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Abstract
Correctly identifying nearest “neighbors” of a given microorganism is important in industrial

and clinical applications where close relationships imply similar treatment. Microbial classifi-

cation based on similarity of physiological and genetic organism traits (polyphasic similarity)

is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from

phylogenetic markers, facilitates classification but does not guarantee functional identity

between members of the same taxon or lack of similarity between different taxa. Using over

thirteen hundred sequenced bacterial genomes, we built a novel function-based microor-

ganism classification scheme, functional-repertoire similarity-based organism network

(FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively

defined organism relationships across the known prokaryotic space. It correlates signifi-

cantly with the current taxonomy, but the observed discrepancies reveal both (1) the incon-

sistency of functional diversity levels among different taxa and (2) an (unsurprising) bias

towards prioritizing, for classification purposes, relatively minor traits of particular interest to

humans. Our dynamic network-based organism classification is independent of the arbitrary

pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity.

Instead, it reveals natural, functionally defined organism groupings and is thus robust in

handling organism diversity. Additionally, fusion can use organism meta-data to highlight

the specific environmental factors that drive microbial diversification. Our approach pro-

vides a complementary view to cladistic assignments and holds important clues for further

exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and

ecological applications, as many of these rely on understanding the functional capabilities

of the microbes in their environment and are less concerned with phylogenetic descent.

Author Summary

Taxonomic classification of microorganisms according to similarity is important for
industrial and clinical applications where close relationships imply similar uses and/or
treatments. Current microbial taxonomy is phylogeny-guided, i.e., the organisms are
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grouped based on their evolutionary relationships, defined by vertical inheritance of
genetic information from mother to daughter cells. Microbes, however, are capable of hor-
izontal gene transfer (HGT). Thus, the current taxonomic assignments cannot guarantee
genome-encoded molecular functional similarity; i.e. two microbes of the same taxonomic
group inhabiting different environments may be very different—just as your cousin may
be more different from you than your unrelated best friend. Our work establishes a
computational framework for comparison of microorganisms based on their molecular
functionality. In our functional-repertoire similarity-based organism network (FuSiON;
flattened to fusion) representation, organisms can be consistently assigned to groups based
on a quantitative measure of their functional similarities. Our approach highlights the spe-
cific environmental factor(s) that explain the functional differences between groups of
microorganism. Fusion is a more practical choice for biomedical, industrial, and ecological
applications, as many of these rely on understanding the functional capabilities of the
microbes in their environment.

Introduction
In biology, the field of taxonomy is tasked with describing, naming, and classifying organisms;
the latter according to some metrics of similarity. Van Leeuwenhoek’s observation of micro-
scopic organisms launched centuries of classification based on morphology and physiology [1].
Since the 1960’s, DNA-DNA hybridization (DDH) [2] has been the ‘gold standard’ for bacterial
species demarcation. The current polyphasic species definition requires a DDH value>70%, as
well as shared phenotypic characteristics, to assign two bacteria to the same species [3]. Recent
emergence of high-throughput genomic sequencing [4] highlighted the importance of genomic
similarity in bacterial taxonomy. For example, studies have shown that the average genome
nucleotide identity (ANI) classifies bacterial species as well as DDH values [5]. These new met-
rics also revealed previously unseen organismal relationships, highlighting the dynamic state of
the prokaryotic taxonomy. As there is no one true taxonomy, subjectivity is a factor in compar-
ing and contrasting conflicting classifications. Furthermore, special human interest, e.g. patho-
genicity, and the desire to conserve existing naming conventions add to the inconsistency.

Today, prokaryotic taxonomy relies heavily on phylogenetics. However, there are non-phy-
logenetic alternatives for classification. Phenetics [6], for example, classifies organisms based
on similarity regardless of shared ancestry. The definition of the term “similarity” is fluid, but
in its broadest sense implies a comparison of organism phenotypes, including their molecular
functional capabilities. It is important to note that though both phylogeny-based taxonomy
(cladistics) and phenetics can be used to investigate bacterial relationships, the questions that
they try to answer are different. The task of phylogeny is reconstructing organismal evolution-
ary history–think Tree of Life [7,8] efforts. Phenetics, on the other hand, clusters organisms
into currently consistent classes on the basis of observable traits. Closely related organisms are
often phenotypically similar. However, the order of evolutionary descent does not directly
translate to classification–just as whales are more related to cows than to fish, despite the obvi-
ous morphological, environmental, and functional similarities to the latter.

The current NCBI Taxonomy [9], a trusted computationally accessible resource, largely fol-
lows Bergey’s Manual of Systematic Bacteriology [10]. Bergey’s Manual is a framework of pro-
karyotic taxonomy built around a backbone of 16S rRNA-derived phylogeny, which is used to
find “unifying concepts of bacterial taxa [leading] to greater taxonomic stability and predict-
ability.”However, as physiology and morphology are also relevant to classification, the
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boundaries between different taxa are often subjective and controversial [10]. Additional tech-
niques, e.g. multi-locus sequence analysis (MLSA) [11], are often used to compensate for the
lack of 16S rRNA phylogeny resolution [12]. For the (even highly accurate) computational
organism classification methods [13] this taxonomic flexibility contributes to inconsistent
assignments.

Due to the absence of sexual reproduction and the presence of horizontal gene transfer
(HGT), speciation is not strictly defined in prokaryotes. Therefore, the goal of greater classifi-
cation stability and predictability could be better achieved via phenetically clustering organisms
on the basis of quantifiable similarity of their molecular function capabilities. In early studies,
Enterotubes, a one-stop shop for dozens of biochemical tests, were used to accurately classify
Enterobacteriaceae [14]; however, these could not be applied to other organisms. Gram stain-
ing, on the other hand, could broadly typify bacteria, but lacked in taxonomic resolution. In
general, biochemical/physiological tests only reflect a small portion of bacterial functionality–
as many as three hundred tests would only access 5–20% of the bacterial functional potential
[10]. Cheaper genome sequencing and advanced computational methods offer a different route
for measuring bacterial functional capabilities.

