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Abstract
High-dose chemotherapy has long been advocated as a means of controlling drug resis-

tance in infectious diseases but recent empirical studies have begun to challenge this view.

We develop a very general framework for modeling and understanding resistance emer-

gence based on principles from evolutionary biology. We use this framework to show how

high-dose chemotherapy engenders opposing evolutionary processes involving the muta-

tional input of resistant strains and their release from ecological competition. Whether such

therapy provides the best approach for controlling resistance therefore depends on the rela-

tive strengths of these processes. These opposing processes typically lead to a unimodal

relationship between drug pressure and resistance emergence. As a result, the optimal

drug dose lies at either end of the therapeutic window of clinically acceptable concentra-

tions. We illustrate our findings with a simple model that shows how a seemingly minor

change in parameter values can alter the outcome from one where high-dose chemother-

apy is optimal to one where using the smallest clinically effective dose is best. A review of

the available empirical evidence provides broad support for these general conclusions. Our

analysis opens up treatment options not currently considered as resistance management

strategies, and it also simplifies the experiments required to determine the drug doses

which best retard resistance emergence in patients.

Author Summary

The evolution of antimicrobial resistant pathogens threatens much of modern medicine.
For over one hundred years, the advice has been to ‘hit hard’, in the belief that high doses
of antimicrobials best contain resistance evolution. We argue that nothing in evolutionary
theory supports this as a good rule of thumb in the situations that challenge medicine. We
show instead that the only generality is to either use the highest tolerable drug dose or the
lowest clinically effective dose; that is, one of the two edges of the therapeutic window.
This approach suggests treatment options not currently considered, and simplifies the
experiments required to identify the dose that best retards resistance evolution.
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Introduction
Antimicrobial resistance is one of greatest challenges faced by modern medicine. There is a
widely held view that the evolutionary emergence of drug resistance is best slowed by using
high doses of drugs to eliminate pathogens as early and quickly as possible. This view, first
expounded by Ehrlich [1] (‘hit hard’) and later Fleming [2] (‘if you use penicillin, use enough’),
is today encapsulated in the advice to administer ‘the highest tolerated antibiotic dose’ [3, 4].
The rationale is two-fold. First, a high concentration of drug will eliminate drug-sensitive
microbes quickly and thereby limit the appearance of resistant strains. Second, a high concen-
tration of drug will also eliminate strains that have some partial resistance, provided the con-
centration is above the so-called mutant prevention concentration (MPC) [5–12].

This is an intuitively appealing idea, but several authors have recently questioned whether
high-dose chemotherapy is, as a generality, defensible in terms of evolutionary theory [13–16].
This is because the use of extreme chemical force comes at the cost of maximizing the selective
advantage of the very pathogens that we fear most; namely, those which cannot be eradicated
by safely administered doses of drug. Some experimental studies have also shown that lighter-
touch chemotherapy not only better prevents the emergence of resistance but it restores host
health just as well as high-dose chemotherapy [15–17].

Here we use principles from evolutionary biology to provide a general and comprehensive
theoretical framework for studying the effects of different drug treatment strategies. The analy-
sis shows that high-dose chemotherapy gives rise to opposing evolutionary processes. As a
result, the optimal therapy for controlling resistance depends on the relative strengths of these
processes. High-dose therapy can, in some circumstances, retard resistance emergence but evo-
lutionary theory provides no support for using this strategy as a general rule of thumb, nor
does it provide support for focussing on the MPC as a general approach for resistance preven-
tion. More broadly we find that the opposing evolutionary processes lead to a unimodal rela-
tionship between drug concentration and resistance emergence. Therefore the optimal strategy
is to use either the largest tolerable dose or the smallest clinically effective dose. We illustrate
these general points with some simple models that show how a seemingly minor change in
parameter values can alter the outcome from one where high-dose chemotherapy is optimal to
one where using the smallest clinically effective dose is best. A review of the empirical evidence
provides broad support for these conclusions.

Methods
Determining a patient treatment regimen involves choosing an antimicrobial drug (or drugs)
and determining the frequency, timing, and duration of administration. The impact of each of
these on resistance emergence has been discussed elsewhere [9, 18]. Here we focus solely on
drug concentration because it has historically been the factor most often discussed and because
it is the source of recent controversy [10, 12–14, 16]. We seek to understand how the probabil-
ity of resistance emergence changes as a function of drug concentration.

For simplicity we assume that drug concentration is maintained at a constant level during
treatment and refer to this concentration as ‘dose’. This assumption is not meant to be realistic
but it serves as a useful tool for gaining a better understanding of how drug resistance evolves.
After laying the groundwork for this simple case we show in the Supporting Information that
allowing for more realistic pharmacokinetics does not alter our qualitative conclusions.

Drug resistance is a matter of degree, with different genotypes having different levels of resis-
tance (measured, for example, as the minimum inhibitory concentration, MIC). Our main focus
is on what we call high-level resistance (HLR). This will be defined precisely below but for the
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moment it can be thought of as resistance that is high enough to render the drug ineffective (so
that its use is abandoned). We begin by supposing that the HLR strain is one mutational step
away from the wild type but we relax this assumption in the Supporting Information.

