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Abstract
When organisms need to perform multiple tasks they face a fundamental tradeoff: no phe-

notype can be optimal at all tasks. This situation was recently analyzed using Pareto opti-

mality, showing that tradeoffs between tasks lead to phenotypes distributed on low

dimensional polygons in trait space. The vertices of these polygons are archetypes—phe-

notypes optimal at a single task. This theory was applied to examples from animal morphol-

ogy and gene expression. Here we ask whether Pareto optimality theory can apply to life

history traits, which include longevity, fecundity and mass. To comprehensively explore the

geometry of life history trait space, we analyze a dataset of life history traits of 2105 endo-

thermic species. We find that, to a first approximation, life history traits fall on a triangle in

log-mass log-longevity space. The vertices of the triangle suggest three archetypal strate-

gies, exemplified by bats, shrews and whales, with specialists near the vertices and gener-

alists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron,

whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to

carnivory. Each animal species can thus be placed in a coordinate system according to its

distance from the archetypes, which may be useful for genome-scale comparative studies

of mammalian aging and other biological aspects. We further demonstrate that Pareto opti-

mality can explain a range of previous studies which found animal and plant phenotypes

which lie in triangles in trait space. This study demonstrates the applicability of multi-objec-

tive optimization principles to understand life history traits and to infer archetypal strategies

that suggest why some mammalian species live much longer than others of similar mass.

Author Summary

Understanding why some mammals live longer than others is of crucial interest. Here we
study how longevity relates to other life-history traits, using data on about 2000 species of
mammals and birds. In contrast to the tradition in which traits fall on a line in logarithmic
coordinates, called allometric lines. We find that mass and longevity of mammals and
birds fills out a triangle in logarithmic axes, not a line. Thus, mammals of low and
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intermediate mass can have a wide range of life spans. We interpret this geometry using
Pareto optimality theory: The triangle suggests three different life strategies or tasks. Ani-
mals near the vertices of the triangle are specialists at one of the strategies, animals near
the center are generalists. Analyzing the data at higher resolution suggests an additional
fourth strategy related to carnivores. The mass-longevity triangle offers a new coordinate
system for comparative studies of animal longevity.

Introduction
Mammals can have very different lifespans, and it is of great interest to understand why longev-
ity differs between species. Recent studies use comparative approaches to understand mecha-
nisms for longevity in diverse mammalian species, especially species which are long lived [1–
3]. In order to expand such studies to a wider range of species, a good understanding of how
longevity varies with other traits, such as mass, is needed.

It is well known that larger animals live longer, and some authors suggest an allometric rela-
tion in which L*M1/4 [4–7]. Outliers to this relation have long been noted such as flying ani-
mals which are long lived given their mass [8,9], as well as arboreal species [10]. In contrast to
well-known power-laws such as the ¾-power law relating mass and metabolic rate (Fig 1A),
longevity and mass do not fall along a clean line in log space (Fig 1B), suggesting that a simple
allometric law may not apply. In general, the allometric law explains only about 35% of the life-
span variation [11]. More recent work used multi-dimensional linear [12] regression to con-
nect multiple traits such as brain size with longevity [13–17].This diversity of lifespan is of
interest, since it may point to ways of understanding the regulation of longevity [2,3,18–21].
Life history traits such as longevity and reproductive parameters are closely linked with the
ecological niche and environmental interactions of each species [22–26].

Short and long lifetimes have been associated with different global life-history strategies,
namely rapid growth and reproduction versus long-term survival with slow reproduction.
Work in the 1970s suggested a theory of r and K strategies based on the logistic equation[27–
30], where r-strategists have rapid reproduction and short lifespan, and K-specialists have long
lifetime and slow reproduction. More recent work has challenged r-K theory and the use of the
logistic equation; Recent work empirically supports the existence of a continuum of life-history
traits known as the fast–slow continuum[12,31,32,33]. A different approach, within Stearn’s
life-history theory [34], focuses on physiological tradeoffs defined as negative correlations
between traits which are hypothesized to result from competition over physiological resources.

Here, we approach the relation of mass, longevity and other traits by analyzing a large data-
base of endotherm (mammal and bird) life-history traits. We use concepts from a recent theo-
retical advance by Shoval et al [35] in understanding suites of variations when organisms need
to perform multiple tasks[36], based on Pareto optimality. A Pareto optimal system cannot
perform better in all task, but rather in order to improve in a task it has to reduce its perfor-
mance in at least one other task. The Pareto front is the collection of all systems for which no
other system exists that is better at all tasks at once. Shoval et al. showed that when two tasks
are important for fitness, species should fall on a line segment in the space of traits. The ends of
this line are called archetypes: phenotypes optimal at one of the two tasks. If three tasks are
important, data should fall on a plane and within that plane on a triangle. The vertices of the
triangle are the three archetypes. Four tasks lead to a tetrahedron and so on. The position of
each species in this polygon or polyhedron relates to the relative importance of the tasks in its
niche (Fig 1C–1F): specialist in one task should be near the corresponding archetypes, and
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generalists should be in the middle of the polygon. To apply this theory, one does not need to
know the tasks in advance. If the data is found to fall in a polygon with clear vertices, the tasks
can be inferred: clues about the tasks are gained by noting the special features of the animals
closest to each archetype- these features provide hints about the task optimized by that arche-
type [37]. The tradeoffs in the Pareto theory can result in either positive or negative correla-
tions between traits (Fig 1G), and thus differ fundamentally from the tradeoffs of Stearn’s life
history theory. Pareto theory was previously used to identify tasks in animal morphology
[35,38,39], behavior [40] and gene expression [35,37,41,42]. It was not previously applied to
life-history traits.

