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Abstract
We have compared 12 genome-scale models of the Saccharomyces cerevisiaemetabolic

network published since 2003 to evaluate progress in reconstruction of the yeast metabolic

network. We compared the genomic coverage, overlap of annotated metabolites, predictive

ability for single gene essentiality with a selection of model parameters, and biomass pro-

duction predictions in simulated nutrient-limited conditions. We have also compared pair-

wise gene knockout essentiality predictions for 10 of these models. We found that varying

approaches to model scope and annotation reflected the involvement of multiple research

groups in model development; that single-gene essentiality predictions were affected by

simulated medium, objective function, and the reference list of essential genes; and that

predictive ability for single-gene essentiality did not correlate well with predictive ability for

our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the

reconstruction of the yeast metabolic network is indeed gradually improving through the iter-

ative process of model development, and there remains great opportunity for advancing our

understanding of biology through continued efforts to reconstruct the full biochemical reac-

tion network that constitutes yeast metabolism. Additionally, we suggest that there is oppor-

tunity for refining the process of deriving a metabolic model from a metabolic network

reconstruction to facilitate mechanistic investigation and discovery. This comparative study

lays the groundwork for developing improved tools and formalized methods to quantitatively

assess metabolic network reconstructions independently of any particular model applica-

tion, which will facilitate ongoing efforts to advance our understanding of the relationship

between genotype and cellular phenotype.

Author Summary

Scientists have been mapping the chemical reactions cells use to grow and manage waste
since before enzymes were first identified more than 150 years ago. The model yeast Sac-
charomyces cerevisiae has one of the most extensively studied metabolic networks, includ-
ing at least 25 metabolic network models published since 2003. If iterative model
improvement refines the metabolic network map, we would expect eventual convergence
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to a full, accurate metabolic network reconstruction. In this study, we looked for evidence
of such convergence through comparative analysis of 12 genome-scale yeast models. We
conducted simulations and evaluated model features such as predictive accuracy, genomic
coverage and the included metabolites and reactions. We found that no single metric for
evaluating models can adequately summarize important aspects of model quality. In some
cases, we observed tradeoffs between model predictive accuracy and network coverage.
We found evidence of incremental changes to the network reconstruction, but not marked
shifts in model predictive ability or other metrics clearly arising from changes to the net-
work alone. This work has broader implications to computational reconstruction of meta-
bolic networks for any organism, and suggests that there is opportunity for refocusing the
model building process to better support mapping cellular metabolic networks.

Introduction
Efforts to map metabolic networks—to describe the full network of anabolic and catabolic bio-
chemical reactions occurring within a cell—have advanced from early biochemical studies of
fermentation [1] to contemporary efforts to algorithmically generate pathway diagrams from
genomic sequence [2]. Such pathway maps may be augmented with additional metadata to
build a digital “reconstruction” of an organism’s metabolic network. In turn, such organism-
specific reconstructed metabolic networks may be further supplemented to build mathematical
models that are capable of simulating metabolic fluxes [3]. Recently, research efforts have
focused on improving the ability to quickly build genome-scale metabolic network models of
metabolism and to improve their predictive accuracy [2,4–6]. Comparatively less effort has
been spent exploring opportunities for knowledge discovery arising during the process of net-
work reconstruction prior to mathematical simulation [7]. In this work, we emphasize the dis-
tinction between metabolic network “reconstruction” and metabolic network “model”.
Emphasizing this distinction facilitates an effort to resolve the relative contributions to model
predictive accuracy or error arising from the metabolic network structure itself (the “recon-
struction”) from those arising from mathematical parameters chosen when building a simula-
table metabolic network “model” from the network reconstruction. While a variety of ad hoc
quantitative metrics have been applied to evaluate improvements in metabolic network models,
quantified assessment of the progress of the underlying reconstructions over time is a nascent
effort [8]. This may be, in part, due to the fact that the number of models is so much greater
than the number of extensively curated reconstructions. The relative difficulty of curating a
comprehensive metabolic network reconstruction compared to generating a draft model is
highlighted by the fact that there are currently more than 2,600 functional draft models [6], but
only Escherichia coli [9] and Saccharomyces cerevisiae [10] reconstructions have been exten-
sively updated multiple times and revised through curation efforts by multiple research groups
over a multi-decade timescale. Since simulation results are more amenable to quantitative anal-
ysis than reconstruction quality, reconstructions have generally been assessed indirectly, often
in the context of model performance via manuscript discussion of scope (the number of genes,
reactions, or metabolites in a model), standards compliance, naming or annotation conven-
tions, reputation of the group that built a particular model, or predictive performance of a
derived model for a particular phenotype of interest (commonly used phenotypes include gene
essentiality, substrate utilization, growth rate, or product production) [11]. This indirect
approach to assessing metabolic network reconstruction quality bears a risk, however, because
the model building process itself can obscure important details about the underlying
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reconstruction (particularly knowledge limitations that may be useful for informing future
investigation [12,13]).

The standard reconstruction protocol includes converting a reconstruction to a mathemati-
cal model for subsequent debugging [3]. Thus, the ability to create a functional model has
come to serve as a minimum threshold for defining the scope of a “draft reconstruction”, and
the distinction between “reconstruction” and mathematical “model” has become blurred.
Model developers are free to take different approaches when parameterizing model features
such as objective function (i.e., biomass composition) [14,15], media definition [16], and refer-
ence lists of “essential” genes used for benchmarking model performance [17]. Model develop-
ers may use different approaches to gap-filling [4,18,19], trimming dead-end metabolites,
establishing an objective function, and adding transport and exchange reactions. In fact, opti-
mization-based approaches have been applied to successfully improve model essentiality pre-
dictions by adjusting these parameters [20]. Such algorithmic approaches can improve the
predictive performance of a model even in the absence of any changes to the underlying meta-
bolic reconstruction.

Using model performance to drive iterative improvements to metabolic network recon-
struction has led to two perverse consequences. First, if two models of the same organism give
different predictions, how can a researcher determine whether the differences arise from differ-
ences in the reconstructed network or from differences in model parameters? We have previ-
ously observed that algorithms such as OptKnock [21] can suggest different targets for
metabolic engineering efforts when applied to different models of the same organism (unpub-
lished data). Second, a single metabolic network model can provide only limited information
about the quality of the underlying metabolic network reconstruction because there are so
many degrees of freedom associated with deriving a model from a reconstruction [7,8]. Com-
parative analysis of multiple models, now possible at scales not previously feasible [22], pro-
vides an opportunity to address these challenges of single-model analysis. Our approach is to
conduct comparative analysis of yeast metabolic network models that have been published in
the past two decades, while controlling for differing modeling assumptions with a standardized
model biomass function, media definition, and common sets of genes considered in the evalua-
tions. An additional benefit of comparative analysis of models spanning a multi-decade time-
scale is the opportunity for evaluating model predictive performance on data that was not
available at the time of reconstruction, which can provide a useful independent validation pro-
cedure and provide insights into the degree of overfitting possible in these models through the
manual reconstruction process that is very difficult to ascertain otherwise.