Most of the molecular functionality of one bacterium, its functional repertoire, is carried by
its proteome, the set of all proteins encoded by its genes. Note that while plasmid encoded pro-
teins are also part of the proteome, for reasons discussed later in the manuscript, here we only
focus on the proteins encoded on the bacterial chromosome. The current taxonomy usually
reflects either the phenotypic manifestations of functional repertoire subsets (morphology,
physiology) or high-level repertoire interpretations (e.g. DDH). Ideally, however, comparison
between bacterial repertoires should offer a comprehensive metric for clustering bacteria on
the basis of their overall functional similarity–a combination of heritage and habitat impact.

We defined the functional repertoires of over 1,300 fully sequenced bacteria using protein
clustering by HSSP (Homology-derived Secondary Structure of Proteins) distance [15]. HSSP
techniques allow annotating two proteins as performing the same molecular function, without
specifically defining the nature of this function. We also annotated our set of bacterial proteins
via common function profiling tools: COG [16], Pfam [17], and RAST [18]. For the purposes
of this work, we defined the similarity between any two organisms according to the percentage
of functions they shared. We first validated the reliability of our functional similarity metric by
using pairwise organism comparison to assign taxonomic ranks. Using the NCBI Taxonomy as
a benchmark, we show that functional similarity, defined using any of the above-mentioned
function annotation methods, is more descriptive of pairwise organism similarity than gene
sequence identity–a novel finding. Additionally, our HSSP-based organism similarity metric
was more accurate than metrics based on other function assignments evaluated in this study.
Since HSSP is not limited by availability of annotations, our approach circumvents experimen-
tal limitations by including novel lesser-studied functions into organism classification.

We further identified natural clusters of bacteria in our functional-repertoire similarity-
based organism network (FuSiON; flattened to fusion). Instead of assigning organisms into
phylogeny-based classes, each of which may encompass a wide range of environmentally, met-
abolically, and phenotypically diverse microbes, fusion groups them according to functional
similarity. Our scheme allows for variability in the number of non-hierarchical organism mod-
ules, where the clustering resolution is adjustable to each specific application. Moreover, as
fusion is inherently cut-off free, its clade assignments are largely independent of current data-
base biases, i.e. our method will not tend to assign a novel microbe to Proteobacteria simply
because a vastly larger and more diverse set of Proteobacteria genomes are available in our
databases. We investigated the functional basis for some of the individual discrepancies
between the current taxonomy and the fusion classification via case studies in Cyanobacteria
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andMycoplasma. We describe how phylogenetically related bacteria can still be functionally
very different, with the environment playing a key role in selecting for each organism’s func-
tional specificity. Our novel phenetic method for unambiguous and consistent classification of
bacteria provides a complementary view to phylogenetic clade assignment. The dynamic
nature of our network-based organism clustering provides an easy route for incorporation of
additional organisms and organism features (e.g. plasmids) into the existing classification
framework. Fusion is, thus, a more practical fit for biomedical, industrial, and ecological appli-
cations, e.g. [19,20], as many of these rely on understanding the functional capabilities of the
microbes in their environment, and are less concerned with phylogenetic descent.

We are currently working on implementing a publicly available fusion work-bench, that will
allow real-time assignment of novel organisms to fusion clades. All organism similarity and
clustering data described in this work, along with the software and commands necessary to
reproduce the reported fusion networks, are available for academic use and reuse under an
open source license at: http://bromberglab.org/?q = services.

Results and Discussion

HSSP-based functional repertoire similarity accurately measures
pairwise bacterial relationships
We annotated functions of 4.2 million proteins, encoded in 1,374 fully sequenced bacterial
genomes, via COG, RAST, and Pfam. We also computed HSSP distances for every protein pair
(~1.6x1013 comparisons). The HSSP distance is a non-linear metric incorporating sequence
identity and alignment length that has been parametrized to identify alignments of proteins of
experimentally established identical functions [15]. Briefly, enzymes of experimentally defined
identical function (defined by the Enzyme Commission [21]) were used to determine a thresh-
old curve separating the alignment length vs. sequence identity space into regions of same vs.
different functions; i.e. two proteins that fall above the curve share identical function, while
those below the curve do not. The distance of every alignment along the sequence identity axis
away from the curve (HSSP distance) reflects the reliability of these assignments of functional
identity [15].

We adopted an HSSP distance cut-off of 10, which annotates two proteins as sharing the
same function with over 90% precision (accuracy/specificity, percentage of correct same-func-
tion predictions of all such predictions made), albeit at only ~40% recall (coverage/sensitivity,
percentage of correct same-function predictions of all same-function pairs in the set) [15]. At
this stringency, ~900,000 proteins (21% of 4.2 million in our set) were unique–one protein per
functional group. The remaining 3.3 million clustered into ~335,000 functional groups (S1
Table). Note that at lower HSSP cut-offs these groups can be further consolidated, but at a sig-
nificant loss of accuracy. We choose a more conservative threshold to attain maximal resolu-
tion of assignment.

We used RAST annotations to divide our HSSP-based functional groups into Kn (known;
available annotation), Hy (hypothetical; likely protein existence, function not annotated) and
Un (unknown; no annotation) sets (S1 Table; Methods). We further confirmed that each
HSSP-based function group contained proteins of similar RAST annotations (S2 Table). Note
that different function groups may contain proteins that carry out the same biochemical func-
tions but in a different fashion, e.g. at different reaction rates. We found that many organisms
contain proteins performing the Kn functions, while theHy and Un functions tend to be organ-
ism specific, a conclusion that holds even if groups containing a single protein are excluded
(S1 Fig). As a corollary, proteins carrying functions that are more common across organisms
are more likely to be annotated (S1 Fig). Interestingly, we note that 26% (127,254 of 481,913)
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of the unannotated proteins in our set fall into the Kn (78%) and Hy (22%) HSSP-based func-
tion groups. We also show that for 71% of Kn groups (S2 Table), 90–100% of annotated pro-
teins in each group are functionally identical. Our protein clustering may thus help elucidate
functions of tens of thousands of yet un-annotated proteins; we anecdotally confirmed some of
these via manual curation of new sequence annotations.