Why is it that resistant strains reach appreciable densities in infected patients only once
drug treatment is employed? The prevailing view is that there is a cost of resistance in the
absence of the drug but that this cost is compensated for by resistance in the presence of the
drug. It is not the presence of the drug per se that provides this compensation; rather, it is the
removal of the wild type by the drug that does so [13, 19]. This implies that the presence of the
wild type competitively suppresses the resistant strain and that drugs result in the spread of
such strains because they remove this competitive suppression (a process called ‘competitive
release’; [19]).

To formalize these ideas, consider an infection in the absence of treatment. The wild type
pathogen enters the host and begins to replicate. As it does so, it consumes resources and stim-
ulates an immune response. We use P(t) to denote the density of the wild type and X(t) to
denote a vector of within-host state variables (e.g., density of immune system components,
resources, etc). Without loss of generality we suppose that the vector X is defined in such a way
that pathogen replication causes its components to decrease. For example, if a component of
the state vector represents some element of an immune response, then we can define this com-
ponent of X(t) as the inverse of this immune cell density. This decrease in X, in turn, makes the
within-host environment less favorable for pathogen replication. If X is suppressed enough, the
net replication rate of the wild type will reach zero. Thus X can be viewed as the quality of the
within-host environment from the standpoint of pathogen replication.

As the wild type replicates it gives rise to the HLR strain through mutation and the initial
infection might include some HLR pathogens as well. But the HLR strain is assumed to bear
some metabolic or replicative cost, meaning that it is unable to increase in density once the
wild type has become established. Mechanistically this is because the wild type suppresses the
host state, X, below the minimum value required for a net positive replication by the HLR
strain [19]. Thus, we ignore the effect of the HLR strain when modeling the joint dynamics of
P(t) and X(t) in the absence of treatment (see Appendix 1 in S1 Text for details).

At some point (e.g., the onset of symptoms) drug treatment is introduced. Provided the dos-
age is high enough the wild type will be driven to extinction. We use c to denote the (constant)
concentration of the drug in the patient. We distinguish between theoretically possible versus
feasible doses. Theoretically possible doses are those that can be applied in vitro. Feasible doses
are those that can, in practice, be used in vivo. There will be a smallest clinically effective dose
that places a lower bound on the feasible values of c (denoted cL) and a maximum tolerable
dose because of toxicity (denoted cU). The dose range between these bounds is called the thera-
peutic window [20].

Once treatment has begun, we use p(t;c) and x(t;c) to denote the density of the wild type
strain and the within-host state. This notation reflects the fact that different dosages (i.e., con-
centrations) will give rise to different trajectories of p and x during the remainder of the infec-
tion. We model the dynamics of p and x deterministically during this phase.

As the wild type is driven to extinction it will continue to give rise to HLR microbes through
mutation. The mutation rate is given by a function λ[p(t; c), c] that is increasing in p and
decreasing in c. We suppose that limc ! 1 λ[p, c] = 0 because a high enough drug concentra-
tion will completely suppress wild type replication and thus mutation. Any HLR microbes that
are present during treatment will no longer be destined to rarity because they will be released
from competitive suppression [19]. We use π[x(t; c), c] to denote the probability of escaping
initial extinction when rare. The function π is increasing in x because it is through this state
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that the HLR strain has been competitively suppressed [19]. And π is decreasing in c with
limc ! 1 π[x, c] = 0 because a high enough dose will also suppress even the HLR strain.

We can now provide a precise definition of high-level resistance (HLR). Although
limc ! 1 π[x, c] = 0, the concentration at which this limit is reached can lie outside the thera-
peutic window [cL, cU]. We define HLR to mean that π[x, c] is very nearly equal to π[x, 0] over
the therapeutic window. Biologically this means that, in terms of clinically acceptable doses,
significant suppression of HLR is not possible. We focus on HLR because, for genotypes that
do not satisfy this property, there is then no resistance problem to begin (since one can always
use a high enough dose to remove all pathogens). For instance, there is evidently no resistance
problem in HIV and Hepatitis C when patients are fully compliant with recommended combi-
nation therapy regimens [21]. That is because at clinically acceptable doses of those combina-
tion therapies, mutations conferring HLR do not arise. We are here interested in cases in which
significant suppression of HLR is not possible even at the upper end of the therapeutic
window.

With the above formalism, we focus on resistance emergence, defined as the replication of
resistant microbes to a high enough density within a patient to cause symptoms and/or to be
transmitted [19]. In the analytical part of our results this is equivalent to the resistant strain not
being lost by chance while rare.

With the above assumptions the host can be viewed as being in one of two possible states at
any point in time during the infection: (i) resistance has emerged (i.e., a resistant strain has
appeared and escaped), or (ii) resistance has not emerged. We model the transition between
these two states as an inhomogeneous birth process. Appendix 1 in S1 Text then shows that the
probability of resistance emergence is approximately equal to 1−e−H(c) where

HðcÞ ¼ DðcÞ þ SðcÞ ð1Þ
and

DðcÞ ¼
Z a

0

l½pðs; cÞ; c� p½xðs; cÞ; c�ds ð2Þ

SðcÞ ¼ �n ln 1� p½xð0; cÞ; c�ð Þ ð3Þ

We refer toH(c) as the resistance ‘hazard’, and a is the duration of treatment with s = 0 cor-
responding to the start of treatment. The quantity D(c) is the de novo hazard—it is the hazard
due to resistant strains that appear de novo during treatment. It is comprised of the integral of
the product of λ[p(s; c), c], the rate at which resistant mutants appear at time s after the start of
treatment, and π[x(s; c), c], the probability of escape of any such mutant. The quantity S(c) is
the standing hazard—it is the hazard due to a standing population of n resistant microbes that
are already present at the beginning of treatment (see Appendix 1 in S1 Text). To minimize the
probability of resistance emergence we therefore want to minimize the hazard H(c), subject to
the constraint that the dosage c falls within the therapeutic window [cL, cU].