At least 25 models of the Saccharomyces cerevisiaemetabolic network have been published
since 2003 [5,11,17,20,23–40]. Each of these models has been applied successfully to research
efforts focusing on advancing biotechnology [41], mapping genotype to phenotype relation-
ships in cellular physiology [42], or developing new methods in computational biology [43].
Previously, researchers have combined comparative analysis of three of these models (iFF708,
iLL672, and iND750) with experimental data to refine characterization of cellular phenotypes
in 16 environmental conditions [44], and developed tools to facilitate model matching and
comparison for synchronous investigation or building composite models [45]. Another two
models (Yeast 5 and iMM904) have been evaluated for predicting growth rates of a prototro-
phic gene deletion library in 20 different conditions [46]. More recent efforts have begun com-
parative analysis of a broader range of these models [22]; however, we are not aware of
previous large-scale comparative analysis efforts that modify model objective functions, refer-
ence phenotype lists, and simulated media composition to evaluate the underlying metabolic
network reconstructions built for S. cerevisiae.
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In this study, we conducted 161 in silico screens of predicted single gene essentiality using
18 different simulated media conditions, 12 different yeast metabolic models, and 13 different
biomass definitions. We used this range of simulation parameters to standardize choices made
in the development of various models, thus facilitating evaluation of the underlying network
reconstructions. Using a binary growth/no growth assessment metric, we evaluated model pre-
dictions of the essentiality of three different lists of “essential” genes compiled from literature
and database review. Additionally, we conducted simulations of aerobic growth with con-
straints on glucose, oxygen, and nitrogen exchange reactions singly or in combination to evalu-
ate the correlation between model predictions of maximally achievable biomass flux values and
reported experimental growth rates. We also conducted 10 in silico screens of pairwise gene
essentiality by different models using their default media and biomass definitions, and com-
pared model predictions to 32,488 gene pairs annotated as synthetic lethal in the Saccharomy-
ces Genome Database. All code for our analysis is available as S1 File. Our key findings include
the following. (1) Changes in model scope reflect a history of iterative reconstruction develop-
ment via collaboration between groups—in other words, each model contains evidence of its
history, with stylistic and content evidence of the specific model from which it is derived.
Knowledge is propagated between models, but there is also risk of error propagation. There-
fore, it is important to revisit assumptions made when earlier models were originally built
when evaluating newer models. (2) Model updates tended to fall into two major categories,
model scope expansion (i.e. the inclusion of new metabolic processes) or subsequent refine-
ment (i.e. including essentially the same sets of processes but working to improve accuracy).
There was a pattern in analyzing the models’ ability to predict KO essentiality that accuracy on
average reduced when model scope expansion was done and then improved on subsequent
reconstructions aimed at improving the same set of processes. (3) For each model, single-gene
essentiality predictions were affected by parameters external to metabolic network structure,
such as simulated medium, objective function, and the reference list of essential genes. (4) The
correlation between model predictions of maximum biomass flux correlate and reported
growth rates are the same for all models when only a single exchange reaction is constrained,
but the correlation between model prediction and reported growth rate differ among the mod-
els when multiple exchange reactions are simultaneously constrained to experimental values.
This difference can be attributed to changes in metabolic network reconstructions independent
of model parameters. (5) The predictive ability for single-gene essentiality did not correlate
with predictive ability for our reference list of pairwise synthetic lethal genes. Thus, we con-
clude that the reconstruction of the yeast metabolic network is generally improving, and have
demonstrated that comparative model analysis contributes to reconstruction improvement.
There remains great opportunity for advancing our understanding of metabolic function
through continued efforts to improve the reconstruction of the yeast metabolic network.

Results

1) Changes in model scope reflect the history of model development and
collaboration between groups
We compiled summary statistics for functional yeast metabolic models published since 2003
(Fig 1), including the number of metabolites, reactions, dead-ends, gene-associated reactions,
and genomic coverage. When the models are ordered chronologically, none of these statistics
demonstrates continuous improvement, perhaps reflecting the differing research objectives
that motivated the development of each new model, but also demonstrating the limited ability
of any individual statistic for fully describing model quality (e.g. reducing the number of genes
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Fig 1. Summary statistics of yeast metabolic network models.General parameters described or used for
simulation in this study include: number of genes included as reaction modifiers; number of included genes
that are currently annotated by the Saccharomyces Genome Database as “dubious”, or unlikely to encode an
expressed protein; number of metabolites; number of dead end metabolites (those metabolites that are either
produced by knownmetabolic reactions of an organism but not consumed, or vice versa); number of
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in a reconstruction is an improvement if previous iterations included misannotated genes, but
such a reduction of genomic coverage could be considered a worse statistic).

We observed a general increase in the number of genes included in models over time, but
this increase was not uniform. We also found that increased genomic coverage could be a result
of modelers including genomic features that are no longer considered genes. For example, the
Biomodels.db model accounts for the greatest coverage of the yeast genome, but includes 28
open reading frames currently annotated as “dubious”, or unlikely to encode a functional pro-
tein. Additionally, increases in genomic coverage did not imply improved predictive accuracy:
Yeast 6 includes fewer genes than Yeast 5, but improves single-gene essentiality predictions

Similarly, the number of metabolites and reactions and the proportion of dead-end metabo-
lites in yeast metabolic models has generally, but not uniformly, increased over time—and does
not coincide with improved predictive ability. For example, the number of metabolites and
reactions in Yeast 7 is much larger than that in Yeast 6, though they have the same overall
MCC. In contrast, iND750 contains fewer metabolites and reactions than its progenitor model
iFF708. The portion of dead-end metabolites—those metabolites that are consumed but not
produced in the network or vice versa—has also varied among models, and does not correlate
with predictive accuracy.

Next, we evaluated model scope by comparing genomic coverage and the metabolites that
could be cross-identified with Chemical Entities of Biological Interest (ChEBI) identifiers with
the annotation included with the models. We were unable to directly compare model reactions
because of the lack of standardized reaction identification between models, and the lack of an
external reaction reference database identifier in any yeast metabolic model, a current limita-
tion for interoperability and comparison in our field. We found that models clustered in groups
that reflect their historical development [10], but these clusters differ between gene and metab-
olite comparisons (Fig 2). Models clustered in 4 groups when comparing genomic coverage: 1)
Versions 4–7 of the Consensus Reconstruction; 2) iMM904, iMM904bs, iAZ900, and iTO977;
3) a looser cluster of iFF708, iIN800, and iND750; and 4) the Biomodels.db model. A row-
aligned comparative table of genes in each model is included as S1 Table.

Model similarity clusters differed when based upon ChEBI identifier-annotated metabolites,
and the clusters were more tightly linked to the research group most closely related to the
development of a group of models. When clustered by annotated metabolites, the resulting 5
groupings consisted of 1) Versions 5–7 of the Consensus Reconstruction; 2) iND750, iMM904,
iMM904bs, and iAZ900; 3) iFF708, iIN800, and iTO977; 4) Version 4 of the Consensus Recon-
struction and 5) the Biomodels.db model.