We defined the functional repertoire of an organism as the set of all functional groups car-
ried by the organism. The size of the repertoire is at most as large as the number of proteins in
the proteome, but in-paralogs may fall into a single functional group. The functional similarity
of two bacteria was calculated as the number of shared function groups normalized by the big-
ger repertoire size (Methods).

Our HSSP-based functional group comparison significantly (Wilcoxon rank-sum test, p-
value<0.0001; Methods) more accurately recapitulates the NCBI taxonomic identity of organ-
ism pairs than using other function definitions (COG, RAST, and Pfam) at all taxonomy levels,
except the genus and species, where RAST achieves comparable performance (S2A–S2F Fig)
RAST’s and HSSP’s improved performance at these lower levels may be due to their “whole
sequence”-based function annotation. Pfam works at the domain level, which is arguably too
broad, including many proteins into one function class. COG is designed to detect orthology,
i.e. evolutionary relationships, and thus its functional groups are likely too narrowly defined.
HSSP’s exemplary performance over all taxonomic levels is possibly due to the lack of depen-
dence of its pairwise sequence comparisons on the external knowledge, e.g. Pfam domains,
RAST functions, or COGs. Note that here we used COG instead of the more complete Egg-
NOG [22], as we felt that manual curation may carry more resolution. We obtained the latest
set of COG annotations from its developers (2012 update, Yury Wolf personal communica-
tion). Here we show that all tested function-based metrics reflect the current taxonomic organ-
ism placement fairly well. We adopt HSSP for this work as it correlates best with the current
taxonomy (S2A–S2F Fig), while circumventing limitation of available protein function
annotations.

As described above, the HSSP metric is more informative of function than protein sequence
identity and alignment length alone [15]. Thus, although our method is mechanistically
similar to sequence-based gene content phylogenomic approaches [23,24], it is very different
from the latter both (1) conceptually–we classify organisms based on their current functional
similarity rather than reconstructing their phylogeny and (2) practically–functional similarity
significantly more accurately describes bacterial relationships than sequence identity-based
methods (Wilcoxon rank-sum test p-value<0.0001; S2G Fig). The latter finding is intuitive, as
function-based methods separate sequence-similar out-paralogs into different families, which
sequence-based methods, by definition, cannot do. However, to the best of our knowledge the
improvement of functional comparisons over gene content in classifying bacteria has not been
experimentally shown before.

We find, perhaps unsurprisingly, that two nearly functionally identical (90% similarity)
organisms belong to different species as often as a third of the time (S2F Fig). These function-
ally similar, yet taxonomically split organism pairs are not uniformly distributed throughout
the taxonomy [10,25]. Here we show that most of these occur in three pathogenic genera: Bor-
relia (Lyme disease), Brucella (brucellosis), andMycobacterium (leprosy, tuberculosis), suggest-
ing possible bias of classification towards higher resolution for organisms of human interest.
This preference is also evidenced by the relatively large number of experimental annotations of
functions of the human-associated microbiome (S3 Fig) Though such taxonomic resolution
bias probably offers convenience in practice, it brings along an inconsistency that complicates
en bulk analysis of microorganisms; e.g. computational methods cannot readily deal with the
type of subjectivity that separates very similar organisms into different taxa (e.g. Borrelia
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hermsii and Borrelia turicatae share 99% functional similarity), while assigning different organ-
isms into the same taxon (e.g. Clostridium botulinum strains share less than 40% similarity).
We argue that for practical use, it is often more important to know whether two organisms can
perform the same molecular functions rather than if they share the same lineage.

Note that throughout this work, in order to compare our organism assignments to the cur-
rent taxonomy, we conservatively excluded the plasmid proteomes. Plasmids contribute
heavily to functional differentiation, as opposed to speciation, separating classes of microor-
ganisms without explicit phylogenomic commitment. Moreover, plasmids follow independent
evolutionary models [26,27] and carry many of the environment-related functions [28]. We
expect that including the plasmid genomes into our paradigm will show stronger impact of
habitat and we intend to evaluate plasmid contribution in further work.

Fusion organism classification correlates with the NCBI Taxonomy
We represented the functional similarity of our microorganisms as a network–fusion
(functional-repertoire similarity-based organism network). In fusion, organisms are vertices
(nodes), and edge lengths (weights) indicate pairwise functional repertoire similarities. Here all
organisms (1,374 nodes) are at least somehow similar forming a fully connected network
(943,251 edges). The minimum amount of similarity between two organisms is<1%—these
edges link the tiny Candidatusmicrobes (S3 Table) to the much bigger organisms in our set.
However, the most common level of similarity between two organisms is 7% (mean 7.7% and
median 6%). These results indicate that our organisms are mostly functionally distant, but
maintain a minimal set of identical, globally present, likely housekeeping, functions. In a repre-
sentation that takes into account edge-weight and node density (Fig 1A; OpenORD layout
[29]), microorganisms cluster consistently within their NCBI Taxonomy groups.

Earlier studies searched for natural discontinuity in the bacterial pairwise genome similarity
space [30,31], but found no unique break point that would reasonably assign taxa to large
sets of organisms. To inspect for possible occurrence of these breakpoints in our network
representation, we adopted a range of cut-offs in a single linkage clustering approach (S1 Text).
With increasing cut-offs, our network contained organism clusters that were progressively
more taxonomically consistent at lower taxonomic ranks (S4A–S4C Fig). This split into clus-
ters is informed by the variation in density of organisms across the network, i.e. the increased
connectivity between nodes within one region as compared to outside the region. Note that
density is artificially increased in regions of preferentially studied organisms (e.g. Firmicutes
and Proteobacteria, S3 Fig). To study the mapping of functional relationships to taxonomy, we
used 1% cut-off increments in the network to build a 100-layer hierarchical structure (Meth-
ods; S4D Fig). We found that this structure was somewhat topologically similar (corr = 0.557)
to the NCBI Taxonomy. However, the differences between the two (S1 Data) indicated the
absence of natural breakpoints correlating the current taxonomy to functional groupings of
microorganisms.

