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Abstract

Predicting the three-dimensional structure of proteins from their amino acid sequences
remains a challenging problem in molecular biology. While the current structural coverage
of proteins is almost exclusively provided by template-based techniques, the modeling of
the rest of the protein sequences increasingly require template-free methods. However,
template-free modeling methods are much less reliable and are usually applicable for
smaller proteins, leaving much space for improvement. We present here a novel computa-
tional method that uses a library of supersecondary structure fragments, known as Smotifs,
to model protein structures. The library of Smotifs has saturated over time, providing a theo-
retical foundation for efficient modeling. The method relies on weak sequence signals from
remotely related protein structures to create a library of Smotif fragments specific to the tar-
get protein sequence. This Smotif library is exploited in a fragment assembly protocol to
sample decoys, which are assessed by a composite scoring function. Since the Smotif frag-
ments are larger in size compared to the ones used in other fragment-based methods, the
proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy
assembly. SmotifTF successfully predicts the overall fold of the target proteins in about
50% of the test cases and performs competitively when compared to other state of the art
prediction methods, especially when sequence signal to remote homologs is diminishing.
Smotif-based modeling is complementary to current prediction methods and provides a
promising direction in addressing the structure prediction problem, especially when target-
ing larger proteins for modeling.

Author Summary

Each protein folds into a unique three-dimensional structure that enables it to carry out its
biological function. Knowledge of the atomic details of protein structures is therefore a key
to understanding their function. Advances in high throughput experimental technologies
have lead to an exponential increase in the availability of known protein sequences.
Although strong progress has been made in experimental protein structure determination,
it remains a fact that more than 99% of structural information is provided by computa-
tional modeling methods. We describe here a novel structure prediction method,
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SmotifTF, which uses a unique library of known protein fragments to assemble the three-
dimensional structure of a sequence. The fragment library has saturated over time and
therefore provides a complete set of building blocks required for model building. The
method performs competitively compared to existing methods of structure prediction.

Introduction

The revolution in DNA sequencing technologies over the last decade has resulted in an enor-
mous, and ever growing, number of gene sequences, which is doubling every ~18 months
[1-3]. At the same time, the number of experimentally determined protein structures has
increasingly lagged behind due to the inherently slower, more expensive and less predictable
outcomes of these experiments [4]. The size of the sequence databases has increased 100 fold
between 2000 and 2015, reaching 60 million entries. At the same time, the rate of protein struc-
ture determination has been much slower, with only ~110,000 total entries in the Protein Data
Bank (PDB) [5]. Over the past decade, all structural biology efforts, including structural geno-
mics [6], have led to an overall increase in the structural coverage of existing proteins from
~30% to 40% at the residue level, despite the huge growth of the underlying sequence database.
With existing technologies and strategies, it is projected [7] that it would take 15 years to reach
a level of ~55% coverage, which was shown to provide considerable utility for defining large-
scale functional characterization of organism-specific properties (e.g., the full metabolic net-
work in Thermotoga maritima [8]). However, these efforts are now predicted to take twice as
long in the expected absence of the Structural Genomics (SG) efforts, as SG centers contributed
50-60% of novel coverage despite accounting for less than 10% of all structure depositions [7].
Therefore, the need for reliable methods to model protein structures is stronger than ever
before.

Computational protein structure prediction can be broadly classified into two categories: (a)
Homology modeling or template-based modeling (TBM) has been successfully used for model-
ing protein sequences that have an overall detectable sequence similarity over their entire
sequence with an experimentally determined protein structure [9]. (b) Ab initio or template-
free modeling (TFM) [10] is required for those proteins that do not have any statistically signif-
icant similar protein sequences with known structures. Hence, structure prediction has to be
carried out using alternative approaches such as fragment assembly [11-14] or using first prin-
ciples from physics-based methods [15-17]. Homology modeling approaches have limited
applicability, but provide more accurate models when compared to template-free prediction
methods and has no size limitations [9, 18]. Alternately, there are also hybrid modeling meth-
ods, which use indirect experimental information, often obtained from automated or semi-
automated high throughput experiments, to provide limited structural restraints that can be
used for modeling [19, 20].