2) Single-gene essentiality predictions reflect the iterative process of
model scope expansion and subsequent refinement
Improving model ability to predict the essentiality of individual genes for growth has not been
the primary motivating factor for developing each new yeast metabolic network model, but

reactions; and number of reactions associated with genes. Simulations were conducted for each model using
the as-distributed model default biomass objective function and with the biomass objective from the iFF708
model. Reported simulation results are divided into two subcolumns to reflect the use of two different
objective functions for each model. Simulation results include the number of blocked reactions for each
biomass definition (those reactions which cannot carry flux due to network structural constraints); the
Matthews’ Correlation Coefficient (MCC) for model predictions of single gene essentiality across all
conditions simulated; and the Matthews’ Correlation Coefficient for model prediction of double gene
essentiality (i.e., pairwise synthetic lethal interactions) for simulations using each models’ default biomass
definition. Some parameter values differ from previously published values due to differing software
implementation and annotation conventions.

doi:10.1371/journal.pcbi.1004530.g001
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essentiality predictions have generally been reported with the publication of each new model to
demonstrate their accuracy and utility. However, direct comparison between reported predic-
tive values is complicated by differing simulation conditions. In this study, we did not find a
strong trend of continuing improvement in model ability to predict single gene essentiality
over time. Instead, we found evidence of an iterative process in which model scope changes
(typically leading to a decrease in average predictive accuracy), followed by subsequent cura-
tion leading to improved prediction by descendant models (Fig 3). We found that both iIN800,
with its expansion of the reconstruction of lipid metabolism, and iND750, with its expansion
of compartmentalization, had a lower overall Matthews Correlation Coefficient (MCC) for sin-
gle-gene essentiality predictions than their progenitor model, iFF708. Subsequently, iMM904
refined iND750, and made more correct predictions of single gene essentiality. Similarly, Yeast
6 refines Yeast 5 and improves predictive ability, but the focus of Yeast 7 on expanded scope
does not lead to as large an improvement in single-gene essentiality predictive ability, and
iTO977’s focus on expanding model scope to cover some protein modification processes and

Fig 2. Comparing model genomic coverage andmetabolite annotation.Models clustered differently when compared using genomic coverage (A and B)
or the subset of metabolites in each model that are annotated with reference to an external database such as the Chemical Entities of Biological Interest
(ChEBI) database (C and D). Results are presented as heatmaps with dendrograms (A and C) and scatterplots of the normalized pairwise distance between
models (B and D). Yellow bands in the heat map signify inclusion of a particular open reading frame in that model, and dendrogram clustering is based upon
similarity.

doi:10.1371/journal.pcbi.1004530.g002
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to provide a scaffold for integrating transcriptomic data does not lead to an improvement in
predicting single-gene essentiality compared to its progenitor model, iIN800.

The Biomodels.db model was generated in a methods-development effort to improve auto-
mated reconstruction and annotation. The algorithm underlying the Biomodels.db model pri-
oritizes connectivity and defines “functionality” as the ability of the model to predict growth
using a generic biomass definition objective function. The Biomodels.db annotates genes with
a different nomenclature than the ORF format used by other models, so was incompatible with
our gene essentiality screen. We evaluated the Biomodels.db model by other comparative met-
rics, but did not evaluate its FBA performance here.

3) For each model, single-gene essentiality predictions were affected by
simulated medium, objective function, and the reference list of essential
genes
We conducted 161 simulated genome-wide single gene deletion screens for gene essentiality by
conducting flux balance analysis with an objective of maximizing biomass flux. We used differ-
ent combinations of simulated media and biomass objective functions and compared model
predictions to appropriate reference lists of essential genes, as described in the Materials and
Methods section. We found that no single model predicted essential genes best in all simula-
tions (Fig 4). In our simulations, the iAZ900 model had the highest single MCC we calculated
(0.83) for a particular condition, and the Yeast 7 model had the highest overall MCC across all

Fig 3. Change in gene essentiality predictions betweenmodel and its nearest ancestor.When
comparing the Matthews Correlation Coefficient for model gene essentiality predictions to the models’
nearest progenitors, we observe that the models may be segregated between those focusing on expanding
model scope, and those focused on iterative refining an existing model by plotting the change in MCC
betweenmodels. Generally, when the stated focus of a model developer is to expand the scope of the yeast
metabolic network reconstruction, predictive ability suffers relative to the progenitor model. When the stated
focus is to refine and curate a model, predictive ability improves relative to the progenitor model. Thus, our
analysis finds that model predictive ability reflects the iterative process of model development. The asterisk
near the Yeast 4 comparison indicates that it is an integrative model that not have a single nearest progenitor
(we compared it to iFF708 for this analysis).

doi:10.1371/journal.pcbi.1004530.g003
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Fig 4. Evaluating model predictions of single-gene essentiality. Flux balance analysis was conducted to predict whether individual genes were essential
for growth using seven different media formulations and two different model biomass objective functions for each model. Gene essentiality predictive
performance is summarized in this table by the Matthews’ Correlation Coefficient (MCC). Model predictions were compared to two reference lists of essential
genes: one derived from the saccharomyces genome database (SGD-based gene list) and one from Kuepfer et al. (Kuepfer-based gene list). These lists are
provided as Supplementary Information. Modeled medium formulations included each model’s default medium, (Medium: Default), a minimal glucose-limited
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the conditions for which we calculated (0.61). As a point of comparison, we calculated a MCC
of 0.61 based on the reported results of a gene essentiality screen with a recent model of the E.
colimetabolic network [47], which is, along with yeast, widely considered the best studied
genome-scale metabolic network model to date.

Although it had the highest observed MCC in one condition, the iAZ900 model did not per-
form as well in other simulations—it also had the lowest MCC (0.17) for an out-of-sample
screen using the iFF708 biomass definition, a very permissive set of exchange reactions, and a
reference gene list based upon SGD-reported phenotypes. When the exchange reactions are
constrained to reflect a simulated glucose minimal defined media, the iAZ900 MCC for the
iFF708 biomass increases to 0.55. Such ranges of model predictive ability were observed for all
models across differing simulation conditions, highlighting the importance of controlling for
model parameter variation when attempting to compare metabolic network models of a partic-
ular organism. In the specific case of iAZ900, the excellent performance of its best condition
reflects the authors’ goal in developing iAZ900 –to use an algorithmic approach to improve the
iMM904 model by maximizing agreement with a list of genes essential genes reported to be
essential by Kuepfer et al. [17]. The reference list of essential genes used in the development of
iAZ900 originates from a screen of non-essential genes in the yeast knockout collection in glu-
cose-limited defined medium [48]. This reference list for training the algorithm is one of the
reference lists we used for comparative evaluation. iAZ900 did not perform as well at classify-
ing genes as essential when using other reference gene lists. Thus, iAZ900 demonstrates that
high model performance can be achieved by one metric, but there is the usual tradeoff between
sensitivity and specificity when attempting to generalize a specific metabolic network model to
predict phenotypes in new conditions.