We find that the mass-longevity dataset for mammals and birds is well-described by a trian-
gle in trait space. The triangle is filled nearly uniformly. We demonstrate how the theory can
be used to infer three tasks from the mass-longevity triangle. A putative fourth task is identified
by analyzing additional life history traits. This provides a new coordinate system for compara-
tive studies of animal longevity, and more generally an approach for understanding the geome-
try of life history trait variation.

Results

Longevity-Mass for mammals and birds falls approximately in a triangle
To comprehensively study the geometry of life history space of endothermic animals (mam-
mals and birds), we analyzed a large dataset of life history traits taken from AnAge build 13
[43]. We filled some of the gaps in the database by literature search, adding 20 longevity values
for species with missing data, and 168 values for other life history traits (Table 1 summarizes
the taxa, and S1 Table lists the entire data). We also added brain size from a different source
[17] resulting in 324 additional entries. We analyzed species with both mass and longevity
known, resulting in a dataset with 2105 endotherms, each with 13 relevant life-history features
(See Methods and S1 Table).

We begin by focusing on mass and longevity (Fig 2A). We find that the data is much better
explained by a triangle (the minimal area triangle enclosing the data up to a defined number of
outliers is shown in Fig 2A, see Methods, and S1 Text) than by a line such as an allometric
power law (Fig 1B), as well as higher order polygons such as a four-vertex polygon (quadran-
gle). Statistical model selection tests (Akaike information criterion, cross validation tests) indi-
cate that a triangle is a better fit than a line, even when taking into account that fitting a
triangle requires more parameters than a line (see Methods). Fits to higher order polygons
(quadrangle, pentagon etc.) do not provide enough improvement in fit quality to justify their
extra parameters. We also tested the statistical significance that a triangle describes the data by
comparison to randomized data, according to a test developed in [35], (p = 0.005, see

Fig 1. Tradeoffs lead to polygonal suites of variation according to Pareto theory. (a) Mammalian metabolic rate goes as a clean allometric line with
respect to mass, known as Kleiber’s law (data from anAge [43]). (b) Mammalian longevity does not fall cleanly on a line with respect to mass. Shown are
regressions to a power law and a 1/4 power law. Shaded areas represent 95% confidence intervals. (c) The fitness landscape is given by the fitness of each
phenotype in trait space. (d) When fitness is composed of several tasks, one can draw a performance landscape for each task. The phenotype that
maximizes performance at a task is called the archetype. (e) Organisms in niches in which one task is more important than the others have a fitness
maximum close to the corresponding archetype. Generalists have a fitness maximum near the middle of the Pareto front. (f) The suite of all fitness maxima in
all conceivable niches in which fitness increases with task performance is called the Pareto front. It is a polygon (or a slightly curved polygon [74]) whose
vertices are the archetype. In the case of three tasks, the Pareto front is a triangle. (g) Positive correlation between traits can occur even if there is a tradeoff
between their corresponding tasks. Stearns’ life history theory considers performance space, with tradeoffs defined as negative correlations between
performances. Pareto theory concerns trait space, not performance space. The performance functions, shown here as contours, can have maxima
(archetypes) in any spatial relationship leading to either positive or negative correlation in trait space, even though in both cases the curves stem from
tradeoffs.

doi:10.1371/journal.pcbi.1004524.g001
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Methods). We conclude that a triangle is a good description of the geometry of the data in the
log mass-log longevity plane.

We also asked whether the way longevity is defined- the longest lived animal on record-
may affect the geometry. We aimed to allow for a shorter longevity value for each species, per-
haps reflecting natural conditions. We thus generated a dataset in which longevity of each spe-
cies was multiplied by a random number between 0.8 and 1.0, thus shortening its longevity
entry. We find that a triangle still significantly fits the data in over 95% of 1000 such randomly
perturbed datasets (See S1 Text).

Two of the edges of the mass-longevity triangle are approximately parallel to the axes. The
third edge has a slope of 0.274±0.007. This value agrees with the ¼ allometric relation between
mass and longevity (Fig 2A), L*M1/4. Linear regression applied to the full dataset also gives a

Table 1. Summary of taxa used in this manuscript.