To quantify the cluster-taxon consistency, we calculated the overall network accuracy and
coverage at different cut-offs (Methods). With the cut-off increasing from 5% to 100%, the
overall accuracy increases while the overall coverage decreases for each taxonomy level (Fig 1B
and 1C). Note that the 100% overall accuracy for the species level is only attained at 100% cut-
off, which results in one organism per cluster (Fig 1B); i.e. NCBI Taxonomy assigns highly sim-
ilar organisms into different species. On the other hand, even 10% functional similarity does
not guarantee 100% overall coverage for most (phylum to genus) taxonomic levels (Fig 1C). All
strains of a single species consistently fall into a single cluster (100% overall coverage) only
until the 30% cut-off; i.e. highly dissimilar organisms are classified into the same species.
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The lowest cut-off resulting in 100% overall accuracy, along with the highest cut-off result-
ing in 100% overall coverage, define lower and upper bounds, respectively, of the functional
repertoire similarity in assigning NCBI Taxonomy. Organisms in different clusters at cut-offs
less than the lower bound are of different taxa, while organisms in the same cluster at cut-offs
greater than the upper bound are of the same taxon. The ranges of uncertainty of taxonomic
assignment (region between the lower and upper bound) are varied and often large, e.g. span-
ning cut-offs of 5–95% for genus-level classification (S5A Fig). Pairwise comparisons (S5B Fig)
display similar behavior, highlighting inconsistencies in the prokaryotic taxonomy, previously
quantified by e.g. [25]. Arguably, even more disconcerting for pairwise comparisons is the fact
that>90% of all organism pairs fall into this uncertainty range for all taxonomic ranks except
for species (most organism pairs are of different species); e.g. for phylum level 97% of all organ-
ism pairs are in the uncertainty region. These results indicate that setting arbitrary cut-offs,
whether network- or pairwise- comparison-based, in order to fit organisms into preset taxo-
nomic bins, inevitably introduces unquantifiable and non-standardizable bias into annota-
tions–a problem for large-scale organism and microbiome studies.

Fig 1. Fusion-based clustering correlates with NCBI Taxonomy. (a) fusion network colored by taxonomic rank. Ap-Alphaproteobacteria; Bp-
Betaproteobacteria; Gp-Gammaproteobacteria; Dp-Deltaproteobacteria; Ep-Epsilonproteobacteria; Ac-Actinobacteria; Fi-Firmicutes; Cy-Cyanobacteria;
Ba-Bacteroidetes; Sp-Spirochaetes; Te-Tenericutes; Ch-Chlamydiae; Ot-other minor phyla; (b) The overall accuracy of functional similarity networks at cut-
offs from 5% to 100%, with step of 5%. The overall network accuracy is the fraction of correctly assigned organisms of the total number of organisms; i.e.
overall accuracy of 100% indicates that all organisms in any one cluster are of the same taxon. The overall accuracy for each taxonomy level increases with
the cut-off. Thus, lower taxonomy levels (e.g. genus, species) achieve 100% overall accuracy at higher cut-offs; (c) The overall coverage of the functional
similarity networks at cut-offs from 5% to 100%, with step of 5%. The overall coverage is the percentage of taxa (excluding taxonomic singletons) with all
members in one cluster at a given cut-off. Overall coverage of 100%, indicates no splitting of any of the taxa; i.e. one cluster per taxon. Lower taxonomy
levels lose 100% overall coverage at higher cut-offs.

doi:10.1371/journal.pcbi.1004472.g001
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Fusionmodules reflect non-hierarchical organism groupings
State of the art in any field often concerns itself with describing available data points and
extrapolation on the basis of observed trends. Current prokaryotic taxonomy is, thus, primarily
defined on the basis of culturable and commonly studied microorganisms, e.g. Proteobacteria
and Firmicutes, which make up 46.8% and 21.7% of our data set, respectively. Furthermore, the
number of well studied organisms of a particular kind is often the driving force of taxonomic
placement of newly discovered (sequenced) organisms; i.e. you could only compare a new
organism to existing ones, so better represented clades are more likely to be populated with
additional members. For example, when looking to classify a newly cultured microbe on the
basis of 16S rRNA gene sequence similarity, one is simply more likely to find a closer, even if
not sufficiently close, sequence belonging to a well studied clade than to a poorly described
one. Re-assignment of organisms to new clades on the basis of additional evidence is fairly
common. However, follow-up studies are time consuming, limited to organisms of high inter-
est, and, thus, unlikely to find all errors. High-throughput experimental methods (e.g. cheaper
sequencing) and automated organism classification can contribute to further propagation of
assignment errors. An unfortunate, but highly visible result of this state of the art is the signifi-
cant difference in annotations of organism diversity of the same metagenomic sample using
data provided by different 16S rRNA databases [32].

Network-based organism similarity representations can help alleviate issues of data avail-
ability bias. In a fully connected network of similarities, non-overlapping modules, with denser
(edge weight-wise) within-module and sparser across-module connectivity, imply natural
organism grouping. The Louvain algorithm [33] maps nodes in a network into modules by
considering both edge-weight (extent of similarity) and node connectivity. When all-to-all con-
nectivity exists within a network, edge-weight is the sole driver of module detection; i.e. five
very similar organisms can form a module of their own as well as ten or twenty organisms. In
fact, a larger number of organisms is more likely to connect strongly outside the module and,
thus, be subject to dispersion. A newly identified organism, placed into a fully connected net-
work is then subject to forces (connections) pulling from all directions, to finally identify its
placement. This placement is dynamic–as new organisms are added a network’s partitioning
can change. As a result, this approach is more robust to dealing with natural organism diversity
than static structures.

