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Abstract
Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collec-

tive dynamical events such as network spikes, UP and DOWN states, global oscillations,

and avalanches. Though each of them has been variously recognized in previous works as

expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a

unified picture of the determinant factors (dynamical and architectural) is desirable and not

yet available. Progress has also been partially hindered by the use of a variety of statistical

measures to define the network events of interest. We propose here a common probabilistic

definition of network events that, applied to the firing activity of cultured neural networks,

highlights the co-occurrence of network spikes, power-law distributed avalanches, and

exponentially distributed ‘quasi-orbits’, which offer a third type of collective behavior. A rate

model, including synaptic excitation and inhibition with no imposed topology, synaptic short-

term depression, and finite-size noise, accounts for all these different, coexisting phenom-

ena. We find that their emergence is largely regulated by the proximity to an oscillatory

instability of the dynamics, where the non-linear excitable behavior leads to a self-amplifica-

tion of activity fluctuations over a wide range of scales in space and time. In this sense, the

cultured network dynamics is compatible with an excitation-inhibition balance correspond-

ing to a slightly sub-critical regime. Finally, we propose and test a method to infer the char-

acteristic time of the fatigue process, from the observed time course of the network’s firing

rate. Unlike the model, possessing a single fatigue mechanism, the cultured network

appears to show multiple time scales, signalling the possible coexistence of different fatigue

mechanisms.
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Author Summary

The spontaneous neural activity is the dynamic floor on which the cortex builds its
response to incoming stimuli and organizes its information processing, thereby the impor-
tance of understanding its dynamical underpinnings. In-vitro preparations, as well as the
intact cortex in deep sleep or anesthesia, display a variety of spontaneous collective events,
including quasi-synchronous ‘network spikes’ and a complex spectrum of ‘avalanches’,
which has been considered suggestive of a ‘typically critical’ state. Light has been shed on
selected aspects of such events; still, a unified picture stays elusive, also due to varying sta-
tistical definitions of network events. Our work aims to take a step in this direction. We
first introduce a probabilistic definition of population events that naturally adapts to dif-
ferent scales of analysis; it reveals, in the activity of cultured networks, as well as in a simple
rate model, the co-occurrence of network spikes, ‘quasi-orbits’ and avalanches. Model’s
analysis suggests that their emergence is governed by a single parameter measuring the
proximity to an oscillatory instability, where the network can amplify fluctuations on a
wide range of scales in space and time. We also propose a procedure to infer from neural
activity the slow underlying time-scales of the dynamics.

Introduction
The spontaneous activity of excitable neuronal networks exhibits a spectrum of dynamic
regimes ranging from quasi-linear, small fluctuations close to stationary activity, to dramatic
events such as abrupt and transient synchronization. Understanding the underpinnings of
such dynamic versatility is important, as different spontaneous modes may imply in general
different state-dependent response properties to incoming stimuli and different information
processing routes.

Cultured neuronal networks offer a controllable experimental setting to open a window into
the network excitability and its dynamics, and have been used intensively for the purpose.

Neuronal cultures in early development phases naturally show alternating quasi-quiescent
states and ‘network spikes’ (NS) of brief outbreaks of network activity [1–6].

In addition, recent observations in-vitro (and later even in-vivo) revealed a rich structure of
network events (‘avalanches’) that attracted much attention because their spatial and temporal
structure exhibited features (power-law distributions) reminiscent of what is observed in a
‘critical state’ of a physical system (see e.g. [7, 8], and [9, 10] and references therein). Generi-
cally, an avalanche is a cascade of neural activities clustered in time; while there persist ongoing
debate on the relation between observed avalanches and whatever ‘criticality’may mean for
brain dynamics [11], understanding their dynamical origin remains on the agenda.

Quasi-synchronous NS, avalanches and small activity fluctuations are frequently coexisting
elements of the network dynamics. Besides, as we will describe in the following, in certain con-
ditions one can recognize network events which are clearly distinct from the mentioned net-
work events, which we name here as ‘quasi-orbits’.

The abundant modeling literature on the above dynamical phenomena has been frequently
focused on specific aspects of one of them [12, 13]; on the other hand, getting a unified picture
is made often difficult by different assumptions on the network’s structure and constitutive ele-
ments and, importantly, by different methods used to detect the dynamic events of interest.

In the present paper we define a common probabilistic criterion to detect various coexisting
dynamic events (NS, avalanches and quasi-orbits) and adopt it to analyze the spontaneous
activity recorded from both cultured networks, and a computational rate model.
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Most theoretical models accounting for NS are based on an interplay between network self-
excitation on one side, and on the other side some fatiguemechanism provoking the extinction
of the network spike [12, 13]. For such a mechanism two main options, up to details, have been
considered: neural ‘spike-frequency adaptation’ [3, 14] and synaptic ‘short-term depression’
(STD) [4, 5, 15–18]. Despite their differences, both mechanisms share the basic property of
generating an activity-dependent self-inhibition in response to the upsurge of activity upon the
generation of a NS, the more vigorously, the stronger the NS (i.e. the higher the average firing
rate). In this paper, we will mainly focus on STD, stressing the similarities of the two mecha-
nisms, yet not denying their possibly different dynamic implications.

While STD acts as an activity-dependent self-inhibition, the self-excitability of the network
depends on the balance between synaptic excitation and inhibition; investigating how such bal-
ance, experimentally modifiable through pharmacology, influences the dynamics of spontane-
ous NSs is interesting and relevant as a step towards the identification of the ‘excitability
working point’ in the experimental preparation.

To study the factors governing the co-occurrence of different network events and their
properties we adopt a rate model for the dynamics of the global network activity, that takes
into accounts finite-size fluctuations and the synaptic interplay between one excitatory and one
inhibitory population, with excitatory synapses being subject to STD.

On purpose we implicitly exclude any spatial topology in the model, which is meant to
describe the dynamics of a randomly connected, sparse network, since we intend to expose the
exquisite implications of the balance between synaptic excitation and inhibition, and the activ-
ity-dependent self-inhibition due to STD. In doing this, we purposely leave out not only the
known relevance of a topological organization [9, 19, 20], but also the role of cliques of neurons
which have been proposed to play a pivotal role in the the generation of NS as functional hubs
[21], as well as the putative role of ‘leader neurons’.

We perform a systematic numerical and analytical study of NSs for varying excitation/inhi-
bition balance. The distance from an oscillatory instability of the mean-field dynamics (in
terms of the dominant eigenvalue of the linearized dynamics) largely appears to be the sole var-
iable governing the statistics of the inter-NS intervals, ranging from a very sparse, irregular
bursting (coefficient of variation CV* 1) to a sustained, periodic one (CV* 0). The interme-
diate, weakly synchronized regime (CV* 0.5), in which the experimental cultures are often
observed to operate, is found in a neighborhood of the instability that shrinks as the endoge-
nous fluctuations in the network activity become smaller with increasing network size.

Moreover, the model robustly shows the co-presence of avalanches with NS and quasi-
orbits. The avalanche sizes are distributed according to a power-law over a wide region of the
excitation-inhibition plane, although the crossing of the instability line is signaled by a bump
in the large-size tail of the distribution; we compare such distributions and their modulation
(as well as the distributions of NS) across the instability line with the experimental results from
cortical neuronal cultures; again the results appear to confirm that neuronal cultures operate in
close proximity of an instability line.

