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Abstract

Non-genetic phenotypic variation is common in biological organisms. The variation is poten-
tially beneficial if the environment is changing. If the benefit is large, selection can favor the
evolution of genetic assimilation, the process by which the expression of a trait is transferred
from environmental to genetic control. Genetic assimilation is an important evolutionary
transition, but it is poorly understood because the fithess costs and benefits of variation are
often unknown. Here we show that the partitioning of damage by a mother bacterium to its
two daughters can evolve through genetic assimilation. Bacterial phenotypes are also
highly variable. Because gene-regulating elements can have low copy nhumbers, the varia-
tion is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and
deterministically more damage to the old daughter, the one receiving the mother’s old pole.
By modeling in silico damage partitioning in a population, we show that deterministic asym-
metry is advantageous because it increases fithess variance and hence the efficiency of
natural selection. However, we find that symmetrical but stochastic partitioning can be simi-
larly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the
effect of damage anchored to the mother’s old pole. While anchored damage strengthens
selection for asymmetry by creating additional fithess variance, it has the opposite effect on
symmetry. The difference results because anchored damage reinforces the polarization of
partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus,
stochasticity alone may have protected early bacteria from damage, but deterministic asym-
metry has evolved to be equally important in extant bacteria. We estimate that 47% of dam-
age partitioning is deterministic in E. coli. We suggest that the evolution of deterministic
asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our
model is able to quantify the evolution of the assimilation because it characterizes the fit-
ness consequences of variation.
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Author Summary

The benefit of non-genetic variation in phenotypic traits is debated. We show that the par-
titioning of damage by a mother bacterium to its two daughters is a variable trait that pro-
vides an advantage by generating fitness variation. Present day bacteria partition
asymmetrically more damage to the old daughter, the one receiving the mother’s old pole.
By modeling damage partitioning in a population, we find that the asymmetry is advanta-
geous because it increases fitness variation and hence the efficiency of natural selection.
However, our model also shows that symmetrical but randomly variable partitioning can
be similarly beneficial. To examine why bacteria evolved asymmetry, we modeled the effect
of damage anchored to the mother’s old pole. While anchored damage strengthens selec-
tion for asymmetry by creating additional fitness variation, it has the opposite effect on
symmetry. Thus, symmetrical but randomly variable partitioning may have been sufficient
to protect early bacteria from damage. However, natural selection then supplanted it with
a genetically controlled mechanism in the form of asymmetrical partitioning. The change
from random to genetic control is an important evolutionary transition that is poorly
characterized. We are able to quantify this transition because our model estimates the
costs and benefits of fitness variation.

Introduction

The costs and benefits of non-genetic phenotypic variation are a long-standing topic of interest
in evolutionary biology [1-3]. While the variation introduces a cost by generating suboptimal
phenotypes that fail in a set of environments, it also provides a benefit by generating plastic
phenotypes that may better match changing or new conditions. The variation is non-genetic
because it results from stochasticity or noise in the expression of genes or developmental path-
ways controlling the phenotype. The chance matching to change corresponds to a bet-hedging
strategy. However, if the new conditions become long term, natural selection shifts to favor
genetic modifications in which the initial trait evolves from being stochastically determined to
become genetically controlled.

The transition from stochasticity to genetic determinism was independently suggested by
Waddington and Schmalhausen [4-6], who also introduced the terms genetic assimilation to
denote the process, and canalization to represent the trait’s increasing robustness, or ability to
resist environmental perturbations, during assimilation. Working with Drosophila melanoga-
ster, Waddington was motivated by his observations on the evolution of the crossveinless
(CVL) phenotype, which appeared as a gap in the venation of the fly wing. The phenotype was
initially determined by environmental factors because wild type flies, which were not CVL
under normal conditions, expressed the gap after their pupae were exposed to a brief heat
shock. Waddington then selected for the CVL phenotype after heat shock by using flies
expressing the gap as the parents for the next generation. After several generations, not only
did the frequency of CVL flies increase in the population, but the flies also had evolved to
express the gap without a heat shock. Thus, the CVL phenotype had become genetically
assimilated.

The evolution of Waddington’s genetic assimilation can be explained by invoking an activa-
tion process (Fig 1). In order for CVL to be expressed, an individual fly must produce an activa-
tion factor above a threshold. However, the factor is produced with a stochastic distribution. In
wild type flies before selection, the upper tail of the distribution is below the control threshold
and CVL is not expressed. The effect of the heat shock is to lower the threshold so that some
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Fig 1. Evolution of genetic assimilation. An activation factor is assumed to be needed to express a
phenotype such as crossveinless (CVL). The factor is produced stochastically and its concentration varies
between individuals within a population. For CVL to be expressed the concentration needs to exceed a
threshold. (A) Under Control conditions the threshold has a value C, and CVL is not expressed because no fly
in a pre-selection wild type population exceeds the threshold. The effect of subjecting a pre-selection fly pupa
to a heat shock is to lower the threshold to a value H, in which case some flies become CVL (yellow fraction).
(B) After selection for CVL following heat shock, the selected flies evolved to produce the activation factor
with a distribution that has a higher mean. Under Control conditions, more selected flies are CVL after heat
shock (yellow and red fraction), but some flies are able to express CVL even under Control conditions (red
fraction). (C) Alternatively, selected flies may have evolved an activation factor with a distribution that has a
larger variance but the same mean as before selection. CVL is expressed under both Control conditions (red)
and after heat shock (yellow and red).