For our purposes, one big advantage of the Louvain algorithm is that it splits the fully con-
nected fusion network into communities (modules) without a need for a set arbitrary similarity
cut-off. However, a problem with this single best grouping of organisms is that when the global
modularity function is optimized, there is a loss of resolution for smaller modules. An adapted
version of the Louvain method [34], instead of modularity, aims to optimize stability of net-
work partitions over time. Here, stability reflects flows of probability through the network, cap-
turing important aspects of the global architecture and describing different optimal partitions
of the network at different times. Simply put, a module is considered stable if random walkers
(described by a particular Markov process [34]) do not escape from it within the set time limit.
Thus, longer time limits (higher “resolution” parameter values (S6 Fig) result in larger and
coarser (more functionally diverse) modules. The size and diversity of organism modules can
thus be optimized for each individual application.

While one may see the resolution parameter as cut-off equivalent, it is in fact quite different.
In setting cut-offs on organism similarity we consistently group organisms within the same
hierarchy–two organisms of the same species always belong to the same genus and the same
phylum. On the other hand, tuning the stability of modules is a dynamic assignment. Thus,
two organisms in a low-resolution module can belong to different modules at medium
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resolution and the same module again at high resolution. Note that this implementation of
Louvain algorithm is not deterministic; that is two organisms (at the “edge” of similarity) can
be sorted into different modules with two runs of the algorithm at the same resolution setting.
Correspondence of partitions (estimated by e.g. [35]) produced at the same resolution setting
can thus be used to approximate meaningful partition points for growing fusion networks as
new organisms are added. This option is not available for similarity cut-off-based schemes that
are easily skewed by the availability of genomic data, which, for now, is heavily biased toward
organisms of particular human interest (S3B Fig). Though fusion is also affected by genome
availability, the effect is alleviated by all-to-all connectivity, which reduces the importance of
node number in favor of edge weight for clustering purposes.

We detected the Louvain communities in the complete fusion network (no edges removed)
using a set of resolution values. We compared organism pair assignments to the same Louvain
community vs. the same NCBI taxonomic placement using the Jaccard index (species to phylum;
resolution 0.05 to 1.2; Table 1 and S6 Fig). Here this metric (ranged [0,1], from “no similarity” to
“identity”) evaluates the percentage of organism pairs that is simultaneously assigned to the same
module and the same taxonomic clade, of all same module or same clade assignments (Methods).
For example, at the 0.8 resolution of fusion (Fig 2A; colors indicate modules) there are nine mod-
ules detected. The NCBI taxon (class for Proteobacteria and phylum for all others) of organisms
in these modules varies (Fig 2B). Some modules demonstrate a highly homogeneous phylum/
class distribution, while others are diverse. The Jaccard index of this resolution is 0.478 with
NCBI class assignment and 0.294 for phylum assignment. This observation highlights the incon-
sistency of functional microorganism abilities with the current taxonomic assignments.

We suggest that our novel network-based classification scheme reveals the natural grouping
of organisms instead relying on arbitrary similarity cut-offs. Unlike classification based on
pairwise organism similarity, fusion is more robust in handling microorganism diversity. It
also alleviates the data availability (organism bias) problem and is a more practical fit for large-
scale computational analysis. In addition, without the limitation of preset discrete taxonomic
bins, users can zoom in/out with different resolutions to find out the functional organism
groups of their specific interest.

Fusion+ reveals functional basis of classification discrepancy
To study the functional basis of taxonomic vs. functional discrepancies, we built, for several
cases, a variant of the fusion network, fusion+. Our case studies wereMycoplasma and Cyano-
bacteria–organisms with well-known taxonomy assignment issues (Garrity GM 2001). Fusion
+ has two types of nodes: organisms and functions that they perform. Organism nodes are con-
nected by edges to their function nodes. Thus, while in fusion one edge connects each organism
pair, in fusion+ the number of connecting edges is equal to the number of shared functions.
Thus, fusionmodules can be studied in depth in terms of specific functions or organism meta-
data variables, e.g. salinity, temperature, or pH preferences.

Table 1. Similarity of the NCBI Taxonomy assignments and fusionmodules.

Modularity index Number of fusion Modules Number of NCBI clades Jaccard index

Phylum 1.1 3 27 0.423

Class 0.8 9 43 0.416

Order 0.5 56 97 0.611

Family 0.4 99 204 0.433

Genus 0.3 170 493 0.458

Species 0.1 551 875 0.177

doi:10.1371/journal.pcbi.1004472.t001
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Mycoplasma studies
We created three fusion+ networks for 29Mycoplasma strains, including (1) only their 1,848 Kn
functions (Fig 3A), (2) 1,848 Kn and 1,347Hy functions (3,195 total, Fig 3B), and (3) all 9,354
functions (Fig 3C). The shift of theM. suis andM. haemofelis Langford 1 away from otherMyco-
plasma between Kn-only (Fig 3A) and Kn,Hy-network (Fig 3B) illustrates the importance for
classification of the yet unstudied (Hy) functions. Note that while adding the 1,518Un (95%
organism-unique) functions further increases the separation between all organisms in the net-
work (Fig 3C), this effect can be largely attributed to the impact of repertoire size.