Results
To determine how high-dose chemotherapy affects the probability of resistance emergence we
determine howH(c) changes as drug dosage c increases. Differentiating expression Eq (1) with
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respect to c we obtain

dH
dc

¼
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{mutationZ a
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ð4Þ

where π0 = π[x(0; c), c], x0 = x(0; c), and subscripts denote differentiation. Eq (4) is partitioned
in two different ways to better illustrate the effect of increasing dose. The first is a partitioning
of its effect on mutation and replication. The second is a partitioning of its effect on the de
novo and standing hazards. We have also indicated the terms that represent competitive release
by underlining them (as explained below).

The first term in Eq (4) represents the change in de novomutation towards the HLR strain
that results from an increase in dose. The term (@λ/@p)(@p/@c) is the change in mutation rate,
mediated through a change in wild type density; @λ/@p specifies how mutation rate changes
with an increase in the wild type density p (positive) while @p/@c specifies how the wild type
density changes with an increase in dose (typically negative for much of the duration of treat-
ment). Thus the product, when integrated over the duration of treatment, is expected to be neg-
ative. The term @λ/@c is the change in mutation rate that occurs directly as a result of an
increased dose (e.g., the direct suppression of wild type replication, which suppresses muta-
tion). This, is expected to be non-positive in the simplest cases and is usually taken as such by
proponents of high-dose chemotherapy. Therefore high-dose chemotherapy decreases the rate
at which HLR mutations arise during treatment. Note, however, that if the drug itself causes a
higher mutation rate [22], then it is possible for an increased dose to increase the rate at which
resistance appears. The same would be true if resistance was mediated by an increased physio-
logical expression of efflux pumps or processes like antibiotic metabolism. In any of these situa-
tions the use of high-dose chemotherapy would then be even more risky from the standpoint
of resistance emergence.

The second term in Eq (4) represents replication of HLR strains once they have appeared de
novo during the course of treatment. The termrx π � xc is the indirect increase in escape proba-
bility, mediated through the effect of within-host state, x. Specifically, xc is a vector whose ele-
ments give the change in each state variable arising from an increased dosage (through the
removal of the wild type). These elements are typically expected to be positive for much of the
duration of treatment because an increase in dose causes an increased rebound of the within-
host state through a heightened removal of wild type microbes. The quantityrx π is the gradi-
ent of the escape probability with respect to host state x, and its components are expected to be
positive (higher state leads to a greater probability of escape). The integral of the dot product
rx π � xc is therefore the competitive release of the HLR strain in terms of de novo hazard [19].
This will typically be positive. The term @π/@c is the direct change in escape probability of de
novo mutants as a result of an increase in dosage (i.e., the extent to which the drug suppresses
even the HLR strain). This term is negative at all times during treatment but, by the definition
of HLR, this is small. Therefore, high-dose chemotherapy increases the replication of any HLR
mutants that arise de novo during treatment.

Finally, the third term in Eq (4) represents the replication of any HLR strains that are

already present at the start of treatment. The term
n

1� p
ðrxp

0 � x0c Þ is the indirect effect of
dose on standing hazard, where n is the number of resistant pathogens present at the start of
treatment. The quantity x0c is again a vector whose elements give the change in state arising
from increased dosage (through the removal of the wild type). The components of this are
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typically expected to be positive because an increase in dose causes a rebound in the within-
host state.rx π

0 is the gradient of the escape probability with respect to state, and its compo-
nents are expected to be positive (higher state leads to greater probability of escape). The dot
product of the two,rxp

0 � x0c , is therefore the competitive release of the HLR strain in terms of

standing hazard [19]. This will typically be positive. The term
n

1� p
@p0

@c
is the direct change in

escape probability of pre-existing mutants as a result of an increase in dosage (i.e., the extent to
which the drug suppresses even these HLR mutants) and is negative. Again, however, by the
definition of HLR, this will be small and therefore high-dose chemotherapy increases the replica-
tion of any HLR mutants that are present at the start of treatment. Appendix 2 in S1 Text shows
that the same set of qualitative factors arise if there are strains with intermediate resistance as
well.

The above results provide a mathematical formalization of earlier verbal arguments ques-
tioning the general wisdom of using high-dose chemotherapy as a means of controlling resis-
tance emergence [13, 16]. Advocates of the conventional heavy dose strategy tend to emphasize
how high-dose chemotherapy can reduce mutational input and potentially even suppress the
replication of resistant strains (the terms in Eq 4 that are not underlined). However, high-dose
chemotherapy leads to competitive release and thus greater replication of any resistant strains
that are present (the underlined terms in Eq 4). Eq (4) shows that it is the relative balance
among these opposing processes that determines whether high-dose chemotherapy is the opti-
mal approach. We will present a specific numerical example shortly that illustrates these
points, but first we draw two more general conclusions from the theory.