Currently, the prospect of increasing structural coverage is tied to the applicability of
homology modeling, which provides more than 99.5% of the currently observed ~40% struc-
tural coverage of protein sequences [7]. Conservation of protein structure is much higher than
that of sequence [21, 22], which results in a comparatively small number of distinct structural
families [23]. The size distribution of protein fold families is very uneven and the most fre-
quently occurring folds (e.g., Immunoglobulin, TIM barrel, Rossman fold) have likely already
been identified [24, 25]. In a typical genome the 10 most populous superfolds cover a third of
the protein sequences [26]. Therefore, homology modeling can provide structural models for
thousands of proteins in a typical genome using only a few dozen popular folds as templates,
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and it is currently almost the single source for three-dimensional models [27, 28]. However,
the usefulness of homology modeling is exponentially decreasing as smaller and smaller pro-
tein families or singletons need to be modeled. These latter proteins either require a targeted
experimental exploration, which is often cost prohibitive, or must be modeled by ab initio or
“template-free” style approaches, which do not depend on a detectable sequence similarity to a
known experimental structure. However, these approaches are currently suitable to model only
relatively small proteins and have a limited success rate [18] leaving much room for improve-
ment. Recent Critical Assessment of Techniques for Structure Prediction (CASP) experiments
[18, 29] have also reinforced the fact that efforts need to be concentrated on developing tem-
plate-free prediction methods that can model structures of proteins with little or no informa-
tion from other protein structures.

Template-free prediction methods can further be classified into two categories: (1) Ab initio
prediction is the modeling of protein structures from first principles without using any infor-
mation from other existing protein structures [15-17]. (2) Fragment assembly based methods
use a library of protein fragments obtained from known protein structures [11-14] to explore
the structure space accessible to the query protein. The fragments themselves may be obtained
from remote homologs that share very weak sequence similarity with the query protein and are
typically not good enough to be used directly for homology modeling. While the physics-based
methods have progressed over the years, they have been less successful than the fragment
assembly based methods [10]. The various fragment assembly approaches differ mainly in the
type of fragments and the energy functions used for sampling and scoring decoys. I-tasser [12]
and Tasser [14] use fragments of aligned segments in varying sizes obtained from various
threading methods and follow a replica-exchange Monte Carlo sampling for generating full
models. Another variant of Tasser is chunk-Tasser [30], which uses fragments of supersecond-
ary structures consisting of three consecutive secondary structures as fragments and folds them
independently to obtain restrains for modeling. Rosetta [11] uses a library of three and nine
residue fragments obtained from remote homologs identified from Psi-BLAST [31] and a sim-
ulated annealing Monte Carlo sampling algorithm to obtain protein models. Although most
fragment-based methods differ in the type of fragments and the energy functions used for sam-
pling, most of them use a similar approach to score the models. The most commonly used
model selection scheme is structural clustering of the sampled decoy structures, to obtain the
lowest free energy state, identified as the most populous cluster. Some other methods predict
the best model by identifying the consensus conformation from different prediction algorithms
[32, 33]. It has been reported that current template-free prediction methods perform best for
small single-domain targets with length up to 120 amino acids [10, 18]. The quality of predic-
tion drops significantly for larger proteins since the conformational search becomes tedious
and less accurate for larger proteins.

We have developed a fragment assembly based template-free prediction method using a
library of supersecondary structure fragments, known as Smotifs. The concept of using a
library of protein structure motifs for structure prediction has been explored earlier using a set
of locally defined protein motifs known as I-sites (invariant or initiation sites) [34]. I-sites are
short sequence motifs of length 3-19 obtained by exhaustive clustering of sequence segments
obtained from a non-redundant database of known structures, where each sequence pattern
correlates strongly with a recurrent local structural motif in proteins. The I-sites library has
been successfully combined with a Hidden Markov Model approach to address various protein
sequence and structure related questions such as tertiary and secondary structure prediction,
sequence comparison, dihedral angle region prediction and gene identification [35, 36]. A
major difference between those studies and the current method is the definition of the motif
fragment, which provides a different conceptual context to our structure prediction approach.
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We define Smotifs as two secondary structure elements in a protein connected by loop. We
have created a library of Smotifs from all known protein structures in the PDB [37]. In our ear-
lier study it was observed that the Smotif fragment library is saturated [38] leading to a hypoth-
esis that all known and yet to be discovered protein folds can be generated using different
combinations of the Smotifs already present in the library [39]. Subsequently, the Smotif
library was successfully used to develop a hybrid modeling method using chemical shift data
from NMR experiments [19], to classify [40] and model loops in protein structures [37, 41]
and to develop de novo structure based design method [42]. Here, we show that the Smotif
library can be used to model protein structures using a fragment assembly method, referred to
as “Smotif TF”. The new method, SmotifTF is successful in predicting the overall fold for over
50% of the ab initio test proteins explored in this study.