doi:10.1371/journal.pcbi.1004700.g001

flies can now express CVL. Waddington’s selection evolved flies that expressed CVL at a higher
frequency after heat shock. If the higher frequency was achieved by evolving a new distribution
that was shifted upwards, some of the selected flies would now exceed the threshold even in the
absence of heat shock. An alternative mechanism that increases the variance instead of the
mean of the distribution could also explain the expression of CVL in the selected flies (Fig 1C).
In the latter case, genetic assimilation would have required the evolution of a deterministic pro-
cess to increase the variance above the original stochastic level.

To date, most studies examining the evolution of canalization and genetic assimilation have
focused on metazoan examples [7]. This pattern is not surprising given that estimates of
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phenotypic variation require measurements of individuals within a population. Because of
their small size, microbes, bacteria, fungi, and other single-celled organisms, have traditionally
been studied mainly through the mean properties of their populations. However, with the
recent advances in the resolution of optical microscopy and, most importantly, computer assis-
ted automated time-lapse photo-microscopy, quantifying the phenotype of individual cells has
become much easier. Elongation, division and growth rates can be obtained from time-lapse
images [8-12], while gene expression within single-cells can be quantified by the use of fluores-
cence protein reporters [13-16]. The studies generally report a high level of non-genetic phe-
notypic variation between individuals within a population of genetically identical cells. By
fitting a binomial distribution to the difference between the gene expression levels of two
daughter cells descending from the same mother bacterium, the copy number of gene-regulat-
ing elements, e.g. a repressor protein, has been estimated to be small [13]. Thus, much of the
variation in gene expression may be explained by stochastic or random sampling of the regula-
tory elements. Ensuing discussions raised again the need to assess the evolutionary conse-
quences of phenotypic stochasticity, but now at the level of single cells [2, 17-19]. Issues
similar to those discussed by Waddington and Schmalhausen were noted. In particular, what
were the benefits and costs of non-genetic phenotypic variation at the fitness level?

The possibility of using microbes to model and test the evolution of canalization and genetic
assimilation is appealing. Their ease of culture, short generation times, and amenability to
genetic manipulation would allow for using experimental evolution to study the process in real
time by natural selection. Although Waddington observed evolutionary changes, he used artifi-
cial selection and the fitness benefit of crossveined is unknown. Additionally, because many
mathematical and computational models have been developed to describe specifically the gen-
eration of phenotypic variation in bacteria [20-24], the experiments can be designed and ana-
lyzed in coordination with theory.

Here we present a computational study aimed at identifying the potential costs and benefits
of non-genetic stochastic variation in the growth rate phenotype of bacterial cells. We employ
a model that we first developed to describe the process by which a mother bacterium determin-
istically partitions in an asymmetric manner her load of non-genetic damage, for example oxi-
dized macromolecules, to her two daughters [20]. We chose this model because it was designed
to complement bacterial data. All of its parameters and several of its key predictions have been
estimated or tested with experimental studies [25, 26]. The model has revealed that asymmetri-
cal partitioning is advantageous because it increases the fitness of a lineage by generating phe-
notypic variation and improving the efficiency of natural selection [20]. A more intuitive
explanation is provided by the analogy of two compounded interest accounts, one starting with
$100 at 8% yr ' and a second split account that starts with $50 at 6% and $50 at 10%. Over
time, the split accounts will accrue more money. Asymmetrical partitioning splits the lineages,
the lineages with less damage correspond to the 10% account, and exponential growth by
binary fission provides the compounded interest. The relationship between fitness variation
and the efficiency of natural selection was first recognized by Fisher, who named it the Funda-
mental Theorem of Natural Selection [27]. However, although our model has helped our
understanding of the evolutionary advantage of asymmetrical partitioning as a deterministic
process, the effect of stochastic variation on damage partitioning in the model has previously
not been investigated.

Our results show that stochastic partitioning, in the absence of asymmetrical partitioning,
also provides a fitness advantage, but asymmetrical partitioning is more advantageous when
some damage is anchored to the older poles of the daughter cells. We propose that asymmetri-
cal partitioning, the extant phenotype in bacteria that have been examined [9, 10], evolved over
stochastic partitioning because the latter is unable to match the polarity of the anchored
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damage. Asymmetrical partitioning matches that polarity better because it directs deterministi-
cally non-anchored damage to the older pole. By matching polarity, deterministic asymmetry
increases even further the variance of damage partitioning. We suggest that the evolution of
deterministic asymmetry over stochastic partitioning is an example of genetic assimilation.
The only difference between Waddington’s results and ours is that the variation of the trait,
rather than the trait itself, is assimilated. We hope that future experiments, both with microbes
and metazoans, are motivated by these results.