Intermediate doses yield the largest hazard and thus the greatest
likelihood of resistance emergence across all theoretically feasible
doses
The opposing evolutionary processes explained above are the reason why intermediate doses
yield the largest hazard [16]. First note that the functions λ and π will typically be such that
D(0)� 0. In other words, the HLR strain does not emerge de novo within infected individuals
if they are not receiving treatment. Mechanistically, this is because any resistant strains that
appear tend to be competitively suppressed by the wild type strain [19]. Although, S(0) need
not be zero (see S2 Fig), the rate of change of S(c) with respect to c (i.e., the third term in Eq 4)
is positive at c = 0. Therefore the maximum hazard cannot occur at c = 0.

Second, for large enough doses we have π[x(s; c), c]� 0 for all s because such extreme
concentrations will prevent replication of even the HLR strain. This makes both the de novo
hazard D(c) and the standing hazard S(c) zero. Furthermore, for large enough c we also have
λ[p(s; c), c]� 0 for all s as well if HLR can arise only during wild type replication, because such
extreme concentrations prevent all replication of the wild type. This is an additional factor
making the de novo hazard D(c) decline to zero for large c. Therefore limc ! 1 H(c) = 0 and so
the maximum hazard cannot occur for large values of c either [16]. Thus, the maximum hazard
must occur for an intermediate drug dosage. Although this prediction is superficially similar to
that of the mutant selection window hypothesis [5–9], there are important differences between
the two as will be elaborated upon in the discussion.

The optimal dose is either the maximum tolerable dose or minimum
clinically effective dose
We have seen that the maximum hazard occurs for an intermediate dose. Although in principle
the hazard function might be quite complex, in practice our models have never produced
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anything other than a unimodal relationship between H(c) and c (i.e., a single maximum). Fur-
thermore, because the maximum hazard must always occur at an intermediate dose, even if the
theoretical hazard curve is multimodal the existence of error in drug delivery and other sources
of noise will tend to make the empirical hazard curve unimodal (Appendix 1 in S1 Text). As
will be seen in the Discussion, an extensive body of empirical work also shows that measured
hazard curves always appear to be unimodal. As a result, the drug dose which best reduces the
probability of resistance emergence is always at one of the two extremes of the therapeutic win-
dow. This means that it is best to use either the smallest clinically effective dose or the largest
tolerable dose depending on the situation, but never anything in between (Fig 1).

A specific example
To illustrate the general theory we now consider an explicit model for the within-host dynam-
ics of infection and resistance. We model an acute infection in which the pathogen elicits an
immune response that can clear the infection. Treatment is nevertheless called for because, by
reducing the pathogen load, it reduces morbidity and mortality (see Appendix 3 in S1 Text for
details).

We begin by considering a situation in which the maximum tolerable drug concentration cU
causes significant suppression of the resistant strain (Fig 2a). We stress however that if this
were true then, by definition, the resistant strain is not really HLR and thus there really is no
resistance problem to begin with. We include this extreme example as a benchmark against
which comparisons can be made.

Fig 1. Hypothetical plots of resistance hazardH(c) as a function of drug concentration c. The lowest effective dose and the highest tolerable dose are
denoted by cL and cU respectively. The therapeutic window is shown in green. (a) and (b) drug concentration with the smallest hazard is the lowest effective
dose. (c) and (d) drug concentration with the smallest hazard is the highest tolerable dose.

doi:10.1371/journal.pcbi.1004689.g001
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Not surprisingly, under these conditions a large dose is most effective at preventing resis-
tance (compare Fig 2b with 2c). This is a situation in which the conventional ‘hit hard’ strategy
is best. Modern treatment of HIV is an example of this. With combination therapy and good
patient compliance, it is evidently possible to completely prevent virus replication and thus the
emergence of resistance [18].

Now suppose that the maximum tolerable drug concentration cU is not sufficient to directly
suppress the resistant strain (Fig 3a). In this case the only difference from Fig 2 is a change in
the resistant strain’s dose-response curve. Now there really is a potential resistance problem in
the sense that, from a clinical standpoint, the drug is largely ineffective against the resistant
strain.

Under these conditions we see that a small dose is more effective at preventing resistance
emergence than a large dose (compare Fig 3b with 3c). This is a situation in which the conven-
tional or orthodox ‘hit hard’ strategy is not optimal.

Fig 2. Example where conventional strategy of high-dose chemotherapy best prevents the emergence of resistance. (a) The dose-response curves
for the wild type in blue (r(c) = 0.6(1−tanh(15(c−0.3)))) and the resistant strain in red (rm(c) = 0.59(1−tanh(15(c−0.45)))) as well as the therapeutic window in
green. Red dots indicate the probability of resistance emergence. Probability of resistance emergence is defined as the fraction of 5000 simulations for which
resistance reached a density of at least 100 (and thus caused disease).(b) and (c) wild type density (blue), resistant density (red), and immune molecule
density (black) during infection for 1000 representative realizations of a stochastic implementation of the model. (b) treatment at the smallest effective dose
cL, (c) treatment at the maximum tolerable dose cU. Parameter values are P(0) = 10, Pm(0) = 0, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, μ = 10−2, and γ = 0.01.