Our observation that model performance was influenced by the reference list of genes con-
sidered essential when attempting to evaluate model predictive ability demonstrates that the
definition for gene essentiality is another parameter that may be tuned as model developers
refine their model. In our simulations, model MCC was higher on average when calculated rel-
ative to the SGD-based list of essential genes for five of the models (iND750, iIN800, iTO977,
Yeast 6, and Yeast 7), and higher relative to the Kuepfer-based list of essential genes for the
remaining six models (iFF708, iMM904, Yeast 4, iAZ900, iMM904bs, and Yeast 5). These two
groups do not correspond to the clusters identified when comparing model genomic coverage
or the clusters identified when comparing annotated metabolites.

All models predicted gene essentiality better when glucose was the simulated primary car-
bon source than when galactose, glycerol, or ethanol were the primary sources. However, since
the reference gene list used for the non-glucose carbon sources was based upon a single screen,
we could not determine whether this reflects limitations in the reconstruction of the non-glu-
cose metabolic network, or strain and laboratory-specific effects in the reference data. Histori-
cally, the metabolism of non-glucose carbon sources has received less biochemical
characterization than glucose metabolism in yeast.

Since the objective function is a tunable parameter that is independent of metabolic network
structure, we normalized the objective by selecting a biomass definition that each model could
satisfy, as described in the Flux Balance Analysis—Biomass Definition subsection of Methods,
below. Thus, we began differentiating between model parameter improvements and network

medium (Medium: Min-Glu), a synthetic complete glucose-limited medium based on Kennedy et al. (Medium: SC-Glu), and a synthetic medium based on
Kuepfer et al. using glucose (Medium: Kuepfer-Glu), galactose (Medium: Kuepfer-Gal), glycerol (Medium: Kuepfer-Gly), or ethanol (Medium: Kuepfer-Eth) as
carbon source. Simulations were conducted using each model’s default biomass definition (Biomass: Default) or the iFF708 model biomass definition
(Biomass: iFF). In this heat map, color intensity is based upon positive Matthews’ Correlation Coefficient (MCC) (no parameter combinations lead to negative
MCCs for any model), each row is a unique set of model parameters, and models are arranged in chronological order from left to right.

doi:10.1371/journal.pcbi.1004530.g004
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structure improvements to compare the reconstruction underlying different models more
directly. We performed Flux Balance Analysis of the metabolic network models using both the
biomass definition provided by the model authors, and the biomass function used for the
iFF708 model, and found that for all models with different biomass definitions than the iFF708
model, the model predictive power was affected by the objective function used (Fig 5). In every
case but the Yeast 4 model, model predictions were better using the model default biomass
objective than the iFF708 objective, suggesting that model developers have achieved improved
predictive accuracy in part by modifying the objective function, and such improvements have
been achieved independently of refinements to the biochemical network reconstruction itself.
This approach is not meant to imply that modifications to an objective function would be con-
ducted solely to improve a predictive metric: refinements to the biomass definition also reflect
improved measurement of biomass composition and changes to model scope. We selected a
common biomass definition for our analysis to evaluate the impact of this particular model
parameter.

4) Model predictions of maximum biomass flux correlate with reported
growth rates similarly when a single exchange reaction is constrained,
but differently when multiple exchange reactions are constrained to
experimental values. This difference can be attributed to changes in
metabolic network reconstructions independent of model parameters
We conducted FBA-based comparison of media- and objective-normalized model predictions
of maximum achievable biomass fluxes with the aerobic growth rates reported by Österlund
et al. for “N-limited” and “C-limited” conditions (we did not simulate anaerobic growth since
most of the models we are examining do not predict anaerobic growth on a minimal medium).
We found that the model predictions of maximally achievable biomass flux correlated with the
previously reported “N-limited” growth rates with a correlation of 0.994 when nitrate or nitrite
exchange fluxes were constrained to previously reported uptake rates (S3 Table).

The “C-limited” simulations reflected a different behavior. When we constrained the glu-
cose exchange reaction alone, all models had a 0.816 correlation with the reported growth rates
(Fig 6A). However, the growth rates labeled “C-limited growth aerobic” by Österlund et al. are
not linear over the range of constraints imposed on the glucose exchange reaction, suggesting
that carbon (glucose) flux is not the sole growth-limiting factor, particularly at the higher range
of glucose flux constraints. The ratio of glucose exchange flux to oxygen exchange flux would
be expected to strongly influence maximum achievable biomass flux due to stoichiometric con-
straints on the oxidation of glucose [49]. We tested model behavior against this expectation by
conducting FBA with both glucose and oxygen exchange reactions constrained to values
reported by Österlund et al. [37]. When glucose and oxygen exchange reactions were both con-
strained to experimental values, we observed that the models segregated to 2 groups: biomass
flux predictions made by 7 models (iFF708, iIN800, Yeast 5, iTO977, iMM904, and
iMM904bs) correlated with observations with a correlation>0.9, and predictions made by the
remaining models (Yeast 4, Yeast 6, Yeast 7, iAZ900) had lower correlations (Fig 6B).

We used one-norm minimized FBA [50] to find an explanation for this difference in model
predictions and observed unrealistically large fluxes through internal reactions along with
unusually large exchange fluxes in models that overpredict biomass flux in high glucose:oxygen
growth simulations. Through repeated FBA and manual investigation of high-flux loops, we
found that the low-correlation models all had a flux through a mitochondrial aspartate trans-
port reaction. This reaction is not associated with a gene in the iAZ900 model (reaction id
“ASSPt2M”), but is annotated with yeast open reading frame YPR021C in the Yeast 4, Yeast 6,
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and Yeast 7 models (reaction ids “r_1163”, “r_1117”, and “r_1117”, respectively). YPR021C
encodes Agc1p, a protein that “fulfills two functions. . . glutamate transport into mitochondria
. . . and . . . aspartate-glutamate exchanger within the malate-aspartate NADH shuttle” [51].
Subsequently, we also found this reaction in the iND750 (“ASPt2M”), iIN800 (“AGC1_2”),
iMM904 (“ASPt2m”), iMM904bs (“ASPt2m”), Yeast 5 (“r_1117”), and iTO (“AGC1_2”) mod-
els. We did not find this reaction in iFF708 or the Biomodels.db models, which do not include
mitochondria as a separate compartment. We did not find literature support for including
yeast mitochondrial aspartatate transport as reconstructed in these models. Thus, investigating
erroneous predictions of maximum biomass flux by four models at simulated high glucose:oxy-
gen flux states allowed us to identify a reconstruction error common to all compartmentalized
models, an error that is independent of model parameters.

When we removed this reaction from the models, we found that it did not affect the predic-
tions for the high correlation models, and improved all remaining correlations to>0.9, with
the exception of the Yeast 4 model, which still over-predicted the maximum biomass flux at
high glucose:oxygen exchange constraint ratios (Fig 6C).

