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Abstract
Comprehensive mapping of environmental microbiomes in terms of their compositional fea-

tures remains a great challenge in understanding the microbial biosphere of the Earth. It

bears promise to identify the driving forces behind the observed community patterns and

whether community assembly happens deterministically. Advances in Next Generation

Sequencing allow large community profiling studies, exceeding sequencing data output of

conventional methods in scale by orders of magnitude. However, appropriate collection sys-

tems are still in a nascent state. We here present a database of 20,427 diverse environmen-

tal 16S rRNA profiles from 2,426 independent studies, which forms the foundation of our

meta-analysis. We conducted a sample size adaptive all-against-all beta diversity compari-

son while also respecting phylogenetic relationships of Operational Taxonomic Units

(OTUs). After conventional hierarchical clustering we systematically test for enrichment of

Environmental Ontology terms and their abstractions in all possible clusters. This post-hoc

algorithm provides a novel formalism that quantifies to what extend compositional and

semantic similarity of microbial community samples coincide. We automatically visualize

significantly enriched subclusters on a comprehensive dendrogram of microbial communi-

ties. As a result we obtain the hitherto most differentiated and comprehensive view on global

patterns of microbial community diversity. We observe strong clusterability of microbial

communities in ecosystems such as human/mammal-associated, geothermal, fresh water,

plant-associated, soils and rhizosphere microbiomes, whereas hypersaline and anthropo-

genic samples are less homogeneous. Moreover, saline samples appear less cohesive in

terms of compositional properties than previously reported.

Author Summary

We here set out to map the entirety of available environmental microbiomes in order to
discover the underlying compositional characteristics. For us it is intriguing to see which
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environmental factors influence the assembly of microbiomes. We collected many diverse
environmental samples and annotated them with a restricted, yet structured set of ecosys-
tem terms. We then cluster all samples and automatically detect which ecosystems cluster
together.

The resulting map provides an overview of relatedness between microbial communities
from all types of ecosystems, their global patterns of diversity, i.e. their compositional sim-
ilarities and differences. The comprehensive structure of relations provides insights to hab-
itat adaptation and assembly rules.

Finally, utilizing the background database of samples we can now put new samples into
an environmental context.

Introduction
The often quoted tenet:“Everything is everywhere, but the environment selects” by Lourens
Baas Becking has been subject to intense debate [1]. It gave rise to a series of hypotheses, how
exactly the environment selects, i.e., which ecological rules are driving selection in which envi-
ronment and whether they do so deterministically. The two competing theories for addressing
this question are the ecological inference theory with a niche-based perspective [2, 3] and the
neutralist random process theory [4]. Compact clusters of low beta diversity in microbial com-
munities from the same environment indicate assembly determinism (i.e.), environmental
factors predictably govern community composition. Conversely, if random processes and
founder effects were the main drivers during community assembly, we would expect that this is
reflected in high beta diversity and consequently low cluster homogeneity for samples from the
same environment type. In order to elucidate these mechanisms as well as the environmental
factors that drive bacterial community composition, it is necessary to develop a framework for
comprehensive meta-analyses of microbial communities. To this end it is desirable to collect
large, representative sets of samples from independent studies and diverse environments. In
this light it is encouraging that the ever decreasing cost of DNA sequencing has led to a recent
deluge of Metagenomics projects and Microbial Community profiling experiments in many,
diverse ecosystems on the planet, e.g. the Human Microbiome Project and the Earth Micro-
biome Project [5, 6]. The primary data type for studying the community composition is the
16S rRNA gene, where hypervariable regions serve as phylogenetic markers [7]. Among the
advantages of the 16S rRNA gene are the chronometric properties suitable for phylogeny con-
struction and its widespread use to profile communities in all types of environments [8], i.e. to
determine the relative abundance of the community members. Thanks to multiplexing and
high read counts on Next Generation Sequencing (NGS) platforms, it is possible to generate a
large number of samples with a single run on various recent platforms [7]. The 16S rRNA
genes for many different bacteria have been sequenced and deposited in primary (GenBank)
and secondary (GreenGenes, SILVA, RDP) databases [9–11]. However, community composi-
tion information, revealing co-occurrence of organisms, is lacking from these databases. On
the other hand, microbial community collections such as those stored in the Sequence Read
Archive [12] mainly focus on raw data deposition. MG-RAST [13] and CAMERA [14] (now
defunct) are predominantly a repository for full shotgun Metagenomics. They do not maintain
unified standards for Operational Taxonomic Unit (OTU) calling, i.e., the grouping of
sequences into taxonomic levels of minimal sequence identity (commonly 97%). QIIME-DB
(microbio.me/qiime) and the associated Global Environmental Sample Database (www.
earthmicrobiome.org) are current efforts to overcome the above shortcomings but data deposi-
tion and retrieval methods are currently in a nascent stage.
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Moreover, it is clear that the current community collections require formalisms to integrate
metadata. Standards for data deposition (like “Minimum information about a marker gene
sequence”, MIMARKS) have been introduced to address this problem [15], with ontology
based knowledge management systems being an integral part of this. The introduction of an
environmental ontology for ecosystems and -subsystems enables the semantic grouping and
comparison of environments in an entirely new way: for example corals, dugong feces, ocean
water, brine pools can all be associated to marine ecosystems; a relationship not automatically
recognizable from pure text annotation. As a result, we can compare environments on various
levels of abstraction and determine how widespread ecosystem-specific OTU compositions are.
Nevertheless, quality control of these submissions remains difficult, as submitters might not be
aware of the entire ontology structure and thus make non-optimal choices.

Clusterability of microbial communities has been investigated in the Human Microbiome
Project, and various techniques and results, e.g. enterotypes have been presented [16] and
debated [17, 18]. The effects of clustering methodology, distance metrics and taxonomic level
of OTU picking are of great importance for the process of detecting clear-cut clusters of
microbial communities. Importantly, traditional clustering algorithms for microbial commu-
nities are “uninformed” with respect to meta-data: the decision of partitioning is solely based
on clustering structure and coefficients derived from beta diversity distances, disregarding
useful semantic clues that ontologies can provide. Our philosophy is to postpone the decision
to find meaningful clusters after a traditional hierarchical clustering structure is produced and
ontology information for samples is taken into account. This is achieved by correlating the
clustering structure with environmental categories—a novel approach in the realm of micro-
bial community analysis. It is conceptually similar to the CLustering Enrichment ANalysis
(CLEAN) described in [19], which integrates clustering of genes and their membership in
functional categories such as Gene Ontology in the context of gene expression. We systemati-
cally generate and analyze a series of hypotheses to identify the extent that environments
deterministically govern microbial community assembly. Interesting cases are those where the
clustering structures (reflecting OTU compositions) and the post-hoc added environmental
annotations coincide. This indicates which environmental factors were responsible for com-
munity composition. On the other hand, discrepancies can be further reconciled by consider-
ing additional meta-data (pH value, temperature) reflecting environmental differences or
stochastic processes.

The feasibility of microbial community profile comparisons in meta-analyses depends on a
number of aspects, such as standardization steps and sequencing platforms. In [20], Caporaso
et. al show that biological conclusions were highly reproducible across lanes, read directions
and Illumina HiSeq and MiSeq platforms. Other meta-analyses have demonstrated that micro-
bial community samples are comparable across studies and platforms [7, 21, 22].