Taking advantage of the fact that the sizes of both NS and quasi-orbits are found to be signifi-
cantly correlated with the dynamic variable associated with STD (available synaptic resources) just
before the onset of the event, we developed a simple optimization method to infer, from the
recorded activity, the characteristic time-scales of the putative fatigue mechanism at work. We first
tested the method on the model, and then applied it to in-vitro recordings; we could identify in
several cases one or two long time-scales, ranging from few hundreds milliseconds to few seconds.

Weak or no correlations were found instead between avalanche sizes and the STD dynamics;
this suggests that avalanches originate from synaptic interaction which amplifies a wide spectrum
of small fluctuations, and are mostly ineffective in eliciting a strong self-inhibition.
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Models

Experimental data
As originally described in [2], cortical neurons were obtained from newborn rats within 24
hours after birth, following standard procedures. Briefly, the neurons were plated directly onto
a substrate-integrated multielectrode array (MEA). The cells were bathed in MEM supple-
mented with heat-inactivated horse serum (5%), glutamine (0.5 mM), glucose (20 mM), and
gentamycin (10 μg/ml) and were maintained in an atmosphere of 37°C, 5% CO2/95% air in a
tissue culture incubator as well as during the recording phases. The data analyzed here was col-
lected during the third week after plating, thus allowing functional and structural maturation
of the neurons. MEAs of 60 Ti/Au/TiN electrodes, 30 μm in diameter, and spaced 200 μm from
each other (Multi Channel Systems, Reutlingen, Germany) were used. The insulation layer (sil-
icon nitride) was pretreated with poly-D-lysine. All experiments were conducted under a slow
perfusion system with perfusion rates of*100 μl/h. A commercial 60-channel amplifier
(B-MEA-1060; Multi Channel Systems) with frequency limits of 1–5000 Hz and a gain of
1024× was used. The B-MEA-1060 was connected to MCPPlus variable gain filter amplifiers
(Alpha Omega, Nazareth, Israel) for additional amplification. Data was digitized using two par-
allel 5200a/526 analog-to-digital boards (Microstar Laboratories, Bellevue, WA). Each channel
was sampled at a frequency of 24000 Hz and prepared for analysis using the AlphaMap inter-
face (Alpha Omega). Thresholds (8× root mean square units; typically in the range of 10–20
μV) were defined separately for each of the recording channels before the beginning of the
experiment. The electrophysiological data is freely accessible for download at marom.net.
technion.ac.il/neural-activity-data/.

Network rate dynamics
A set of Wilson-Cowan-like equations [22] for the spike-rate of the excitatory (νE) and the
inhibitory (νI) neuronal populations lies at the core of our dynamic mean-field model:

tE _nE ¼ � nE � FðIEÞð Þ
tI _nI ¼ � nI � FðIIÞð Þ; ð1Þ

where τE and τI represent two characteristic times (of the order of few to few tens ofms), and F
is the gain function of the input currents, IE and II, that in turn depend on νE, νI, and the synap-
tic efficacies. We chose F to be the transfer function of the leaky integrate-and-fire neuron
under the assumptions of Gaussian, uncorrelated input of mean μ and infinitesimal variance
σ2[23]:

F½m; s2� � ffiffiffi
p

p
tV

Z Vthresh�Vrest�m tVffiffiffiffiffiffiffi
s2 tV

p

Vreset�Vrest�m tVffiffiffiffiffiffiffi
s2 tV

p
expðs2Þ½erf ðsÞ þ 1�ds þ trefract

2
664

3
775

�1

; ð2Þ

where τV is the membrane time constant, τrefract is a refractory period, and V
rest, Vreset, and

Vthresh are respectively the rest, the post-firing reset, and the firing-threshold membrane poten-
tial of the neuron (we assume the membrane resistance R = 1).

The model incorporates the non-instantaneous nature of synaptic transmission in its sim-
plest form, by letting the νs being low-pass filtered by a single synaptic time-scale ~t:

~t _~n ¼ ðn� ~nÞ: ð3Þ
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One can regard the variables ~ns as the instantaneous firing rates as seen by post-synaptic
neurons, after synaptic filtering. The form of Eq 3 and our choice of ~t values (see Table 1)
implicitly neglects slow NMDA contributions and is restricted to AMPA and GABA synaptic
currents. Thus, the input currents IE and II in Eq 1 will be functions of the rates νs through
these filtered rates; with reference to Eq 2, the model assumes the following form for the mean
and the variance of the current IE (the expressions for II are similarly defined):

mE � cnE~nEwexcJEErEþ
cnI~nIwinhJEI þ nextJext

s2
E � cnE~nEw

2
excðJ2EE þ s2

JEE
Þr2Eþ

cnI~nIw
2
inhðJ2EI þ s2

JEI
Þ þ nextðJ2ext þ s2

Jext
Þ;

ð4Þ

where the nE and nI are the number of neurons in the excitatory and inhibitory population
respectively; c is the probability of two neurons being synaptically connected; JEE (JEI) is the
average synaptic efficacy from an excitatory (inhibitory) pre-synaptic neuron to an excitatory
one, s2

J is the variance of the J-distribution; wexc and winh are dimensionless parameters that we

will use in the following to independently rescale excitatory and inhibitory synapses respec-
tively. Finally, an external current is assumed in the form of a Poisson train of spikes of rate νext
driving the neurons in the network with average synaptic efficacy Jext. In Eq 4 rE(t) (0< rE< 1)
is the fraction of synaptic resources available at time t for the response of an excitatory synapse
to a pre-synaptic spike; the evolution of rE evolves according to the following dynamics, which
implements the effects of short-term depression (STD) [24, 25] into the network dynamics:

tSTD _rE ¼ ð1� rEÞ � uSTD rE tSTD ~nE; ð5Þ

where 0< uSTD< 1 represents the (constant) fraction of the available synaptic resources con-
sumed by an excitatory postsynaptic potential, and τSTD is the recovery time for the synaptic
resources.

Finally, for a network of n neurons, we introduce finite-size noise by assuming that the sig-
nal the synapses integrate in Eq 3 is a random process νn of mean ν; in a time-bin dt, we expect
the number of action potentials fired to be a Poisson variable of mean n ν(t) dt; Eq 3 will thus

Table 1. Network parameters.

Parameter Value

nE / nI 160 / 40

τV / τrefract 20 / 2 ms

Vrest = Vreset / Vthresh
−70 / −55 mV

c 0.25

JEE ± σJEE 0.809 ± 0.202 mV

JIE ± σJIE 1.23 ± 0.307 mV

JEI ± σJEI −0.340 ± 0.0850 mV

JII ± σJII −0.358 ± 0.0894 mV

Jext ± σJext 0.416 ± 0.104 mV

νext 1.25 kHz

~tE / ~t I 10 / 2 ms

τr 800 ms

uSTD 0.2

τE = τI 20 ms

doi:10.1371/journal.pcbi.1004547.t001
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become:

~t _~n ¼ nn � ~nð Þ

nn � Poisson½n n dt�
n dt

:
ð6Þ

Putting all together, the noisy dynamic mean-field model is described by the following set of
(stochastic) differential equations:

tE _nE ¼ F mE; s
2
E

� �� nE

tI _nI ¼ F mI ; s
2
I

� �� nI

~tE _~n E ¼ nnE � ~nE

~tI _~n I ¼ nnI � ~nI

tSTD _rE ¼ ð1� rEÞ � uSTD tSTD rE ~nE

ð7Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

complemented by Eqs 2, 4 and 6. The values of all the fixed network parameters are shown in
Table 1. Since we will compare the dynamics of networks of different sizes, we scale the connec-
tivity with network size in order to keep invariant the mean field equations: we hold the num-
ber of synaptic connection per neuron constant by rescaling, with reference to Eq 4, the
probability of connection c so that c nE and c nI are kept constant to the reference values that
can be deduced from Table 1.