5) Predictive ability for single-gene essentiality did not correlate with
predictive ability for our reference list of pairwise synthetic lethal genes
Using the models as distributed (i.e., with tuned biomass definitions and default exchange reac-
tion constraints), we conducted a simulated screen of all pairwise deletions for 10 models
(iFF708, iND750, iIN800, iMM904, Yeast 4, iAZ900, iMM904bs, Yeast 5, iTO977, and Yeast
6). Using a strict definition of synthetic lethality in which neither gene is individually essential,
but are pairwise essential for growth, we found that the MCC for model prediction of synthetic
lethal gene pairs ranged from 0.04 to 0.12, when compared to a list of synthetic lethal gene

Fig 5. Model prediction of single-gene essentiality is sensitive to biomass definition. Since objective function is a tunable model parameter, we
calculated Matthews’ Correlation Coefficients for the sum of all true positive, true negative, false positive and false negative predictions across all conditions
using two different objective functions for each model: the biomass definition provided by the model authors, and the biomass function used for the iFF708
model. We found that with the exception of the Yeast 4 model, all model predictions were improved by tuned objective function, independent of refinements to
the biochemical network reconstruction. Models are arranged in chronological order across the horizontal axis.

doi:10.1371/journal.pcbi.1004530.g005
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Fig 6. Growth simulations demonstrate interplay between network reconstruction and constraints. A) Optimal biomass flux calculated by flux balance
analysis increased linearly with glucose uptake flux for all models when the glucose exchange reaction is the only constrained media component. All model
predictions had a 0.8158 correlation with previously reported measured growth rate. B) When glucose and oxygen exchange reactions were both
constrained to experimental values, there are high-correlation (black) and low-correlation models (red). C) Restricting flux through a mitochondrial aspartate
transport reaction did not affect the predictions for the high correlation models, and improved all remaining correlations to >0.9, with the exception of the
Yeast 4 model, which still over-predicted the maximum biomass flux at high glucose:oxygen exchange constraint ratios.

doi:10.1371/journal.pcbi.1004530.g006
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pairs that we generated using the Saccharomyces Genome Database Yeastmine tool [52] (Fig
1). Additional summary statistics of these screens are included in Fig 7.

Surprisingly, we found that the MCC for synthetic lethal interactions did not correlate with
the MCC for single-gene essentiality (R2 = 0.0253). The relatively low predictive ability of these
metabolic network models for synthetic lethal gene pairs may be attributed in part to the fact
that the reference list of synthetic lethal gene pairs is not well-established due to the challenge
of conducting pairwise gene deletion screens in vivo [53], the fact that predictions of multiple
perturbations to a genetic network require more complex analysis [54], and synthetic lethality
phenotype observations may be greatly influenced by experimental design [16]. We anticipate
that evaluating and improving constraint-based phenotypic predictions of multiple-gene dele-
tions will advance hand in hand with efforts to experimentally explore gene interaction
networks.

The source code used for conducting these simulations is included as S1 File. Detailed
results of all simulations conducted, including lists of true and false predictions for each model
in each simulated single-knockout screen, are attached as S2 File.

Discussion
The main findings of this study are that the iterative publication of many models over the past
two decades has generally, but not universally, improved yeast metabolic network reconstruc-
tions when assessed by a range of metrics. We also found that current approaches to model
development and annotation can hinder direct assessment of the underlying reconstruction.
Thus, this study serves to provide an overview of the historical development of yeast metabolic
network models over the past two decades, provide methods for evaluating future metabolic
models, and highlight opportunities for improving the reconstruction of the yeast metabolic
network. It also raises issues that should be considered so that metabolic reconstruction efforts
can best contribute to investigations of metabolic processes.

Yeast metabolic network model performance varies according to
evaluation metrics
When we directly compare functional models of the yeast metabolic network published over
the past two decades, we note generally increasing trends in genomic coverage (using either
verified or total number of open reading frames annotating model reactions), number of
metabolites, and reactions. We do not discern strong trends in number of dead-end metabolites
in models, the percentages of reactions associated with genes, or in predictive accuracy for syn-
thetic lethal genetic interactions. When comparing flux balance predictions with model default
or standardized simulated media, objective functions, and reference lists of “essential” genes,
we find that predictive power for single-gene essentiality has gradually improved. However, the
observed trends are not uniform across all models and simulations we conducted. Each model
has its own strengths and weaknesses; as demonstrated in a previous comparative study, “dif-
ferent models may be preferable for use in different applications” [44].

The uneven progress in improving model performance metrics reflects the historical path of
iterative model refinement. Different models are developed to address different research ques-
tions, and are not necessarily focused on improving gene essentiality predictive accuracy. Thus,
each new model may advance (or regress) when compared to previous models depending on
the metrics used to assess the model. This is particularly evident when examining the relative
performance of single gene essentiality predictions (Fig 3). For example, iND750 greatly
expanded compartmentalization in the yeast metabolic reconstruction, but had lower predic-
tive ability for single-gene essentiality than the earlier iFF708 model in our analysis.
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Development of the iAZ900 model demonstrated the utility of optimization-based procedures
for improving model prediction, so it has the highest MCC for the reference conditions used
for model development, but not the highest overall MCC across all conditions. The iIN800
model expanded the reconstruction of lipid metabolism, and the iTO977 model expanded the
scope of yeast metabolic models to facilitate transcriptomic analysis. As new models integrate
and improve upon earlier models, a path dependency on previous modeling or reconstruction
efforts emerges. This necessary relationship can lead to iterative improvement, but can also
propagate errors and complicate assessment of the reconstruction of the yeast metabolic net-
work. Further, as models have been developed, different research groups have used different
tools to validate their models (such as different lists of genes reported to be essential in a partic-
ular strain background or experimental condition). Thus, no model should be considered
“best” or definitive for all applications. Examining simulations across multiple models may be
a prudent approach for building confidence in predictions.

The results of our comparison of predicted maximum achievable biomass flux to measured
growth rates emphasize that model users must take great care when imposing multiple con-
straints prior to conducting FBA, or when interpreting experimental growth rate measure-
ments as being attributable to a single limiting nutrient. If a model user is attempting to
compare simulated predictions with observed growth rates that scale linearly with the

Fig 7. Double knockout simulation results. Summary statistics of our screen of double gene deletions for synthetic lethal gene pairs. Highest values for
each statistic are in bold. "other errors" includes the false prediction that either gene is individually essential.

doi:10.1371/journal.pcbi.1004530.g007
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concentration of a single limiting nutrient, our results suggest that they should test to ensure
that the model is operating within a linear range in which the desired nutrient is in fact the sole
factor limiting predicted flux to the objective. If operating within such a regime, users could
confidently scale FBA results by either varying model parameters (such as ATP maintenance
demands) or by simple linear transformation of objective values found via FBA. However,
model users must be wary of discontinuities arising from shifts in the limiting nutrient (such as
from glucose to oxygen).

The high correlation between predicted biomass flux and observed growth rates in high glu-
cose:oxygen exchange constraint ratio regimes is surprising not only because “normal yeast
mitochondrial structures are disrupted when glucose levels are high” [55], but because c. 2,000
genes are regulated by the diauxic shift [56]. These changes are dependent upon concentration,
rather than flux [57]. Thus, it is likely that there are sets of constraints that should be applied to
a metabolic network for condition-specific modeling. We did not observe that such constraints
were necessary for predicting the stoichiometrically-determined shift from glucose-limited to
oxygen-limited maximal growth rate over a range of glucose to oxygen exchange flux ratios.
Differentiating universal constraints (such as chemical stoichiometry) from condition-specific
constraints appears to have great potential as a fruitful avenue for future research efforts.