Results

The modeling algorithm consists of the following steps (Fig 1): First, PSIPRED [43] is used to
predict the secondary structures and identify the putative Smotifs in the query protein of

Query protein J

v

Psi-BLAST/Delta-BLAST/HHblits+HHsearch

~

against the PDB

¥

( Templates for dynamic database

\ 4

A 4

Identify Smotifs in the query; Identify Smotifs (DSSP);
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Set up dynamic library of Smotifs

\ 4

Generate HMM profiles (HHblits) ]

v

Filter library motifs by type and loop length criteria }

y

Align query and library Smotif profiles (HHalign)

~N
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score by composite energy function

Fig 1. Flowchart of the SmotifTF prediction algorithm.

doi:10.1371/journal.pcbi.1004419.9001
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interest. Next, suitable Smotif fragments are sampled from a set of related sequences with
known three dimensional structures available in the PDB [5]. These sequences are detected
using three different methods, Psi-BLAST [31], delta-BLAST [44] and HHblits/HHsearch [45,
46]. From these remote homologs, Smotifs are collected into a “dynamic” Smotif library, tailor-
made for the query protein. The Smotif fragments are larger in size (average size is 27.44
amino acid residues per Smotif in the current data set) compared to other existing fragment
assembly methods (for instance, Rosetta uses fragments of 3 and 9 residues), making it feasible
to carry out an exhaustive enumeration of all possible combinations of the chosen fragments
during the decoy sampling step. The scoring function used to select the best model from the
decoys is a linear combination of four knowledge-based components: (1) an orientation depen-
dent statistical pair-wise potential using shuffled reference state [47-49], (2) the radius of gyra-
tion, (3) main-chain only hydrogen bond potential [50] and (4) an implicit solvation potential
[51]. The method is developed on a set of 20 randomly selected proteins that represent different
folds and is tested on a set of 16 ab initio targets selected from just released PDB entries to
avoid any bias. Smotif TF method is compared to other state of the art structure prediction
methods, I-tasser [12], Rosetta [11] and HHpred [52], which were chosen because these meth-
ods have performed well in recent CASP benchmarking experiments [18, 29]. The results of
these predictions are discussed below.

Performance of the prediction algorithm as a function of the quality of
Smotif fragments in the library

The Smotif TF method was developed on a randomly selected set of 20 proteins. Table 1 sum-
marizes the accuracy of these predictions in terms of the GDT_TS scores [53] of the top-

Table 1. GDT_TS values of top scoring models obtained with SmotifTF method using dynamic Smotif library generated at different e-value

cutoffs.

PDB code and chain

1aabA
1bgzA
1dcjA
1hdnA
1iloA
1khmA
11g7A
1myoA
1ng7A
1om2A
1pveA
1rg6A
1uzcA
1ss2A
1tizA
1wgnA
TwgwA
1wgvA
TwjtA
1wggA
Mean

doi:10.1371/journal.pcbi.1004419.t001

No cutoff

67.06
58.08
80.36
52.44
51.35
40.29
61.91
63.38
44.00
45.06
56.13
37.50
40.18
36.72
71.15
78.13
62.79
30.06
46.43
70.43
54.67

e-value > 107"° e-value > 10° e-value > 10™ e-value > 10°
46.43 46.43 46.43 46.43
39.62 39.62 39.62 39.62
45.36 45.36 36.07 35.00
32.32 32.32 32.32 26.83
47.97 39.87 35.47 27.70
36.46 36.46 36.46 40.28
61.91 61.91 61.91 61.91
18.20 20.61 20.61 20.61
44.00 44.00 38.50 38.50
45.60 45.60 45.60 45.06
62.74 62.74 58.96 58.96
28.33 28.33 32.32 30.00
38.39 38.39 38.39 38.39
31.64 30.08 25.78 28.91
55.39 47.69 38.08 41.54
63.54 49.48 51.04 51.04
40.99 40.99 40.99 40.00
27.38 25.60 25.60 25.16
49.03 37.34 37.34 41.56
34.14 29.30 31.99 36.29
42.47 40.11 38.70 38.71
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scoring model with regard to the native structure. GDT_TS score calculates the percentage of
structurally equivalent pairs of residues at 1, 2, 4 and 8 A cutoff values upon optimal superposi-
tion of the experimentally determined native structure and the computational model. The aver-
age GDT_TS score for the predictions in this dataset is 54.67, with 12 protein models above
GDT_TS 50% and all proteins with GDT_TS > 30%, indicating correct fold predictions for all
proteins. However, this data set is not challenging for template-free predictions, because for
many of these cases, good structural templates are available, which make them suitable for
homology modeling. To simulate conditions that require template-free structure predictions,
the algorithm was repeated by systematically removing high quality templates prior to creating
the dynamic Smotif library. All templates with e-values better than 10™'%, 10", 10™" and 10°
were removed, respectively, and the prediction algorithm was repeated (Table 1). As expected,
the quality of prediction depends heavily on the quality of the templates in the Smotif library.
The stricter the e-value cutoft for filtering out homologous templates gets, the worse the predic-
tions become (Table 1). The interplay between the quality of prediction (Mean GDT_TS) and
the size of the dynamic database (set of Smotifs obtained from remote homologs) at different
e-value cutoffs is shown in Fig 2. As the cutoff is made more stringent from “no cutoff” (all pos-
sible templates considered) to 10° (all templates with e-value better than 1.0 are excluded), the
average number of Smotifs in the dynamic database (right Y-axis) decreases by 50% (from
1684.05 to 826.95) and the average e-value of the best hit in the dynamic database (left Y-axis)