Spike-frequency adaptation (SFA) (not present in simulations unless explicitly stated) is
introduced by subtracting a term to the instantaneous mean value of the IE current:

mE ! mE � gSFA cEðtÞ ð8Þ
proportional to the instantaneous value of the variable cE, that simply integrates νnE:

tSFA
dcE
dt

¼ �cE þ nnE ; ð9Þ

with a characteristic time τSFA. This additional term aims to model an after-hyperpolarization,
Ca2+-dependent K+ current [26, 27]. In this sense, cE can be interpreted as the cytoplasmic cal-
cium concentration [Ca2+]), whose effects on the network dynamics are controlled by the value
of the “conductance” gSFA.

Simulations are performed by integrating the stochastic dynamics with a fixed time step
dt = 0.25 ms.

In the following, by “spike count” we will mean the quantity ν(t) n dt.

Network events detection
For the detection of network events (NSs, quasi-orbits, and avalanches) we developed a unified
approach based on Hidden Markov Models (HMM) [28]. Despite HMM have been widely used
for temporal pattern recognition in many different fields, to our knowledge few attempts have
been made to use them in the context of interest here [29, 30]. For the purpose of the present
description, we just remind that a HMM is a stochastic system that evolves according to Markov
transitions between “hidden”, i.e. unobservable, states; at each step of the dynamics the visible
output depends probabilistically on the current hidden state. Such models can be naturally
adapted to the detection of network events, the observations being the number of detected
spikes per time bin, and the underlying hidden states, between which the system spontaneously
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alternates, being associated with high or low network activity (‘network event—no network
event’). A standard optimization procedure adapts then the HMM to the recorded activity sam-
ple by determining the most probable sequence of hidden states given the observations.

The two-step method we propose is based on HMM, has no user-defined parameters, and
automatically adapts to different conditions.

In the first step, the algorithm finds the parameters of the two-state HMM (one low-activity
state, representing the quasi-quiescent periods, and one high-activity state, associated with net-
work events) that best accounts for a given sequence of spike counts—the visible states in the
HMM; such fitting is performed through the Baum-Welch algorithm [28]. In the second step,
the most probable sequence for the two alternating hidden levels, given the sequence of spike
counts and the fitted parameters, is found through the Viterbi algorithm. Network events are
identified as the periods of dominance of the high activity hidden state.

In order to retain only the most significant events a minimum event duration is imposed;
such threshold is self-consistently determined as follows. The Viterbi algorithm is also applied
to a “surrogate” time-series obtained by randomly shuffling the original one, thereby generat-
ing a set of “surrogate” events. The purpose is to determine the desired minimum event dura-
tion from the high duration tail of surrogate events (which, by construction, come from a time-
series with no real temporal structure). Since the high duration distribution tail is found to be
roughly exponential, we fit such tail by considering only the surrogate events of duration larger
than the 75th percentile. Then, from the fitted exponential, we compute the duration value
such that the probability of durations greater than this value is P(surrogate) = 10−3. In other
words, we set the threshold on minimum duration of detected events to the duration of excep-
tionally long (P< 10−3) surrogate events.

As already remarked, we used essentially the same algorithm for detecting NS/quasi-orbits
and avalanches. The only significant difference is that, in the case of avalanches, the emission
probability of the low-activity hidden state is kept fixed during the Baum-Welch algorithm to p
(n)’ δn0 (δij is the Kronecker delta; p(n) is the probability of emitting n spikes in a time-bin).
Thus the lower state is constrained to a negligible probability of outputting non-zero spike-
counts, conforming to the intuition that in between avalanches the network is (almost)
completely silent. More precisely, we set p(1) = 10−6 hni, where hni is the average number of
spikes that the network emits during a time-bin dt. After the modified Baum-Welch first step,
avalanches are determined, as above, by applying the Viterbi algorithm; no threshold is applied
in this case, neither to the avalanche duration nor to its size.

The proposed procedures introduce three arbitrary parameters: the time bin dt, the probability
P(surrogate) for network spikes and quasi-orbits, and the probability p(1). To test the robustness
of the algorithms, we varied these parameters over ample ranges: dt between 0.25 and 8 ms; P(sur-
rogate) between 10−2 and 10−4; p(1) between 10−8 and 10−4. We found that avalanche size distri-
butions are virtually unaffected under variations of p(1), and only mildly affected for the largest dt
explored; higher values of P(surrogate) lead, as expected, to detect a larger number of small quasi-
orbits, yet these additional events do not alter the overall shape of the size distribution predicted
by the theory (see next section); on the other hand, a large number of very small quasi-orbits does
have a detrimental effect on the correlation results reported in Section “Inferring the time-scales”.

Simulations and data analysis have been performed using custom-written mixed C++/
MATLAB (version R2013a, Mathworks, Natick, MA) functions and scripts.

Size distribution for quasi-orbits and network spikes
The non-linear rate model described above can show a wide repertoire of dynamical patterns,
as for example multiple stable fixed points and large, quasi-periodic oscillations. As we will
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show, for sufficiently excitable networks, a stable state of asynchronous activity (fixed point) is
destabilized, in favor of stable global oscillations. Finite size noise probes differently network’s
excitability at different distances from such instability. Before global oscillations become stable
(in the infinite network limit), the network’s highly non-linear reaction to its own fluctuations
can ignite large, relatively stereotyped, “network spikes”. Also, in the proximity of the oscil-
latory (Hopf) instability, noise can promote “quasi orbits”, i.e., transient departures from the
fixed point which develop on time-scales dictated by the upcoming oscillatory instability, of
which they are precursors. Under a linear approximation, the probability distribution of the
amplitude l of these quasi-orbits can be explicitly derived as explained in the following.

Consider a generic planar linear dynamics with noise:

_z ¼ A zþ s ξ; ð10Þ

whereA is 2 × 2 real matrix, and ξ = (ξ(t), 0) is a white noise with hξ(t)ξ(t0)i = δ(t − t0). We here
assume that the system is close to a Hopf bifurcation; in other words that the matrixA has
complex-conjugated eigenvalues λ± = <λ + i Iλ, with <λ< 0 and j<λj � Iλ.