The separation of the twoM. suis strains andM. haemofelis from otherMycoplasma is not
surprising. As noted earlier, in the functional similarity network they form isolated clusters at a
very low 10% cut-off (S4A Fig and S3 Table). Previously known as Eperythrozoon suis andHae-
mobartonella felis, respectively, these three strains were moved to theMycoplasma genus on
the basis of their 16S rRNA phylogeny [36,37]. There is, however, ample biological differences
of these strains as compared to otherMycoplasma [38]. Quantifying these differences is, how-
ever, very difficult–do they merit re-assignment to another clade or not? Our observations
highlight the problem: these organism are assigned into a genus with less than 10% of common
functionality–even organisms of different phyla are often more similar (S4A Fig). The structure
of the fusion network, however, clearly groups them with otherMycoplasma all the way down
to a resolution of 0.1. While the similarity of fusionmodules and species assignments is fairly
low (Table 1), in this particular case the two metrics agree. Rooted in the same ancestor as
otherMycoplasma,M. suis andM. haemofelis have evolved specific functional differences likely

Fig 2. Fusionmodule detection reveals natural organism grouping. (a) Colors represent each of the nine fusionmodules detected at resolution 0.8. (b)
Organism diversity (NCBI Taxonomy) in each module is shown as: Ap-Alphaproteobacteria; Bp-Betaproteobacteria; Gp-Gammaproteobacteria; Dp-
Deltaproteobacteria; Ep-Epsilonproteobacteria; Ac-Actinobacteria; Fi-Firmicutes; Cy-Cyanobacteria; Ba-Bacteroidetes; Sp-Spirochaetes; Te-Tenericutes;
Ch-Chlamydiae; Ot-other minor phyla. The difference in diversity among the different modules reflects the inconsistencies of the current taxonomy.

doi:10.1371/journal.pcbi.1004472.g002
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due to their unique epierythrocytic parasitic life styles [39]. However, in the currently available
microbial functional landscape, even these (very dramatic) in-clade differences do not make
this set of organisms functionally different enough to merit complete clade dispersal. This
example demonstrates the subjective (albeit successful, in this case) nature of current cladistic
assignments when evolutionary relatedness does not equal functional similarity.

We further identified 26 (25 Kn and oneHy) functional groups shared betweenM. suis and
M. haemofelis, but not by otherMycoplasma (S4 Table). Representative sequences from two of
these groups are detected in a variety of other organisms from multiple phyla. The rest are
exclusive toM. suis andM. haemofelis. Note that other organisms carry out the biochemical
functions represented by these functional groups, but they do so using sufficiently different
proteins from the ones specific to theseMycoplasma strains. These differences may include dif-
ferent protein stabilities, different rates of reaction, etc. For instance, many of these 25 Kn func-
tion groups are house-keeping; e.g. DNA polymerase subunits that are unlike others in our set,
indicate a likely ancient split from otherMycoplasma.

One difference betweenM suis andM. haemofelis is their preferred hosts, swine and feline,
respectively. The species differ from each other by 1,686 functions – 640 inM. suis (88%
unique; remaining 79 functions shared with otherMycoplasma) and 1,046 inM. haemofelis
(98% unique). This finding is in line with the fact that many hemotrophicMycoplasma contain
numerous paralogous gene families, which are thought to participate in antigenetic variation
[40]. These functions are less annotated, but likely differentiate these organisms in ways neces-
sary to evade specific host immune response.

Cyanobacteria studies
We explored the fusion+ network of 40 Cyanobacteria (49,937 functions: 17,275 Kn, 21,465
Hy, 11,197 Un; 34,678 organism unique). Based on the 15,259 functions shared by at least two
organisms, the Cyanobacteria separate into two clusters (Fig 4). In fusion this split is observed
at resolution 0.3 –a genus equivalent. One cluster (Fig 4, top) contains 16 fresh-water

Fig 3. Mycoplasma fusion+ reveals the importance ofHy andUn functions in taxonomy assignment.
The networks include a) Kn functions, b) Kn andHy functions and c) all functions. Unique bloodMycoplasma
organisms are indicated by red nodes, with the rest ofMycoplasma colored in blue. The length of edges
represents the relative (not absolute) similarities between organisms. Note the resolution increases as Hy
andUn functions added.

doi:10.1371/journal.pcbi.1004472.g003
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Cyanobacteria, three symbionts [41–43], two marine-water organisms and one isolated from
marine mud. Note that the mud dweller, Synechococcus PCC 7002, is salt tolerant, but does not
require salt for growth [44]. Another cluster (Fig 4, bottom) contains only marine Cyanobacte-
ria. The Synechococcus genus members are found in both clusters with marine Synechococcus
sharing more functionality with the marine Prochlorococcus than with the fresh water Synecho-
coccus. The intra-genus diversity of Synechococcus [44] suggests a division into five genera-
equivalent subgroups [10]. Fusion+ reveals that the fresh water and marine Synechococcus are
significantly functionally different and should belong to different taxa, an unsurprising finding
that is in line with both 16S rRNA-based phylogenetic [45] and phylogenomic [46] studies.
Bergey’s Manual relies heavily on morphology for Cyanobacteria classification. However, for
this specific example using phylogeny would produce more informative taxonomic assign-
ments. In other cases, phylogeny may be misleading. For example, according to evolutionary
ancestry fresh-water Synechococcus elongatus strains should group together with the marine
Synechococcus and Prochlorococcus [45,46]. However, S. elongatus is more functionally similar
to fresh water Synechococcus (Fig 4) and should be grouped with them despite its evolutionary
relationships to the marine subgroup.

Fig 4. Fusion+ of 40Cyanobacteria reveals environment impact on functions. TheCyanobacteria form
one mostly fresh water cluster and one marine cluster. The members of Synechococcus exist in both
clusters. The functions that are shared between marine Synechococcus and Prochlorococcus, yet not found
in fresh waterCyanobacteria, are likely important in the marine environment. Symbiont1-cyanobacterium
UCYN-A; Symbiont2- Acaryochloris marinaMBIC11017; Symbiont3- Nostoc azollae 0708.

doi:10.1371/journal.pcbi.1004472.g004
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To further study salt tolerance, we identified 181 functional groups only shared by the
marine Synechococcus and Prochlorococcus in our network. Of these, 15 groups include pro-
teins from organisms of various phyla; e.g. one of these functions is present in Allochromatium
vinosum, a halotolerant microbe surviving in both marine and freshwater environments [47].
This particular function is RAST annotated as a putative carboxysome peptide A, crucial in
carbon fixation. We hypothesize that this A. vinosum version of the carboxysome subunit is
either specific to salt adaptation or transferred together with other salt tolerance genes in an
HGT event. We also identified 166 functions (including 21Hy and one Un function) exclusive
to and ubiquitous in the marine Synechococcus and Prochlorococcus (S2 Data). Of these, 34
were unique–not found in any other organisms (including the closest evolutionary neighbor,
S. elongatus) in any other form (manual curation).