Previously Lozupone and Knight studied global patterns of bacterial diversity on the basis
of a data set that comprised 202 samples from 111 studies [23]. The authors postulated that
salinity and human-association are major environmental factors that drive community compo-
sition. They manually assigned 15 distinct environmental categories to all samples. While our
approach draws a great deal of inspiration from this work, we extend and automatize it in vari-
ous ways so to minimize sampling bias and to cope with the current and expected volumes of
input data. First, the mentioned previous studies were performed on a small set of independent
studies with comparatively low sequence counts. In fact, modern NGS platforms allow sample
sizes far beyond 50 sequences (as used in [23]). This is more suitable for diversity studies, as
more low abundance OTUs are accounted for. Our data collection is orders of magnitude
larger, thus adds rigor to clustering observations but also demands appropriate storage and
retrieval systems. The acquisition does not rely on single sequence retrieval from GenBank but
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builds on emerging repositories dedicated for 16S rRNA profiles that also provide community
information and metadata. Together they provide a more representative snapshot of the Earth
Microbiome and hence allow a more differentiated review of the early hypotheses on commu-
nity assembly. Second, instead of just 15 manually defined environmental categories, we here
describe how to to annotate samples using a suitable ontology, namely the Environmental
Ontology [24]. Finally, we propose an algorithm that conducts cluster analysis with> 10,000
samples including exhaustive testing for enrichment of environmental attributes, borrowing
techniques from Information Retrieval (for a thorough introduction, see [25]).

Methods

Overview
The overview of all steps involved in our data acquisition and analysis is provided in Fig 1 dis-
playing three major components: (i) an integrated, comprehensive database of OTU-clustered
16S rRNA profiles annotated with ontological metadata descriptors employing EnvO, the
Environment Ontology [24], (ii) a module to compare microbial communities utilizing a
phylogeny based distance measure ([26]) and Hierarchical Clustering (iii) an Information
Retrieval based post-hoc cluster analysis to test for enrichment of EnvO terms in the clusters
of the dendrogram.

Data acquisition and Sequence Analysis
Large scale community comparisons must overcome innate sample differences such as uneven
sampling size, different OTU calling methods and inconsistent or lacking environmental anno-
tation. We composed a large meta-dataset from heterogeneous sources such as the QIIME-DB
microbio.me/qiime/, Sequence Read Archive (SRA, [27]), a data collection provided by [28]
(henceforth referred to as Chaffron dataset) and some locally sampled data. In total, we collected
20,472 distinct 16S rRNA from 2,461 different studies and stored them together with additional
sample descriptions and meta data in a relational database (MySQL) for fast retrieval. Although
the Chaffron data collection is composed of predominantly small samples (mainly non-NGS,
lacking MIMARKS annotation), it proves to be valuable as samples are from 2297 independent
studies, which contributes to the comprehensive nature of meta-analyses composed of global
microbiomes and increases confidence beta diversity patterns. he sequence preprocessing
includes: quality filtering, demultiplexing samples using QIIME’s split_libraries_
fastq.py, and consistent closed-reference OTU calling against GreenGenes (version 13.5,
97% sequence similarity, using QIIME’s pick_closed_reference_otus.py). Closed
reference OTU picking has a number of advantages (see also Discussion for caveats), namely
it allows comparison of samples with different 16S rRNA regions, it comes with a high-qual-
ity phylogeny based on full-length sequences (thus facilitating phylogeny-based beta diversity
calculation) and it is likely to filter chimera sequences. Also, for the sake of consistent data
processing, note that UCLUST-ref [29] and GreenGenes were also used in the data sets
acquired from QIIME-DB. According to [30], UCLUST-ref performs well in comparison to
other reference and non-reference based methods. The projection of datasets on a limited set
of reference OTUs incurs a loss in diversity. We therefore validate that the impact on beta
diversity is within acceptable boundaries, i.e., beta diversity distances between open and
closed reference OTU picking are correlated: for six environmental samples [31] where origi-
nal sequences for the same 16S rRNA region are available, we compare beta diversity. Fas-
tTree [32] was used to construct the phylogeny for de novo OTU representatives, using
QIIME’s make_phylogeny.py and pick_representatives.py with default
parameters.
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Fig 1. Overview of Microbial Community meta-analysis. The diagram lists all major components of our framework and their relation to each other. The
results of each step are shown next to each component. Tools/scripts are shown in type writer font. a) Data acquisition and database creation: we collect data
samples from four different sources and unify there representations such that they can be integrated in a single relational database. b) The given web page
provides a user-friendly way to generate highly customized BIOM tables to facilitate user-specific meta-analyses. c) Adaptive rarefaction, taking input either
from the database or from a BIOM table, produces all-against-all beta diversity distance matrices for the provided samples. d) Conventional hierarchical
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See Fig 1 for the different, data source specific steps and the overall workflow. To enable the
integration with QIIME tools, we developed a web interface for custom BIOM table creation, a
widely used format for ecological sample survey data [33]. The selection of samples is possible
on the basis of EnvO annotation (including recursive sub-category) or presence/absence of lin-
eages, metadata, and a combination of these criteria, thanks to a function for recursive EnvO
traversal and the expressive power of SQL algebra.

EnvO annotation and method validation
The aim of Ontology annotation is to use controlled vocabulary for different types of environ-
ments to hierarchically catecgorize samples so to be able to relate clusters of communities to
environmental determinants. We used text-mining (weighted Jaccard Index for phrase similar-
ity [34]) to automatically annotate samples lacking MIMARKS annotation (SRA, Chaffron’s
dataset and our own) with EnvO-terms based on sample description texts like isolation-source:
we regard both sample description and EnvO-terms as bags of stemmed words to accomodate
word order permutations and inflections. The weighted Jaccard expressing the similarity of
two phrases A and B is then given by:

JðA;BÞ ¼
P

w2ðA\BÞ idf ðwÞP
v2ðA[BÞ idf ðvÞ

ð1Þ

where idf is the inverse document frequency of a word with respect to the Brown corpus [35].
EnvO is used by various projects [6, 13] to facilitate a principled approach towards environ-

ment classification by formalizing adequate naming conventions. It contains a rich, structured
vocabulary (including synonyms), and it is arranged as a Directed Acyclic Graph, maintaining
a general-to-specific order. We obtained the obo version of EnvO from obofoundries.org. We
extend EnvO by creating new subclasses with terms that best describe environments of our
database, including for example the human body site descriptions of the Human Microbiome
Project. We also introduce missing semantic relationships, for example we describe “feces”
(ENVO:00002003) as part of the gut (ID:0000002) to connect samples annotated with these
respective terms that would otherwise appear unrelated. Multiple EnvO-terms can be associ-
ated to a sample, describing the biome, environmental feature and environmental material. We
generated a subgraph for those EnvO-terms for which we found associations to microbial com-
munity samples. The graph coloring recursively assigns shades of the overarching ecosystem to
its child nodes, while also reflecting multiple inheritence (Fig 2).