Current approaches to model development and annotation hinder direct
assessment of reconstruction efforts
We found that model gene essentiality predictions are biased by factors that are not reflective
of the accuracy or completeness of the metabolic network reconstruction. Such factors include
reference gene lists, choice of objective function for flux balance analysis, and simulated media
used for in silico screens. However, it is likely that standardizing these factors (as we have done
in this study) for comparing models is not sufficient for assessing the quality of the metabolic
network reconstruction; model builders must make other choices when developing a model
that is amenable to simulation from a network reconstruction. For example, since different
models use different approaches to fill gaps in the known metabolic network or to ascribe cata-
lytic function to a poorly characterized yeast genes, different models are likely to include differ-
ent hypothetical transport or biochemical reactions with different levels of evidence or
confidence in the accuracy of the functional role of a protein.

Reconstructing a metabolic network provides an opportunity to highlight areas of uncer-
tainty to productively guide future research efforts. This opportunity is distinct from the utility
of mathematical simulation of fluxes using metabolic network models. In fact, deriving a meta-
bolic network model from a reconstruction can obscure the knowledge gaps or uncertainty
that can be highlighted during the process of network reconstruction [7]. This risk is particu-
larly acute where poorly understood portions of metabolism are not clearly implicated in the
research to which a model is being applied, or when highlighting knowledge gaps or ambiguity
may hurt model performance according to metrics used to assess predictive performance or
scope. For the yeast models we compared, some of which use current annotation and model
exchange protocols and formats, there is no mechanism for a model user to identify knowledge
limitations discovered during reconstruction of the underlying network, nor is there sufficient
annotation describing the specific techniques used to address such limitations when the model
was constructed within the published model itself.

The current state-of-the-art for metabolic network modeling presents a significant barrier
to entry for researchers who are not familiar with the idiosyncrasies of each model because
these idiosyncrasies are not sufficiently documented within the model structure itself. Thus,
though we observed that model predictions of gene essentiality are generally better for models
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evaluated with a simulated medium containing glucose as the primary carbon source than
model predictions when using ethanol, glycerol, or galactose as a carbon source, we cannot
conclusively attribute the improvement in glucose-essential prediction to improvements in the
reconstruction of the biochemical reaction network because there is no clear mechanism for
separating the information contained in the underlying reaction network reconstruction from
the modeling assumptions and choices made in deriving a particular metabolic network model.
Similarly, we cannot conclusively attribute the relative lack of improvement in predictions with
non-glucose carbon sources among models to errors in the reconstruction rather than faulty
model assumptions, idiosyncratic objective function definition (i.e., model overfitting), or bio-
logical factors such as condition-dependent gene essentiality for genes included in the reference
list of “essential” genes.

Selecting appropriate data sets for model validation presents an additional challenge to the
reconstruction effort. Specifically defining the media and conditions in which a given gene (or
combination of genes) is essential remains an ongoing and important area of research to
advance our understanding of metabolism. In the absence of well-defined reference pheno-
types, we cannot confidently ascribe the low predictive ability for pairwise essentiality to errors
in metabolic network reconstruction, uncertainties in synthetic lethal phenotypes, or physio-
logical processes which are not metabolic, such as gene regulation or cell cycle checkpoint
events. Further evaluating and improving model predictive performance for conditional essen-
tiality will be greatly assisted by use of new prototrophic yeast strains and genetic screens in
specifically designed media [46].

Despite these methodological challenges, there is benefit to comparing metabolic network
models for the same organism for filling gaps and for identifying mistakes and opportunities
for further expansion of the metabolic network reconstruction. We note, for example, that iron
metabolism is important to mitochondrial function, but is not included in these models. None
of the models include folate, chitin, or hypusine in the biomass definition, a model building
choice that leads to false negative gene essentiality predictions and dead-end metabolites, but
also highlights opportunities for expanding the reconstruction of the yeast metabolic network.
Similarly, since most models have been validated with laboratory results from strains originally
designed to facilitate genetic investigation (strains which bear auxotrophic markers in their
genetic backgrounds) [48], it is likely that the reconstruction of portions of the yeast metabolic
network (such as nitrogen and sulphur metabolism) is incomplete. Updating the reconstruc-
tion in support of research with a new prototrophic yeast mutant library [46] provides an excit-
ing opportunity for refining our understanding of yeast metabolism.

As different groups refine yeast metabolic network reconstructions and models, there
should be a convergence to a full, accurate reconstruction of the complete network. We do not
observe evidence that supports marked changes in the reconstruction, such of a marked shift in
model predictive ability or genomic coverage in our analysis of models published to date. Fur-
ther, recent work has observed that many enzymatic functions are not included in existing
models and reconstructions [8]. Thus, the effort to reconstruct the yeast metabolic network is
incomplete. Increased efforts to expand the scope of reconstruction, such as including signaling
and regulatory network processes, may provide a way to advance efforts to reconstruct organ-
ism-specific networks.

Our analysis suggests that metabolic network reconstruction efforts could benefit from
emphasizing the distinction between reconstruction of known or hypothesized metabolic func-
tion, and metabolic models developed for particular applications. A reconstruction may be
improved, but model performance may drop by some metrics (for example, adding a parallel
metabolic pathway could lead to false negative gene essentiality predictions in the absence of
regulatory constraints blocking an available network branch, or conversely, adding condition-
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specific regulatory constraints could hinder predictive value for conditionally-essential genes
in other environments). Similarly, model performance could be enhanced in some cases by
removing established biochemistry (and such a choice would be defensible if modeling a partic-
ular environment in which a portion of the metabolic network was unavailable due to regula-
tion). Thus, we find that no single metric we used to compare metabolic network models is
sufficient to evaluate the progress of the yeast reconstruction efforts. Models should be assessed
by gene essentiality predictions, as well as the extent of evidence and annotation for included
information, the size of the network, and network connectivity metrics. Unfortunately, current
methods for annotating the workflow of model development makes such analysis challenging.
In some cases, erroneous model predictions have been computationally corrected through
changes that cannot be annotated in exchange formats. Thus, they become obscured, rather
than highlighted in a way that would better facilitate further investigation. Similarly, although
great efforts have been expended to assess the evidence for information in the published mod-
els, none of the SBML files we evaluated included confidence scores or full annotation of litera-
ture sources, so these assessments remain internal to a development group and are not
effectively propagated to subsequent model users. This is in part a historical artifact—many
existing standards such as SBML are intended to distribute models, rather than fully annotated
reconstructions. Efforts such as the definition of the Pathway Tools schema [58] lay important
ground work towards broader community participation in improving the process of metabolic
network reconstruction and metabolic model derivation. Though reconstructing metabolic
networks has been the focus of biochemistry for more than a century, computational metabolic
network reconstruction is still a young field with great contributions to make. Through this
comparative analysis of yeast metabolic network models, we hope to contribute to the ongoing
efforts to improve our understanding of metabolism through collaborative network reconstruc-
tion, and to highlight opportunities for improving the process of metabolic network recon-
struction and model derivation.