Results
Basic model of damage partitioning in bacteria

We present first our basic model of damage partitioning, which will be later modified to incor-
porate stochastic partitioning. We provide here only an abbreviated summary, which should be
sufficient for understanding the application of the model. A more detailed derivation and anal-
ysis is provided in Methods and the original publication [20]. We note that the equations pre-
sented here will not be numbered sequentially because some steps presented in Methods are
omitted. The equations retain the numbering as in Methods for consistency.

The basic model is built on the result that E. coli cell division is deterministically asymmetric
because a mother cell allocates more non-genetic damage to her old daughter [9, 12]. The old
and new daughter notation results from the division of rod-shaped bacteria such as E. coli
when the septum cleaves the long axis of the cell (Fig 2). Because two new poles are formed at
the septum, poles distal to the septum are the old poles. All bacteria, including mother and
daughter bacteria, have a new and an old pole. Whenever a mother bacterium divides, one
daughter receives the maternal old pole and the other receives the maternal new pole. The for-
mer is denoted the old daughter and the latter the new daughter.

@ Initial cell of
unknown polarity

C_ T ) Division
V \
(o N) (N 0)

Mother

(o NH(N o)

New daughter Old daughter

Fig 2. Cell polarity in E. coli cells. The cell polarity can be determined by tracking a lineage. Because
division cleaves the short axis (-—-) of the cell, poles formed at the cleavage are new (N) and distal poles are
old (O). After the next division, the daughter receiving the mother’s new pole is the new daughter and the
other is the old daughter.

doi:10.1371/journal.pcbi.1004700.g002
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The model has three parameters, g, A, and I1, which are the asymmetry coefficient, the dam-
age rate constant, and the doubling time of the fittest cell with no damage. The coefficient a
measures the amount of damage a mother partitions to the new daughter and it has a value
range of 0 < a < %. A value of a = ¥ denotes symmetrical partitioning. The doubling time is
the number of minutes required for a bacterial cell to elongate and divide into two daughters.
IT represents therefore the shortest doubling time possible for the bacteria.

A bacterium with damage has a doubling time T that is greater than IT. Our basic model
derives its doubling time to be

T,={(1-k) - V(1 —k)" —2011)}/2 (7)

where i has a value of either 1 or 2 to denote the doubling time of either a new or old daughter,
respectively, k; is the amount of damage a mother cell partitions to the daughters when it
divides, and

k1 - (ko + ;“Tu)a (4)

k,= (k,+ AT,)(1 — a) (5)

With asymmetrical partitioning, k; < k, because a < %. T, is the doubling time of the mother
and ko, the amount of damage it got from its mother, is given as

k():l_(i/Q)To_H/TU (8)

Thus, the amount of damage a mother partitions to her daughters is k, plus the amount of new
damage it accumulates over its lifetime, which equals AT,

The power of the model is that if the doubling time T, of the mother is known, the doubling
times T; and T, can be predicted.

Model for stochastic partitioning

To examine the effect of stochastic partitioning, we first modified our basic model by allowing
the values of a to vary randomly. While everything else was left unchanged, each time that a
cell reproduced in the population, its daughters were generated by Eqs 4 and 5 with a single
value that was sampled from a Gaussian distribution with a mean a and a variance og’.

To obtain values of a and o>, we reevaluated the data of Stewart et al. [9], which we had pre-
viously used to estimate the parameters a, 4, and I1 [20]. The data consisted of 128 trios of
observed values of Ty, T; and T. For each trio, the T; and T, corresponded to the actual daugh-
ters produced by the T, mother. Our estimates were obtained by taking the observed values of
T, using our basic model to obtain predicted values of T; and T, and then finding parameter
values that minimized the difference (squared deviation) between the predicted and observed
T; and T,. Those estimates were only for parameter means, which were a = 4843, 4 = 0.0077
min’, and IT = 18.95 min, because the 128 differences were pooled and minimized as one
number. To estimate o5, we reanalyzed the data set by fitting our model to each individual
trio, minimizing the difference, and obtaining 128 separate estimates of a, A, and Il. From the
mean and variances of the 128 estimates (Fig 3A), a = .4845 and 05> = .000456. Mean values for
the other two parameters were 4 = 0.0079 min™" and IT = 18.30 min. All three means were close
to our previous estimates based on pooled data. The rounded values of a = .48 and o> = .00046
are used hereafter.