In order to programmatically make use of EnvO as a knowledge management system, we
created a simple text parser that transforms obo-format into a richly annotated graph structure
using networkx [36]. We also develop an API that lets us navigate along the graph structure.
For validation of our annotation algorithm, we predict the best EnvO-term based on Eq 1 for
712 non-redundant sample descriptions and their annotations from all EnvO annotated QII-
ME-DB studies. We then calculate the minimal distance of the predicted and the manually
annotated EnvO-terms (given in QIIME-DB as Environmental matter, Environmental feature
and Environmental Biome). The distance is the shortest path in the undirected EnvO graph,
such that exact matches have graph distance 0, EnvO-terms in direct subclass-superclass rela-
tion have distance 1, direct sibling nodes 2, cousins 4, etc. The results are shown in S5 Fig. It
can be seen that from the 712 samples, most automatic annotations are in exact agreement

clustering. e) Posthoc enrichment test for EnvO annotations. The final output are a spreadsheet, documenting enriched clusters (precision, recall, F-
measure, cluster coefficients, EnvO-terms, etc.), and interactive, annotated clustering visualizations.

doi:10.1371/journal.pcbi.1004468.g001
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(294) or in direct sub/superclass relation (117) with the manual annotation. By statistically
summarizing all possible 7,122 graph distances in the EnvO graph, it turns out that the proba-
bilities for two random nodes to be 0, 1, 2 and 3 steps apart are 0.06%, 0.20%, 1.18% and 3.42%
respectively. Thus 73.3% of our annotations would have been predicted by chance with less
than 3.5% probability. Note that manual EnvO annotations are a source of error as well and
contribute to disagreement. We corrected for only very few blatant misannotations and con-
sider therefore our accuracy estimates to be a conservative lower bound. Note that highlighting
discrepancies can be used instructively during manual curation step in sample submission
tools like QIIME-DB or MG-Rast.

Definition of High level Ecosystems
Due to the multiple inheritence DAG (Multi-tree) structure of EnvO, it is possible to easily
extend EnvO with further terms that capture high level concepts such as abstract ecosystems or
environmental properties (saline, hypersaline environments, contamination and various sub-
types of it, chemical enrichment such as nitrate, hydrocarbons). These overarching groupings
also deal with EnvO’s attempt to include various, classification systems (including WWF,
Udvardy and Baileys biomes). E.g., “Tundra”/“Tundra mire” or “Forest”/”Forest biome” are
in entirely different branches of the ontology, despite the obvious semantic relation. We here
propose high level ecosystems composed of distinct, yet related EnvO categories, see Table 1.
Note that due to multiple inheritence and multiple annotations, a sample can fall into several
ecosystems.

Adaptive rarefaction and Beta Diversity calculation
In order to compare samples it is highly recommendable to have comparable sample sizes. It is
therefore common practice to apply rarefaction to samples that are to be compared, usually by
randomly down-sampling. If we down-sample to the smallest sample size in the data set, this

Fig 2. EnvO subgraph for environmental Material. Node size reflects number of samples assigned to the EnvO-term (logarithmic scale, see size legend,
right). Node colors are shades of the overarching ecosystem color, see left legend. Multiple inheritence of EnvO-terms is reflected by several colors arranged
in concentric rings.

doi:10.1371/journal.pcbi.1004468.g002
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method unfortunately leads to a big loss of information when comparing samples of strongly
differing sizes. E.g., representing communities of 10,000 different OTUs with only 10 or 50
OTUs neglects the majority of community members in the larger communities. On the other
hand, if a larger target subsampling size is chosen for rarefaction, many small size communities
have to be excluded.

We here device a method that for (almost) each pairwise sample comparison subsamples
only to a size necessary for that individual pair, rather than subsampling all samples to the size
of the smallest sample (as is commonly done with tools that perform rarefaction on BIOM
tables, such as QIIME/UniFrac). By keeping the subsample size as large as possible, we increase
the pairwise beta diversity distance precision. E.g., given 1001 samples A1 . . . A1000 of size
10,000 and B of size 1,000. We calculate beta diversity on subsamples of size 1,000 for Ai-B and
10,000 for all pairs Ai-Aj. The latter, comprising 99.8% of all comparisons, would have been sub-
stantially less accurate, had we downsampled all samples to 1,000. We validate the claimed pre-
cision improvement by performing jack-knifing (multiple subsampling) on traditional one-size-
fits-all and adaptive rarefaction: we repeat the random subsampling and beta diversity calcula-
tion ten times for 60 samples of five different size categories. For each repetition, distance matri-
ces are calculated usingWeighted UniFrac. Principal Coordinate Analysis (PCoA) and three-
dimensional PCoA plots were produced with QIIME scripts principal_coordinates.
py and make_3d_plots.py, respectively. Finally we calculate standard deviations for corre-
sponding positions in the upper half of the distance matrix, convert it to a one-dimensional vec-
tor and apply the t-test for related samples (using ttest_rel from scipy.stats).

We calculate a complete distance matrix for all samples, effectively requiring n(n-1)/2 com-
parisons, with n = 10,313. In order to account for phylogenetic similarities of involved OTUs,
we use Weighted UniFrac as beta diversity. We motivate this choice as follows: although the
usability as a distance metric has been questioned in [37], the criticism was addressed in [22].
Moreover, it was shown to be an instance of the more general Earth mover’s (aka Kantorovich-
Rubinstein) distance metric [38]. UniFrac has been applied in over 1500 research publications
in a wide range of microbial community comparison tasks.

Note that our approach of retaining only closed-reference OTUs avoids the construction of
phylogenetic trees, a very time consuming and error-prone task, by trimming a comprehensive,

Table 1. Ecosystem definitions based on EnvO categories.

Ecosystem Subsumed EnvO-terms

Plant plantation, plant-associated habitat, plant food product, rhizosphere

Freshwater freshwater wetland, glacial feature, reservoir, freshwater habitat, aquifer, fresh water,
freshwater lake, freshwater biome

Soil soil, mountain, mountain range, karst, terrestrial biome, plantation, mud, depression,
pebble sediment, clay, terrestrial habitat, sandy sediment, landslide, beach, desert,
subterrestrial habitat, sediment

Animal/
Human

bodily fluid, animal food product, animal-associated habitat

Hypersaline haline habitat, hypersaline

Marine marsh, marine biome, marine sediment, saline water, coastal inlet, marine water body,
saline hydrographic feature, coast, archipelago, marine channel, seashore, reef, undersea
feature, black smoker, marine feature, marine snow, coastal wetland, saline water habitat

Geothermal volcanic feature, geothermal power plant, volcanic hydrographic feature

Anthropogenic anthropogenic feature, anthropogenic abiotic mesoscopic feature, anthropogenic
environmental material, anthropogenic habitat, bioreactor, biofilter

Biofilm biofilm, microbial mat material, biofilm material, microbial mat

doi:10.1371/journal.pcbi.1004468.t001
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high-quality tree (provided by GreenGenes) to the relevant OTUs. It further enables phyloge-
netic beta diversity calculation of samples with different 16S rRNA regions. Subsequently we
apply Unweighted Pair Group Method with Arithmetic Mean (UPGMA), a form of agglomera-
tive Hierarchical Clustering, using SciPy.

Alpha Diversity
We calculate alpha diversity using QIIME’s alpha_diversity.py for each ecosystem
independently, considering both phylogenetic (Phylogenetic Distance) and non-phylogenetic
(Chao1, observed species) methods. Every sample is downsampled to a range of suitable sizes
between 60 and 60,000 counts. The results are stored in the provided MySQL database.

Post-hoc Enrichment test of Environment Categories in Beta Diversity
Dendrogram
After applying hierarchical clustering to all samples, we systematically analyze the resulting
dendrogram structure and subcluster constituents. Hierarchical clustering yields a dendrogram
encoded as a (n − 1) × 4 linkage matrix. For each possible cluster, we systematically test,
whether it is enriched in any EnvO-category. We quantify this intuition by calculating preci-
sion, recall and F-measure: these tools, borrowed from information retrieval, express how well
samples from a certain category cluster. A cluster containing predominantly members from
one EnvO-category receives a high precision value. On the other hand, high recall is achieved if
most category members are also subsumed under a cluster. The pseudo code is provided in
Algorithm 1 (available at https://goo.gl/70LsQi). Moreover we determine the cluster coeffi-
ciencts describing the compactness of a cluster. High homogeneity (high intra-cluster similar-
ity) and separation (low inter-cluster similarity) are indicators for a distinct, compact set of
samples [39]. Homogeneity is determined by average distance between all members of the clus-
ter, separation is the average distance to all members outside the cluster.

