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Abstract
Magainin 2 and PGLa are among the best-studied cationic antimicrobial peptides. They

bind preferentially to negatively charged membranes and apparently cause their disruption

by the formation of transmembrane pores, whose detailed structure is still unclear. Here

we report the results of 5–9 μs all-atom molecular dynamics simulations starting from tetra-

meric transmembrane helical bundles of these two peptides, as well as their stoichiometric

mixture, and the analog MG-H2 in DMPC or 3:1 DMPC/DMPGmembranes. The simula-

tions produce pore structures that appear converged, although some effect of the starting

peptide arrangement (parallel vs. antiparallel) is still observed on this timescale. The pep-

tides remain mostly helical and adopt tilted orientations. The calculated tilt angles for PGLa

are in excellent agreement with recent solid state NMR experiments. The antiparallel dimer

structure in the magainin 2 simulations resembles previously determined NMR and crystal

structures. More transmembrane orientations and a larger and more ordered pore are

seen in the 1:1 heterotetramer with an antiparallel helix arrangement. Insights into the

mechanism of synergy between these two peptides are obtained via implicit solvent model-

ing of homo- and heterodimers and analysis of interactions in the atomistic simulations.

This analysis suggests stronger pairwise interactions in the heterodimer than in the two

homodimers.

Author Summary

The emergence of antibiotic resistance has created a compelling need for new potent anti-
biotics. Antimicrobial peptides, naturally produced by many organisms, have long been
pursued as a means to fill this gap. However, they have not yet realized their practical
potential, partly due to a lack of full understanding of their mechanism of action. The for-
mation of pores by these peptides in bacterial membranes has been demonstrated by mul-
tiple biophysical approaches, but the detailed structure of these pores is still unclear. The
magainin family of antimicrobial peptides have been thoroughly studied over the last
three decades. We have generated atomic-resolution models of membrane pores generated
by tetrameric assemblies of different magainin peptides by means of molecular dynamics
simulations on the multimicrosecond timescale. The results complement previous
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experimental findings and set the stage for further development of theoretical and experi-
mental approaches that may ultimately allow the rational design of improved antibiotics.

Introduction
The magainin family of antimicrobial peptides are found in the skin of the frog Xenopus laevis
[1]. Magainin 2 (MAG2) and PGLa are the best studied peptides in this family. They are active
against a broad range of microorganisms [1,2] and exhibit cytolytic effects on certain tumor
cell lines [3,4]. They are unstructured in solution but fold as amphipathic α-helices in the pres-
ence of TFE and upon binding to lipids [5–7]. Like other antimicrobial peptides, they have
been found to act on membranes [8–10], presumably forming pores [11]. Despite intensive
experimental efforts, the detailed structure of these pores is still unknown.

MAG2 has been studied extensively for almost 30 years now. It binds to the surface of
anionic lipid bilayers mainly through electrostatic interactions, where it causes thinning and,
eventually, disruption of the membrane potential and cell lysis [1,12]. At high peptide concen-
tration a portion of the peptides undergo a transition from surface to transmembrane orienta-
tion [13,14]. Results from in-plane neutron scattering experiments in oriented multilayers
showed that an average of 4 to 7 MAG2 peptides stabilize toroidal pores of 70 Å outer diameter
[14]. These results were further corroborated by cryo-EM, which showed that MAG2 forms
pores of ~80 Å diameter in DMPC/DMPG vesicles [15]. It has been observed that the pores do
not affect significantly the integrity of the membrane [16,17]. Upon the eventual pore closure,
the peptides translocate to the inner leaflet to balance the peptide concentration in each leaflet
[18].

PGLa is a similar peptide produced in the glands of the same frog [19], which has been
found to promote membrane permeabilization [20,21]. Experimental evidence has suggested
that PGLa probably forms short-lived pores as a consequence of the instability introduced by
the electrostatic repulsions between its positively charged residues [10]. Like MAG2, PGLa
translocates from the outer to inner membrane leaflets, induces lipid flip-flop, alters membrane
curvature and promotes the formation of peptide-lipid clusters [22]. Solid-state NMR studies
have provided information on the orientation of the peptides in membranes with different
lipid composition. At low peptide to lipid molar ratio (P/L) PGLa adopts an orientation parallel
to the membrane surface (S-state) [23], whereas at higher P/L it adopts intermediate, tilted ori-
entations (T-state) [24].

Apart from their individual activity, the combination of MAG2 and PGLa results in
enhanced cytolytic, antitumor and antibacterial effects [25,26]. Fluorescence and dye-leakage
experiments showed that the mixture shares the same mechanism of action as the individual
peptides and exhibits faster pore formation but moderate pore lifetime [10]. The best synergis-
tic performance is achieved in 1:1 stoichiometric mixtures, which suggests that MAG2 and
PGLa may form heterodimers. Single-site mutations decreased the synergy, supporting the
idea of specific interactions [10]. A cross-linking study suggested a parallel topology for the
heterodimer [27]. Solid state NMR studies showed that the presence of MAG2 increases the
probability of a fully inserted state (I-state) for PGLa [28] but MAG2 remains parallel to the
membrane surface [29]. It was suggested that MAG2 may facilitate the insertion of PGLa by
thinning the bilayer [29] but more recent work showed that the orientation of PGLa depends
on lipid spontaneous curvature rather than thickness [30].