Functional similarity can standardize organism classification
Fusion offers a quantitative, objective, and consistent function-based measure of organism sim-
ilarity. Its classifications correlate with the current taxonomy for many organisms, but not in
cases where close phylogenetic relatives are functionally different. Our analysis supports previ-
ously reported trends of inconsistencies in the current taxonomy [30,31]. Fusion’s functional
repertoire definitions are more accurate for organism classification than sequence identity-
based whole-genome comparisons. Moreover, our novel network scheme with module identifi-
cation, to the best of our knowledge, is the first attempt to highlight naturally occurring clusters
of organisms without (arbitrary) pairwise similarity cut-offs. It is more robust than pairwise
organism comparison in dealing with organism diversity, particularly since much of fusion’s
resolution comes from using unstudied (or poorly studied) functions. Potentially, its use of
functional similarities to identify organisms can facilitate organismal and functional diversity
annotation of metagenomes and, under some circumstances, even contamination detection in
newly sequenced genomes. Fusion reveals the significant roles that environmental factors play
in determining functional abilities of organisms and highlights the key functions shared by dif-
ferent organisms in the same environment.

For large-scale analyses and practical applications requiring systematic organismal
phenotype assessments, e.g. antibiotics development, bioremediation, and industrial uses,
classification based on functional comparisons may carry more meaning than evolutionary
relationships. Fusion is a novel framework for organism classification that (1) directly uses
organism functional comparisons, eliminating the need to consider individual HGT events in
addition to evolutionary lineage, (2) describes organismal diversity by identifying natural
organism clusters in a similarity network instead of arbitrarily establishing cut-offs in levels of
similarity per cluster, and (3) has an unlimited capacity to incorporate additional genetic data
from plasmids and/or previously unseen organisms. At the very least, fusion offers a comple-
mentary view to the current taxonomy. Comparing the two classification schemes allows
detection of functionally diversified strains–an ability that, potentially, has a wide range of
applications, e.g. tracking and surveillance of bacterial pathogens.

Conclusion
Microorganism classification, like many other scientific strategies, is driven by expertise and
available technology. Historically designed with more emphasis on the former, the current
taxonomy lacks consistency across assignments. Recent advances in sequencing abilities have
created the possibility of exploiting entire organism functional pools for classification. Here we
demonstrate fusion–a classification technique that compares molecular (genome encoded)
functionality across microorganisms. Fusion can be used with a predictable consistency to
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classify newly sequenced organisms according to the current taxonomy. More importantly, it
offers a novel and practical prokaryotic classification scheme, which is reflective of, but not
dependent on, organism evolutionary history. Fusion’s ability to highlight functions key to par-
ticular environments will have great impact in industrial and clinical practices.

Methods

Datasets
We downloaded 1,374 bacterial proteomes from December 2011 NCBI GenBank release [48].
Habitat information for these organisms was obtained from GOLD [49] and IMG [50].

Defining functional repertoires and their similarity
We defined the functional repertoire of a single microorganism to be the set of all molecular
function capabilities carried by its proteome (excluding plasmids).

HSSP-based protein clustering. We performed an all-to-all PSI-BLAST [51] of 4.2 mil-
lion protein sequences in the 1,374 bacteria proteomes (parameters: e-value 1e-3; inclusion
ethresh 1e-10; num iterations 3; max target seqs 1e9; num alignments 1e9). HSSP distances [15]
were calculated from the PSI-BLAST results (Eq 1), where L is the length of the alignment
between two proteins and Id is the percentage of identical residues.

HSSP distance ¼

�99; L < 11

Id � 480L

�0:32 1þe
�

L
1000

0
@

1
A
; 11 < L � 450

Id � 19:5; L > 450

ð1Þ

8>>>>>><
>>>>>>:

The highest HSSP distance was selected for every pair of proteins when multiple alignments
were possible. Note that here higher distance means higher similarity. A threshold of HSSP dis-
tance�10 was used to define two proteins as having similar function. At this threshold, the
HSSP metric attains ~90% precision and ~40% recall in mapping functional identity of protein
pairs [15]. We further clustered these proteins into function groups using MCL (Markov Clus-
ter Algorithm; parameter:-I 1.4) [52].

Other function profiling tools. We obtained COG (Clusters of Orthologous Groups) [16]
annotations for our dataset (personal communication with Dr. Yuri Wolf). We downloaded
the Pfam database (release 27.0) [17] and annotated all proteins using hmmscan [53] against
both PfamA and PfamB with default settings. We kept the top hit for each protein with e-
value< 1e-3. We used a local install of the RAST toolkit (myRAST) [18] to annotate the func-
tion of all proteins. Each annotation was made at the default reliability level (parameters:-reli-
ability 3). All the proteins that were not annotated by COG, Pfam and RAST were counted as
representing individual functions.

The functional repertoire similarity of two organisms was calculated as the number of shared
functions in each functional repertoire (as defined by different tools above) divided by the big-
ger repertoire size. We assumed that similar organisms should have similar repertoire sizes,
thus a vast difference indicates low similarity.

For comparison to gene content phylogenomic approaches, we also calculated the whole-
genome similarity as the number of shared homologous proteins (homology inferred via 40%
sequence identity) normalised by the bigger proteome size.
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Annotation of function groups derived from HSSP-based protein
clustering
We divided all 4.2 million proteins in our set into three categories based on their RAST annota-
tion: 1) known, sequences with available function annotation; 2) hypothetical, sequences with
“hypothetical” or “putative” in their annotation, or annotated as “protein” or “Uncharacterized
protein conserved in bacteria,” and 3) unknown, sequences with no annotations at all. We fur-
ther assigned all of our HSSP-based function groups to one of three categories; for a given func-
tion group: 1) Kn if it contains at least one sequence of the known category; 2)Hy if it contains
no known sequences and at least one hypothetical sequence and 3) Un if it contains only
unknown sequences. In addition, we also tagged our function groups as 1) shared, if they exist
in more than one organism in the dataset or 2) unique, if they exist only in one organism.