Validation of Post-hoc Enrichment Test
Our method can be best compared to the CLustering Enrichment ANalysis (CLEAN) score
[19], where environmental samples are the equivalent to genes (clustered by gene expression
levels) and Environment Ontology annotation corresponds to membership of genes in func-
tional categories such as those from Gene Ontology. We therefore compare the F-measure to
Fisher’s exact test, which is central to the CLEAN score: we test to what extend the Fisher’s
exact test and F-measure coincide wrt. significance for a given contingency table. We perform
an overarching grid search for the two significance thresholds for both tests. For each signifi-
cance threshold setting we consider a set of representative category and cluster sizes, calculate
all possible contingency tables and measure when each test would call this significantly
enriched. Note that we define the two groups of the contingency table to be all samples belong-
ing to a cluster and all those that do not, respectively. We then count the percentage of cases of
(dis-)agreement between the two tests.

Identification of Salinity related samples
We imposed the property “saline” on high level EnvO-terms such as “marine feature”
(ENVO:01000031), “marine water body” (ENVO:00001999) and “saline hydrographic feature”
(ENVO:00000017). Consequently all subsumed EnvO-terms (incl. saline lake, ocean, lagoon
etc.) inherit this property. The database lookup for EnvO-sample associations then facilitated
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fast and convenient identification of salinity related samples. Those samples are then marked
in Suppl. S3 Fig.

Algorithm 1 Bottom-up algorithm to determine dendrogram-clusters enriched in EnvO-
terms. The dendrogram is the result from the hierarchical clustering (UPGMA) and encoded
as linkage matrix.

LinkageMatrix = UPGMA(beta diversity Distance Matrix)
for all rows row in LinkageMatrix do
form new cluster c bottum-up from two subclusters as specified in row
homogeneity = average distance (sample1, sample2) 8sample1, sample2 2 c
separation = average distance (sample1, sample2) 8sample1 2 c, sample2 =2 c
if homogeneity/separation < thresholddensity then

Document dense cluster (c, homogeneity, separation)
end if
for all EnvO-terms e present in c do

recall ¼ samples with e in c

samples with e in total

precision ¼ samples with e in c

samples with in c

F1 ¼ 2 � precision�recall
precisionþrecall

if F1 > thresholdenrichment and studies(c) > 1 and Ontology-Depth(e) > 1
then

Document enriched cluster (c, e, homogeneity, separation)
Color linkages of c in dendrogram according to e

end if
end for

end for

Results
We here describe a microbial community analysis framework extending conventional pipelines
by including three novel components, which all help to enable all-encompassing meta analyses
of 16S rRNA samples: (i) the creation of a 16S profile database from heterogeneous sources, (ii)
adaptive rarefaction to compare large sets of samples of strongly differing sizes with minimal
loss of information, and (iii) a post-hoc clustering algorithm that tests for enrichment of envi-
ronmental categories (and their respective abstractions) after conventional hierarchical cluster-
ing of phylogeny based beta diversities. As a result we obtain the hitherto most differentiated
and comprehensive view on global patterns of microbial community diversity with automati-
cally detected enriched subclusters. It provides indicators for environmental factors that drive
community assembly. Fig 1 summarizes all steps in our framework.

Relational Database of annotated microbial community profiles
The creation of a comprehensive relational database of 16S rRNA community profiles consti-
tutes an early result of our work. The database integrates various heterogeneous data sources.
In total, we collected 20,472 samples comprising 6,331,600 sequence-sample associations from
2,462 independent studies. 10,313 of these samples are of suitable size for diversity studies (i.e.
> 2000 sequences, according to [7]). Performing closed-reference OTU picking against a con-
sistent reference (GreenGenes 13.5) yielded 40,164 OTUs, corresponding to 40.44% of Green-
Genes’ 97% sequence identity clusters. Our pipeline makes use of OTUs being from a closed
reference as it allows fast, yet phylogeny-sensitive beta diversity calculations without recon-
struction of phylogenies.

To estimate the loss of diversity incurred by closed reference OTU picking, we list the num-
ber of dropped sequences for inhouse samples in Supplementary S2 Table. It shows that also
for the case of environmental samples, a substantial amount of sequences is retained. We also
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measure the impact on beta diversity and compare to the corresponding results from de novo
OTU picking. The beta diversity distances of the two methods are strongly correlated (Pearson
correlation 0.82), thus justifying closed reference OTU picking as a proxy (see further contem-
plations in Discussion).

An overview of the data integration steps (including results) is shown in Fig 1(a). The cen-
tral tables of the database are for sample description (ID, isolation source, associated publica-
tion, further meta-data), OTUs (GreenGenes identifier, RDP lineage, sequence) and sample-
OTU association. Further, the database contains various sample annotations (EnvO, meta-
data, alpha diversity, ecosystem coloring, sample size). The database scheme is provided in
Supplementary Material, S2 Fig. All tables are appropriately indexed. The database is freely
accessible through http://ecophyl.info/phpmyadmin/ (User login is provided upon request from
corresponding author) or downloadable as an SQL dump. We argue that this form of storage is
a viable concept to integrate the current and anticipated amounts of microbial community data
such that fast and powerful queries are possible. To elaborate meta-study compositions, the
relational algebra of SQL allows to combine conditions on sample annotations and properties
as well as OTU annotations. For example, it is straightforward to retrieve all samples of a given
alpha diversity from all subtypes of marine environments containing OTUs belonging to the
Vibrio genus. For identifying environment subtypes, we employ EnvO’s General-to-Specific
ordering of environments arranged along a Directed Acyclic Graph. EnvO-terms that were
used to annotate samples are shown in a color coded Ontology subgraph in Fig 2. Finally, our
framework includes a tool for BIOM table creation upon sample selection (see Fig 1(b)) for
customized meta-analyses using adaptive rarefaction or further integration with tools like
QIIME [40].

Increased Comparability of 16S rRNA profiles from different Sequencing
Platforms through adaptive rarefaction
The acquired profiles stem from different sequencing platforms and hence differ strongly in
sampling effort/sequencing depth. In order to calculate alpha and beta diversity for a collection
of heterogeneous samples, it is common practice to subsample all samples using rarefaction to
a size smaller than the smallest sample to be included. This one-size-fits-all rarefaction seems
unsuitable for a large set of samples with strongly varying depth as it incurs either strong
downsampling on large samples (which might yield non-representative subsets) or exclusion of
many smaller samples below a certain threshold. To address this problem, we provide an algo-
rithm that for each pairwise beta diversity calculation rarefies samples only to a size necessary
for the individual pair at hand, rather than subsampling all samples to a size below the smallest
sample to be included. We are able to show that adaptive rarefaction produces more accurate
beta diversity distances: multiple subsampling repetitions (jack-knifing) with static and adap-
tive rarefaction lead to significantly smaller distance variances for adaptive rarefaction (as
shown by Student’s t-test, p = 3.3 × 10−258, S4(c) Fig. We also observed that for nearly all cases
the distances from adaptive rarefaction were strictly contained by the range of distances from
static rarefaction. We also visualize this process using three-dimensional PCoA plots, where
larger uncertainty ellipsoids for traditional rarefaction indicate larger variance, see S4(a) and
S4(b) Fig. The runtime of the Adaptive rarefaction algorithm is O(n2jPj), where n is the num-
ber of samples to be compared and jPj is the size of the reference phylogeny (the GreenGenes
phylogeny, in our case).