As in other biophysical problems, molecular modeling and computer simulations have the
potential to provide atomic level insights. Spontaneous generation of a toroidal pore was first
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described in an atomistic molecular dynamics simulation by Marrink's group [31]. This work
studied a tetramer of a magainin derivative that is more hydrophobic and thus active on neutral
membranes (MG-H2 [32]). The authors found that the MG-H2 peptides were extensively
unfolded and located mostly on the rim of the water channel. This arrangement was termed a
“disordered toroidal pore”. Further all-atom simulations and longer time-scale simulations at
the coarse-grained level reaffirmed the formation of a disordered toroidal pore by MG-H2
[33]. The role of charge distribution on pore formation was addressed in atomistic simulations
starting from a transmembrane bundle [34]. That study showed that the positive charges in the
N-terminus of MG-H2 (residues K3 and K4) are critical for the formation of a toroidal pore,
whereas positive charges in the middle of the helix (residue K11 and K14) introduce more dis-
order into the pore structure. More recent coarse-grained simulations revealed a mechanism of
creating giant pores via membrane remodeling [35] and the formation of large clusters and dis-
ordered toroidal pores [36]. The mechanism of PGLa-magainin synergy has also been explored
with coarse-grained simulations [37].

In the present work, we have investigated the mechanism of pore stabilization by magainin
peptides via 5–9 μs all-atommolecular dynamics simulations on the Anton supercomputer.
Since the time scale for pore formation is unknown (likely longer than the timescales currently
accessible), these simulations started from tetrameric helical bundles inserted in a transmem-
brane orientation. The rationale was that the local free energy minima corresponding to peptide-
stabilized membrane pores should be closer to this starting condition than to peptides adsorbed
on the membrane surface, so that simulations could hopefully reach them on the above time-
scale. Simulations were performed for MAG2 and PGLa homotetramers, as well as 2:2 heterote-
tramers. Antiparallel arrangements of the helices were also simulated, based on implicit solvent
modeling results showing antiparallel dimers to be more favorable. For each system, the mem-
brane composition was chosen according to the optimal activity of the peptide observed in vitro
[10,14,21,32]. The results are compared to the available experimental data and provide insights
into the mechanism of membrane pore stabilization by these peptides at the atomic level.

Results
In this work six tetramers of magainin-family peptides were simulated on the Anton super-
computer for 5 to 9 μs starting from membrane-inserted helix bundles (Table 1). Lipid compo-
sition, membrane patch size, starting helix orientation, and peptide bundle composition were
varied to examine the effect of these parameters and to obtain insights into the observed syn-
ergy between the two peptides. In all the simulated systems the peptides rapidly reoriented,
allowing the penetration of water molecules in the bilayer and formation of a channel. How-
ever, the final orientation of the peptides and the size of the water pore differed significantly
among the six systems. Although the spatial distribution of the peptides around the pore varies
between systems, all pores are stabilized by the four monomers, which remain inside the mem-
brane for the whole simulation (S1 Fig). A detailed description of the simulations is given in
this section and comparison with experimental data and previous studies is done in the Discus-
sion. In what follows, we have taken into consideration the terminology used in previous stud-
ies [30] and will refer to tilt angles in the range 60°-120° as S-state, 30°-60°/120°-150° as T-
state, and 0–30°/150-180° as I-state.

MAG2 parallel tetramer in 80-lipid DMPC/DMPG
The initial structure in this simulation is a tightly packed, parallel 4-helix bundle (N terminus
in the "upper" leaflet in Fig 1). During the first microsecond, two of the monomers adopt S-
state orientations on opposite leaflets, while the remaining two peptides remain in a slightly
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tilted T-state (Fig 1A). As a result of the reorientation, the monomer located on the upper leaf-
let inserts its C-terminus deeper into the membrane, whereas the peptide on the lower leaflet
inserts its N-terminus deeper. During these first steps of the simulation, several lipids bend and
insert their headgroups into the membrane and around the channel. This configuration is fairly
stable during the first 3 μs of the trajectory. At that point, the four monomers insert their termi-
nal regions deeper into the membrane and adopt T-state orientations with average tilt angles
from 45–60° (Figs 1B and 2A). This configuration, which does not change significantly for the
remaining 6 μs of the simulation, is supported by an extensive set of pairwise intermolecular
interactions (Fig 1C). The orientation of the monomers favors interactions between residues
located in the N- and C-terminal regions. During the last microsecond of the trajectory, the
interacting network is mainly comprised of the charged residues E19, K4, K10 and K14, and
also S23 in the C-terminus. As a result, neighboring monomers have interaction energies rang-
ing from -120 to -200 kcal/mol.

