,i = number of class x GIs (e.g., C1 GIs) in subnetwork i (i being for example a subnet-
work of GIs between genes with pleiotropic index>8); nall-i = total number of GIs in subnet-
work i; Nx = total number of class x GIs (e.g. C1 GIs) and Nall = total number of GIs in the
genetic interactome. Significant enrichments of GI classes in each subnetwork were estimated
using a one-tailed Fisher’s exact test. Only OR associated with a P-value<0.05 were repre-
sented in S17 Fig.

Wilcoxon rank-sum test
Wilcoxon rank-sum test was done according to Hollander andWolfe (1972) using the wil-
coxon.test function in R. This test is used when the population cannot be assumed to be nor-
mally distributed.

P-values
All computed P-values were adjusted using the Benjamini and Hochberg (1995) method for
controlling the false discovery rate (specifically, with the p.adjust function in R).

Supporting Information
S1 Fig. Cluster selection within GIs-all. The x-axis shows the number of clusters with approx-
imately unbiased P-value (higher values indicate greater significance, see Methods) greater
than or equal to the threshold indicated in the parentheses. The y-axis shows area under the
curve (AUC) values following cross-validation analysis of each cluster-based model. Each dot
represents one cluster and its magnitude represents the number of GIs within the cluster. Dots
inside the red rectangle correspond to the 6 clusters selected for further analysis based on their
high AUC values and comparable sizes.
(TIF)

S2 Fig. Genetic interaction classes and associated missing data. Percentage of interacting
gene pairs missing co-expression, phenotype or protein-protein interaction data are indicated.
(TIF)

S3 Fig. GI classes tend to form GDS in a biased manner. (a)Hierarchical clustering of mono-
chromatic indices of GI classes. Each row represents a GDS extracted from GIs-all using the
MINE tool. GDS sizes are indicated by the blue shaded legend. (b) Enrichments of GIs classes
and pair combinations of classes in GDS when compared to GIs-all. Only the statistically
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significant enrichments are shown with -Log10 adjusted P-values (P< 0.05, see Methods). The
GDS size indicates the total number of GIs (edges) of the subnetwork.
(TIF)

S4 Fig. Hierarchical clustering of GI classes based on their genes frequencies. Gene frequen-
cies are clustered using Binary (left dendrogram) and Canberra (right dendrogram) distance
metrics (see Methods).
(TIF)

S5 Fig. Examples of genetic interactions from C1 to C6 classes.Nodes represent genes con-
nected by genetic interactions from the six classes of GIs. Are also indicated, protein-protein
interaction dense subnetworks (PDS) and genes involved in C1 to C6 GIs and also involved in
signalling pathways controlling vulval development (S3 Table).
(TIF)

S6 Fig. Genetic interactions found in C1 GIs. Refer to S5 Fig for the nodes and edges descrip-
tions.
(TIF)

S7 Fig. Genetic interactions found in C2 GIs. Refer to S5 Fig for the nodes and edges descrip-
tions.
(TIF)

S8 Fig. Genetic interactions found in C3 GIs. Refer to S5 Fig for the nodes and edges descrip-
tions.
(TIF)

S9 Fig. Genetic interactions found in C4 GIs. Refer to S5 Fig for the nodes and edges descrip-
tions.
(TIF)

S10 Fig. Genetic interactions found in C5 GIs. Refer to S5 Fig for the nodes and edges
descriptions.
(TIF)

S11 Fig. Genetic interactions found in C6 GIs. Refer to S5 Fig for the nodes and edges
descriptions.
(TIF)

S12 Fig. Protein-protein interactions degree distribution for the multi-species Caenorhab-
ditis elegans interactome. PPI-Hubs are identified as the top 20% most connected proteins in
the PPI network indicated by a dashed line.
(TIF)

S13 Fig. C7 to C9 classes are enriched in between-pathways interactions. Log-Ratio scores
for within-pathway (red bars) and between-pathway (blue bars) relationships observed
between genes interacting through unselected GI classes (C7-C10) or present in GIs-all. A posi-
tive Log-Ratio score means that the frequency of within- or between-pathway GIs occurring in
GI classes is significantly higher than the frequency of similar situations witnessed in relevant
randomized GI networks with a probability of 0.99.
(TIF)