Materials and Methods
All simulations were conducted on a laptop running Windows 7 (Microsoft) using MATLAB
2013a (MathWorks Corporation, Natick, Massachusetts, USA), with SBML Toolbox version
4.1.0 [59], COBRA Toolbox version 2.05 [60], and Gurobi Optimizer version 5.6 (Gurobi Opti-
mization, Inc., Houston, Texas, USA). All code written for this study is included as S1 File.

Models
Models were obtained from public repositories, supplemental information, or research collabo-
rators and modified as follows:

• iFF708—SBML file downloaded from the BioMet Toolbox [61] at http://129.16.106.142/
models.php?c=S.cerevisiae. SBML file modified by KS's make_models_consistent script
(included) as follows: modify SBML namespace; add “_b” to boundary metabolites to accom-
modate COBRA Toolbox convention;

• iND750—downloaded from BIGG database [62] at http://bigg.ucsd.edu

• iIN800—provided by Markus Herrgard as a.mat file; differs from published version to enable
FBA with COBRA Toolbox

• iMM904—downloaded from BIGG database [62]

• Yeast 4—downloaded from yeast.sf.net
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• iAZ900—from [20] supplemental info

• iMM904bs—[32] http://www.utoronto.ca/boonelab/data/szappanos/

• Yeast 5—downloaded from yeast.sf.net

• iTO977—provided by Markus Herrgard—differs from published version with addition of
CoA sink to enable FBA with the COBRA Toolbox. Modifications include: setting objective
function, adding reaction-gene annotation to Herrgard version from published version, add
ChEBI metabolite identifiers from supplemental data to model structure, copy KEGG IDs
from Yeast 7 model using common ChEBI identifiers.

• Yeast 6—downloaded from yeast.sf.net

• Yeast 7—downloaded from yeast.sf.net

• Biomodels.db—generated by path2models software [6], downloaded 11/21/13 from biomo-
dels database [63] at https://www.ebi.ac.uk/biomodels-main/BMID000000141353

Each of the models is provided in S1 File, formatted as.mat files containing the COBRA
Toolbox data structure with any modifications to enable simulation.

Reference gene lists for knockout growth/no-growth evaluations
Different sets of genes have been observed to be essential for growth in different conditions,
and different lists have been used for previous evaluations of model predictive accuracy. There-
fore, we generated our own reference lists for the current comparative analysis. We began with
the list of 1,120 unique open reading frames annotated as essential by the Yeast Deletion Proj-
ect (available at http://www-sequence.stanford.edu/group/yeast_deletion_project/downloads.
html), then removed YCL004W and YKL192C, based upon literature review [64,65]. Since this
list was generated from experiments using a complete medium, we used it as our reference for
simulations of growth in a synthetic complete medium (our approach to defining simulated
medium is described in the “Flux Balance Analysis—Medium Definition” section below).

For evaluating simulations of growth in a glucose-limited minimal medium, we supple-
mented the essential gene list with 441 additional open reading frames reported to induce aux-
otrophy upon deletion. This list was generated by downloading a list of ORFs annotated as
auxotroph-inducing in the Saccharomyces Genome Database, removing those already included
in the essential list and temperature-sensitive inositol auxotrophs, and modifying the list based
on literature-based curation as described in the testYeastModel.m file, which is included in S1
File. Combining the essential ORF list with the auxotroph-inducing list resulted in a list of
1560 open reading frames as our reference list of genes considered essential in a minimal
medium.

We also compiled reference lists of essential genes based on the screen of non-essential
genes in the knockout collection in defined media with different carbon sources conducted by
Kuepfer et al. [17]. This screen evaluated 4869 open reading frames included in the yeast
knockout collection. Applying the stringent standard of a score of 0 for ORF essentiality, we
classified 59 ORFs as essential in defined medium with glucose as the sole carbon source, 307
with galactose, 291 with glycerol, and 332 with ethanol. When comparing model predictions
for these medium, we did not evaluate all ORFs in each model, but instead only characterized
the subset of genes in the model that were also evaluated in the Kuepfer et al. screen. These lists
of essential genes are included in the testYeastModel_kuepfer.m script, which is included in S1
File.
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We built a reference list of synthetic lethal genetic interactions (pairs of ORFs that are not
individually essential, but become essential when both are deleted) by querying the Saccharo-
myces Genome Database with YeastMine [52]. We built an XML query to search for interact-
ing genes where the experiment type was listed as “Synthetic Lethality”. The resulting report
was downloaded and imported to MATLAB to generate a list of 32,488 pairs of ORFs that have
been annotated as synthetic lethal. The specific XML query is described in the analyze_dou-
ble_results.m script, which is included in S1 File.

We note that any reference list of gene essentiality is dependent upon experimental condi-
tions, so different researchers may construct such lists in different ways. The predictive accu-
racy of any model is a function of the standard used, so different reference lists are expected to
affect the specific MCC value of its agreement with observation. Thus, it is particularly impor-
tant that the same list of “essential” genes or gene pairs be used when comparing different
models.

Flux balance analysis—medium definition
We conducted flux balance analysis of each model using both the model-default simulated
medium composition, along with media formulations we defined in an effort to standardize
model predictions. We defined the following media for our simulations: a minimal medium
that enabled predicted biomass production for all the models in which glucose is the sole car-
bon source; a synthetic complete medium with glucose as the sole carbon source, which was
based on previous computational screening efforts [66]; and the synthetic medium defined by
Kuepfer et al., using glucose, galactose, glycerol, or ethanol as the sole carbon source.

The minimal medium was simulated by allowing unconstrained exchange of ammonia/um,
oxygen, phosphate, sulphate, and setting a constrained uptake of glucose. The iMM904bs and
Biomodels.db models did not predict growth using this medium when using their default bio-
mass definitions (biomass definitions are described below in the “Flux Balance Analysis—Bio-
mass Definition” section). To enable FBA, the simulated minimal medium for these models
was supplemented: the iMM904bs model required iron exchange, and the Biomodels.db model
required the amino acids L-tyrosine, L-lysine, L-isoleucine, L-arginine, L-histidine, L-methio-
nine, and L-tryptophan.

The code used for setting the medium for each model is included in S1 File in the testYeast-
Model.m and testYeastModel_kupefer.m scripts.

Flux balance analysis—biomass definition
We conducted FBA for all models except the Biomodels.db model with two different objective
functions: first, we used the model’s default biomass definition, as included in the published
version of the model; second, we used a common biomass definition as similar to the iFF708
biomass definition as each model’s exchange reactions and metabolites allowed. The Biomo-
dels.db model did not predict growth with the iFF708 biomass definition, so we only used its
default objective function to verify functionality. We selected the iFF708 biomass definition as
a reference standard because it was the objective function that most models could satisfy. For
example, iFF708 would not be able to satisfy the Yeast 5 biomass definition due to the
expanded sphingolipid requirement in the latter. Our use of the common, older biomass defini-
tion was intended in part to separate model improvements that arise from improved recon-
struction from those that arise due to a more specific biomass definition.