By means of a linear transformation, the system can be rewritten as:

_x ¼ <l x � Il y þ sx x

_y ¼ Il x þ<l y þ sy x;
ð11Þ

with σx and σy constants determined by the coordinate transformation. Making use of Itō’s
lemma to write:

_x2 ¼ 2<l x2 � 2Il x y þ s2
x þ 2 x sx x

_y2 ¼ 2Il x y þ 2<l y2 þ s2
y þ 2 y sy x;

and summing the previous two equations, we find for the square radius l2 � x2 + y2 the dynam-
ics:

_l2 ¼ 2<l l2 þ s02 þ 2 sx x þ sy y
� �

x; ð12Þ

with s02 ¼: s2
x þ s2

y .

As long as Iλ� j<λj, it is physically sound to make the approximation:

ðxðtÞ; yðtÞÞ ¼ lð0Þ cos ðIl t þ φÞ; sin ðIl t þ φÞð Þ; ð13Þ

for 0� t� T = 2 π/Iλ and then to average the variance of the noise over such period to get:

lð0Þ2
T

Z T

0

sx cos ðIl t þ φÞ þ sy sin ðIl t þ φÞ
h i2

dt ¼

¼ lð0Þ2 s
2
x þ s2

y

2
¼ lð0Þ2 s02

2
:

in order to rewrite Eq (12) as:

_l2 ¼ 2<l l2 þ s02 þ ffiffiffi
2

p
l s0 x: ð14Þ

Such stochastic differential equation is associated with the Fokker-Planck equation:

@t pðl2; tÞ ¼ �@ l2 ½2<l l2 þ s02� pðl2; tÞþ
þ s02 @2

l2 l
2 pðl2; tÞ � Ll2 pðl2; tÞ

ð15Þ
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that admits an exponential distribution as stationary solution:

pssðl2Þ ¼
2 j<lj
s02 exp � 2 j<lj l2

s02

� �
; ð16Þ

that is, a Rayleigh distribution for l:

pssðlÞ ¼
4 j<lj
s02 l exp � 2 j<lj l2

s02

� �
: ð17Þ

On the other hand, we found a correlation between l (the maximal departure from the low-
activity fixed point) and the duration of the quasi-orbit. Therefore the size of the quasi-orbit
(the ‘area’ below the firing rate time profile during the excursion from the fixed point) is
expected to scale as l2, so that it should be exponentially distributed.

For network spikes we do not have a theoretical argument to predict the shape of the size
distribution, however empirically a (left-truncated) Gaussian distribution proved to be roughly
adequate. Since we expect that quasi-orbits and NS contribute with different weights for vary-
ing excitatory/inhibitory balance, we adopted the following form for the overall distribution of
network event size to fit experimental data:

pðxÞ ¼ p0
t0

exp �ðx � x0Þ
t0

� �
þ 1� p0ffiffiffiffiffiffi

2p
p

s1

exp �ðx �m1Þ2
2 s2

1

� �
: ð18Þ

The parameters of the two distributions and their relative weight 0� p0 � 1 are estimated
by minimizing the log-likelihood on the data. A threshold for the event size is determined as
the value having equal probability of being generated by either the exponential or the normal
distribution. In the following, NSs are defined as events having size larger than this threshold.
In those cases in which a threshold smaller than the peak of the normal distribution could not
be determined, no threshold was set.

Results
In the following, we will study a stochastic firing-rate model and make extensive comparison of
its dynamical behavior with the activity of ex-vivo networks of cortical neurons recorded
through a 60-channel multielectrode array.

The first question we want to answer is how the excitation-inhibition balance affects network
dynamics. Starting from the statistics of network spikes (NS) we show that it is well described by
a single variable measuring the distance from an oscillatory instability of the dynamics. We then
study in the model the effects of finite-size fluctuations on the statistics of NS.

Then, taking advantage of new detection algorithm we introduce (see Models and Analysis),
we recognize the presence of a spectrum of network events, including three families: NS,
“quasi-orbits”, and avalanches. The predicted size distribution of quasi-orbits, exponential
component in Eq 18, is confirmed by simulations and recovered in experimental data analysis.
We investigate how the different network events characterize in various proportions the net-
work dynamics depending on the excitatory-inhibitory balance; experimental data offer an
interesting match with model findings, compatible with ex-vivo network being typically slightly
below the oscillatory instability.

Finally we introduce a simple procedure to infer the time-scales of putative slow self-inhibi-
tory mechanisms underlying the occurrence of network events. The inference is obtained based
on knowledge of the firing activity alone; this makes the method interesting for analysis of
experimental data, as we show through exemplary results.
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The stochastic firing-rate model consists of two populations of neurons, one excitatory and
one inhibitory, interacting through effective synaptic couplings; excitatory synaptic couplings
follow a dynamics mimicking short-term depression (described after the Tsodyks-Markram
model, [24]). We adopted the transfer function of the leaky integrate-and-fire neuron subject
to white-noise current with drift [23] as the single population input-output function; moreover
the activity of each population is made stochastic by adding realistic finite-size noise. Working
with a noisy mean field model allows in principle to easily sweep through widely different net-
work sizes and, more importantly, allows us to perform the stability analysis.

To start the exploration that follows, we chose a reference working point where the model’s
dynamics has a low-rate fixed point (2 − 4 Hz) just on the brink of an oscillatory instability or,
in other words, where the dominant eigenvalue λ of the dynamics, linearized around the fixed
point, is complex with null real part. The model network (Fig 1, panel A) shows in proximity of
this point a dynamical behavior qualitatively similar, in terms of population spikes, to what is
observed in ex-vivo neuronal networks (Fig 1, panel B).

Excitation-inhibition balance and network spike statistics
As the relative balance of excitation and inhibition is expected to be a major determinant of NS
statistics we investigated first, for spontaneous NSs, how the inter-NS intervals (INSI) and
their regularity (as measured by the coefficient of variation, CVINSI) depend on such balance.
In Fig 2 we report the average INSI (left panel) and CVINSI (right panel) in the plane (wexc,
winh) of the excitatory and inhibitory synaptic efficacies (JEE ! wE JEE, JIE ! wE JIE, JEI ! wI

JEI, JII ! wI JII, see Eq 4). Starting from the center of this plane (wexc = 1, winh = 1) and moving
along the horizontal axis, all the excitatory synapses of the network are multiplied by a factor
wexc: moving right, the total excitation of the network increases (wexc > 1), toward left it

Fig 1. Time course of the network firing rate. Panel A: noisy mean-field simulations; panel B: ex-vivo data. Random large excursions of the firing rate
(network spikes and quasi-orbits) are clearly visible in both cases.

doi:10.1371/journal.pcbi.1004547.g001
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decreases (wexc < 1). Along the vertical line, instead, all the inhibitory synapses are damped
(moving downward, winh < 1) or strengthened (going upward, winh > 1).

It is clearly seen that both hINSIi and CVINSI are approximately distributed in the plane
along almost straight lines of equal values: for a chosen hINSIi or CVINSI one can trade more
excitation for less inhibition keeping the value constant, suggesting that, at this level of approx-
imation, a measure of net synaptic excitation governs the NS statistics. Besides, not surpris-
ingly, for high net excitation NSs are more frequent (* 1 Hz) and quasi-periodic (low CVINSI),
due to the fact that the STD recovery time determines quasi-deterministically when the net-
work is again in the condition of generating a new NS. Weak excitability, on the other hand,
leads to rare NSs, approaching a Poisson statistics (CVINSI ’ 1), since excitability is so low that
fluctuations are essential for recruiting enough activation to elicit a NS, with STD playing little
or no role at the ignition time; below an “excitation threshold”, NSs disappear.