Aves 1086 Mammalia 1019

Accipitriformes 56 Afrosoricida 6

Anseriformes 64 Artiodactyla 153

Apodiformes 18 Carnivora 162

Apterygiformes 1 Cetacea 42

Bucerotiformes 5 Chiroptera 87

Caprimulgiformes 5 Cingulata 8

Casuariiformes 4 Dasyuromorphia 25

Charadriiformes 123 Didelphimorphia 16

Ciconiiformes 14 Diprotodontia 52

Coliiformes 1 Erinaceomorpha 7

Columbiformes 16 Hyracoidea 2

Coraciiformes 13 Lagomorpha 12

Cuculiformes 5 Macroscelidea 5

Eurypygiformes 1 Monotremata 3

Falconiformes 16 Peramelemorphia 9

Galliformes 36 Perissodactyla 16

Gaviiformes 3 Pilosa 5

Gruiformes 17 Primates 152

Musophagiformes 1 Proboscidea 2

Otidiformes 1 Rodentia 230

Passeriformes 397 Scandentia 5

Pelecaniformes 40 Sirenia 3

Phaethontiformes 2 Soricomorpha 16

Phoenicopteriformes 3 Tubulidentata 1

Piciformes 23

Podicipediformes 5

Procellariiformes 30

Psittaciformes 138

Sphenisciformes 4

Strigiformes 23

Struthioniformes 1

Suliformes 19

Tinamiformes 1

doi:10.1371/journal.pcbi.1004524.t001
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slope close to ¼, when ‘outliers’ such as bat species are removed, explaining previous findings
of an allometric ¼-law.

The three vertices of the triangle correspond–in Pareto theory- to archetypes. The error in
the vertex position is about 3% as estimated by bootstrapping (Fig 2A). The first archetype is
close to high mass–high longevity species such as whales, elephants, and the hippopotamus.
We name this the W-archetype, for whales. The second archetype is next to species of low
mass and low longevity such as shrews, mice and hummingbirds. We name it the S-archetype,
for shrews. The third archetype is near low mass—high longevity species. These include bats
and the bat-like myotis, the naked mole rat, and birds like canaries. We name this the B-arche-
type for bats (for values of mass and longevity see Table 2).

Flying birds lie in a region closest to the B (bat) archetype (Fig 2A). Marsupials (in green)
are spread over much of the triangle (Fig 2C). Non-flying birds lie farthest from this archetype
(Fig 2D). Primates are relatively close to the B archetype (Fig 2D), as are arboreal squirrel spe-
cies (S1 Fig).

A phylogenetic analysis of this dataset shows that above the taxonomic level of family, the
position on the triangle cannot be wholly explained by phylogenetic history (S2 Text and S2
Fig).

The S-archetype (shrews, rodents) with short lifespan and high
predation is enriched with high litter size and litter frequency
We next asked which tasks might be at play in each archetype. We approach this by looking for
commonalities in the species near the archetypes. Quantitatively, we ask which life history fea-
tures (other than mass or longevity) are maximal or minimal at the archetype. If Pareto theory
is applicable, certain traits should be maximal or minimal in animals closest to the archetype;
these traits should decline (or rise) with distance from the archetype.

The S-archetype lies at low mass and short lifespan. The closest animals are shrews and
rodents (orders Rodentia and Soricomorpha). We tested 11 different life history traits of the
animals from the AnAge database [43] as a function of their distance from the S-archetype. We
normalized traits with units of time (female maturity, weaning, inter-litter interval) by the
organism lifespan, and normalized traits with units of mass (birth weight, weaning weight) by
the adult weight, to obtain dimensionless traits. Some information was lacking in the database,
because some species had missing trait values (Ranging from 82% for Body temperature to
28% for Litter/Clutch size).

Table 2. Mass and longevity of selected animals.

Species Mass (gr) Longevity (years)

Whales (3±1)�107 80±10

Elephants (4.0±0.8)�106 65.2±0.2

Hippopotamus 4�106 61

shrews 4.5±0.9 3.2±0.3

mice 7.3±0.6 3.5±0.2

hummingbirds 3.2±0.1 5±1

bats 7.7±0.7 29±5

myotis 7.2±0.2 21±1

naked mole rat 35 31

The values for each animal are the median and median deviation of the taxa.

doi:10.1371/journal.pcbi.1004524.t002
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To search for enriched (depleted) features next to the archetypes, we followed the algorithm
of Ref [37]. Briefly, we divided species into bins according to their distance from a given arche-
type, such that each bin had the same number of species. Then, we looked for features that
have significantly maximal (minimal) values in the bin next to an archetype. According to
Pareto theory, traits associated with the task of the archetype should have their maximal or
minimal value at the bin closest to the archetype.