In this stable configuration, the terminal regions of the four peptides (2 C- and 2 N-termini)
are located in very close proximity. As a consequence, the pore radius decreases in the last part
of the trajectory, and we observe that the peptides frequently block the channel and interrupt
the water flow (Fig 3A). As a result of the tight structural arrangement, only 3 lipid headgroups
on average penetrate in the hydrophobic area of the bilayer during the last microsecond of the
trajectory (Table 2).

Table 1. Systems simulateda.

Peptide initial orientation Membrane composition Number of lipidsb Simulation length P/L ratio

MAG2 Parallel DMPC/DMPG 3:1 80 9 μs 1:20

MAG2 Antiparallel DMPC/DMPG 3:1 120 5 μs 1:30

PGLa Parallel DMPC/DMPG 3:1 120 5 μs 1:30

MG-H2 Parallel DMPC 71 9 μs ~1:18

PGLa-MAG2 Parallel DMPC 71 9 μs ~1:18

PGLa-MAG2 Antiparallel DMPC/DMPG 3:1 120 9 μs 1:30

a Peptide sequences: MAG2: GIGKFLHSAKKFGKAFVGEIMNS; PGLa: GMASKAGAIAGKAIAK VALKAL-NH2; MG-H2: IIKKFLHSIWKFGKAFVGEIMNI
b Approximate cell sizes: 56x56x60 Å (71–80 lipids) and 66x66x74 Å (120 lipids).

doi:10.1371/journal.pcbi.1004570.t001

Fig 1. Representative structures from the MAG2 parallel tetramer simulation. (A) Thin pore supported
by an irregular distribution of MAG2monomers. (B) Final structure. (C) Amino acids involved in intermolecular
interactions formed during the last microsecond of the trajectory and pore waters. In all the figures, lipids are
shown as grey spheres, phosphorus atoms representing the lipid headgroups are shown as orange spheres
and water molecules as lines. Lipid spheres are semi-transparent and some of the molecules have been
omitted for clarity.

doi:10.1371/journal.pcbi.1004570.g001
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MAG2 antiparallel tetramer in 120-lipid DMPC/DMPG
The initial configuration of this system consisted of two antiparallel dimers placed parallel to
each other in a transmembrane orientation with the hydrophobic face outwards. This choice
was motivated by implicit membrane modeling results of the possible combinations of dimer

Fig 2. Peptide orientation changes in the membrane. The plot shows the tilt angle values for MAG2 in (A) 80 lipids and (B) 120 lipids, PGLa (C), MG-H2
(D), and PGLa-MAG2 in DMPC (E) and DMPC/DMPG (F) simulations. The colors on this plot correspond to the colors of the peptides in Figs 1 and 4–8.

doi:10.1371/journal.pcbi.1004570.g002

Fig 3. Evolution of the transmembrane pore. The plot shows the inner pore values variation for MAG2 in (A) 80 lipids and (B) 120 lipids, PGLa (C), MG-H2
(D), and PGLa-MAG2 in DMPC (E) and DMPC/DMPG (F) simulations.

doi:10.1371/journal.pcbi.1004570.g003
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orientations on the membrane surface, in which the antiparallel one was found to be the most
energetically favorable (see S1 Text).

A wide water channel opens during equilibration, reaching ~7 Å radius at the beginning of
production (Fig 3B). In the first microsecond of the simulation, the four monomers adopt a
tilted orientation (Fig 4A). Two of the peptides, colored blue and grey in Fig 4, maintain the
adopted T-state conformation for the rest of the trajectory, with very stable average tilt angle
values of 131° ± 6 and 50° ± 6, respectively (Fig 2B). The other two monomers adopt a dynamic
equilibrium between T-state and I-state configurations from 2 μs to the end of the 5 μs simula-
tion. At the end of the trajectory, these two monomers stabilize in a transmembrane orienta-
tion, with average tilt angles during the last microsecond of 147° ± 6 and 18° ± 6.

The final configuration of the tetramer shows a symmetrical arrangement of the monomers
in two well defined T-state and two inserted orientations (Fig 4B). The original antiparallel
dimers remain associated but with a nonzero crossing angle. This structure of the dimers is sta-
bilized by multiple interactions between charged groups and the stacking of Phe residues (Fig
4C). Interestingly, it resembles the available NMR structure [38] and a crystal structure of a
magainin variant [39], although the crossing angle in the latter is smaller (S2 Fig). The mono-
mers in contact have average interaction energies of -223 ± 45 kcal/mol (blue and grey peptides
in Fig 2), -166 ± 47 kcal/mol (green and grey peptides), and -78 ± 48 kcal/mol (pink and blue
peptides) during the last microsecond of the simulation. Although the alignment of the pep-
tides varies during the trajectory, the overall configuration of the pore structure is fairly stable.
The pore is further supported by a variable number of headgroups that surround the channel

Table 2. Structural analysis of the transmembrane pores. The values correspond to averages over the last microsecond of the trajectory.