The solid lines in Fig 2 are derived from the linearization of the 5-dimensional dynamical
system (see Eq 7), and are curves of iso-<λ, where λ is the dominant eigenvalue of the Jacobian:
<λ = 0 Hz (white line, signaling a Hopf bifurcation in the corresponding deterministic system),
<λ = 3.5 Hz (red line), and <λ = −3.5 Hz (black line). Values of CV found in typical cultured
networks are close to model results near the bifurcation line <λ = 0 Hz. We observe, further-
more, that such lines roughly follow iso-hINSIi and iso-CVINSI curves, suggesting that a quasi
one-dimensional representation might be extracted.

We show in Fig 3 hINSIi (panel A) and CVINSI (panel B) against <λ for the same networks
(circles) of Fig 2, and for a set of larger networks (N = 8000 neurons, squares) that are otherwise
identical to the first ones, pointwise in the excitation-inhibition plane (the average number of
synaptic connections per neuron for the larger networks is kept constant to the value used in
the original, smaller ones, as explained in Models and Analysis) The difference in size amounts,
for the new, larger networks, to weaker endogenous noise entering the stochastic dynamics of
the populations’ firing rates (see Eq 6, second line). The points are seen to approximately col-
lapse onto lines for both sets of networks, thus confirming <λ as the relevant control quantity
for hINSIi and CVINSI. It is seen that, for the smaller networks, hINSIi and CVINSI depend
smoothly on <λ, due to finite-size effects smearing the bifurcation. Also note the branch of
points (filled circles) for which Iλ = 0 and then no oscillatory component is present,

Fig 2. Inter-network-spike interval (INSI) statistics in the noisy mean-field model, for varying levels of excitation (wexc) and inhibition (winh). Panel
A: hINSIi (the scale is in seconds); panel B: coefficient of variation of INSI (CVINSI). For high net excitation (bottom-right quadrant) short-term depression
plays a determinant role in generating frequent and regular (low CVINSI) NSs; for weak excitability (upper-left quadrant) random fluctuations are essential for
the generation of rare, quasi-Poissonian NSs (CVINSI ’ 1). The solid lines are isolines of the real part <λ of the dominant eigenvalue of the mean-field
dynamics’ Jacobian; white line: <λ = 0 Hz; red line: <λ = 3.5 Hz; black line: <λ = −3.5 Hz. Note how such lines roughly follow isolines of hINSIi and CVINSI.

doi:10.1371/journal.pcbi.1004547.g002
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corresponding to points in the extreme top-left region of the planes in Fig 2. For the set of
larger networks, the dependence of hINSIi and CVINSI on the <λ is much sharper, as expected
given the much smaller finite-size effects; this shrinks the available region, around the instabil-
ity line, allowing for intermediate, more biologically plausible values of CVINSI.

We remark that NSs are highly non-linear and relatively stereotyped events, typical of an
excitable non-linear system. The good predictive power of the linear analysis for the statistics
of INSI signals that relatively small fluctuations around the system’s fixed point, described well
by a linear analysis, can ignite a NS.

A spectrum of network events
Our mean-field, finite-size network is a non-linear excitable system which, to the left of the
Hopf bifurcation line, and close to it, can express different types of excursions from the other-
wise stable fixed point. Large (almost stereotyped for high excitation) NSs are exquisite mani-
festations of the non-linear excitable nature of the system, ignited by noise; the distribution of
NS size (number of spikes generated during the event) is relatively narrow and approximately
symmetric (the Gaussian component of Eq 18).

Noise can also induce smaller, transient excursions from the fixed point which can be ade-
quately described as quasi-orbits in a linear approximation. In fact, noise induces a probability
distribution on the size of such events, which can be computed as explained in Methods and
Analysis (the exponential part in Eq 18). Fig 4, panel A, shows the activity of a simulated net-
work (blue line) alongside with detected network events. We remark that the the different
event types may not in general be easily distinguished on a single-event basis, while we argue
that they are probabilistically distinguishable. From the best fit for the expected size distribu-
tion a threshold for the event size can be determined to separate events that are (a-posteriori)
more probably quasi-orbits from the ones that are more probably NSs (for details, see Models
and Analysis). Following such classification, the green line in Fig 4, panel A, marks the detec-
tion of two NSs (first and third event) and two quasi-orbits (second and fourth event).

Fig 3. Stability analysis of the linearized dynamics capturesmost of the variability in the inter-network-spike interval (INSI) statistics. hINSIi (panel
A) and CVINSI (panel B) vs the real part <λ of the dominant eigenvalue of the Jacobian of the linearized dynamics, for two networks that are pointwise
identical in the excitation-inhibition plane, except for their size (circles: 200 neurons, as in Fig 2; squares: 8000 neurons). The data points almost collapse on
1-D curves when plotted as functions of <λ, leading effectively to a “quasi one-dimensional” representation of the INSI statistics in the (wexc, winh)-plane. The
region in which the INSIs are neither regular (CVINSI * 0) nor completely random (CVINSI’ 1), as typically observed in experimental data, shrinks for larger
networks. The filled circles mark a null imaginary part Iλ.

doi:10.1371/journal.pcbi.1004547.g003
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We also emphasize that the existence of quasi-orbits is a specific consequence of the fact
that in the whole excitation-inhibition plane explored for the model, the low-activity fixed
point becomes unstable via a Hopf bifurcation. It is indeed known that for nonlinear systems
in the proximity of a Hopf bifurcation, noise promotes precursors of the bifurcation, which
appear as transient synchronization events (see, e.g., [31]).

As one moves around the excitation-inhibition plane, to the left of the bifurcation line, the
two types of events contribute differently to the overall distribution of network event sizes.
Qualitatively, the farther from the bifurcation line, the higher the contribution of the small,
“quasi-linear” events. This fact can be understood by noting that the average size of such events
is expected to scale as 1/j<λj, where <λ is the real part of the dominant eigenvalue of the (sta-
ble) linearized dynamics (see Models and Analysis, Eq 16). The average size is furthermore
expected to scale with the amount of noise affecting the dynamics, thus the contribution of
quasi-linear events is also expected to vanish for larger networks.

It has been previously reported that activity dynamics may be different from one network to
the other, reflecting idiosyncrasies of composition and history-dependent processes ([32]).
Moreover, the dynamics of a given network, as well as its individual neurons, may shift over

Fig 4. Algorithms for network events detection. Panel A: total network activity from simulation (blue line)
with detected NS/quasi-orbits (green line) and avalanches (red line). Four large events (green line) are
visible; the first and third are statistically classified as network spikes; the other smaller two as quasi-orbits.
Note how network spikes and quasi-orbits are typically included inside a single avalanche. Panel B: a zoom
over 0.5 seconds of activity, with discretization time-step 0.25 ms, illustrates avalanches structure (red line).

doi:10.1371/journal.pcbi.1004547.g004
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time (minutes and hours) between different modes of activity ([32–34]). We therefore chose to
demonstrate the efficacy of our analytical approach on two data sets of large-scale random cor-
tical networks.