We find (see Methods, S3 Text, including multiple hypothesis tests) that several life history
traits are highly enriched near the S-archetype (Fig 3 and Table 3). Specifically, two traits asso-
ciated with high reproduction rate—litter/clutch size and litter/clutch per year—are both maxi-
mal at this archetype. In addition, normalized brain size (for mammals) is highest at this
archetype, as well as the relative gestation/incubation period relative to lifespan (see Fig 3).

The enrichment for these traits is rather sharply peaked at the bin closest to the archetype,
and falls off rapidly with distance from the archetype. This is the behavior expected from
Pareto theory. These results support the conclusion that a task including rapid reproduction,
many offspring, and rapid growth is maximized at the S-archetype. This inference makes
sense: these animals are generally thought to face high predation. High predation has been
suggested as an evolutionary pressure for resource allocation to early life, which correlates
with short lifespan [1,8,44] in mammals (but see exception [45] in guppies). The tasks most

Fig 2. The longevity-mass data set is well described by a triangle in log space. (a) Placental mammals (blue), birds (red) and marsupials (green) are
presented in a log-log plot, black lines represent the best fit triangle and the three ellipses on the vertices represent the position and error of the archetypes
determined by bootstrapping (see Methods). (b) Bats, naked mole rat are close to the B archetype. (c) Marsupials cover much of the same triangle. (d)
Primates are close to the B archetype, flightless birds are far from it.

doi:10.1371/journal.pcbi.1004524.g002
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important in this situation may be rapid reproduction, many offspring, and rapid growth
[27].

The S-archetype is a point deduced from the overall shape of the dataset- an extrapolated
vertex of a triangle that encompasses the dataset; the region in the immediate proximity of
the S-archetype is empty. This is because the endotherms in the dataset do not have longevity
shorter than 2 years. There may be a physiological or ecological limit that prevents endo-
therms from going below a minimal longevity. For example, the heart-rate of mammals
smaller than a shrew is expected to approach the physiological limitations of the circulatory
system [46].

W-archetype (whales, elephants) with large mass, long-term survival
and low predation is enriched with low clutch-size and clutch-frequency
The closest animals to the W-archetype are whales, elephants, hippopotamus and orcas, which
have large mass and high longevity. Enrichment analysis shows that at this archetype, animals
have relatively long gestation/incubation periods. They have smallest and least frequent
clutches/litters [47] (Fig 3). They have a relatively small brain compared with their mass.
Again, the enriched traits are maximal at the bins closest to the archetypes, and decay with dis-
tance from the archetype.

The task inferred for this archetype is appropriate for these large animals according to previ-
ous literature. High mass may allow them to escape predation, so that selection pressure to live
longer becomes more meaningful [48–50]. Furthermore, they invest resources in a single off-
spring, which probably has good odds to reach adulthood.

B-archetype (bats, naked mole rat) corresponds to a protected niche that
provides long term survival and low predation, and is enriched with high
relative weaning weight, low relative gestation and incubation
The third archetype, the B-archetype, has a low mass (close to the mass of the S-archetype) but
high longevity values (almost half of the longevity of the W-archetype). The animals closest to
this archetype are bats, the naked mole rat, and many songbirds such as the Eurasian goldfinch,
Broad-tailed hummingbird and Purple sugar bird. These species are thought to have lower
extrinsic mortality rates by finding niches that reduce the number of possible predators. Both
bats and birds fly, whereas the naked mole rat lives underground.

Somewhat farther from the archetype are arboreal species (primates, Southern flying squir-
rel, Pygmy marmoset, Sugar glider), which also have relatively low predation due to their niche
(Fig 2) [10,51]. Among birds, there appears to be a correlation between flying ability and the
distance from this archetype, where the birds farthest from this archetype are flightless, such as
the penguin, ostrich and hen (Fig 2D). Related species occur in layers at different distance from
this archetype, suggesting different levels of protective environments. The bats are closest to
the archetype, then the primates. In a similar distance from the archetype are the family of
Sciuridae (squirrels), and farther away a strip with a high concentration of “armored” species
such as hedgehogs, pangolin, armadillos and porcupines (S1 Fig).

Enrichment analysis indicates that species closest to the B-archetype have shorter pregnan-
cies (or incubations) relative to lifespan. They wean the fastest relative to their longevity. This
means that a larger part of their life is spent in puberty and adulthood. Compared to their
mass, these species have large brain and they are born large and wean large. (Fig 3) These traits
are maximally enriched at the archetype and decay rapidly with distance from it.

Pareto Optimality and the Geometry of Life History Trait Space

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004524 October 14, 2015 8 / 19



Evidence for a fourth archetype–large predators
We went beyond two-dimensional trait-space of mass and longevity, by considering additional
life history traits. One challenge is missing data- many of the 13 traits in the database are
sparsely filled. We therefore chose the four traits with the most data, in the sense that there is
the largest number of species in the database with all four traits available. These traits are mass
(adult weight), longevity, female maturity and birth weight (see Methods). There are 550 mam-
mals with data in all four traits. We removed 142 marsupials from the dataset, because birth
weight in marsupials has a different physiological context and clusters far from other
mammals.