Helicity* Tilt angle* Number of headgroups Number of water molecules+ Inner pore radius

MAG2, 80-lipids 52-81-69-41 67-59-36-54 3 ± 1 1469 ± 114 3 ± 1.5

MAG2, 120 lipids 85-84-78-77 128-51-18-147 7 ± 2 1582 ± 220 5.6 ± 1

PGLa 90-90-90-90 120-59-119-61 5 ± 2 1215 ± 241 2.3 ±1.2

MG-H2 81-77-85-67 76-55-42-113 5 ± 1 1017 ± 187 8 ± 0.9

PGLa-MAG2, 71 lipids 59-85-82-84 51-80-35-49 3 ± 1 791 ± 116 5 ± 0.9

PGLa-MAG2, 120 lipids 89-82-77-82 36-133-25-130 8 ± 2 1556 ± 232 5.6 ± 1.4

* The values correspond to peptides blue-grey-pink-green in Figs 1 and 4–8, respectively.

doi:10.1371/journal.pcbi.1004570.t002

Fig 4. Representative structures from the MAG2 antiparallel tetramer simulation. (A) Monomers in T-
state aligned around a wide water channel. (B) Final structure of the pore supported by two magainin
peptides in the I-state. (C) shows the individual amino acids involved in the intermolecular interactions formed
during the last microsecond of the trajectory.

doi:10.1371/journal.pcbi.1004570.g004
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between the two I-state monomers (Fig 4B). The amount of headgroups lining the pore walls
depends greatly on the pore size along the trajectory. The channel radius fluctuates around an
average value of ~6 Å to maximum peaks between 7–8 Å (Fig 3B).

PGLa parallel tetramer in 120-lipid DMPC/DMPG
The pore formed during equilibration increases in size up to 6–7 Å radius during the first two
microseconds (Figs 5A and 3C). In this initial period, all the monomers explore different trans-
membrane and surface orientations, and an average of 6–8 headgroups penetrate into the
bilayer to line the channel. At ~1.5 μs two of the monomers transition to an S-state conforma-
tion on the surface of the lower leaflet (peptides colored blue and pink in Fig 5), and they move
across the periodic images at different moments in the trajectory. During these transitions, the
channel is supported by the three remaining monomers, until the tetrameric structure is
restored between 2 and 2.5 μs. The tetrameric assembly is then stable for the rest of the trajec-
tory, and displays the four monomers in tilted T-states around a very thin water channel (Fig
5B). For the last 2.5 μs, the monomers in the upper and lower leaflets have almost identical tilt
angle values of 57.7° ± 7.7 and 60.6° ± 6.0, and 120.0° ± 5.0 and 117.6° ± 7.0, respectively (Fig
2C).

This final configuration promotes a drastic decrease of the size of the pore, which is even
transiently blocked at ~3 μs (Figs 5B and 3C). During the last two microseconds of the simula-
tion, the average pore radius is 2.4 ± 1.2 Å. The number of headgroups involved in pore stabili-
zation also decreases during the last microsecond of the trajectory to an average of 5 (Table 2).
The simulation was stopped at 5 μs due to the lack of any significant changes in the structure of
the tetramer and the small diameter of the pore. Despite their proximity, none of the peptides
form specific interactions, which translates to insignificant interaction energy values between
monomer pairs.

MG-H2 parallel tetramer in 71-lipid DMPC
This simulation extends a previous 160-ns one in which the peptides organized around a disor-
dered toroidal pore, from an initial transmembrane orientation [34]. The starting configuration
in the present study includes two monomers in a T-state and two S-state located on opposite
leaflets (Fig 6A). The four monomers are highly mobile throughout the trajectory, leading to
major variations in the pore structure. During the first ~2 μs, the peptides exchange between
different orientations inside the membrane, until they reach a stable conformation that is
maintained until the end of the simulation (Fig 6B). Here also we observed the translation of
one monomer into the neighboring periodic image (peptide colored green in Fig 6). During
this transition, the pore was stabilized by the three remaining peptides and by lipid headgroups,
until the monomer translated completely and re-established the tetrameric structure. This
transient event did not affect the integrity of the pore. Afterwards, the tetramer adopts a stable
configuration in which the monomers arrange in pairs, facing opposite terminal regions
towards the water channel (Fig 6B). This spatial configuration allows the formation of intermo-
lecular interactions between charged side chains in the N- and C-terminal regions (Fig 6C) that
contribute to favorable interaction energy only between peptides in the same pair (-324 kcal/
mol ± 71 for peptides grey and green in Fig 4, and -186 kcal/mol ± 45 for peptides blue and
pink).

The pore size decreases gradually during the simulation to eventually grow up again to a
final value of 8.2 Å ± 0.9 during the last microsecond (Fig 3D). Sharp alterations in the pore
radius values are the result of the translation event and the partially unfolded regions of two of
the monomers. These regions comprise most of the charged amino acids involved in the
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formation of salt bridges, which is favored by the flexibility provided by the absence of a
defined secondary structure. The average helicity during the simulation ranges between 67–
82%, which is significantly higher than that reported in a previous computational study [31].