In panels A-C of Fig 5, we show the experimental distributions of event sizes for two cultured
networks: panels A and B are*40-minute recordings taken from a very long recording for the
same network; panel C is*1-hour recording from a different cultured network. By visual
inspection, the distributions appear to be consistent with two components contributing with
various weights, both for different periods of the same network, and for different networks. In
the light of the above theoretical considerations, one is led to generate the hypothesis that the
two components contributing to the overall distribution were associated with quasi-orbits and
network spikes respectively; to test this hypothesis, we fitted (solid lines in Fig 5) the experimen-
tal distributions with the sum of an exponential and a Gaussian distribution (see Models and
Analysis, Eq 18), prepared to interpret a predominance of the exponential (Gaussian) compo-
nent as a lesser (greater) excitability of the network. We remark that (see panels A and B) the
relative weights of the two components appear to change over time for the same network, as if
the excitability level would dynamically change; more on this at the end of this section.

To substantiate the above interpretation of experimental results, we turned to long simula-
tions (about 5.5 hours) of networks in different points in the excitation-inhibition plane (Fig
2), from which we extracted the distribution of network events and fitted them with Eq 18 as

Fig 5. A broad spectrum of synchronous network events: simulations vs ex-vivo data. Panels A-C: experimental distributions of network events.
Panels A and B:*40-minute recordings from a very long recording, for the same network; panel C:*1-hour recording from another cultured network.
Panels D-F: distributions from simulations of networks corresponding to the points in Fig 2 ((wexc, winh) = (0.82, 0.7), (wexc, winh) = (0.82, 0.55), (wexc, winh) =
(0.88, 0.55)). The three networks of panels D-F have increasing levels of subcritical excitability. Note the logarithmic scale on the y-axis. The solid lines are
fits of the theoretical distribution of event sizes, a sum of an exponential (for quasi-orbits) and a Gaussian (for NS) distribution (see Models and Analysis, Eq
18). The vertical lines mark the probabilistic threshold separating NS and quasi-orbits.

doi:10.1371/journal.pcbi.1004547.g005
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for experimental data (see panels D-F in Fig 5). Again, to the eye, the fits appear to be consis-
tent with the two components variously contributing to the overall distribution, depending on
the excitability of the network.

If, however, the fits are subject to a Kolmogorov-Smirnov test, the test fails (p< 0.01) for
panels D and F. By inspecting the maximum distance between the cumulative distributions for
simulation data and the fit, we found it at the lowest size bin for panel D, while the “Gaussian”
part gives the greater mismatch for panel F. As for panel D, while the theoretical argument for
the quasi-orbits clearly captures the shape of the size distributions, the way the test fails in the
exponential part is interesting.

In fact, network events cannot be detected with arbitrarily small size: in a way, the detection
procedure imposes a soft threshold on the event size, below which the exponential distribution
is not applicable.

We can provide a rough estimate of such soft threshold as follows. A quasi-orbit duration is,
to a first approximation, proportional to 1/Iλ, which is of the order of few hundreds millisec-
onds not too far from the bifurcation line in the excitation-inhibition plane. Taking, for instance,
150 ms, an event will be detected if network activity within this time-span is larger than average
(typically few spikes per second per neuron; we take 3 for the present example): this leads to a
soft threshold of about 100 spikes. This would be the lower limit of applicability of the exponen-
tial part of the distribution; this also explains the trough observed for very small sizes.

As for the failure of the Kolmogorov-Smirnov test for the right part of the distribution in
panel F, it should be remarked that the assumption of a Gaussian distribution for the size of
network spikes, although generically plausible, is not grounded in a theoretical argument, and
it’s not surprising that, on the order of 104 detected events, even a moderate skewness, as the
one observed, can make the test fail.

The fit for experimental data of panels A-C passed the Kolmogorov-Smirnov test
(p> 0.01).

As mentioned in the introduction, avalanches are cascades of neural activities clustered in
time (see Models and Analysis for our operational definition; examples of different methods
used in the literature to detect avalanches can be found in [7, 35–37]). Fig 4, panel A and panel
B, shows an example of the structure of the detected avalanches (red lines) in the model
network.

We extracted avalanches from simulated data, as well as from experimental data. For simu-
lations, we choose data corresponding to three points in the (wexc, winh) plane of Fig 2, with
constant winh = 1 and increasing wexc, with the rightmost falling exactly over the instability line
(white solid line in Fig 2). Three experimental data sets were extracted from different periods
of a very long recording of spontaneous activity from a neural culture; each data set is a
40-minute recording.

In Fig 6 we show (in log-log scale) the distribution of avalanche sizes for the three simulated
networks (top row) and the three experimental (bottom row) data sets (blue dots); red lines are
power-law fits [38].

From the panels in the top row we see that the distributions are well fitted, over a range of
two orders of magnitude, by power-laws with exponents ranging from about 1.5 to about 2.2,
consistent with the results found in [7]. Note that in the cited paper the algorithm used for ava-
lanche detection is quite different from ours, and the wide range of power-law exponents is
related to their dependence on the time-window used to discretize data. In [39] (adopting yet
another algorithm for avalanche detection), both the shape of the avalanche distribution and the
exponent vary depending on using pharmacology to manipulate synaptic transmission, over a
range compatible with our model findings; notably, they find the slope of the power-law to be
increasing with the excitability of the network, which is consistent with our modeling results.
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Panels B and C of Fig 6 clearly show the buildup of ‘bumps’ in the high-size tails, increasing
with the self-excitation of the network; this is understood as reflecting the predominance of a
contribution from NS and possibly quasi-orbits in that region of the distribution, on top of a
persisting wide spectrum of avalanches. This feature also is consistent with the experimental
findings of [39], and has been previously shown in a theoretical model [40] for non-leaky inte-
grate-and-fire neurons endowed with STD and synaptic facilitation.

Turning to the plots in the bottom row of Fig 6, we observe the following features: power-
laws are again observed over two decades and more; in panels E and F, bumps are visible, simi-
lar to model findings; power-law exponents cover a smaller range just above 2.

While the sequence of plots in two rows (modeling and experiment) clearly shows similar
features, we emphasize that experimental data were extracted from a unique long recording,
with no intervening pharmacological manipulations affecting synaptic transmission; on the
other hand, it has been suggested [41] that a dynamic modulation of the excitatory/inhibitory
balance can indeed be observed in long recordings; although our model would be inherently
unable to capture such effects, it is tempting to interpret the suggestive similarity between the
theoretical and experimental distributions in Fig 6 as a manifestation of such changes of excit-
atory/inhibitory balance in time, of which the theoretical distributions would be a ‘static’ ana-
log. To rule out the possibility that different behaviors in time could be due to intrinsic and
global modifications in the experimental preparation, we checked (see S1 Fig) the waveforms
of the recorded spikes across all MEA electrodes, comparing the earliest and latest used

Fig 6. Avalanche size distribution: simulations vs ex-vivo data. Panels A-C: mean-field simulations, with fixed inhibition winh = 1. and increasing
excitation (wexc = 0.9, 0.94, 1). The distributions are well fitted by power-laws; panel B and C clearly show the buildup of ‘bumps’ in the high-size tails,
reflecting the increasing contribution from network spikes and quasi-orbits in that region of the distribution. Panels D-F from ex-vivo data,
different* 40-minute segments from one long recording; power-laws are again observed, although fitted exponents cover a smaller range; in panels E and
F, bumps are visible, similar to model findings. The similarity between the theoretical and experimental distributions could reflect changes of excitatory/
inhibitory balance in time in the experimental preparation. Since all the three simulations lay on the left of or just on the bifurcation line (white line in Fig 2), the
shown results are compatible with the experimental network operating in a slightly sub-critical regime.

doi:10.1371/journal.pcbi.1004547.g006
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recordings (about 40 minutes each, separated by about 34 hours). In most cases the waveforms
for the two recordings are remarkably similar, and when they are not, no systematic trend in
the differences is observed.