We analyzed the species in this four dimensional trait space. We performed principal com-
ponent analysis (PCA) to determine the effective dimensionality of the data. We find that the
first 3 PCs capture ~99.5% of the variance (p< 10−4 compared to shuffled data).This suggests
that data falls effectively in three dimensions. The three PCs are loaded heavily with the follow-
ing traits: PC1 is related to mass (adult weight and birth weight), PC2 to time (longevity and
female maturity), and PC3 to the ratio between the adult weight and birth weight.

We went on to test whether the data can be reasonably described by a polyhedron in this
three dimensional space (Fig 4A). We find that a tetrahedron captures the data well, and with

Fig 3. Each archetype is enriched with specific life-history traits. Trait values are plotted versus distance from an archetype. Species were binned to
equal sized bins according to distance from an archetype. Median trait value in the bin normalized by median trait value in the dataset is shown, error bars are
from bootstrapping. Curves for features enriched significantly at an archetype are marked with an asterisk (listed also in Table 3). Bin size selection is
explained in S3 Text.

doi:10.1371/journal.pcbi.1004524.g003
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high significance compared to randomized data (p< 2�10−4) [37] (see Methods). Higher-order
polyhedra do not improve the fit to justify their extra parameters (Methods).

Fig 4C–4E shows this tetrahedron from three points of view in the space of the first 3 princi-
pal components. The tetrahedron has four vertices, which we consider as four archetypes.
Three of the archetypes match those we discussed so far. The fourth archetype lies at an inter-
mediate point of mass-longevity (M~3.5kg, L~18 years) (Fig 4B), and at low birth weight. The
animals nearest this archetype are the panda and bears, while somewhat farther are other car-
nivorous mammals (order Carnivora including the feline family—lions and tigers, and the
canine family wolves). Enrichment analysis did not supply significant enrichment of other life-
history traits at this archetype, perhaps due to the small number of data points. The potential
task or strategy related to this archetype is thus mainly performed by large predators.

Pareto theory offers an explanation of triangles in trait space
We conclude by discussing previous work in the context of Pareto theory. In the field of life his-
tory, several triangle-shaped suites of variation were found in the past (summarized in S2
Table). Grime [52] considered a trait space of plants, including life history traits such as leaf
longevity and litter, and morphological traits such as root morphology and leaf from. This
study identified three syndromes of traits that go together. Each syndrome is specialized for a
different strategy: stress tolerant (S), ruderal (R), and competitive (C), which apply to extreme
niches: High stress and low disturbance, low stress and high disturbance, and low stress and
low disturbance. The C, S and R survival strategies can be considered as tasks. The CSR model
is widely used when describing plants life history strategies, and was implemented also to reef
corals [53] and fungi [54]. The original CSR model by Grime was depicted in performance

Table 3. Enrichment analysis of the archetypes.

Archetype Trait Median difference First bin

W Brain Size normalized by mass -0.74 Minimal

W Gestation/Incubation (days) normalized by longevity 0.52 Maximal

W Inter-litter/Interbirth interval 0.24 Maximal

W Litter/Clutch size -0.40 Minimal

W Litters/Clutches per year -0.046 Minimal

W Male maturity (days) normalized by longevity 0.090 Maximal

W Metabolic rate (W) normalized by mass -0.55 Minimal

W Temperature (K) 0.0015 Maximal

B Birth weight (g) normalized by mass 0.46 Maximal

B Brain Size normalized by mass 0.52 Maximal

B Gestation/Incubation (days) normalized by longevity -0.44 Minimal

B Male maturity (days) normalized by longevity -0.094 Minimal

B Metabolic rate (W) normalized by mass 0.42 Maximal

B Temperature (K) -0.0013 Minimal

B Weaning (days) normalized by longevity -0.28 Minimal

B Weaning weight (g) normalized by mass 0.24 Maximal

S Brain Size normalized by mass 0.31 Maximal

S Gestation/Incubation (days) normalized by longevity 0.22 Maximal

S Inter-litter/Interbirth interval -0.85 Minimal

S Litter/Clutch size 0.30 Maximal

S Litters/Clutches per year 0.30 Maximal

S Metabolic rate (W) normalized by mass 0.099 Maximal

doi:10.1371/journal.pcbi.1004524.t003
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space, by triangle whose vertices represent each strategy. More recent work [53] analyzed trait
space using principal coordinate analysis (PcoA), to find that high dimensional trait data falls
approximately on two dimensions. Projecting on this 2D plane, data falls in a triangle, with
generalists in the middle and specialist at each strategy towards the vertices. This series of stud-
ies fits well with Pareto theory, where the vertices of the triangles in trait space define three
archetypes, whose traits correspond to Grimes syndromes.