doi:10.1371/journal.pcbi.1004689.g002
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Fig 3. Example where low-dose strategy best prevents the emergence of resistance. (a) The dose-response curves for the wild type in blue (r(c) = 0.6(1
−tanh(15(c−0.3)))) and the resistant strain in red (rm(c) = 0.59(1−tanh(15(c−0.6)))) as well as the therapeutic window in green. Red dots indicate the
probability of resistance emergence. Probability of resistance emergence is defined as the fraction of 5000 simulations for which resistance reached a
density of at least 100 (and thus caused disease).(b) and (c) wild type density (blue), resistant density (red), and immune molecule density (black) during
infection for 1000 representative realizations of a stochastic implementation of the model. (b) treatment at the smallest effective dose cL, (c) treatment at the
maximum tolerable dose cU. (d) The probability that a resistant strain appears by mutation is indicated by grey bars for low and high dose. The probability of
resistance emergence is indicated by the height of the red bars for these cases. The probability of resistance emergence, given a resistant strain appeared by
mutation, can be interpreted as the ratio of the red to grey bars. Parameter values are P(0) = 10, Pm(0) = 0, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, μ = 10−2, and
γ = 0.01.

doi:10.1371/journal.pcbi.1004689.g003
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Eq (4) provides insight into these contrasting results. The only difference between the mod-
els underlying Figs 2 and 3 is that @π/@c and @π0/@c are both negative for Fig 2 whereas they
are nearly zero for Fig 3 (that is, at tolerable doses, the drug has negligible effects on resistant
mutants). As a result, the negative terms in Eq (4) outweigh the positive terms for Fig 2 whereas
the opposite is true for Fig 3.

These results appear to contradict those of a recent study by Ankomah and Levin [12].
Although their model is more complex than that used here, Eq (4) and its extensions in S1 Text
show that such additional complexity does not affect our qualitative conclusions. Ankomah
and Levin [12] defined resistance evolution in two different ways: (i) the probability of emer-
gence, and (ii) the time to clearance of infection. For the sake of comparison, here we focus on
the probability of emergence. Ankomah and Levin [12] defined emergence as the appearance
of a single resistant microbe. As such their emergence is really a measure of the occurrence of
resistance mutations rather than emergence per se.

In comparison, we consider emergence to have occurred only once the resistant strain
reaches clinically significant levels; namely, a density high enough to cause symptoms or to be
transmitted. There are two process that must occur for de novo resistant strains to reach clini-
cally relevant densities. First, the resistant strain must appear by mutation, and both our results
(Fig 3d) and those of Ankomah and Levin [12] show that a high dose better reduces the proba-
bility that resistance mutations occur (this can also be seen in Eq 4). Second, the resistant strain
must replicate to clinically significant levels. Ankomah and Levin [12] did not account for this
effect and our results show that a high concentration is worse for controlling the replication of
resistant microbes given a resistant strain has appeared (Fig 3d). This is because higher doses
maximally reduce competitive suppression. In Fig 3 the latter effect overwhelms the former,
making low-dose treatment better. In Fig 2 these opposing processes are also acting but in that
case the drug’s effect on controlling mutation outweighs its effect on increasing the replication
of such mutants once they appear.

More generally, Fig 4 illustrates the relationship between drug concentration and the maxi-
mum size of the resistant population during treatment, for the model underlying Fig 3. In this
example a high concentration tends to result in relatively few outbreaks of the resistant strain
but when they occur they are very large. Conversely, a low concentration tends to result in a
greater number of outbreaks of the resistant strain but when they occur they are usually too
small to be clinically significant.

One can also examine other metrics like duration of infection, total resistant strain load dur-
ing treatment, likelihood of resistant strain transmission, etc. but the above results are sufficient
to illustrate that no single, general, result emerges. Whether a high or low dose is best for man-
aging resistance will depend on the specific context (i.e., the parameter values) as well as the
metric used for quantifying resistance emergence. In Appendices 3–6 of S1 Text we consider
cases where there is pre-existing resistance at the start of infection, strains with intermediate
resistance, other measures of drug dosing and resistance emergence, a model of chronic infec-
tion based on resource competition, and more general pharmacokinetics. None of these factors
alters the general finding that the optimal strategy depends on the balance between competing
evolutionary processes.

Discussion
Eq (4) clearly reveals how high-dose chemotherapy gives rise to opposing evolutionary pro-
cesses in the emergence of resistance. It shows how the balance between mutation and competi-
tion determines the optimal resistance management strategy [13, 19]. Increasing the drug
concentration reduces mutational inputs into the system but it also unavoidably reduces the
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ecological control of any HLR pathogens that are present. These opposing forces typically gen-
erate an evolutionary hazard curve that is unimodal. Consequently, the worst approach is to
treat with intermediate doses (Fig 1). The best approach is to administer either the largest toler-
able dose or the smallest clinically effective dose (that is, the concentration at either end of the
therapeutic window). Which of these is optimal depends on the relative positions of the hazard
curve and the therapeutic window (Fig 1). Administering the highest tolerable dose can be a
good strategy (Fig 1c and 1d) but it can also be less than optimal (Fig 1b) or even the worst
thing to do (Fig 1a). Thus, nothing in evolutionary theory supports the contention that a ‘hit-
hard’ strategy is a good rule of thumb for resistance management.