The adaptive rarefaction component is shown in Fig 1(c). The main result of adaptive rare-
faction is a high accuracy distance matrix for 10,313 samples.
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Identification of Alpha diversity distribution in different ecosystems and
-subsystems
Fig 3 shows that soil-, plant- and marine ecosystems are most diverse in terms of Alpha diver-
sity. We can further break these findings down to subsumed environments. This reveals that
among soil environments, farm soils are most diverse (Suppl. S1 Fig).

Correlations and discrepancies of clustering structure with Environment
Ontology enrichment indicate driving forces for community assembly
In order to test, whether a cluster is significantly enriched in environmental categories, we
determine to what extend EnvO annotations—at all abstraction levels— are predominant in
any part of the dendrogram, see Fig 4. We developed an algorithm that performs this task as a
post-hoc clustering analysis, Fig 1(e), i.e, after Hierarchical Clustering Fig 1(d). The pseudo
code is given in Algorithm 1 and a more detailed explanation is in Fig 5. It constitutes a rigor-
ous formalization and implementation of the manual process outlined in [23], performed on
tens of thousands of microbial community samples. It automatically identifies clusters enriched
in environmental categories based on precision, recall, F1-score, number of studies and cluster
coefficients homogeneity and separation (see Methods). The algorithm output of enriched
clusters together with their respective EnvO-terms (F1-score> 0.5) is provided in Table 2.
Ocean floor, bed (the portion of the ground surface which lies below water), grassland soil,
small lake bioms, gut and animal associated habitat all are enriched in identified clusters and
therefore seem to bear significant compositions that are driven by their respective environmen-
tal conditions. The color coding of these findings into the Hierarchical Clustering dendrogram
shows that environmental samples cluster non-randomly (Fig 4). Although few inconsistencies

Fig 3. Alpha diversity box plots for different ecosystems. Based on our dataset, we observe that soil,
marine and plant-associated environments in general host more diverse communities. Thanks to the applied
sub-categorization, we can further break down ecosystems to inspect diversity in different soil types (shown
in supplementary S1 Fig). We calculate Phylogenetic Distance Alpha diversity from samples rarefied to 1140
sequences.

doi:10.1371/journal.pcbi.1004468.g003
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persist, major ecosystems are recognizable, as soil samples, freshwater, rhizosphere, geothermal
and the majority of human/animal-associated all fall together in respective clades of the
UPGMA dendrogram. The clusterability of these environments is corroborated by visually
inspecting Principal Coordinate Analysis plots, see Fig 6. There, the first Principal Component
largely separates human and and environmental samples, while the second component helps to
identify clusters for soil, marine, freshwater and plant-associated samples.

We regard clusters with F1-score> 0.5 as enriched in an EnvO-term and list them ordered
by descending F1-score. We further report the count of samples associated to the dominating
Envo-Term in a cluster (count), the cluster size (cluster), the total count of samples associated
to the dominating Envo-term (Total), the number of independent studies (Studies), generality
of an EnvO-term (Generality), measured as the hierarchical level in the Directed Acyclic
Graph of EnvO, precision, recall, F1-score, homogeneity and separation. The list is filtered by
EnvO-terms that appear at least in three independent studies.

Fig 4. Comprehensive clustering of 10,313 samples with at least 2000 sequences. Clusters enriched in EnvO-terms are identified and color-coded
automatically if F1-score > 0.5. Note that in the dendrogram, the entire clade is colored by the color of the enriched EnvO-term. The human/animal associated
and soil clusters are supported by many independent studies, whereas freshwater and geothermal clusters are largely driven by findings of a single study.
Study color, ecosystem colors and EnvO associations are visualized in the colorbars below the dendrogram. EnvO-annotation colors are shades of the
associated ecosystem color (see legend).

doi:10.1371/journal.pcbi.1004468.g004
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Marine samples fall into two separate clusters, as shown by both UPGMA and PCoA. Clus-
ter “Marine 1” is mainly composed of samples from QIIME-DB studies 1222 (Bergen Ocean
Acidification Cosms), 1235 (Fjord mesocosms) and 1240 (Western English Channel time
series). Interestingly, given the overall picture of beta diversity distribution, these marine sam-
ples cluster well despite their geographically different sampling locations. Further, small scale
studies also fall into this cluster, see ecophyl.info/html/SI/PCOA/PCoA_Marine. Cluster
“Marine 2” is composed of marine sediments/contaminated marine environments (QIIME-DB
studies 1046, 1039 and 1198). It is remarkable that “Marine 2” appears closer to soils, again
confirmed by both UPGMA and PCoA.

Plant samples also fall into two main clusters. Samples from QIIME-DB study 1792 (maize
rhizosphere) appear close to marine samples in the PCoA plot (principal components 1 and 2),
however, UPGMA separates them more clearly from marine samples. QIIME-DB studies 2019,
1690 and 1689 constitute the second plant cluster.

The human/animal-associated cluster is clearly separate from environmental samples: it has
a separation score of 0.8512, the highest of all clusters. On the other hand it is not very homo-
geneous, as evidenced by large branches within the cluster and a homogeneity of 0.5849, i.e.,
it is among the least homogeneous of the detected clusters. Moreover, a smaller cluster of
human/animal associated samples groups better with soil samples, possibly due to composi-
tional similarities to soil samples with fecal contamination.

We also scrutinized the compactness of ecosystems by investigating cluster coefficients of
all samples related to an EnvO-term, regardless of the clustering structure. We observe that
hypersaline samples show the least homogeneity as compared to all other ecosystems, see
Table 3. suggesting that these extremophiles get recruited predominantly through non-deter-
ministic processes or unaccounted environmental factors.

Validation of post-hoc analysis
Our approach differs from traditional “uninformed” clustering methods, as it identifies EnvO-
category enriched clusters in a posthoc analysis. Any (hierarchical) clustering method is

Fig 5. Illustration for Algorithm 1.Given a hierarchical clustering of samples that are annotated with Ontology terms (colored boxes, ancestry relations are
shown with black lines), it detects enriched ontological categories on various levels of abstraction in each possible cluster: while analyzing the indicated
cluster (black box, emphasized triangle), all present categories (and their ancestral categories) are characterized by their F-measure. E03 and especially E20
(parent of E02 and E03) are relatively specific for this cluster, as evidenced by a relatively high F-measure, whereas E01, E10 and E02 are mostly present
outside the cluster, reflected by a small number of True Positives. Abbreviations: TP = True Positives, FP = False Positives, TN = True Negatives, FN = False
Negatives.

doi:10.1371/journal.pcbi.1004468.g005
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suitable in combination. Note that samples from the same environmental category can natu-
rally occur in remote parts of the dendrogram as a result of stochastic assembly processes in
some environments or insufficient subcategorization of environmental categories. I.e., this phe-
nomenon is not a short-coming of the clustering process nor the enrichment test. We show
that the systematic enrichment test discovers meaningful clusters that would have been other-
wise overlooked by classic “uninformed” clustering methods. Compact clusters (low homoge-
neity/separation ratio) are not necessarily enriched in any EnvO-category (in terms of F-
measure). As shown in Supplementary S1 Table, amongst the 245 most compact clusters, only
eight have an F-measure above 0.5.