S14 Fig. Enrichment of within- and between-PDS relationship within pathways is not sig-
nificantly influenced by the topology of PDS. (a) Size distribution of 106 protein-protein
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interaction dense subnetworks (PDS). (b) Log-Ratio scores for within-PDS and between-PDS
relationships occurring within-pathways. Different PDS networks were built by varying the
number (N) and size (S) of the PDS. The original network "All" correspond to the union of
PDS used for the study presented in Fig 6. Mean of Log-Ratio are indicated for Randomized
PDS networks (Rdm) (n = 100) have the exact same topology than the original PDS network.
Error bar indicate standard deviation of Log-ratio obtained across the 100 Rdm. (c-d) Depic-
tion of the original and the random PDS networks topology.
(TIF)

S15 Fig. Representation of the 22 classes of phenotypes identified in C. elegans. Phenotype
IDs retrieved fromWormBase (release WS220-bugfix) are represented by nodes and their hier-
archical relationships represented by edges. Groups of phenotypes corresponding to the 22
most general phenotypes, and their first neighbors in the network were identified by different
node colors.
(TIF)

S16 Fig. Distribution of GI degree and pleiotropic index (PI). (a) Degree distribution for GI
degrees in GIs-all. GI-Hubs, corresponding to the 20% GIs with the highest GI degrees, are
located on the right side of the dashed line (GI degree� 16). (b) PI distribution for all genes
with PI> 0 in the C. elegans genome and for all interacting genes in GIs-all. High-PI genes,
corresponding to the 20% genes with the highest PI, are located on the right side of the dashed
line (PI� 6).
(TIF)

S17 Fig. Interaction between gene within or across pleiotropic ranges. Log odds ratios of GI
classes enriched in interactions between genes displaying the same range of PI higher or equal
to a given threshold (τ) (upper panel); or lower or equal to τ (middle panel). GI classes enriched
in interactions in which one partner (gene A) displays a PI� τ and the other (gene B) display a
PI< τ are also indicated. τ is indicated by the x-axis. Only significant enrichments of GI classes
are indicated (Fisher’s exact test, P< 0.05). High log odds ratio indicates high enrichment of
GI classes within or between indicated PI ranges.
(TIF)

S18 Fig. GI groups and GI classes enrichments for different biological characteristics.
Enrichment in GI classes and GI groups of Genetic interaction-Hubs (GI-Hubs), redundant
genes, protein-protein interaction Hubs (PPI-Hubs), Highly pleiotropic genes (High-PI) and
essential genes. -Log of P-values from Fisher’s exact test are indicated. GI groups are associated
to a positive value (+; above a threshold) or a negative value (-; below the threshold) for indi-
cated attributes. Threshold values for each attributes are indicated S6 Table.
(TIF)

S19 Fig. Log-Ratios for GI groups and GI classes occurring within or between PDS or path-
ways. Log-Ratios profiles for GI classes and GI groups associated to a positive (+) or a negative
(-) values for indicated attributes. Blue boxes indicate enrichment of biological characteristics
for C4 and C5 GI classes and CI(+) GI group.
(TIF)

S20 Fig. Summary of the distinctive characteristics identified for modules and connectors.
(TIF)

S1 Text. Supplementary Information.
(PDF)
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S1 Table. GIs-all with selected GI classes. (See Methods.)
(XLSX)

S2 Table. Gene Ontology terms enriched amongst genes in GI classes.
(XLSX)

S3 Table. C. elegans signaling pathways curated from the literature. (See Methods.)
(XLSX)

S4 Table. Genes involved in the same pathway and either involved in the same PDS or in
different PDS.
(XLSX)

S5 Table. Log odds ratio and hypergeometric test P-value relative to S17 Fig.
(XLSX)

S6 Table. GI groups. Thresholds used to identify GI groups associated to a positive or negative
value for attributes as well as the size of each group.
(TXT)
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