Fig 4. Frequency distribution of resistant strain outbreak sizes for the simulation underlying Fig 3.
Each distribution is based on 5000 realizations of a stochastic implementation of the model. (a) Low drug
dose. (b) High drug dose. Insets show the same distribution on a different vertical scale.

doi:10.1371/journal.pcbi.1004689.g004
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Empirical evidence
Our framework makes a number of empirical predictions that are consistent with existing data.
First, the resistance hazard will be maximized at intermediate drug concentrations. This is
well-verified in numerous studies. In fact a unimodal relationship between resistance emer-
gence and drug concentration (often called an ‘inverted-U’ in the literature) is arguably the sin-
gle-most robust finding in all of the empirical literature [23–41].

Second, the position and shape of the hazard curve will vary widely among drugs and
microbes, depending on how drug dose affects mutation rates and the strength of competition.
Such wide variation is seen [23, 24, 28, 29, 35, 38, 39, 42, 43], presumably reflecting variation in
the strength of the opposing processes highlighted by Eq (4).

Third, the relationship found between drug concentration and resistance evolution in any
empirical study will depend on the range of concentrations explored. At the low end, increasing
dose should increase resistance evolution; at the high end, increasing dose should decrease
resistance evolution. Examples of both cases are readily seen, often even within the same study
[15, 23–41, 44–50]. It is important to note that there are clear examples for which low-dose
treatments can better prevent resistance emergence than high doses [15, 39, 42, 44–47, 49–51],
despite an inherent focus in the literature on experimental exploration of high-dose chemo-
therapy. The theory presented here argues that uniformity is not expected and the bulk of the
empirical literature is consistent with this prediction.

Theory does not support using the MPC as a rule of thumb
An important and influential codification of Ehrlich’s ‘hit hard’ philosophy is the concept of
the mutant selection window, and the idea that there exists a mutant prevention concentration
(MPC) that best prevents resistance evolution [7–9]. The MPC is defined as ‘the lowest antibi-
otic concentration that prevents replication of the least susceptible single-step mutant’ (see p.
S132 in ref. [8]). When drug concentrations are maintained above the MPC, ‘pathogens popu-
lations are forced to acquire two concurrent resistance mutations for replication under antimi-
crobial therapy’ (see p. 731 in ref. [52]). Below the MPC lies the ‘mutant selection window’,
where single-step resistant mutants can replicate, thus increasing the probability that microbes
with two or more resistance mutations will appear. Considerable effort has been put into esti-
mating the MPC for a variety of drugs and microbes [4].

The relationship between these ideas and the theory presented here is best seen using the
extension of Eq (4) that allows for strains with intermediate resistance. Appendix 2 in S1 Text
shows that, in this case, Eq (4) remains unchanged except that its first term (the mutational
component) is extended to account for all of the ways in which the HLR strain can arise by
mutation through strains with intermediate resistance (see expression 2–3 in Appendix 2 of S1
Text). A focus on the MPC can therefore be viewed as a focus on trying to control only the
mutational component of resistance emergence. And as the theory embodied by Eq (4) shows,
doing so ignores the other evolutionary process of competitive release that is operating. The
use of the MPC therefore cannot be supported by evolutionary theory as a general rule of
thumb for resistance management.

If evolutionary theory does not support the use of MPC as a general approach then why
does this nevertheless appear to work in some cases [34, 53]? The theory presented here pro-
vides some possible explanations. First, if HLR strains can appear only through mutation from
strains with intermediate resistance, and if feasible dosing regimens can effectively kill all first
step mutants, then such an approach must necessarily work since it reduces all mutational
input to zero. But for most of the challenging resistance management situations in medicine,
achieving this is presumably not possible. For example, if the MPC is not delivered to all
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pathogens in a population because of patient compliance, metabolic variation, spatial heteroge-
neity in concentration, etc, then the mutational input will not be zero. Also, if HLR strains can
arise in ways that do not require mutating through strains with intermediate resistance (e.g.,
through lateral gene transfer; [54]) then again the mutational input will not be zero. In either
case, one must then necessarily account for how the choice of dose affects the opposing evolu-
tionary process of competitive release in order to minimize the emergence of resistance. S3 Fig
illustrates this idea by presenting a numerical example in which the MPC is the worst choice of
drug concentration for controlling HLR.

Second, the theory presented here suggests that the MPC can be the best way to contain
resistance if this concentration happens to be the upper bound of the therapeutic window
(although see S3 Fig for a counterexample). If, however, the MPC is less than the upper bound
then even better evolution-proofing should be possible at either end of the therapeutic window.
If the MPC is greater than the upper bound, as it is for example with most individual TB drugs
[55] and levofloxacin against S. aureus [28], the MPC philosophy is that the drug should then
be abandoned as monotherapy. But our framework suggests that before doing so, it might be
worthwhile considering the lower bound of the therapeutic window. Researchers have tended
not to examine the impact of the smallest clinically effective dose on resistance evolution, per-
haps because of an inherent tendency to focus on high-dose chemotherapy. It would be infor-
mative to compare the effects of the MPC with concentrations from both ends of the
therapeutic window on resistance emergence experimentally.