Table 2. Clusters from enriched in Environmental Ontology terms (as determined by).

EnvO ID count cluster Total Studies Generality/EnvO-term precision recall F1 homogeneity separation

ENVO:00000501 200 208 206 3 4 bed 0.9615 0.9709 0.9662 0.2203 0.6828

ENVO:00000426 200 216 206 7 3 ocean floor 0.9259 0.9709 0.9479 0.2332 0.6882

ENVO:00000892 1532 1624 1615 16 3 Small lake biome 0.9434 0.9486 0.9460 0.3331 0.7169

ENVO:00002113 263 286 290 10 2 marine sediment 0.9196 0.9069 0.9132 0.3118 0.7045

ENVO:00000039 215 217 258 3 5 fjord 0.9908 0.8333 0.9053 0.2554 0.7411

ENVO:00002008 120 123 149 4 1 dust 0.9756 0.8054 0.8824 0.1371 0.6403

ENVO:00003003 15 19 15 3 3 Humid Tropical Domain 0.7895 1.0000 0.8824 0.1868 0.7585

ENVO:00000094 282 285 366 3 3 volcanic feature 0.9895 0.7705 0.8664 0.3768 0.7987

ENVO:00006776 3258 3300 4356 69 3 animal-associated habitat 0.9873 0.7479 0.8511 0.5849 0.8512

ENVO:02000022 2210 2731 2471 61 3 excreta 0.8092 0.8944 0.8497 0.5428 0.8429

ENVO:02000004 210 246 250 6 3 nesting material 0.8537 0.8400 0.8468 0.2694 0.6666

ENVO:00005778 26 39 26 3 2 tropical soil 0.6667 1.0000 0.8000 0.1131 0.7114

ENVO:00002024 10 13 13 3 3 haline habitat 0.7692 0.7692 0.7692 0.5724 0.8394

ENVO:00002151 359 477 479 20 3 ocean water 0.7526 0.7495 0.7510 0.4547 0.8031

ENVO:00002261 145 204 185 12 2 forest soil 0.7108 0.7838 0.7455 0.2359 0.6786

ENVO:00001998 787 833 1308 31 1 soil 0.9448 0.6017 0.7352 0.3770 0.7160

ENVO:00002150 88 96 145 4 4 coastal water 0.9167 0.6069 0.7303 0.3391 0.7597

ENVO:00002036 5769 10367 5779 133 1 habitat 0.5565 0.9983 0.7146 0.6864 0.8342

ENVO:00000000 3650 6647 3726 100 1 geographic feature 0.5491 0.9796 0.7037 0.5595 0.8032

ENVO:00005750 28 51 29 3 2 grassland soil 0.5490 0.9655 0.7000 0.1430 0.6402

ENVO:00002116 23 42 28 4 2 contaminated soil 0.5476 0.8214 0.6571 0.2843 0.6550

ENVO:00003982 16 22 29 4 4 travertine 0.7273 0.5517 0.6275 0.2647 0.6910

ENVO:02000036 286 509 430 21 3 saliva 0.5619 0.6651 0.6092 0.4368 0.7578

ENVO:00002016 17 24 32 6 2 sedimentary rock 0.7083 0.5312 0.6071 0.2744 0.6944

ENVO:00000134 49 96 66 3 4 permafrost 0.5104 0.7424 0.6049 0.2912 0.6553

ENVO:00000477 13 25 22 5 4 mount 0.5200 0.5909 0.5532 0.1426 0.6911

ENVO:00002875 13 19 28 3 3 oil contaminated soil 0.6842 0.4643 0.5532 0.1866 0.6417

ENVO:02000040 133 135 346 4 3 mucus 0.9852 0.3844 0.5530 0.0749 0.7994

ENVO:00000106 64 105 132 5 3 grassland 0.6095 0.4848 0.5401 0.1919 0.6726

ENVO:00000878 275 559 460 14 3 Mediterranean forests,
woodlands,

0.4919 0.5978 0.5397 0.3036 0.6730

ENVO:00005801 241 462 444 12 2 rhizosphere 0.5216 0.5428 0.5320 0.2796 0.6684

ENVO:00009001 283 348 719 11 3 plant-associated habitat 0.8132 0.3936 0.5305 0.2796 0.7862

ENVO:00000875 6 15 8 4 3 Temperate coniferous forest 0.4000 0.7500 0.5217 0.1314 0.7054

ENVO:00000446 994 1428 2528 53 1 terrestrial biome 0.6961 0.3932 0.5025 0.4193 0.7395

ENVO:00000877 83 188 143 12 3 Temperate grasslands,
savannas

0.4415 0.5804 0.5015 0.2774 0.6715

doi:10.1371/journal.pcbi.1004468.t002
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Fig 6. PCoA plot (principal components 1 and 2) for the same samples as in Fig 4. The scatter plot shows relatively cohesive and distinct ecosystems.
While large studies often constitute the bulk of ecosystem clusters, detailed inspection shows support from further, smaller studies. Data points for certain
ecosystems have been separated in the subgraphs b) to e). a) PCoA scatter plot including all samples from all environments. The first component largely
separates human and and environmental samples, while the second component helps to identify clusters for soil, marine, freshwater and plant-associated
samples. Misannotations of insect-associated samples (wrongly annotated as Soil) are shown in the red shape. b) The two main marine clusters, “Marine 1”
and “Marine 2” (corresponding to the clusters in Fig 4 with the same name) are identifiable through the composite Ecosystem coloring: Marine sediments,
shown in cyan/yellow mostly form “Marine 2” due to their dual membership in soil and marine environments; in contrast “Marine 1” samples are solely colored
cyan. Hypersaline samples (red) appear widespread and non-cohesive. c) Fresh water samples, colored by Envo-ID. Several environments (freshwater
biome, aquarium, freshwater lake) appear strongly related, while samples from permafrost and sinkholes are outliers. d) Plant samples split according to the
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We further validate the F-measure in our post-hoc analysis by comparing to the Fisher’s
exact test (as used in [19], see Methods). The results are shown in Fig 7. It can be seen that for
the commonly used thresholds for Fisher’s exact test (−log(p) 2 {2, 3, 5}), the disagreement
comes exclusively from cases that are considered significant by Fisher’s exact test but not by F-
measure threshold (green bars). In other words, the F-measure is for most thresholds a stricter
test, as it only reports a small subset of Fisher’s exact test as significant.

Salinity as the major driving factor for community assembly?
We revisited the hypothesis postulated in [23], stipulating that salinity largely explains observed
patterns of community assembly. In contrast to this, our (much larger) collection of saline sam-
ples falls mainly into two clearly separate clusters (see Supplementary S3 Fig), where marine
samples and marine sediment samples are the largest contributors, respectively (also cf. Figs 4
and 6b). The observed seafloor/seawater split is in accordance with recent studies on these two
realms (e.g. [41]), but our multi-environment contextualization additionally puts these relative
differences into a global perspective. Moreover, we observe various outliers. Visual inspection
showed that closely related (incl. non-saline) samples in and around the marine sediment cluster
are rich in hydrocarbons or molecular nitrogen, thus promoting high relative abundance of
Proteobacteria (which are known for their functions in nitrogen fixation and oil-spill related
hydrocarbon degradation). We thus hypothesize that these factors are more influential for the
assembly of certain communities than salinity.