Thus, although asymmetrical partitioning creates in a deterministic manner a difference
between new and old daughters, it is still subject to stochasticity or noise. The mean values a =
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Fig 3. Distributions of the asymmetry coefficient a. The value of a represents the proportion of damage partitioned by a mother bacterium to its new
daughter. Asymmetry requires thata < %%. If a = ¥4, the partitioning is symmetrical. Distributions are illustrative representations except for (A), which was
derived from the experiments of Stewart et al. [9]. (A) Stochastic variation for observed values of a estimated from experimental E. coli data. Distribution
mean = .4845, variance os? = .0004557, and sample size n = 128. (B) Distribution of a when the partitioning of damage is stochastic but symmetrical with a
mean of . A Gaussian distribution with a variance of os? = .0004557 is assumed for illustration. (C) Distribution of the proportion of damage allocated to the
daughter that gets less damage when partitioning is stochastic but symmetrical. Because symmetrical partitioning is random with respect to whether a
daughter is old or new, polarity can be ignored and all the daughters can be re-categorized into ones that get less and ones that get more damage. If only the
lesser daughters are considered, the resulting distribution is the half- or folded normal of the Fig 3B distribution. The mean of the half-normal is V»—/(cs?* 2/
3.141593. . .), which equals .483 (®). (D) Gaussian distributions representing four populations: a of new daughters (mean = .48; var = og® = .00046; a of old
daughters (mean = 1—.48 = .52; var = 5 = .00046); a population made by pooling the new and old daughters; and daughters produced by a stochastic but
symmetric mother where the variance is increased to 0s® + D?/4 = .00046 + .0004%/4 = .00086 and mean = .

doi:10.1371/journal.pcbi.1004700.9003

48 and (1 -a) = .52 reflect the deterministic process, and og”> = .00046 represents the magnitude
of the stochastic component.

Fitness advantage of stochastic and asymmetrical partitioning

Natural selection for stochastic and asymmetrical partitioning was modeled by creating a
computational model for a population of bacteria. Following descriptions presented in Meth-
ods, the population was propagated forward in time with Eqs 4, 5, 7 and 8, subjected to natural
selection for shorter doubling times, and monitored the resulting relative fitness. We first
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compared a simulation of three populations: a symmetrical population (a = % and 05> = 0), a
stochastic population (a = % and 65> = .00046), and an asymmetrical population (a = .48 and
05> = .00046). The values of IT = 18.30 min and A = 0.0095 min™* were used for the analysis.
The value of 2 was set higher because previous analyses have shown that the fitness advantage
of asymmetrical partitioning is negligible when 4 is small [20]. Elevating A favors asymmetrical
partitioning because a bacteria that partitions symmetrically cannot survive if 4 >1/6I1 [20].
Thus, if IT = 18.30, 2 = 0.0095 min ™" > 1/6I1.

Simulations of the propagation of the three populations showed distinctly different out-
comes (Fig 4A). As predicted, the symmetrical population was unable to persist with such a

>
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Fig 4. Modeling fitness for damage partitioning in bacteria. Results report relative fitness over time for populations propagated in a computer model as
described (Methods). Parameter values of A = .0095 min™ and M = 18.30 min were used for all simulations. A relative fitness of .5 corresponds to a severely
damaged and effectively dead cell that no longer can divide. Because fitness stabilizes after about 1500 min with these parameter values, fitness values
between 1500 to 5000 min were used to calculate mean fitness. (A) Relative fithess over time for asymmetrical partitioning with stochasticity (a = .48; var =
os? = .00046); symmetrical partitioning with stochasticity (a = %; var = 052 = .00046); and symmetrical partitioning with no stochasticity (a = .5; var = 0). (B)
Relative fitness over time for asymmetrical partitioning with stochasticity (a = .48; var = 05> = .00046; no anchored damage); symmetrical partitioning with
elevated stochasticity (a = ¥; var = ag? + D?/4 = .00046 + .0004%/4 = .00086; no anchored damage); asymmetrical partitioning with stochasticity (a = .48; var
=0s? = .00046; with anchored damage C = .05); symmetrical partitioning with elevated stochasticity (a = 5; var = os? + D?/4 = .00046 + .0004%/4 = .00086;
with anchored damage C = .05). (C) Anchored damage in asymmetrically produced daughters. Because asymmetrical partitioning (gray shading) allocates
movable damage to the old daughter and anchored damage (») is more likely to appear first in the mother’s older pole, the difference between old and new
daughters is magnified. The magnification increases the variance of damage partitioning. (D) Anchored damage in symmetrically produced daughters. If
partitioning is symmetric but stochastic, 50% of the time movable damage is allocated to the old daughter as in Fig 4C. However the other 50% of the time it is
as depicted here, where movable damage (gray shading) is allocated to the new daughter and anchored damage (+) is in the old daughter. The old and new
daughters are rendered more similar and the variance of damage partitioning is reduced.