If our interpretation is correct, the experimental preparation operates below, and close, to an
oscillatory instability; on the other hand, contrary to NS, the appearance of avalanches does not
seem to be exquisitely related to a Hopf bifurcation, rather they seem to generically reflect the
non-linear amplification of spontaneous fluctuations around an almost unstable fixed point—a
related point will be mentioned in the next section. We also remark that we obtain power-law
distributed avalanches in a (noisy) mean-field rate model, by definition lacking any spatial struc-
ture; while the latter could well determine specific (possibly repeating) patterns of activations (as
observed in [19]), it is here suggested to be not necessary for power-law distributed avalanches.

The avalanche size distribution for the same network as in Fig 5, panel C, is sparser but
qualitatively compatible with the distribution in Fig 6, panel F (see S2 Fig); in particular, the
distribution shows a prominent peak for high-size avalanches, consistently with the interpreta-
tion, given in connection with Fig 5, of high excitability.

We do not provide examples of avalanche and NS-quasi orbits size distributions in the super-
critical region on the right of the Hopf bifurcation line in Fig 2; this is because the phenomenol-
ogy in that region is relatively stereotyped and easy to guess/understand: the high excitability of
the network generates, moving on the right of the bifurcation line, increasingly stereotyped net-
work spikes, which dominate the size distribution of the network events (see S3 Fig, panel A);
even though finite-size fluctuations blur the bifurcation line, quasi-orbits are expected to con-
tribute very little in the supercritical region; the distribution of avalanche sizes is increasingly
dominated by the high-size bump associated with network spikes (see S3 Fig, panel B).

Inferring the time-scales
The fatigue mechanism at work (STD in our case) is a key element of the transient network
events, in its interplay with the excitability of the system. While the latter can be manipulated
through pharmacology, STD itself (or spike frequency adaptation, another neural fatigue
mechanism) cannot be directly modulated. It is therefore interesting to explore ways to infer
relevant properties of such fatigue mechanisms from the experimentally accessible informa-
tion, i.e. the firing activity of the network. We focus in the following on deriving the effective
(activity-dependent) time scale of STD from the sampled firing history.

The starting point is the expectation that the fatigue level just before a NS should affect the
strength of the subsequent NS. We therefore measured the correlation between r (fraction of
available synaptic resources) and the total number of spikes emitted during the NS (NS size)
from simulations. We found that the average value of r just before a NS is an effective predictor
of the NS size, the more so as the excitability of the network grows.

Based on the r-NS size correlation, we took the above “experimental” point of view, that
only the firing activity ν is directly observable, while r is not experimentally accessible. Further-
more, the success of the linear analysis for the inter-NS interval statistics (due to the NS being a
low-threshold very non-linear phenomenon), suggests that without assuming a specific form
for the dynamics of the fatigue variable f, we may tentatively adopt for it a generic linear inte-
grator form, of which we want to infer the characteristic time-scale τ�:

_f ¼ � f
t�

þ nðtÞ ð19Þ

To do this, first we reconstruct f(t) from ν(t) for a given τ� then we set up an optimization
procedure to estimate t�optim, based on the maximization of the (negative) f-NS size correlation
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(a strategy inspired by a similar principle was adopted in [11]). Fig 7, panel A, shows an illus-
trative example of how the correlation peaks around the optimal value. As a reference, the dot-
ted line marks the value below which 95% of the correlations computed from surrogate data
fall; surrogate data are obtained by shuffling the values of f at the beginning of each NS.

We remark that in this analysis we use both NS and quasi-orbit events (which are both
related to the proximity to a Hopf bifurcation). This is reasonable since we expect to gain more
information about the anti-correlation between f and NS size by including both types of large
network events.

Although the procedure successfully recovers a maximum in the correlation, the value of
t�optim (0.58 s) reported in Fig 7, panel A, is not close to the value of τSTD (0.8 s). Yet this is

expected, since in Eq 19, τ� will in general depend on τSTD and other parameters of the dynam-
ics, but also on the point around which the dynamics is being linearized, more precisely on the
average activity hνi. Specifically, when the fatigue variable follows the Tsodyks-Markram
model of STD (which of course was actually the case in the simulations), linearizing the
dynamics of r around a fixed point hri (hri = 1/(1 + uSTD hνi τSTD)), r behaves as a simple linear
integrator with a time-constant:

t�optim ¼ tSTD hri ¼
tSTD

1þ uSTD hni tSTD ð20Þ

that depends on τSTD, uSTD, and hνi.
To test this relationship, we performed the optimization procedure for each point of the

excitation-inhibition plane. The optimal τ� values across the excitation-inhibition plane against
hνi are plotted in Fig 7, panel B (dots). The solid line is the best fit of τSTD and uSTD from Eq
20, which are consistent with the actual values used in simulations.

This result is suggestive of the possibility of estimating from experiments the time-scale of
an otherwise inaccessible fatigue variable, by modeling it as a generic linear integrator, with a
“state dependent” time-constant.

Fig 7. Slow time-scales inference procedure: test on simulation data. Panel A: correlation between low-pass filtered network activity f (see Eq 19) and
the size of the immediately subsequent network spike plotted against the time-scale τ* of the low-pass integrator (continuous line). The correlation presents a
clear (negative) peak for an ‘optimal’ value t�optim ¼ 0:58 s of the low-pass integrator; such value is interpreted as the effective time-scale of the putative slow
self-inhibitory mechanism underlying the statistics of network events—in this case, short-term synaptic depression (STD); as a reference, the dotted line
marks the value computed for surrogate data (see text). Panel B: for each point in the (wexc, winh)-plane (see Fig 2), t�optim vs average network activity; the
continuous line is the best fit of the theoretical expectation for STD’s effective time-scale (Eq 20); the fitted values for the STD parameters τSTD and uSTD are
consistent with the actual values used in simulation (τSTD = 0.8 s, uSTD = 0.2).

doi:10.1371/journal.pcbi.1004547.g007
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Fig 8 shows the outcome of the same inference procedure for two segments of experimental
recordings. The plot in panel A is qualitatively similar to panel A in Fig 7: although the peak is
broader and the maximum correlation (in absolute value) is smaller, the τ� peak is clearly iden-
tified and statistically significant (with respect to surrogates, dotted line), thus suggesting a
dominant time scale for the putative underlying, unobserved fatigue process. However, Fig 8,
panel B, clearly shows two significant peaks in the correlation plot; it would be natural to inter-
pret this as two fatigue processes, with time scales differing by an order of magnitude, simulta-
neously active in the considered recording segment.