In another pioneering study [55] a triangle was found in the life history trait space of fresh
and marine fish. Here the triangle was found in trait-space defined by the measured juvenile
survival, fecundity, and onset and duration of reproductive life. The three strategies (tasks)
matching three niches in this case are: (i) periodic strategy in environments with predictable
patterns of change, (ii) opportunistic strategy in marginal habitats and large predation, and
(iii) equilibrium strategy in temporally stable and resource limited environments. Evidence for
a triangle due to different resource limitations was found in phytoplankton, where competitive
ability for nitrate, phosphate as well as cell volume exert tradeoffs [56]. In many of these studies
it is noted that the strategies described are extremes, while intermediate strategies lie in the
middle of the triangle. These studies thus seem to be consistent with predictions of the Pareto
theory of Shoval et al.

Discussion
The present study indicates that variation in longevity and other life history traits can be
understood using the multi-objective optimality approach of Shoval et al [35]. We studied life
history traits in a large dataset of endothermic animals. We find that mass and longevity fall in
a triangle, and not a line, suggesting three major life history strategies. Analysis of additional
traits suggests a tetrahedral geometry with a fourth putative strategy related to large carnivores.
Using the multi-objective optimality approach offers a new theoretical framework and a test-
able model for future research. It also offers a new way to consider tradeoffs that complements
Stearns theory [34].

This study demonstrates how Pareto theory can be used to systematically infer tasks from
the dataset geometry. The triangular geometry of longevity-mass suggests three tasks or
strategies. Animals closest to the vertices are predicted to specialize in particular strategies,
and to have extreme values of certain life history traits (other than mass and longevity). This
prediction is fulfilled. These enriched features provide clues to the possible tasks at play. The
three putative strategies of whales, shrews and bats are summarized in Table 3. They relates
to classical notions of fast and slow strategies (fast reproducing shrew versus long-lived
whale), with a third strategy for animals that are thought to have low predation niches (bats,
arboreal animals, flying birds etc.). Animals in the middle of the triangle are generalists;
their distance from the different vertices suggests their relative use of the different strategies.
The three-strategy picture that emerges for endothermic animals echoes the three-strategy
picture for plants (competitive, stress tolerant and ruderal) [52] and fish [55]. A fourth strat-
egy, related to large carnivores, remains to be better defined when more data becomes avail-
able, and has the potential to further enhance our understanding of life histories interplays
and tradeoffs.

This study also makes a distinction between different definitions of the concept of trade-offs
(Fig 1G). In life-history theory [34], tradeoffs are defined by negative correlations between
measured features such as survival and fecundity. In terms of Pareto theory, features such as
survival and fecundity are understood as performances in tasks. Stearns theory thus treats per-
formance space as opposed to trait space. Correlations in trait space result from the fact that
no phenotype can be optimal at multiple tasks. This leads to negative or positive correlations in
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trait space (traits such as mass, longevity, litter size), and also to the possibility of triangles and
other polygons/polyhedra.

It is of major interest to identify genetic and molecular changes that cause differences in lon-
gevity. To date, most studies use model species such as C. elegans [57] and mice [58–60]. Using
the present triangle and future molecular data on a very large number of mammalian species
[3,61,62], one can hope to gain sufficient statistical power to address longevity in a new way. In
particular, using many species may help discard molecular changes that are irrelevant, and to
highlight the changes that directly relate to mass-longevity. For this purpose, one can correlate
molecular changes with the distance of each species from the three archetypes.

In summary, biological life-history traits, traditionally analyzed using allometric lines and
multidimensional linear regression, can be shown to have more complex configurations such
as triangles, tetrahedrons and maybe even higher dimensional simplexes. Pareto theory pro-
vides a theoretical framework to understand such polygons. The vertices of these shapes corre-
spond to specialists at key tasks that combine to generate fitness in different niches, and the

Fig 4. Mammalian species fall approximately in a tetrahedron when considering a higher dimensional space of life-history traits. (a) Axes are linear
combination (PCs) of: adult weight, birth weight, longevity, and female maturity. PC1 is primarily related to mass (adult weight and birth weight), PC2 to time
(longevity and female maturity), and PC3 to the difference between the adult weight and birth weight. The archetypes B, S, andW are indicated, and the new
fourth archetype is marked by X. Species closest to the fourth archetype are indicated. The best fit tetrahedron is indicated in grey dashed lines; vertices
(archetypes) are marked in red. (b) The new archetype (X) falls near the middle of the mass-longevity triangle. (c-e) The projections of the data and
tetrahedron on the three principal planes are shown for additional perspective.

doi:10.1371/journal.pcbi.1004524.g004
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edges are the tradeoffs between such two tasks. Mass and longevity of mammals and birds fall
on a triangle and not an allometric line, suggesting three main tasks or strategies. These strate-
gies were analyzed using a systematic way to infer life-history tasks- by noting which features
are enriched near the archetypes. A novel fourth task/strategy related to carnivores is suggested
at the next level of resolution of the Pareto approach. Future work can employ Pareto archetype
analysis to other life-history traits with the hope of better understanding biological diversity in
form and function.