PGLa-MAG2 parallel tetramer in 71-lipid DMPC
This heteromer is initially assembled in a parallel orientation with the N-termini of all the
monomers pointing towards the upper leaflet. The monomers sample multiple orientations
during the first half of the trajectory. At ~2 μs, the two MAG2 peptides and one of the PGLa
monomers pull their C-termini towards the surface of the upper leaflet, adopting a highly tilted
orientation (Fig 7A). The remaining PGLa monomer also increases its tilt angle by bending its
N-terminus to the water channel. The three monomers on the upper leaflet rapidly transition
to a T-state conformation. At ~6.5 μs the tetramer reaches a stable configuration comprised by
the two MAG2 monomers with their C-termini buried in the bilayer, a PGLa monomer in a
tilted T-state, and the remaining PGLa peptide almost parallel to the lower leaflet, with an aver-
age tilt angle of 80° ± 5 (Figs 7B and 2E). The average tilt angles of the three transmembrane
monomers during the last microsecond range between 35° to 50° (Fig 2E).

The size of the pore varies abruptly for 6 μs together with the exchange in transmembrane
orientations of the four monomers (Figs 2E and 3E). The sharp changes in pore size observed

Fig 5. Representative structures from the PGLa tetramer simulation. (A) Wide toroidal pore comprised
by the peptides and multiple lipid molecules at the beginning of the simulation. (B) Final structure of the
tetramer around a very thin water channel. (C) Top view of the final structure of the PGLa tetramer.

doi:10.1371/journal.pcbi.1004570.g005

Fig 6. Representative structures from the MG-H2 tetramer simulation. (A) Starting configuration
corresponding to the last frame of the simulation by Mihajlovic and Lazaridis [34] and (B) final structure
showing a disordered wide pore, stabilized by MG-H2 and multiple lipid molecules. (C) shows the individual
amino acids involved in the intermolecular interactions formed during the last microsecond of the trajectory.

doi:10.1371/journal.pcbi.1004570.g006
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from ~6 to 9 μs are due to a partial blockage of the channel by the unfolded C-terminus of one
of the MAG2 monomers (peptide colored blue in Fig 7). The helicity of the fragment between
residues V17 to S23 drops to almost 0% for the last three microseconds of the trajectory
(Table 2). The increased flexibility of this unfolded region favors the approach of E19 to the
lysine residues in the neighbor PGLa monomer, hence obstructing the pore. Nevertheless, the
channel is continuously open with an average pore radius 6.4 Å ± 1.2 for the entire simulation.

The two MAG2 monomers interact individually with the PGLa monomer in the T-state
through charged residues (Fig 7C). The interaction energies of these PGLa-MAG2 pairs during
the last microsecond are -211 ± 57 and -225 ± 37 kcal/mol. The PGLa in the tilted S-state inter-
acts exclusively with one MAG2 monomer through M2 and N22, respectively. The interaction
energy of this pair is -126 ± 52 kcal/mol. Interaction energies between MAG2-MAG2 and
PGLa-PGLa pairs are negligible.

PGLa-MAG2 antiparallel tetramer in 120-lipid DMPC/DMPG
The antiparallel dimer structure resulting from the implicit membrane calculations (see S1
Text) was duplicated and arranged as a transmembrane tetramer. A water channel opens dur-
ing equilibration and rapidly increases in size (Fig 3F). As a result of pore growth, the tetramer
splits into two heterodimers that do not interact with each other but display similar dynamic
behavior during the entire simulation. For the first 5 μs, the four monomers transition between
T-state conformations. At this point, a MAG2 and a PGLa of opposite heterodimers adopt an
almost perfect I-state conformation, whereas the other two monomers move towards the upper
and lower leaflet of the membrane (Fig 8A). The intermolecular interactions are reduced to
transient salt bridges between E19 of MAG2, and K12, K15 and K19 of PGLa in just one of the
heterodimers (monomers colored gray and pink in Fig 8). At ~6 μs, the four monomers adopt
tilted transmembrane orientations (Fig 8B) that result in a significant decrease in the pore size
(Fig 3F). During the last microsecond, the pore size increases again as the heterodimers sepa-
rate into a configuration that resembles the one previously observed at ~5 μs, but with the two
peptides in each dimer having roughly exchanged orientations (Fig 8C). In this last structure,
the interface area between monomers is wider, and the charged side chains of both heterodi-
mers participate in the formation of intermolecular interactions (Fig 8D). The average interac-
tion energies for the last microsecond for the heterodimers are -151 ± 50 and -210 ± 63 kcal/
mol. The large pore is stabilized by an average of 8 headgroups inserted in the hydrophobic

Fig 7. Representative structures from the PGLa-MAG2 parallel tetramer simulation. Intermediate (A) and final structures (B) obtained from the PGLa-
MAG2 tetramer simulation in a DMPCmembrane. (C) shows the individual amino acids involved in the intermolecular bonds formed during the last
microsecond of the trajectory and pore waters. The legend in the right bottom corner shows the color code for each peptide.

doi:10.1371/journal.pcbi.1004570.g007
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region of the bilayer during the last microsecond of the trajectory, although we observed peaks
of 10–12 headgroups during the pore expansion period at 4.5 μs (Table 2).