doi:10.1371/journal.pcbi.1004700.9004
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high 2; it went extinct. The stochastic population achieved an intermediate mean fitness that
equilibrated around 0.571, while the asymmetrical population fared even better and had a
mean fitness of 0.620. However, it is remarkable that the stochastic population was able to sur-
vive the damage, when the symmetrical population was not. Its ability to handle damage results
from the fact that stochastic partitioning also introduces asymmetry. If a stochastic population
partitions damage between old and new daughters with a = % and 65> = .00046, the distribution
of damage is randomly distributed in regards to the polarity of daughters. A new daughter is
just as likely to get more damage as an old daughter (Fig 3B). As a result, it makes no functional
difference, from the perspective of damage partitioning, to categorize the two daughters
descending from the same mother as old and new. However, it is functionally relevant to cate-
gorize them as to the one receiving either more or less damage. The distribution of the ones
receiving less becomes then a folded or half-normal distribution. Because a half-normal distri-
bution has a mean of %—1/(0s>-2 / 3.141593. . .) = 483, half of the daughters in a stochastic
population are receiving on the average a small percentage of the damage from the mother (Fig
3C). Thus, stochastic partitioning is effectively asymmetric.

Matching fitness of stochastic and asymmetrical partitioning

By being effectively asymmetric, stochastic partitioning, in the same manner as asymmetrical
partitioning, provides a fitness advantage by increasing the variance of the amount of damage
the daughter bacteria receive. The fitness advantage provided by the two mechanisms should
match when the resulting variances are equal. This point of equality can be estimated.

Let Vi, ViNew» and Vo represent the variances of the population of daughters produced by
stochastic partitioning and the populations of new and old daughters created by asymmetrical
partitioning. Because the amount of damage in the new and old daughters is generated by the
same process in the same mother, Vy,,, = Vs and the two variances are estimated by our
value of o> = .000456. Although we assumed earlier that V= Ve, = Vi, we will now allow
Vs to increase to determine when equality ensues. Although the variances of the three popula-
tions can be the same, their means are not. While the mean of the stochastic population is 3,
they are (% -D/2) and (% + D/2) in the new and old daughter populations, where D is the dif-
ference in the mean proportion of damage asymmetrical partitioning allocates to the old and
new daughters. As we estimated the mean proportion to the new daughter to be .48 (see
above), D = (1-.48)-.48 = 0.04.

Thus,

Vo= > f)fali) — I
Vew= > 8() i) — (4~ D/
Vou= ¥ g yi) — (4 +D/2)F

where a(i), x(i), and y(i) are the ith amount of damage received by individuals in the stochastic,
new, and old populations, and g(i) and (i) are their frequencies. If g(i) = f(i), the partitioning of
damage is subject to the same level of stochasticity or noise within the three population.

The total variance created by asymmetrical partitioning results from combining the new
and old daughters into a single population. The mean of this combined population is also %,
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and thus its total variance is
Viwa = { > 80) [x(i) — K+ g(i) i) — K} /2

The division by 2 is needed because there are two summations. By substituting and rearrang-
ing, and noting that Vy,, = Vo4, the result simplifies to (see Methods for complete derivation)

VTatal = VNEW + D2/4

By using our previous estimates of Vi, = 05> = .00046 and D = .04, Viypsa = .00086.

Thus, we predict that if the variance generated by stochastic partitioning equals Vi =
.00086, a stochastic population should have the same relative fitness as an asymmetric popula-
tion (Fig 3D). We tested our prediction by comparing the fitness of a stochastic population
with a = .5 and 05> = .00086 and an asymmetrical population with a = .48 and o5 = .00046,
while holding IT and 4 at their previous values. Following our described protocols, we simu-
lated the populations by propagating them with natural selection (Fig 4B). Supporting our esti-
mate that the fitness of two populations should be equal when their variances differ by D?/4,
the fitness of the stochastic and asymmetric populations fluctuated around a mean of 0.617
and 0.620, respectively.

The close match between the two populations raises the question of why bacteria evolved to
partition damage asymmetrically between their old and new daughters. Given that the parti-
tioning of damage is inherently stochastic or noisy in bacteria, as evidenced by our estimate of
05> = .00046 for the fraction of damage allocated to only the new daughter, it follows that bacte-
ria could have achieved equivalent fitness gains by simply evolving a higher level of stochasti-
city. Evolving asymmetrical partitioning may have been less costly than evolving higher
stochasticity, but that raises the second question as to why asymmetrical partitioning biased
the allocation of damage to the old daughter, which is the one harboring the older pole of the
mother (Fig 2). An answer to both questions may be that the older pole of the mother, by virtue
of its higher age, has more damage in anchored and slow-turnover macromolecules, e.g. polar
mureins and flagellar motor rings [28, 29]. Mureins that form the peptidoglycan structures of
cell wall in E. coli are deposited at new poles of daughter cells only at the time they are formed
when the mother cell divides (Fig 2). While new mureins are constantly added to the side walls
during growth of the daughter cells, the polar mureins remain inert. The presence of such
anchored damage polarizes the evolution because variance is increased when non-anchored
damage is partitioned to the old daughter (Fig 4C and 4D).