Methods

Life-history data
Data was downloaded from AnAge database of animal longevity, build 13 [43]. We considered
13 traits: female maturity (days), male maturity (days), gestation/incubation (days), weaning
(days), litter/clutch size, litters/clutches per year, inter-litter/interbirth interval, birth weight
(g), weaning weight (g), adult weight (g), maximum longevity (yrs), metabolic rate (W), and
temperature (K). Maximum longevity is manually curated data on the oldest age on record
[63]. Values of other traits were averaged across measurement methods, geographical location
and literature source [63], with field data preferred over captive data. When there was a sub-
stantial difference between age at sexual maturity and age of first reproduction, the former was
used. Sexual maturity is defined as the time from conception to physiological sexual maturity
[9]. Further information about AnAge database can be found in refs [9,43,63] and on the web-
site: http://genomics.senescence.info/help.html#anage.

Four traits in the AnAge database were not used: growth rate because it is a fitting parameter
of a model where for birds and mammals different models were used, body mass because it
strongly and tightly correlates with the adult weight entry; we also did not use mortality rate dou-
bling time (MRDT) for a given species using the Gompertz equation and the infant mortality
rate (IMR). Because of missing data, we added to this dataset information from several sources
on longevity and other life history traits [64–67]. We consider only species with data in both
adult weight and longevity (S1 Table lists the data), which amounts to 2105 endotherms (rows),
each with its taxonomic tree and 13 relevant life-history features (columns). See Methods for
more details. We also added the brain size from [17]. We took only the species from this database
that existed on AnAge this resulted in 324 values for brain size.

Fit to polygons and model selection
We tested several models for the log mass-log longevity data. This includes a linear fit, l = am + b,
a triangle enclosing he data and more generally an n-vertex polygon. We first used the PCHA
algorithm to find the best n points on the convex hull of the data that accounts for most of the var-
iance in the data as described in [41]. A line is defined by two archetypes, a triangle by three etc.
For each number of archetypes n, we compute the explained variance given by the mean relative

distance of the N data points to the polygon EVðnÞ ¼ 1
N

XN

i¼1
ð1� kpi � sik=kpikÞ. Here pi is the

ith data point and si is the closest point to pi in the polygon [41,68]; points inside the polygon
have kpi − sik = 0. The normalization term kpik, refers to the distance to the center of mass of all
the data points. We seek a number of archetypes for which adding an additional archetype does
not increase EV by much. We find that explained variance for n = 2, 3, 4, 5 is EV = 0.9711, 0.9989,
0.9993, 0.9999. Thus a triangle is better than a line, and four-vertex or five-vertex polygons make
only a tiny improvement over the triangle (2% vs. 0.04%).

We approached model selection also in a second way, by using a criterion that takes into
account the number of free parameters in the model, namely the Akaike information criterion
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(AIC)[69]. The first step in calculating AIC is to calculate how likely each model is. Likelihood
is calculated by assuming that the data was drawn from a distribution (the model). According
to standard practice, we used a Gaussian error model: the convolution of the line/triangle/poly-
gon with a Gaussian to account for the possibility of noise. The standard deviation of the
Gaussian distribution was chosen to be 30% of the value at the data-point. Similar results were
obtained with a 10% or 100% std. In all of these cases the triangle was overwhelmingly more
likely than a line (AIC/2 ~–log likelihood ~ 7500, 3600 for line and triangle in the 30% case,
56000, 5600 for the 10% case, and 4300, 3900 in the 100% case). A triangle was more likely
than a 4-vertex model for the 30% and 100% cases.

Statistical significance of triangle
To estimate the statistical significance of the description of the data by a triangle or a tetrahe-
dron (polygon), we calculated the t-ratio. The t-ratio is the ratio of the polygon’s volume to the
volume of the convex hull of the data [35]. It is a measure for the extent that the data fills the
polygon. A t-ratio of one occurs when the data convex hull is exactly the desired polygon. We
then generate randomized datasets by sampling from the cumulative distribution created by
each coordinate independently from its ensemble of measured values. This eliminates correla-
tions between traits while conserving the distribution of values of each parameter. We calculate
the t-ratios for each randomized dataset in comparison to its own minimal volume enclosing
polygon, and set the p-value to be the proportion of randomized sets with a smaller or equal t-
ratio than the original data. See S1 Text for more details.

Archetype position and error
In order to determine the position of the three archetypes on the mass-longevity plane we used
the algorithm described by Shoval et al. [35]. This algorithm finds the minimal triangle enclos-
ing all the data point, without allowing any outliers. To be robust to outliers, we applied a peel-
ing procedure–removing the convex hull of the data. We repeated this procedure, and after
each peeling we looked for the archetypes of the new dataset. The change of position of the W
archetype was large after one peeling step (~17% of the large edge of the triangle), but remained
relatively unchanged after more peelings (~3%). Thus, the final position of the archetypes pre-
sented here is given after the data was peeled once.