Discussion
The all-atom simulations reported here are, to our knowledge, the longest yet on antimicrobial
peptides. In these simulations four parameters were varied: membrane patch size, membrane
composition, peptide bundle composition, and starting arrangement (parallel or antiparallel).
The limited computational resources did not allow us to try all possible combinations of these
four parameters to assess the effect of each one individually. Another important parameter that
was not varied was oligomeric number; only tetramers were considered here based on experi-
mental suggestions [8,14,40]. In most instances the pore structures seem converged, based on
the lack of further changes near the end of the simulation. However, the effect of the initial pep-
tide arrangement is not fully eliminated on this timescale. This is most clearly seen in simula-
tions 1 and 2, where the same peptide bundle is simulated in the same lipid composition but
with different starting arrangements and different box size giving a distinct final pore structure.
Despite these limitations, important insights have been obtained by these simulations which
help interpret some key experimental data, as discussed below.

Experimental results on pore size usually show much larger pores than those observed here.
For example, for MAG2 neutron scattering gave an inner (water pore) radius of 18.5 Å [14],
cryo-EM gave 40 Å [15], dye-leakage in GUVs gave 14–36 Å depending on concentration [41],
and confocal laser spectroscopy in cells gave 14 Å in bacteria and over 115 Å in mammalian
cells [42]. Dye-leakage experiments gave a radius of 10 Å for PGLa-MAG [10] and 10–15 Å for
MG-H2 [32]. The largest inner radius we have transiently observed in the present simulations
is ~10 Å. Much of the discrepancy could be explained by the oligomeric state considered:

Fig 8. Representative structures from the PGLa-MAG2 antiparallel tetramer simulation. (A) Two S-
state, two I-state configuration moves to (B) an intermediate conformation of mostly T-state, to a final (C) two
tilted S-state, two I-state configuration. (D) shows the amino acids involved in the intermolecular interactions
formed during the last microsecond of the trajectory and pore waters.

doi:10.1371/journal.pcbi.1004570.g008
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experimental evidence determines that four peptides are the minimum component set for pore
formation [14]. It is very likely that more peptides will be needed to stabilize larger pores. It
might be that our observations correspond to “nascent” pores that could readily grow upon
addition of further monomers. One technical concern here is possible limitations from the sim-
ulation box size. Three of the six systems were simulated in a larger box. However, other
parameters were also varied at the same time and thus it is not possible to draw a conclusion
on the effect of box size. Note that system 3 (PGLa tetramer) gave a small pore despite the pres-
ence of a larger box. Eventually, this issue will have to be resolved by simulations of larger pep-
tide oligomer numbers in larger boxes. Because of the irregular arrangement of the peptides,
we have been only able to measure approximate outer pore radii (“contact radii”) as the dis-
tance between the amino acids furthest apart in the pore. MAG2 homotetramers display the
smallest outer radius (18 Å for the parallel tetramer, and 22 Å for the antiparallel one), followed
by the PGLa-MAG2 systems (25–27 Å), PGLa (29 Å), and MG-H2 (33 Å).

Experimental results on pore structure are significant but scarce and do not provide a high-
resolution structure. Inner and outer pore diameters from neutron scattering and the relative
amounts of peptide and lipid suggested that magainin peptides form toroidal pores [14], as
does melittin [43]. Oriented CD showed a change in orientation from surface to inserted at P/L
~1:30 to 1:10 in DMPC/DMPG 3:1 membranes, but only 30–80% of the peptides are oriented
transmembrane within this concentration range [13]. In oriented CD one cannot distinguish
between tilted orientations and a mixture of surface and transmembrane orientations. In the
present simulations we observe mostly tilted peptides. Melittin in comparison, studied by a
similar computational approach, appears much more likely to adopt I-state orientations [44].
The present results support the suggestion that magainin forms toroidal, rather than barrel-
stave, pores. The number of headgroups observed to enter the bilayer area increased with pore
size, as one would expect. The average helicity of the peptides over the whole simulation varies
between 50–77%, and these values are in the range determined by CD of MAG2 amide upon
binding POPC/POPG 3:1 membranes [45]. The loss of helical content in the C-terminal region
of MAG2 has been previously reported in spectroscopy studies [46]. The average helicity of the
four monomers during the MG-H2 simulation is higher than that reported in a previous study
[31]. For the MAG2 tetramers significantly higher helicity is observed in the antiparallel system
(Table 2).