Discussion
We here presented a comprehensive effort towards revealing global patterns of beta diversity.
To this end we collected a broad range of 16S rRNA profiles of environmental and host associ-
ated microbiomes from diverse sources and independent studies. After data integration in a
relational database, we showed how to efficiently calculate mutual phylogenetic beta diversity
distances (weighted UniFrac) without the information loss in comparison to normal rarefac-
tion. Moreover, our meta-analysis was driven by ontological environmental meta-data infor-
mation: EnvO-term enriched clusters were automatically detected and used to visualize the
emerging global patterns of the Earth meta-community.

Systematically correlating beta diversity dendrograms with environmental annotations is
motivated by the idea that oftentimes similar environments select their constituents in similar
ways. We also observe samples from the same environment with low homogeneity (i.e. large
distances amongst category members). This phenomenon can be either explained by incorrect
annotation, by random processes governing assembly or true differences in the same environ-
mental category, which is then instructive for meaningful EnvO subcategorization. On the
other hand, it is intriguing to study dense beta diversity clusters with seemingly inconsistent,
i.e. diverse environment annotations. Exhaustive scrutiny of environmental parameters might
then reveal commonalities amongst those samples and thus explain the low beta diversity. This
approach depends on a sufficient, consistent metadata collection for a large set of samples in
the future. The systematic integration of metadata into future visualization techniques, as
shown here with EnvO-terms, will serve as a new form of hypothesis generation. For example,
dense clusters of mixed categories can be explained by latent variables such as high levels of
hydrocarbons. If eventually all these potential assembly drivers are consistently captured in the

two main contributing studies QiimeDB 1792 and 2019 respectively. Each cluster receives further support from small and medium sized studies. e) Soil
samples. Composite environments form sub-clusters.

doi:10.1371/journal.pcbi.1004468.g006

Clustering Meta-analysis of Ontology Annotated 16S rRNA Profiles

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004468 October 12, 2015 17 / 24



Table 3. Cluster coefficients for homogeneity (cluster compactness) and separation for selected ecosystems and -subsystems (including all
samples).

EnvO Ecosystem Level Homogeneity Separation Studies Samples

plant-associated habitat (ENVO:00009001) Plant 3 0.4634 0.6816 4 744

organism-associated habitat (ENVO:00002032) Plant 2 0.7001 0.7506 76 7582

habitat (ENVO:00002036) Plant 1 0.7097 0.7198 117 9067

environmental feature (ENVO:00002297) Plant 0 0.6872 0.7009 149 13281

plant food product (ENVO:00002216) Plant 3 0.4558 0.7167 2 40

food product (ENVO:00002002) Plant 2 0.4268 0.6508 5 565

anthropogenic environmental material (ENVO:0010001) Plant 1 0.4268 0.6508 5 565

environmental material (ENVO:00010483) Plant 0 0.6869 0.6955 145 12664

anthropogenic (ID:0000068) Plant 1 0.5049 0.6648 27 1158

property (ID:0000043) Plant 0 0.5651 0.6873 38 1863

soil (ENVO:00001998) Plant 1 0.4726 0.6610 30 1438

wetland (ENVO:00000043) Freshwater 3 0.4280 0.6345 2 13

hydrographic feature (ENVO:00000012) Freshwater 2 0.5288 0.7070 32 3467

water (ENVO:00002006) Freshwater 1 0.5321 0.7084 36 3551

geographic feature (ENVO:00000000) Freshwater 1 0.5456 0.7133 54 3927

freshwater habitat (ENVO:00002037) Freshwater 3 0.3676 0.6734 2 34

aquatic habitat (ENVO:00000144) Freshwater 2 0.4990 0.6760 3 43

fresh water (ENVO:00002011) Freshwater 2 0.3440 0.6730 7 1656

freshwater lake (ENVO:00000021) Freshwater 3 0.3395 0.6727 4 1625

lake (ENVO:00000020) Freshwater 4 0.3481 0.6733 9 1658

water body (ENVO:00000063) Freshwater 3 0.5244 0.7040 25 3256

freshwater biome (ENVO:00000873) Freshwater 2 0.3629 0.6755 10 1735

aquatic biome (ENVO:00002030) Freshwater 1 0.5172 0.7053 22 2881

biome (ENVO:00000428) Freshwater 0 0.5613 0.7511 60 5743

physiographic feature (ENVO:00000191) Soil 2 0.5604 0.7133 11 608

terrestrial biome (ENVO:00000446) Soil 1 0.5529 0.6836 41 2862

depression (ENVO:00000309) Soil 3 0.4755 0.6487 2 22

terrestrial habitat (ENVO:00002009) Soil 2 0.4917 0.6651 32 1602

desert (ENVO:00000097) Soil 3 0.3239 0.7154 2 102

extreme habitat (ENVO:00002020) Soil 2 0.5223 0.7194 6 164

subterrestrial habitat (ENVO:00000572) Soil 2 0.4795 0.6914 5 192

sediment (ENVO:00002007) Soil 1 0.3874 0.6512 7 339

bodily fluid (ENVO:02000019) Animal/Human 2 0.6760 0.7707 67 6247

organic material (ENVO:01000155) Animal/Human 1 0.6762 0.7798 79 6978

animal food product (ENVO:0010000) Animal/Human 3 0.4049 0.6449 3 525

animal-associated habitat (ENVO:00006776) Animal/Human 3 0.6714 0.7819 70 6813

hypersaline (ID:0000111) Hypersaline 2 0.6918 0.8661 3 14

“saline feature” (ID:0000110) Hypersaline 1 0.4813 0.7086 11 705

marine biome (ENVO:00000447) Marine 2 0.4457 0.6768 7 370

marine sediment (ENVO:00002113) Marine 2 0.3387 0.6483 5 292

saline water (ENVO:00002010) Marine 2 0.4660 0.7276 9 502

coastal inlet (ENVO:00000137) Marine 4 0.3916 0.7099 3 299

coast (ENVO:00000303) Marine 3 0.4591 0.7005 5 404

inlet (ENVO:00000475) Marine 3 0.3916 0.7099 3 299

marine water body (ENVO:00001999) Marine 2 0.4690 0.7054 9 690

saline hydrographic feature (ENVO:00000017) Marine 3 0.4989 0.7799 2 8

(Continued)
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Table 3. (Continued)

EnvO Ecosystem Level Homogeneity Separation Studies Samples

watercourse (ENVO:00000029) Marine 4 0.4386 0.6720 3 13

marine feature (ENVO:01000031) Marine 1 0.4691 0.7053 10 691

volcanic feature (ENVO:00000094) Geothermal 3 0.4557 0.7276 2 366

anthropogenic feature (ENVO:00000002) Anthropogenic 2 0.5475 0.6653 20 525

mesoscopic physical object (ENVO:00002004) Anthropogenic 1 0.4522 0.6467 5 800

anthropogenic habitat (ENVO:00002031) Anthropogenic 2 0.5848 0.7171 11 202

biofilm (ENVO:00002034) Biofilm 3 0.5441 0.7376 3 38

microbial feature (ENVO:01000007) Biofilm 2 0.4968 0.7280 5 419

organic feature (ENVO:01000159) Biofilm 1 0.4968 0.7280 5 419

microbial mat (ENVO:01000008) Biofilm 3 0.4562 0.7260 3 384

doi:10.1371/journal.pcbi.1004468.t003

Fig 7. Comparison of Fisher’s exact test and F-measure.We perform a grid search result for various significance thresholds for both tests. The the blue
mesh shows disagreement of the tests (in %) and the stacked bars in green and red indicate, respectively, to what extend disagreement stems from Fisher’s
exact test claiming signifance but not F-measure and vice versa. Under most commonly used thresholds (−log10(p) score for Fisher’s exact test being 2, 3, or
5) F-measure is a stricter test (completely green bars) as the significant cases are a strict subset of Fisher’s exact test.

doi:10.1371/journal.pcbi.1004468.g007
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metadata, our method can then be adapted to data mine beyond EnvO annotation. Conversely,
exploiting the semantic hierarchy of ontologies, it might also be convenient to extend EnvO to
capture over-arching concepts such as “contaminated” or “hydrocarbon-rich” sites. We dem-
onstrated the feasibility of this approach for the analysis of saline vs. non-saline samples.