All the data points inside the polygon obey the rule, X = θA. Here, X is the matrix of the
data (namely, mass and longevity), A is the matrix of the archetypes, where each column is a
different archetype and θ is the weight vector representing the compromises between the tasks
(archetypes). For each data point ∑θi = 1. For every point inside the triangle 8θi � 0. Values of
theta are given in S1 Table.

We computed the uncertainty of the archetype positions by bootstrapping, resampling the
2105 data point with replacements and computing the new triangle archetypes. We obtained
archetype position distribution by repeating this procedure 1000 times. The standard devia-
tions of the archetype positions are depicted as ellipses in Fig 2.

Phylogeny and position on the triangle
The intersection between the data in the phylogeny of [70] and the present dataset includes
966 mammals. We represented each data points by its first two weights (the third is determined
by the demand that ∑θi = 1). On this resulting triangle we measured distance of two species, d,
by the Euclidean distance between the points. The distance on the phylogenetic tree was mea-
sured as the shortest path distance, namely, for each two species, we looked for their nearest
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common ancestor, and summed the length (years) of the branches leading to each species (see
S2 Text and S2 Fig).

Enrichment
For each archetype, we divide the data into equally populated bins according to their distance
from the archetype. Bin size was determined using a bootstrapping test (see S3 Text). Then we
check whether the median of each trait in each bin is maximal (or minimal) with respect to the
rest of the bins. We then test whether the distribution of points in the first bin is significantly
different than the rest of the data (the Mann-Whitney test [71]). Then we used the Benjamini-
Hochberg procedure for multiple hypothesis testing [72]. All the enriched features in Table 3
are significant after the multiple hypothesis testing. For further explanations on the way we
tested for feature robustness and the choosing of bin-size see S3 Text.

Higher dimensional trait space and the fit tetrahedron
We scanned all 715 possible combinations of four traits of the 13 in the database, and chose the
four traits with the largest number of species that have data on all four traits. We found the
best fit tetrahedron using SISAL algorithm [73], evaluated the errors in archetypes by boot-
strapping (12% errors), and the significance by the t-ratio test (p< 2�10−4).

Supporting Information
S1 Fig. Taxa with protected niches lie close to the B archetype. The different species are plot-
ted in the mass-longevity plane (gray), where the Chiroptera order (bats) is in green, the order
primates in black, the family Sciuridae (squirrels) in blue, and the orders Erinaceomorpha
(hedgehogs), Cingulata (armadillos) and the families Hystricidae (Old World porcupines) and
Erethizontidae (NewWorld porcupines) in red.
(PDF)

S2 Fig. Phylogenetic history only partially explains position on the triangle. (a) Distribution
of species at different taxonomic levels. Ellipses represent the median deviation around the
median at each level: Classes, orders, families and genera. (b) Phylogenetic tree, color coded
according to position on the mass-longevity triangle. Blue, red and yellow indicate closeness to
the S, W, and B archetypes respectively (see inset). Highlighted are cases of related species with
very different positions on the triangle. c. Phylogenetic distance (in log millions of years) versus
distance on the mass-longevity triangle. The four crosses represent the median and median
deviation for each taxonomic level.
(PDF)

S1 Text. Statistical significance of triangle. The database we used includes maximum longev-
ity values. Maximum longevity can be viewed as extreme values of a distribution of the actual
life span of species, and longevity in the field may be lower than in captivity.
(DOCX)

S2 Text. Phylogeny only partly explains position on triangle. The position of a species within
the triangle is determined by phylogenic history together with selective pressures in its niche.
(DOCX)

S3 Text. The enrichment sensitivity to bin-size.We choose the bin-size for the enrichment
analysis so that the enriched features remain robust to outliers and noise, and remain enriched
in a broad range of bin-sizes.
(DOCX)
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S1 Table. The list of all the analyzed species. The dataset we used [43], the first 6 columns
represent the taxonomy and name of the species. The next 13 columns depicts the 13 life his-
tory traits we used in our analysis, the next 3 columns show the weights of each archetype for
each data-point on the mass-longevity triangle, and the last 4 columns show the weights of
each archetype for each data-point on the tetrahedron.
(XLS)

S2 Table. Previous studies found triangles to describe organism distributions. The first 3
columns show the journal reference of previous studies in which triangles were used to describe
the data. The last 4 columns describe how the paper relates to the data, as tasks, traits or char-
acteristic.
(DOCX)

S3 Table. Closely species can lie far on the mass longevity triangle.Here we show the taxon-
omy of closely related species and their mass and longevity values.
(DOCX)

S4 Table. Far species on the phylogenetic tree can converge to close values on the mass lon-
gevity triangle.Here we show the taxonomy of species and their mass and longevity values.
(DOCX)
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