In the case of PGLa, valuable results have been obtained in recent years from solid-state
NMR [47]. At low P/L ratio the peptide adopts a surface orientation [23], as does MAG2 [6].
At P/L ratio 1:50 or higher the peptide shifts to a T-state, with a 120° tilt angle and the C-ter-
mini toward the membrane interior [24,48], which was suggested to result from formation of
an antiparallel dimer. However, simulations of dimers on the membrane surface failed to see
this increase in tilt angle [49]. Interestingly, the orientation of the monomers in our PGLa sim-
ulation agrees very well with these findings. In the PGLa simulation, the overall orientation of
the four monomers is almost identical with respect to the two leaflets of the membrane, so the
stabilized final structure resembles a geometrically perfect funnel (Fig 5B). The average tilt
angle values of the PGLa peptides in the simulation (Fig 2C) agree well with those obtained
from solid-state NMR experiments at similar peptide concentration in DMPC/DMPG 3:1
(~60°/120°) and DMPC membranes (~125°) [23,24,48]. The MAG2 tetramer adopts a similar
structure in one of the simulations (Fig 1), except it is not a perfect funnel and two of the pep-
tides insert their N terminus into the membrane. Comparison between the two tetramers
shows stabilizing intermolecular interactions involving E19 of MAG2, whereas no such interac-
tions or loss of helical character occurs in PGLa. In the absence of such interactions, the spatial
organization of PGLa is stabilized because it maximizes the exposure of the four lysine residues
to the solvent.
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Experimental evidence on the formation of dimers or higher oligomers of magainin pep-
tides on the membrane surface is rather controversial (see S1 Text). Our implicit solvent results
suggest that antiparallel dimers are more stable. Based on this, we have investigated the effect
of the initial orientation of the peptides in the MAG2 tetramer on the final pore structure and
stabilizing mechanism. In the parallel tetramer, the enhanced mobility observed at the begin-
ning of the simulation leads to the rearrangement of the peptides towards an irregular final
configuration (Fig 1B). The disordered distribution of the peptides in the final assembly facili-
tates the interaction between the negatively charged E19 and the lysine residues at positions 4,
10 and 11 (Fig 1C), and these interactions are further favored by the increased flexibility of the
monomers termini due to the partial unfolding. In the case of the antiparallel tetramer, only a
minimal helicity loss is observed in the N-terminus of one of the monomers (Fig 4B). Although
the specific interactions established between the monomers are similar to those observed in the
parallel tetramer, the final structure shows remarkable differences. The peptides are signifi-
cantly less mobile and hence maintain the overall antiparallel orientation for the whole trajec-
tory. The antiparallel tetramer shows a regular, almost symmetrical, structural arrangement
supported by multiple pairwise interactions involving charged and aromatic residues (Fig 4B
and 4C). Interestingly, the structure of these antiparallel dimers resembles two experimental
structures [38,39] and solves the conundrum of how these structures could bind a lipid bilayer.
This peptide distribution leads to a quite ordered pore structure and larger pore size, also
favored by the presence of two monomers in an I-state conformation. As a common feature in
both systems, the monomers align so they promote the interaction between the C-terminal E19
residue and the positively charged lysines in the N-terminus. In order to establish these favor-
able interactions, at least one of the peptides in the parallel tetramer moves towards an antipar-
allel-like orientation.

An important observation that could offer clues on the mechanism of action of the magai-
nin peptides is the synergy between MAG2 and PGLa [10,25,26]. The fact that maximum syn-
ergy is observed at 1:1 ratio suggested the formation of a heterodimer [10]. Our implicit
solvent modeling suggested plausible interactions between residues S8 and E19 in MAG2 and
K12 and K19 in PGLa, which could make the antiparallel heterodimer more stable than the
homodimer (see S1 Text). When these antiparallel dimers were simulated in all-atom bilayers,
they lost the perfect alignment they had on the membrane surface but retained significant
interactions between them (Fig 8). As observed in the implicit simulations, the most favorable
interactions are established between E19 in MAG2 and the lysines in the C-terminal region of
the PGLa peptides (average energy values of approximately -80 kcal/mol). E19 has been shown
to be essential for maintaining the synergisitic effects of the PGLa-MAG2 in a previous muta-
genesis study [10]. In both parallel and antiparallel simulations, we observed more favorable
interaction energies between heteromeric than homomeric pairs. These results provide a satis-
fying explanation of the observed synergy, although further tests are needed.

A solid state NMR study of PGLa-MAG2 mixtures showed that in some lipid bilayers PGLa
transitions to an inserted state but magainin remains on the surface [29]. It was suggested that
magainin facilitates the insertion of PGLa by thinning the membrane, but a more recent study
has shown that this transition takes place in membranes with positive spontaneous curvature,
independently of their thickness [30]. The average hydrophobic thickness values in our simula-
tions are close to that of unperturbed bilayers in the 120-lipids systems (~ 30 Å), and slightly
smaller in the 71–80 lipid systems (25–28 Å). Therefore, membrane thinning is occurring
mostly locally around the pore in our simulations. Nevertheless, we have not been able to assess
the role of the membrane spontaneous curvature in our simulations. MAG2 and PGLa appear
equally likely to adopt an I-state orientation. This might be because our P/L (1:18 or 1:30) is
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higher than that used in the experiments (1:50). There is some evidence that as P/L increases
magainin tends to become more tilted [30].