Modeling effects of anchored damage

To test our prediction that some anchored damage may have triggered the evolution of asym-
metrical partitioning, we modified our basic model to allow for the buildup of anchored dam-
age in the old pole of the mother. A new parameter C was introduced to represent the fraction
of anchored damage. Thus, a fraction (1-C) of non-anchored damage is still asymmetrically
partitioned as before, and anchored damage accumulates at a rate C A and non-anchored dam-
age at a rate (1 -C) A. The amount of anchored and non-anchored damage in a mother cell at
time ¢ is v(t) and w(t) respectively, and

v(t) = v,+ CAt
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where v, and w, are the amounts of anchored and non-anchored damage the cell receives at
birth from her own mother and k, is redefined to represent the total amount of damage. Because

k(t) = v(t) + w(t)
= k,+ At

Egs 1, 2, 3 and 8 in the basic model (see Methods) are still valid with anchored damage. However
Egs 4 and 5 needed to be modified. Because asymmetric partitioning gives the new daughter a
fraction a of the non-anchored damage and none of the anchored damage

k, = w(T,)a
ke = W(Tll)(l - a) + V(T())

With these and no additional modifications, Eqs 6 and 7 and the basic model could be used to
describe the effect of anchored damage on evolution by natural selection in a bacterial popula-
tion. Stochasticity was added as before by sampling a from a Gaussian distribution.

The effect of anchored damage was first investigated by comparing the fitness of stochastic
(a =.5and 05> = .00086) and asymmetric (a = .48 and 05> = .00046) bacterial populations with
C = .05. While mean fitness varied previously around similar values of .617 and .620 in the con-
trol stochastic and asymmetric populations (Fig 4B; no anchor), it decreased to .602 in the sto-
chastic population and increased to .636 in the asymmetric population in the presence of
anchored damage (Fig 4B; C = .05). Thus, anchored damage has a strong effect on polarizing
evolution to favor the asymmetrical partitioning of damage to the old daughter.

To examine more broadly the effects of C and 05> on evolution, we explored how the fitness
values of asymmetric and stochastic populations responded to changes in the two parameters
(Fig 5). As we had found before, when there was no anchored damage (C = 0) the fitness ratio
of the two populations was 1.0 when the variance (04?) ratio equaled .00046 /.00086 = .53, all
ratios reported as asymmetric over stochastic. However, as C was initially increased from zero,
the variance ratio needed to be decreased for the fitness ratio to remain equal to 1.0. In other
words, increasing C harmed the stochastic population, which then needed to increase its vari-
ance to compensate. Anchored damage is harmful because it reduces variance in the stochastic
population by opposing the effects of stochastic partitioning (see Fig 4D). The fitness advantage
provided by anchored damage to the asymmetric population did diminish as C was increased
further, as demonstrated by the leveling of the fitness isoclines. The reason is because as C
increases, the fraction of anchored damage becomes sufficiently large to override the effects of
asymmetrical partitioning. In other words, the variance in both asymmetric and stochastic
populations becomes largely created by anchored damage, which is always polarized. Nonethe-
less, the effect of small values of C shows clearly that small amounts of anchored damage are
needed to promote the evolution of asymmetrical partitioning.

Discussion

Evolution by natural selection requires phenotypic variation in fitness, and it proceeds more rap-
idly, other things being equal, with added variation. The added variance increases the efficiency
of natural selection. In evolutionary biology, mutations and sexual reproduction (recombination
and reassortment) have been considered to be the major sources of variation. The production of
asymmetrical daughters by seemingly symmetrical E. coli [9] adds a novel, and potentially
important, source of variation. Unlike mutations and sexual reproduction, asymmetrical parti-
tioning does not cause genetic or DNA changes. However, the partitioning of damage is heritable
because mothers with more damage produce daughters with higher mean levels of damage. It is
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Ratio of partitioning variances

0 .01 .02 .03 .04 .05 .06
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Fig 5. Fitness landscape for damage partitioning with anchored damage. Landscape compares asymmetric and stochastic bacteria (a = .48; var =
.00046) with symmetric and stochastic bacteria (a = ¥%; variance explored over a range of .0046 to .00046). The partitioning variance of asymmetric bacteria
was held constant because this value was the estimate obtained from experimental data in E. coli. All reported ratios are for values of asymmetric bacteria
divided by values of symmetric bacteria. Contour lines represent the fitness ratio of mean relative fitness determined from simulated populations after values
stabilized (see Fig 4). Parameter values of A = .0095 min™" and M = 18.30 min were used for all simulations. The x-axis represents values of the fraction C of
anchored damage. The y-axis represents the ratio of the partitioning variance. Region above contour line 1.0 represent C and variance ratio values for which
asymmetric bacteria have higher fitness. The points (ll, ®, and A) on the surface denote fitness ratios of populations previously presented, respectively, in
Fig 3A (variance of symmetric bacteria = .00046; no anchor), Fig 3B (variance of symmetric bacteria = .00086; no anchor), and Fig 3B (variance of symmetric
bacteria =.00086; C = .05).