Comparing the performance of the different pairwise similarity metrics to
infer organism taxonomy
For every pair of organisms of known NCBI Taxonomy identity [48], functional repertoire
similarities were computed using annotations from COG, Pfam, RAST, and our HSSP-based
method. Each method provided either (i) a correct assignment to the same taxon (true positive,
TP), (ii) an incorrect assignment to the same taxon (false positive, FP), (iii) a correct assign-
ment to different taxa (true negative, TN), or (iv) an incorrect assignment to different taxa
(false negative, FN). The accuracy (positive accuracy, precision; PA) and coverage (positive
coverage, recall; PC) were computed for every metric at every threshold (Eq 2). We then com-
pared the taxonomic classification performance of the different functional repertoire similarity
metrics and the whole-genome similarity.

PA ¼ TP

TPþ FP
PC ¼ TP

TPþ FN
ð2Þ

Bootstrap analysis was performed by randomly sampling 10% of the data with replacement
100 times for each taxonomy level. AUC (Area Under the Curve) under the accuracy/coverage
(precision/recall) curve was calculated [54] for every functional similarity metric and Wilcoxon
rank-sum tests were performed for every pair of metrics.

Generating functional-repertoire similarity-based organism networks
Fusion and fusion+ networks were visualized using Gephi [55] OpenORD [29] and ForceAtlas2
[56], respectively.

In fusion each 1,374 organisms (vertices/nodes) are connected by 943,251 edges whose
weights reflect the pairwise organism functional repertoire similarities. In fusion+ vertices/
nodes represent organisms and function groups. A (larger) organism node shares edges with
its (smaller) function group nodes. Organism nodes are linked to each other only via function
group nodes; i.e. there is no edge directly linking organism nodes. The common function
group nodes are between organism nodes, while the unique function nodes tend to localize
near the edges of the network.

Calculating overall accuracy and coverage for singly linked networks
In single linkage clustering any two nodes that share an edge are assigned to a single cluster
regardless of their similarity to other nodes in that cluster. The presence of an edge indicates
similarity of organisms above a minimum cut-off, but the level of similarity is not further
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considered. Isolated organisms, with no connection to any other organism in our set, were not
shown.

We measured the performance of single linkage clustering in identifying current taxonomic
assignments for a series of similarity cut-offs (5%-100%, at step of 5%, Fig 1B and 1C). For
each cut-off, we assigned all organisms in one single linkage cluster to the taxon of the most
common organisms in that cluster; e.g. if a cluster of three organisms contained two organisms
of taxon X, all three were assigned to the taxon X. The overall network accuracy was calculated
as the sum of all the correctly assigned organisms divided by the total number of organisms
(Eq 3).

OverallAcc ¼
Pn
i¼1

correctly assigned organisms in cluster i

total number of organisms
ð3Þ

We also identified the organism clusters consistent with taxonomic assignments of their
members; e.g. if 7 organisms are assigned to a taxon X, and 4 of them are in cluster A, then A is
considered themajor cluster of X. For each taxon, the coverage is the fraction of its members
that are in themajor cluster (Eq 4); e.g. for X in our example coverage is 57%. At 100% coverage
all members of a taxon are in one cluster. For a given taxonomy level, the overall network cov-
erage was calculated as the number of taxa with 100% coverage divided by the total number of
taxa at this level (Eq 5). Note that taxa with only one member would contribute trivially to the
performance, and thus were excluded for these calculations.

Cov ¼ Organisms in the major cluster
Total number of organisms in the taxon

ð4Þ

OverallCov ¼ Taxa with 100% coverage
Total number of taxa with more than one organism

ð5Þ

Comparing single linkage functional network-based organism
classification to the NCBI Taxonomy
The 100-layer network-derived hierarchy was built by starting at the threshold of 0% functional
repertoire similarity, i.e. all 1,374 bacteria are in a single cluster, and moving outward in 1%
increments until the 100% similarity threshold was reached. For a given cluster of organisms
sharing at least X% similarity, we (i) clustered the organisms at (X+1)% similarity, (ii) calcu-
lated the distance between every two clusters by computing the average of all inter-cluster pair-
wise similarities of organisms and (iii) built a neighbor-joining tree (layer) of the clusters using
PHYLIP [57]. By combining all layers we obtained a 100-layer hierarchical tree-like structure.
This hierarchical structure provides a compact visual representation of functional similarity of
our large groups of microorganisms. Note, however, that it is not a phylogeny tree and does
NOT directly convey organismal evolutionary relationships.

NCBI Taxonomy hierarchical tree-like structure was generated with iTOL [58] using the
NCBI Taxonomy IDs [48]. We then computed the correlation (ranged -1 to 1) between net-
work and NCBI-derived hierarchical structure using Patristic [59]. The hierarchical structures
were first converted to distance matrices in which the distance between two organisms was cal-
culated as the steps between them in the hierarchy. We also built 6 and 10 layer network-
derived structures to show that the difference in the number of layers is not relevant to the
comparison of the topological relative distances of any two organisms across hierarchies.
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Detection of fusionmodules and calculation of Jaccard index
We identified modules in the complete (no similarity cut-offs) fusion with the adapted Louvain
method [34] implemented in Gephi at a series of resolutions (0.05 to 1.2). We further calcu-
lated the Jaccard index to compare organism assignments from fusionmodules to the NCBI
Taxonomy. At a given resolution, the Jaccard index is calculated as the number of organism
pairs assigned to both the same fusionmodule and the same NCBI Taxonomy bin, divided by
the number of organism pairs assigned to either the same fusionmodule or the same NCBI
Taxonomy bin.
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