Theory does not support using the highest tolerable dose as a rule of
thumb
The MPC has yet to be estimated for many drug-microbe combinations [4] and it can be diffi-
cult to do so, especially in a clinically-relevant setting [52, 54]. Given the uncertainties involved,
and the need to make clinical decisions ahead of the relevant research, some authors have sug-
gested the working rule of thumb of administering the highest tolerable dose [3, 4]. Our analy-
sis shows that evolutionary theory provides no reason to expect that this approach is best. By
reducing or eliminating the only force which retards the emergence of any HLR strains that are
present (i.e., competition), Eq (4) makes clear that a hit hard strategy can backfire, promoting
the very resistance it is intended to contain.

How to choose dose
If the relative positions of the HLR hazard curve and the therapeutic window are known, ratio-
nal (evidence-based) choice of dose is possible. If the therapeutic window includes doses where
the resistance hazard is zero, then those doses should be used. However, by definition, such sit-
uations are incapable of generating the HLR which causes a drug to be abandoned, and so
these are not the situations that are most worrisome. If the hazard is non-zero at both ends of
the therapeutic window, the bound associated with the lowest hazard should be used (Fig 1b
and 1c). If nothing is known of the HLR hazard curve (as will often be the case), then there is
no need to estimate the whole function. Our analysis suggests that the hazards need be esti-
mated only at the bounds of the therapeutic window. These bounds are typically well known
because they are needed to guide clinical practice. Estimating the resistance hazard experimen-
tally can be done in vitro and in animal models but we note that since the solution falls at one
end of the therapeutic window, they can also be done practically and ethically in patients. That
will be an important arena for testing, not least because an important possibility is that, as con-
ditions change, the optimal dose might change discontinuously from the lowest effective dose
to the highest tolerable dose or vice versa. There is considerable scope to use mathematical and
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animal models to determine when that might be the case and to determine clinical predictors
of when switches should be made.

Managing resistance in non-targets
Our focus has been on the evolution of resistance in the pathogen population responsible for
disease. Looking forward, an important empirical challenge is to consider the impact of drug
dose on the broader microbiome. Resistance can also emerge in non-target micro-organisms in
response to the clinical use of antimicrobials [45]. Resistance in those populations can increase
the likelihood of resistance in future pathogen populations, either because of lateral gene trans-
fer from commensals to pathogens, or when commensals become opportunistic pathogens [9,
56, 57]. For instance, aggressive drug treatment targeted at bacterial pneumonia in a rat model
selected for resistance in gut fauna. Lower dose treatment of the targeted lung bacteria was just
as clinically effective and better managed resistance emergence in the microbiota [51].

It is unclear just how important these off-target evolutionary pressures are for patient
health, but if they are quantitatively important, this raises the interesting and challenging possi-
bility that the real hazard curve should be that of the collective microbiome as a whole,
weighted by the relative risk of resistance evolution in the components of the microbiome and
the target pathogen. It will be challenging to determine that, but our focus on either end of the
therapeutic window at least reduces the parameter space in need of exploration.

Coda
Our analysis suggests that resistance management is best achieved by using a drug concentra-
tion from one edge of the therapeutic window. In practice, patients are likely treated more
aggressively than the minimum therapeutic dose (to ensure no patients fail treatment) and less
aggressively than the maximum tolerable dose (to ensure no patients suffer toxicity). This
means that medical caution is always driving resistance evolution faster than it need go, partic-
ularly when the maximum hazard lies within the therapeutic window (Fig 1b and 1c). From
the resistance management perspective, it is important to determine the level of caution that is
clinically warranted rather than simply perceived.

For many years, physicians have been reluctant to shorten antimicrobial courses, using long
courses on the grounds that it is better to be safe than sorry. It is now increasingly clear from
randomized trials that short courses do just as well in many cases [58–60] and they can reduce
the risk of resistance emergence [58, 61, 62]. We suggest that analogous experiments looking at
the evolutionary outcomes of lowest clinically useful doses should be the next step. Such exper-
iments in plants have already shown unambiguously that low dose fungicide treatment best
prevents the spread of resistant fungal pathogens [63]. How generally true this is for other
pathogens, or pathogens of other hosts, remains to be seen. We also note that our arguments
about the evolutionary merits of considering the lowest clinically useful doses have potential
relevance in the evolution of resistance to cancer chemotherapy as well [64].

Supporting Information
S1 Text. Appendix 1—Derivation of Eq 4; Appendix 2—Extensions involving intermediate
strains and horizontal gene transfer; Appendix 3—AModel of acute immune-mediated infec-
tions; Appendix 4—Other results for the model of acute immune-mediated infections; Appen-
dix 5—AModel of chronic infection based on resource competition; Appendix 6—
Generalizing the pharmacokinetics.
(PDF)
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S1 Fig. Dynamics of model in the absence of resistance. (a) The dose-response curve r(c) =
0.6(1−tanh(15(c−0.3))) as well as the therapeutic window in green. (b), (c) and (d) show wild
type pathogen density (blue) and immune molecule density (black) during infection for 1000
representative realizations of a stochastic implementation of the model. (b) no treatment, (c)
treatment at the smallest effective dose cL, (d) treatment at the maximum tolerable dose cU.
Parameter values are P(0) = 10, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, μ = 0, and γ = 0.01.
(TIF)