To test the plausibility of this interpretation, we simulated networks with simultaneously
active STD and spike-frequency adaptation (SFA, see Models and Analysis). Fig 9 shows the
results of time scale inference for two cases sharing the same time scale for STD (800 ms) and

Fig 8. Slow time-scales inference procedure on ex-vivo data. Correlation between low-pass filtered network activity f (see Eq 19) and the size of the
immediately subsequent network spike plotted against the time-scale τ* of the low-pass integrator for two experimental datasets (different periods—about 40
minutes each—in a long recording). The plot in panel A is qualitatively similar to the simulation result shown in panel A of Fig 7: a peak, although broader and
of smaller maximum (absolute) value, is clearly identified and statistically significant (with respect to surrogate data, dotted line). Panel B shows two
significant peaks in the correlation plot, a possible signature of two concurrently active fatigue processes, with time scales differing by roughly an order of
magnitude. Panel A: same data as Fig 5, panel B.

doi:10.1371/journal.pcbi.1004547.g008

Fig 9. Slow time-scales inference procedure on simulation data with STD and spike-frequency adaptation. Correlation between low-pass filtered
network activity f (see Eq 19) and the size of the immediately subsequent network spike plotted against the time-scale τ* of the low-pass integrator. In this
case, the mean-field model includes, besides short-term depression (STD), a mechanismmimicking spike-frequency adaptation. Panel A: spike-frequency
adaptation with characteristic time τSFA = 15 s. Panel B: τSFA = 30 s. In both cases the correlation presents a STD-related peak at around τ*’ 500 ms (τSTD =
800 ms), consistently with Fig 7. The peaks at higher τ*s, found respectively at 12 and 22 s, in accordance with what is reported in the plot legends and in the
main text, roughly preserve the ratio of the corresponding τSFA values.

doi:10.1371/journal.pcbi.1004547.g009
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time scale of SFA differing by a factor of 2 (τSFA = 15 and 30 s respectively). In both cases the
negative correlation peaks at around τ� ’ 500 ms; this peak is plausibly related to the charac-
teristic time of STD, consistently with Fig 7. The peaks at higher τ�s, found respectively at 12
and 22 s, roughly preserve the ratio of the corresponding τSFA values.

This analysis provides preliminary support to the above interpretation of the double peak in
Fig 8, right panel, in terms of two coexisting fatigue processes with different time scales.

We also checked to what extent the avalanche sizes were influenced by the immediately pre-
ceding amount of available synaptic resources r, and we found weak or no correlations; this fur-
ther supports the interpretation offered at the end on the previous section, that avalanches are
a genuine manifestation of the network excitability which amplifies a wide spectrum of small
fluctuations.

Discussion
Several works recently advocated a key role of specific network connectivity topologies in gen-
erating ‘critical’ neural dynamics as manifested in power-law distributions of avalanches size
and duration (see [20, 42]). Also, it has been suggested that ‘leader neurons’, or selected coali-
tions of neurons, play a pivotal role in the onset of network events (see e.g. [21, 43–45]). While
a role of network topology, or heterogeneity in neurons’ excitability, is all to be expected, we set
out to investigate what repertoire of network events is accessible to a network with the simplest,
randomly sparse, connectivity, over a wide range of excitation-inhibition balance, in the pres-
ence of STD as an activity-dependent self-inhibition. In the present work we showed that net-
work spikes, avalanches and also large fluctuations we termed ‘quasi-orbits’ coexist in such
networks, with various relative weights and statistical features depending on the excitation-
inhibition balance, which we explored extensively, including the role of finite-size noise (irreg-
ular synchronous regimes in balanced excitatory-inhibitory networks has been studied in [35]).
We remark in passing that the occurrence of quasi-orbits is primarily related to the proximity
to a Hopf bifurcation for the firing rate dynamics; on the other hand, the occurrence of NS
and, presumably, avalanches, does not necessarily require this condition: for instance, NS can
occur in the proximity of a saddle-node bifurcation, where the low-high-low activity transitions
derive from the existence of two fixed points, the upper one getting destabilized by the fatigue
mechanism (see e.g. [46, 47]); notably, in [12] the authors find that, in a network of leaky inte-
grate-and-fire neurons endowed with STD, when a saddle-node separates an up- and a down-
state, the dynamics develops avalanches during up-state intervals only. We also remark that,
with respect to the power-law distribution of avalanches, it is now widely recognized that while
criticality implies power-law distributions, the converse is not true, which leaves open the
problem of understanding what is actually in operation in the neural systems observed experi-
mentally (for a general discussion on the issues involved, see [48]). In the present work, we do
not commit ourselves to the issue of whether avalanches could be considered as evidence of
Self-Organized Criticality.

In summary, the main contributions of the present work can be listed as follows.
We present a low-dimensional network model, derived from the mean field theory for inter-

acting leaky integrate-and-fire neurons with short-term depression, in which we include the
effect of finite-size (multiplicative) noise.

At the methodological level we introduce a probabilistic model for events detection, and a
method for inferring the time-scale(s) of putative fatigue mechanisms. At the phenomenologi-
cal level we recognize the existence of quasi-orbits as an additional type of network event, we
show the coexistence of quasi-orbits, network spikes, and avalanches, and study their different
mixing depending on the excitability of the network. We also offer a theoretical interpretation
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of the phenomenology, through a bifurcation analysis of the mean-field model, and a predic-
tion on the effect of noise in the proximity of a Hopf bifurcation.

Supporting Information
S1 Fig. Stability of the cultured networks.Waveforms of the recorded spikes across all MEA
electrodes, comparing the earliest and latest used recordings (about 40 minutes each, separated
by about 34 hours). In most cases the waveforms for the two recordings are remarkably similar,
and when they are not, no systematic trend in the differences is observed. Panel A: average
wave-form for each electrode; blue lines refer to the earliest recording, green line to the latest.
For each electrode, we averaged only the first spike detected (if any) for that electrode in each
network spike, to best isolate local excitability properties from global network effects during
the development of the network spike. The shaded colored strips are ±standard deviation.
Panel B: waveforms averaged under a stricter selection: only the very first spike of the entire
network in each network spike is considered, which clearly selects fewer leading electrodes
(only electrodes with 5 or more recorded first spikes are shown).
(TIF)

S2 Fig. Avalanche size distribution for the same ex-vivo network of Fig 5, panel C. The dis-
tribution is sparser but qualitatively compatible with the distribution in Fig 6, panel F; in par-
ticular, the distribution shows a prominent peak for high-size avalanches, consistently with the
interpretation, given in connection with Fig 5, of high excitability.
(TIF)

S3 Fig. NS-quasi orbits and avalanches size distributions in the super-critical region. Data
from a simulation of the network corresponding to the point (wexc, winh) = (1.2, 0.4), on the
right of the Hopf bifurcation of Fig 2. Panel A: NS-quasi orbits size distribution; the high excit-
ability of the network generates increasingly stereotyped network spikes, whilst the contribu-
tion from noise-induced quasi-orbits vanishes. Panel B: the distribution of avalanche sizes,
while preserving the small-size power-law tail, is increasingly dominated by the high-size
bump associated with network spikes. See also Figs 5 and 6.
(TIF)
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