doi:10.1371/journal.pcbi.1004700.9005

equivalent to a maternal effect that results from the provisioning of yolk, other gene products,
mRNA’s, or nutrition by a mother to her offspring [1]. The only difference is that the asymmetry
increases the variance within the progeny of daughters. The allocation of more damage to the
older daughter has been used as model for the evolution of aging [8, 9]. Over time a lineage of
old daughters can acquire a larger load of damage and experience functional deterioration. Thus,
aging is one of the evolutionary costs that cells pay for phenotypic variation.

Although our results demonstrate how asymmetric partitioning is evolutionarily advanta-
geous, they also show how stochastic variance created by random noise can be similarly beneficial.
Because a population that is stochastic and symmetrical is effectively asymmetric, it also creates
daughters that have different levels of damage (Figs 3, 4 and 5). Had asymmetric partitioning not
evolved, stochastic partitioning could have been one of the most compelling examples of benefi-
cial stochasticity. Demonstrating the advantage of stochasticity is difficult because models invok-
ing stochasticity generally assume a bet-hedging strategy in a changing environment. For many
biological processes, the probability and magnitude of the fitness payoffs in the new environment
are not readily determined. For stochastic partitioning, the effect of random variation on the dou-
bling time of old and new daughters is easily translated into fitness and natural selection.
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Our results can be used to estimate the stochastic and deterministic contributions to the var-
iance of damage partitioning. If 05> = .00046 is the stochastic variance of damage partitioning
in separate populations of new and old daughters, then the total variance in the entire popula-
tion is og> + D*/4 = 00046 + .0004 = .00086. Because the difference D between the means of the
new and old daughter populations is deterministically caused by the biology and genetics of E.
coli, D*/4 = .0004 is deterministic variance. Thus, nearly % of the total variance of damage par-
titioning is deterministic, or (D?*/4) / (05> + D*/4) = 47%. The remaining o5’ / (05> + D*/4) =
53% is due to stochasticity.

Because asymmetrical partitioning is the extant phenotype of E. coli, one could postulate
that the ancestral state was 100% stochastic. Stochasticity may have been critically needed to
elevate fitness early in evolution, perhaps when the first proto-cells began to evolve. The irony
is that the greater the advantage of stochasticity, the stronger natural selection would have
favored supplanting it with a deterministic adaptation such as asymmetric partitioning.
Repairing damage is another solution [21, 30, 31], and we expect that to occur and dampen
the selection. However, given that asymmetric partitioning is apparent over a generation [9,
12,20, 25, 26], a significant fraction of damage must be either non-repairable or not easily
repaired over that time scale. Because asymmetrical partitioning evolved to allocate more
damage to the older daughter, we postulated that the bias could have been triggered by the
presence of immovable damage that was anchored to the older pole of the mother cell. Our
computational model showed that the conditions for its evolution were favorable and required
a small proportion of anchored damage. We postulate that anchored damage constitutes only
a small proportion because if it could grow to be 100% of a cell’s damage, an old daughter line-
age should eventually die from the buildup. The empirical observation is instead that the line-
age does not die and damage levels converge to equilibrium levels [20, 25]. Thus, a significant
proportion of damage in the old daughter cannot be anchored and it is redistributed, albeit
asymmetrically, between the old and new daughters.

If our reconstruction of the evolution of asymmetric partitioning is correct, the supplanting
of stochastic process by a deterministic one could constitute a microbial example of Wadding-
ton’s genetic assimilation. The main difference is that it was a phenotypic trait, and not its vari-
ance, that was assimilated in Waddington’s crossveinless example. However, variance is as
good of a trait as any other quantifiable phenotype, and variance was under selection in our
model. Moreover, if an increase in the variance of the activation factor, as we proposed in Fig
1C, accounts for the assimilation of crossveinless, the evolution of asymmetric partitioning and
crossveinless becomes much more comparable. In both cases, the evolution requires the emer-
gence of a deterministic mechanism to generate variation.