S2 Fig. The effect of different levels of standing variation for resistance in the initial infec-
tion. Simulation is identical to that for Fig 3a except for the initial conditions. The dose-
response curves for the wild type in blue (r(c) = 0.6(1−tanh(15(c−0.3)))) and the resistant strain
in red (rm(c) = 0.59(1−tanh(15(c−0.6)))) as well as the therapeutic window in green. Red dots
indicate the probability of resistance emergence, and for three different initial conditions. Prob-
ability of resistance emergence is defined as the fraction of 5000 simulations for which resis-
tance reached a density of at least 100 (and thus caused disease). Top set of dots have P(0) = 5,
Pm(0) = 5; middle set of dots have P(0) = 7, Pm(0) = 3; bottom set of dots have P(0) = 10, Pm(0)
= 0. Other parameter values are I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, μ = 10−2, and γ = 0.01.
(TIF)

S3 Fig. Simulation results when there is a strain with intermediate resistance. (a) The dose-
response curves for the wild type in blue (r(c) = 0.6(1−tanh(15(c−0.3)))), the intermediate
strain in yellow (rm2(c) = 0.595(1−tanh(15(c−0.45)))), and the HLR strain in red (rm2(c) = 0.59
(1−tanh(15(c−0.6)))) as well as the therapeutic window in green. Dots indicate the probability
of emergence for the intermediate strain (yellow) and the HLR strain (red). Probability of
emergence is defined as the fraction of 5000 simulations for which the strain reached a density
of at least 100. (b) and (c) wild type density (blue), intermediate strain density (yellow), HLR
strain density (red), and immune molecule density (black) during infection for 1000 represen-
tative realizations of a stochastic implementation of the model. (b) treatment at the smallest
effective dose cL, (c) treatment at the maximum tolerable dose cU. Parameter values are P(0) =
10, Pm1(0) = 0, Pm2(0) = 0, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, μ = 10−2, μ1 = 10−2, and γ =
γm1 = γm2 = 0.01.
(TIF)

S4 Fig. The effect of drug concentration on resistance emergence and treatment failure. (a)
The dose-response curves for the wild type in blue (r(c) = 0.6(1−tanh(15(c−0.3)))) and the
resistant strain in red (rm(c) = 0.59(1−tanh(15(c−0.6)))) as well as the therapeutic window in
green. Dots indicate the probability of resistance emergence. Probability of resistance emer-
gence is defined as the fraction of 5000 simulations for which resistance reached a density of at
least 100 (and thus caused disease). Parameter values are P(0) = 10, I(0) = 2, α = 0.05, δ = 0.05,
κ = 0.075, μ = 10−2, and γ = 0.01. Bar graphs: the probability that a resistant strain appears by
mutation is indicated by the left-hand grey bars for each drug concentration (the right-hand
grey bar is the probability that a resistant strain does not appear). The probability of treatment
failure for a specific drug dose is the sum of the red bars for that dose. (b) Same as panel (a) but
with mutation rate decreased to μ = 10−3.
(TIF)

S5 Fig. Dynamics of chronic infection in the absence of resistance. (a) The dose-response
curve r(c) = 0.00255(1−tanh(15(c−0.3))) as well as the therapeutic window in green. (b), (c)
and (d) show wild type pathogen density (blue) and resource density (black) during infection
for 20 representative realizations of a stochastic implementation of the model. (b) no treat-
ment, (c) treatment at the smallest effective dose cL, (d) treatment at the maximum tolerable
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dose cU. Parameter values are P(0) = 2, R(0) = 2000, θ = 200, δ = 0.1, d = 2, and μ = 0.
(TIF)

S6 Fig. Example where conventional strategy of high-dose chemotherapy best prevents the
emergence of resistance. (a) The dose-response curves for the wild type in blue (r(c) = 0.00255
(1−tanh(15(c−0.3)))) and the resistant strain in red (rm(c) = 0.0025(1−tanh(15(c−0.45)))) as
well as the therapeutic window in green. Red dots indicate the probability of resistance emer-
gence. Probability of resistance emergence is defined as the fraction of 1000 simulations for
which resistance reached a density of at least 300 (and thus caused disease). (b) and (c) wild
type density (blue), resistant density (red), and resource density (black) during infection for 20
representative realizations of a stochastic implementation of the model. (b) treatment at the
smallest effective dose cL, (c) treatment at the maximum tolerable dose cU. Parameter values: P
(0) = 2, Pm(0) = 0, R(0) = 2000, θ = 200, δ = 0.1, d = 2, dm = 2.7, and μ = 10−2.
(TIF)

S7 Fig. Example where a low-dose strategy best prevents the emergence of resistance. (a)
The dose-response curves for the wild type in blue (r(c) = 0.00255(1−tanh(15(c−0.3)))) and the
resistant strain in red (rm(c) = 0.0025(1−tanh(15(c−0.6)))) as well as the therapeutic window in
green. Red dots indicate the probability of resistance emergence. Probability of resistance emer-
gence is defined as the fraction of 1000 simulations for which resistance reached a density of at
least 300 (and thus caused disease). (b) and (c) wild type density (blue), resistant density (red),
and resource density (black) during infection for 20 representative realizations of a stochastic
implementation of the model. (b) treatment at the smallest effective dose cL, (c) treatment at
the maximum tolerable dose cU. Parameter values: P(0) = 2, Pm(0) = 0, R(0) = 2000, θ = 200, δ
= 0.1, d = 2, dm = 2.7, and μ = 10−2.
(TIF)
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