The code used to set the biomass definitions for each model is included in S1 File in the tes-
tYeastModel.m and testYeastModel_kupefer.m scripts.
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Flux balance analysis—analyzing mutant phenotypes and evaluating
model predictions
Accounting for the seven media compositions and two biomass definitions described above, we
conducted flux balance analysis to predict single-gene deletion growth phenotypes for each
model in fourteen different conditions. We elected to use used a tight threshold of binary
growth/no growth prediction when comparing model growth predictions to our reference lists
of essential genes because flux balance analysis of metabolic network models may be less predic-
tive for mutant growth rates than for a binary essential/non-essential gene classification [46]
and because growth rate predictions may be tuned by adjusting model parameters such as ATP
maintenance reaction demands or constraints on carbon source utilization reactions. For this
study, a gene was considered to be predicted as essential only if flux balance analysis of a simu-
lated mutant predicted a maximum flux to the biomass objective of less than 1 x 10−6 flux units.

The agreement between model gene essentiality predictions and the reference lists was
quantified using the Matthews’ Correlation Coefficient (MCC) (eq 1) [67], a metric that con-
siders true positive, true negative, false positive, and false negative predictions without any
assumption of the frequency of observations in the reference dataset. MCC ranges from -1
(when model predictions are the exact opposite of the reference dataset) to +1 (when model
predictions match the reference data set).

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð1Þ

Where true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
are defined as in [17]: a true positive prediction is one in which the model predicts that a gene
is not essential for biomass production, and the gene has been annotated as not essential. Val-
ues for each confusion matrix, along with lists of positive and negative predictions, are included
as S2 File.

We also assessed model prediction of synthetic lethality, or double-gene deletion pheno-
types, for 10 of the models. When comparing model predictions to the reference gene list, we
defined true positive as predictions in which neither gene in a reported synthetic lethal pair is
predicted to be essential by itself, and the pair is essential. We defined true negatives as predic-
tions in which neither gene is predicted to be essential by itself, the pair is not predicted to be
essential, and the pair is not reported to be synthetic lethal. We defined false positives as pre-
dictions in which neither gene is individually predicted to be essential for growth and the pair
is predicted to be essential for growth, but the pair has not been reported to have a synthetic
lethal interaction. We defined false negative as predictions in which neither gene is individually
predicted to be essential and the pair is predicted to be non-essential, though a synthetic lethal
interaction has been reported. We categorized incorrect predictions of single-ORF essentiality
as “other errors”–such errors were not included in our MCC calculation, since they were
accounted for in the in silico single gene knockout screen. We did not modify the models’ bio-
mass definition or simulated medium composition for our double knockout simulation. We
also note that our definition of synthetic lethal interactions, which requires a model prediction
of greater than 10% of the predicted wild-type biomass flux, is an arbitrary, but strict require-
ment. It is likely that the MCC for synthetic lethal predictions would be influenced by the
choice of minimum biomass flux, and we selected 10% as a representative example for this par-
ticular analysis. If slow-growing double mutants are scored as synthetic lethal in an in vivo
screen, and included in our reference list of synthetic lethal pairs, a correct model prediction of
low biomass flux could be scored as false negative.
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Model network structure—blocked reactions and dead-end metabolites
Blocked reactions are reactions that cannot carry a flux in a given simulation condition; thus,
the number of blocked reactions may change for a given model with different biomass defini-
tions or different allowed exchange reactions. We used the fastFVA module [68] to count the
number of blocked reactions for each model when all exchange reactions were allowed to carry
flux, and using both the model default and the iFF708 biomass definitions.

Dead-end metabolites are metabolites that either participate in only one reaction, or can
only be produced or consumed. Thus, they are a network feature that is not influenced by
exchange reaction or biomass definition changes. We counted the number of dead-end metab-
olites in each model with the COBRA Toolbox detectDeadEnds function.

The code used for blocked reaction and dead-end metabolite analysis is provided in S1 File.
Model-specific lists of blocked reactions and dead end metabolites are included as S2 Table.

Model scope comparison
Similarity of genomic coverage among models was assessed by hierarchical clustering based on
pairwise distance of binary vectors of logical values for open reading frames included in a mod-
el’s reaction annotation (i.e., 1 if a given ORF is included in a model, or 0 otherwise). The
binary vectors are presented as a heat map, and clusters are presented as a clustergram and
scatterplot (generated with classical multidementional scaling) in Fig 2.

Different model developers have annotated metabolites in different ways, so we began our
comparison of metabolites by expanding the annotation of models by adding identifiers from
the Chemical Entities of Biological Interest (ChEBI) database [69] to metabolites where possi-
ble. We were able to establish ChEBI annotation for different subsets of metabolites in each
model, so this comparison is, by necessity, less comprehensive than comparison of model geno-
mic coverage. The Biomodels.db model annotates metabolites with multiple ChEBI identifiers
(reflecting redundancy in the ChEBI database). We chose the first ChEBI identifier when com-
paring the Biomodels.db model with models derived from manual reconstruction. Other mod-
els did not include multiple ChEBI identifiers for annotated metabolites. Like genomic
coverage, metabolic coverage was scored with a binary vector of logical values, and the compar-
ison is presented as a heatmap, clustergram, and scatterplot.

A sorted list of genes by models and all code used for scope comparison are included as Sup-
porting Information.

Evaluating model predictions of maximum biomass flux
We compared predictions made by media- and objective-normalized models with the aerobic
growth rates reported by Österlund et. al. [37] for “N-limited” and “C-limited” conditions (we
did not simulate anaerobic growth since most of the models we are examining do not predict
anaerobic growth on a minimal medium). We conducted flux balance analysis of each model
after standardizing model objective functions to the iFF708 biomass objective, and then apply-
ing constraints to the glucose, oxygen, and nitrogen exchange fluxes, first individually and then
in combination. We used the measured uptake values reported by Österlund et al. [37] as con-
straints for each of these exchange reactions.

Supporting Information
S1 Table. Comparison of model genomic coverage. Genes are row-aligned to facilitate com-
parison of model genomic coverage.
(XLSX)
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S2 Table. Blocked reactions and dead end metabolites. Blocked reactions (listed by model
reaction ID) and dead end metabolites (listed by metabolite ID) were identified using the code
in S1 File.
(XLSX)

S3 Table. Growth rate simulation results.Maximum achievable biomass flux was compared
to growth rates reported by Österlund et al. using code in S1 File.
(XLSX)

S1 File. Source code for model simulations. Code used for comparative analysis of yeast meta-
bolic network models. The FBA tests folder includes the scripts used to specify model medium,
biomass definitions, and essential gene lists for FBA-based comparison of gene essentiality pre-
dictive accuracy for single and double gene deletions. These scripts can be run with the runana-
lysis.m script. The doubles folder includes the scripts and results of the double gene deletion
simulations. The models folder includes matlab.mat files of the models. The \models_as_used
subfolder includes models with any modifications used for this analysis. The scope comparison
folder includes the code used to compare metabolite and gene scope for the models.
(ZIP)

S2 File. Detailed single knockout screen results by model. This folder includes the output of
all single knockout simulations conducted, including predictions considered true positive, true
negative, false positive, and false negative for each model analyzed.
(ZIP)
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