In all the systems the interaction of the peptides is significantly stronger with the hydropho-
bic tails than with the headgroups of either DMPC or DMPG lipids. During the last microsec-
ond of the six trajectories, we observe the formation of scattered hydrogen bonds involving the
lysine residues in the N-terminus and center of the peptides and DMPG headgroups. However,
these transient bonds are not long-lived, since the lysine residues are mainly engaged in pep-
tide-peptide interactions. We do not find clustering of the DMPG lipids around the peptides or
further stabilization of these in the membrane, and therefore, we cannot draw any definitive
conclusion on the role of anionic lipids in the stability of the peptide orientations in the time-
scale of our simulations. This issue will be studied more systematically in future work.

In summary, these long time-scale atomistic simulations have provided a plausible molecu-
lar picture for the tilted T-state identified by solid-state NMR experiments and a plausible
mechanism for the synergy between MAG2 and PGLa. In addition, they show how an antipar-
allel peptide dimer can bind a membrane while at the same time promoting the formation of
an aqueous pore. Future studies should explore the effect of oligomeric number on pore size
and structure and a systematic study of the effect of lipid composition. Long simulations like
those reported here seem able to locate and characterize local free energy minima correspond-
ing to peptide-stabilized membrane pores. One challenge for future research will be to calculate
the free energy of these states with respect to membrane surface-adsorbed peptides. A further
challenge will be to develop a theory to explain the atomistic simulation results in terms of pep-
tide sequence, lipid properties, and peptide-peptide, peptide-lipid interactions.

Methods
A description of the systems simulated in the present study is given in Table 1. The initial con-
figuration of the MG-H2 tetramer corresponds to the last structure of a 160-ns simulation car-
ried out previously by our group [34]. All other tetramers were built from ideal α-helices as a
tightly packed helical bundle with the hydrophobic face outwards. The helices in the bundle
were oriented parallel to each other, except in systems 2 and 6, where the antiparallel dimers
produced by implicit solvent modeling (see S1 Text) were replicated once to make a tetrameric
bundle (the two dimers are parallel to each other). The helical bundles were placed parallel to
the bilayer normal in the CHARMM-GUI server [50]. Equilibration was performed with
NAMD [51] using the CHARMM C36 force field [52]. Harmonic constraints (k = 1 kcal/mol/
Å2) were initially applied to waters, ions, phosphorus atoms, and the backbone of the peptides.
An energy minimization was run for 20000 steps, followed by 7 ps of heating to 303 K. Con-
straints in the lipids, and in waters and ions were released in 100-ps and 500-ps sequential
equilibration steps, respectively. Pressure control using the modified Nose-Hoover barostat
with Langevin Dynamics was then activated, and the constraints in the peptides backbone were
scaled down in decrements of 0.2 for 200 ps. A final unconstrained 1 ns equilibration step was
performed. The integration time step for all equilibration runs was 1 fs. Lastly, a 5 to 10 ns pro-
duction step was run in NAMD (time step 2 fs).

The production phase was run for 5–9 μs on the Anton Supercomputer. We used the pro-
gram viparr to generate the input structure file from the topology file, and coordinates, veloci-
ties and extended system binary NAMD output files for each system. Long-range electrostatic
calculations were carried out with the Gaussian Split Ewald method [53]. Accurate cut off val-
ues range between 10–13 were automatically calculated by the Anton setup protocol based on
the chemical features of the systems. The particle motions, barostat and thermostat updates
were carried out separately with the integration framework Multigrator [54]. Infrequent
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updates of both thermostat and barostat improve the performance of the simulation and
numerical integration accuracy. In our simulation protocol, the Nose-Hoover thermostat was
updated every 24 steps and the Martyna, Tuckerman and Klein (MTK) barostat was updated
every 240 steps. The integration time step was set to 2 fs and frames were saved every 1080
picoseconds.

VMD was used for the visualization of the trajectories and format conversion [55].
CHARMM software was used for the calculation of pore radius and tilt angle values. Average
interaction energies over the last microsecond of the trajectories were calculated with the
ENER command in CHARMM [56]. The calculation of the number of headgroups and water
molecules inside the bilayer has been carried out in the area delimited by the phosphate groups
in the upper and lower leaflet, and the hydrophobic area, respectively. The programs CPPTRAJ
and PTRAJ in the Ambertools 12 package were used for secondary structure and hydrogen
bond analysis [57]. The tilt angle is defined as the angle between the N-C helix vector and a
unit vector in the positive z direction (which in the figures can be towards the upper or lower
leaflet). Insofar as the +z direction is arbitrary, supplementary angles are equivalent, but for a
given system, the tilt angle values for the different peptides show the relative direction of their
N and C-termini.

Supporting Information
S1 Text. Implicit solvent studies of MAG2 and PGLa homo- and heterodimers.
(DOC)

S1 Fig. Average density profiles of the six simulated systems over the last microsecond of
the trajectory. The colors on this plot correspond to the colors of the peptides in Figs 1 and 4–
8.
(JPG)

S2 Fig. Association of antiparallel MAG2 peptides. Side by side comparison of the overall
orientation of an antiparallel MAG2 dimer resolved by NMR [38] (A), and the final structure
of the antiparallel MAG2 tetramer simulation (B). Residue E19 is shown as sticks to mark the
position of the C-terminus in each peptide.
(JPG)
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