Occasionally, EnvO mis-annotation or inadequate choice of EnvO-terms incorrectly
accounts for mixed clusters. Our method can then point to the source of error and function as
an annotation curator, in particular now that our reference dataset is large and robust enough
to redline suspecious outliers as demonstrated for the alleged soil microbiome (Fig 6).

With the advent of large comprehensive microbial community databases, we anticipate that
it will be possible to provide a context of similarly composed environments for new 16S rRNA
profiles, just as BLAST and other sequence comparison tools in conjuction with large sequence
databases help to elucidate single sequences. To classify these in a hierarchy (dendrogram)
rather than just ranking gives a contextual impression similar to phylogenies for sequences
over sequence similarity rankings.

A number of challenges and current limitations prevail, though. Arguably, while the dis-
cussed advantages of the chosen components in the proposed pipeline in our opinion justify
their application, we also note their caveats here and mention potential alternatives. Cross-
plattform meta analyses have to deal with inherent protocol and technology biases: DNA
extraction kits and sequencing platforms are afflicted with specific errors, different variable
regions differ in informative power to distinguish phylogenetic clades, so the choice of primers
impacts relative OTU abundances. Additionally, alignment quality for reference phylogenies
and differences in sequence filtering can skew beta diversity calculations [42]. Environment
Ontology annotations are far from being perfect, as neither automatic nor manual methods
guarantee 100% accuracy. OTU clustering methods often produce surprisingly different results,
as argued in [43]. Closed-reference OTU picking discards all sequences that do not match a
provided reference (GreenGenes in our case) and thus represents the original sample inaccu-
rately, especially in understudied environments with high diversity such as soils. Alternatively,
open-reference or de novo OTU clustering could be employed, yet this is a daunting task with
its own caveats: the considerably higher computational effort is less parallelizable, the number
of comparable samples is restricted by the choice of 16S rRNA region and the lack of a high-
quality phylogeny based on full sequences severely impedes downstream phylogenetic beta
diversity calculation. The latter can be addressed by resorting to non-phylogenetic beta diver-
sity but that would disregard evolutionary relatedness of OTUs. Moreover, as pointed out in
[7], short reads stretching only over one or few variable regions might be unsuitable for de
novo OTU picking.

Rarefaction introduces a loss of information, and albeit substantially reduced, it still persists
with our proposed method of adaptive rarefaction. One concern regarding the generality of our
results is due to the sampling bias induced by very large scale studies appearing as sole contrib-
utors to a certain environment. As can be seen in the interactive coloring of PCoA plots (eco-
phyl.info/html/SI), the ecosystem distribution and particularly EnvO-distribution is similar to
study distribution. Beta diversity patterns could thus be explained to some extend by study
methods (and possibly systematic artefacts). However, many independent studies do confirm
characteristic beta diversity distributions, especially for soils and human-associated samples,
when including small scale studies. Our visualization techniques reflect this important measure
of confidence.

Likewise, some large studies like high resolution time series can give a false impression of
community similarity (i.e, tight clustering in PCoA and UPGMA plots) in a certain environ-
ment, if a single study dominates the contribution. As a remedy, we would be tempted
to downsample on study level, i.e. select only few representative samples for each study.
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However, genuine beta diversity has been captured in large scale studies such as [44], so that
simple exclusion of samples from large studies will lead to loss of important information. In
addition to uneven sample size, the aspect of uneven study size should be addressed by future
meta analyses. The environmental equivalents of enterotypes (clusters of gut microbiomes
and conceptually extended in [17] to all human-associated environments), are barely observ-
able throughout the entirety of samples used in our meta-analysis. In accordance with Koren
et al [17], we detect gradients of microbiomes for nearly all ecosystems. Compact clusters with
high homogeneity/separation ratio often only exist when single studies constitute the bulk of
an ecosystem (or -subsystem) and thus require further evidence to be considered an “environ-
mental enterotype”.

Our generated beta diversity maps also suggest that many studies still tap into unchartered
territory, indicating that the beta diversity space for the entirety of Earth microbiomes is far
from being fully explored. Despite our best attempts to collect a comprehensive dataset, various
samples still appear rather unique. Note that the large collection of millions of pairwise beta
diversities was a prerequisite to develop a sense of uniqueness. However, increased coverage of
similar environments in the future will inevitably either improve confidence in uniqueness or
find closer matches. The effect of microbiome uniqueness is exacerbated, when we start includ-
ing OTUs beyond closed references.

Systematic errors specific to studies and/or sequencing technologies are still a concern. We
therefore report in our final result table the number of studies that support a cluster enrich-
ment and developed an interactive visualization that allows to inspect PCoA clusters color-
coded by EnvO-annotation, by ecosystem or by study. Despite the discussed limitations of
cross-study meta analyses, we believe that by integrating as many samples as possible, a global
picture of diversity is emerging due the law of large numbers. We are encouraged by a number
of similar (albeit substantially smaller) works corroborating the observation that samples do
cluster by environment rather than just by study [7, 21, 22].

Supporting Information
S1 Fig. Alpha diversity box plots for different EnvO soil types. Farm soil, grassland and
marine sediments appear as most diverse soil types. Note that “Forest” appears low due to mis-
annotations of many low-diversity insect-associated communities, see also Fig 6.
(TIFF)

S2 Fig. SQL Database diagram of all tables.
(TIFF)

S3 Fig. Dendrogram of saline (black in dendrogram) and non-saline samples (red in den-
drogram) using adaptive rarefaction/UniFrac/UPGMA. Saline samples do not form a single
cohesive cluster, as previous findings suggested but are rather split into two main clusters and
several outliers. Note that one cluster (containing polluted marine sediments and marine oil
spill samples) contains non-saline samples with high levels of hydrocarbons, suggesting that
this is the major driving force for this cluster.
(TIFF)

S4 Fig. Repeated beta diversity results for static and adaptive rarefaction in combination
with Weighted UniFrac and Principle Coordinate Analysis. Large uncertainty ellipsoids in
the static rarefaction based plot in (b) show relative positions of samples in the three-dimen-
sional space spanned by the first three Principal Components are less confined than in the case
of adaptive rarefaction (a). Note that Principle coordinates were calculated independently,
which leads to different orientations in (a) and (b). The averaged variances of beta diversity
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distance matrices also clearly show lower values for the case of Adaptive Rarefaction as com-
pared to conventional rarefaction (c).
(TIFF)

S5 Fig. Evaluation of the EnvO annotation algorithm.We define the distance between a pre-
dicted and a manually added EnvO-term as the shortest path in the undirected EnvO Graph.
As can be seen, most automated annotations are exact matches (distance 0) or not more than
one step away in the EnvO graph (distance 1).
(TIFF)

S1 Table. Clusters selected based on homogeneity/separation ratio. The table, which is
sorted by homogeneity/separation ratio, contains only few significantly enriched clusters
(those with F> 0.5 are shown in bold).
(PDF)

S2 Table. Number of dropped sequences from inhouse samples.
(PDF)
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