Methods
The basic model
The model assumes that the amount of damage in a mother cell at any time ¢ is

k(t) = k,+ it (1)

where k is the amount of damage the cell receives at birth from her own mother and 4 is the
rate at which new damage accumulates. The mother cell divides when it has built up an intra-
cellular product P to a threshold quantity I1. Assuming that damage hinders function linearly,
P accumulates at a rate

dpr/dt

1 — k(1)
1 —k,— At

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004700 January 13,2016 13/17



©PLOS

COMPUTATIONAL

BIOLOGY

Stochastic and Deterministic Partitioning of Damage in Bacteria

P(t) = (1 —k)t— (4/2)¢F

by integration. When P(t) = I, the mother cell divides. Denoting that time point ¢ = T as her
doubling time, P(T,) = IT and

II = (1 - k()) T,— (1/2) T02 (2)

The integration constant P(0) is set to zero because a new pool of the product P is assumed to
be built de novo for every cell division. At the time of division, the mother cell partitions her
damage k(T)) to her two daughters and

k(T,) = k,+ AT, (3)

k(Ty) is partitioned asymmetrically to the cell’s daughters in the proportions a and (I -a).
Thus, the daughters receive

k= (k;+ AT,)a (4)

k,= (k,+ 2T,)(1 — a) (5)

where 0 < a < ¥ and the subscripts 1 and 2 denote the new and old daughters. When each
daughter in turn becomes a mother, Eq 2 can be resubscripted to annotate the daughters or

M= (1-k)T,— (L/2)T} (6)

L= {(1 - k) — V((L— k)= 211 1)} /7 7)

by the quadratic formula and i = I or 2.
Thus, given T, for a mother cell, T; of her two daughters can be determined. k, in Eq 3 is
obtained by rearranging Eq 2 as

kuzl_(’l/mTo_H/Tu (8)

Propagating populations with selection in the computational model

After values of the parameters a, o’, 1, and IT were chosen to represent stochastic and asym-
metrical partitioning, the starting bacterial population of 1000 individuals was established with
no initial damage (ko = 0). With Eq 8, Ty was determined and used in conjunction with Eqs 4, 5
and 7 to predict the T; and T, values for the population of cells the next generation. After
reproduction the population was randomly culled to reduce it to 1000 individuals. The process
was then iterated forward in time by letting the surviving cells reproduce, which was accom-
plished by letting their k;, T}, k, and T, values serve as k, and T, for the next iteration, and so
forth until the mean doubling time of the population remained stable for a sufficiently long
time (about 5000 minutes; e.g. Fig 4A and 4B).

Natural selection and evolution were imposed spontaneously in the model by scaling time
to minutes instead of generations and allowing cells to reproduce only after an increment equal
to their doubling time had passed. Cells with shorter doubling times divided more often, and
hence were more fit and favored by natural selection.

Calculating relative fitness

Because doubling times are inversely proportional to fitness, Ty, T; and T, need to be converted
to relative fitness. The proper conversion is to compare doubling times relative to IT [20],
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which is the doubling time of the most fit and damage free cell (see above). The number of
damage free cells increases by a factor of 2 in a time interval I1. A cell with a doubling time of
T; increases by a factor of 2TE over the same interval. Thus,

w 21_[/Ti/ )

2(H/Ti)7 1

A fitness of 1 indicates that a cell has the shortest possible doubling time of the fittest cell. A
cell so overloaded with damage that it cannot divide has an infinitely long doubling time, in
which case its relative fitness has the lowest possible fitness value of 0.5. The latter results
because the cell persists in the population, but its presence as one cell accounts for only 0.5 of
the two daughters made by the fittest cell. Most cells have doubling times and fitness values
that fall between these extremes. A population with a mean fitness value of 0.5 goes extinct
because it is unable to reproduce.

Mean fitness for populations were determined after doubling times were observed to reach a
stable range of values. Noting that all our populations stabilized after about 1500 minutes,
mean fitness was determined within the window of 1500 to 5000 min (Fig 4A and 4B).

Solving for V;,., = Vy.. + D’ /4

Equation and notation as described in text.
Total {Zg _/2 +Zg _/2 }/2

Adding (D/2 -D/2) to the inside of the summations, rearranging, and combining similar terms

2Via = 2 g0)x() — Jh + (D/2-D/2) + X gi)y(i) — }, + (D/2 — D/2)]
= 2 gl)lx() = (h—D/2) — D/2 + 3 g()y(i) — (/,+D/2) + D2’
= X g()lx())’ = 2x(i)(}, — D/2) + (), = D/2)" = D(}, — D/2) + Dx(i) + D*/4]

(
+ 3 &)’ = 2y()(f, +D/2) + (/, + D/2)" = D(}, — D/2) + Dy(i) + D*/4]
= X g)x(i)’ — 2x(i)( —D/2) + (, = D/2)]
—D(),—D/2) + DY g(i)x(i) + D*/4
+ 3 g()ly() —2y()(), + D/2) + (, + D/2)"]
—D(), = D/2) + D3 g(i)y(i) + D*/4

Noting that ¥ g(i) x(i) = (% -D/2) and X g(i) y(i) = (%5+D/2) are the means of the new and old
daughter populations, ¥ g(i) = 1, ¥ g(i)k = k if k is a constant, and Ve, = Vo

2V = > gl —D/2)' - D(}, - D/2) + D(}, — D/2) + D*/4
+Zg /2+D/2)] — D(},+D/2) + D(},+D/2) + D*/4
VNew+ VOld+2D /4

VToml VNew + D2 /4
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