600
01 utoff 10°

= 800
<
7
2 1 Cutoff = 10" 1,000
s 2
§ * Cutoff = 10 1,200 -f
= (o]
©
2 -2 Cutoff = 101 :':
L l 1,400 ®
c [}]
& No cutoff =
g o cuto 1,600
e-3 —
S
S 1,800

-4 : : ‘ : 2,000

35 40 45 50 55 60
Mean GDT_TS

Fig 2. Performance evaluation in the training set. Prediction quality (assessed as the mean GDT_TS of
the top-scoring model against the native structure) is plotted on the X-axis for 20 cases at different e-value
cutoffs used in generating the dynamic Smotif library. The data points for different e-value cutoffs are shown
in different symbols (no cutoff (square), 107° (circle), 10°® (triangle), 10" (star) and 10° (diamond)). The dual
Y-axes correspond to the mean number of hits in the dynamic Smotif database (right axis, inversed scale,
black data points) and to the mean e-value of the best hit in the dynamic database (left axis, log scale, red
data points), respectively.

doi:10.1371/journal.pcbi.1004419.9002
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increases from barely significant to a random hit value (from 0.006 to 1.225), indicating the
gradual loss of reliable templates. The quality of predictions drops from a mean GDT_TS of
54.67 to 38.71, as the e-value cutoffs get stricter from “no cutoffs” to 10°, respectively. It has
been shown earlier that a practical discriminator between ab initio or template-free models
and homology models is around GDT_TS 30% and values above GDT_TS 50% indicate high
quality homology models [54]. In the current dataset, when a stringent e-value cutoff of 10° is
used, 15 of the 20 proteins have GDT_TS > 30%, among which, three have GDT_TS > 50%.
All values stay above 20% indicating that the fold, at least partially, has been captured in every
case. Even under strict template-free modeling conditions, the SmotifTF prediction method
predicts a model above 30% GDT_TS for 75% of the cases, with an overall average GDT_TS of
38.71.

Comparison to other prediction methods

Recent CASP experiments show that template-free modeling is still a work in progress and
require further methodological developments to be able to provide useful models [29]. Some of
the methods that performed the best in the template-free category in recent CASP experiments
include I-tasser [12], HHpred [52] and Rosetta [11]. I-tasser and Rosetta are fragment assem-
bly-based methods that use different kinds of fragments and sampling algorithms as described
earlier. HHpred is a template-based modeling method, that uses Hidden Markov Model
(HMM) profiles and an HMM-HMM comparison algorithm [45] to identify remotely related
templates for homology modeling. The HMM-based sequence search is more sensitive and is
known to perform better than traditional heuristic sequence search methods.

The benchmarks against the above three methods were carried out on a test set of 16 pro-
teins obtained from weekly new releases of the PDB from 10-08-2015 to 12-31-2015. These
were submitted to the I-tasser and HHpred servers online, while Rosetta calculations were car-
ried out using a local installation. In each case, the trivial prediction using the self-template was
eliminated. HHpred requires the user to choose the templates for model building, after the
HHsearch step. If available, multiple templates were chosen to obtain maximum possible query
coverage, which were then submitted to Modeller [55]. In case of Rosetta, 10000 decoys were
sampled using the Rosetta algorithm from 100 parallel simulations. The resulting models were
then clustered using the algorithm provided in the Rosetta package to identify the largest clus-
ter. The center of the largest cluster was identified as the best model. The results of this analysis
are summarized in Table 2. The mean GDT_TS scores show that I-tasser performs the best
with a mean GDT_TS score of 36.97, Smotif TF comes in second with an average GDT_TS
score of 33.05 and HHpred and Rosetta make the third and fourth positions with GDT_TS
31.56 and 30.70 respectively. The average GDT_TS is comparable in the four methods and is
around 30-35%. Each method has some highlight performances, where its prediction is the
best compared to the others. For instance, I-tasser has the best prediction for targets 2mpvA,
3wzsA and 4uzxA whereas Rosetta does better with 4nknA and 4rd5A. HHpred has better
models for 4ux3B and 4vlam and SmotifTF has better predictions for 4pqzA, 2mpoA, and
407KkA. In case of 9 of the 16 proteins in this benchmark test set (56%), SmotifTF predicts a
model with GDT_TS over 30%, indicating an overall correct fold prediction for the ab initio
targets. I-tasser, Rosetta and HHpred have predictions above 30% GDT_TS for 9, 9 and 7,
respectively. The proteins in the table are sorted based on the e-value of best hit in the PDB
(column 4). If one examines the target proteins with the least trivial templates (only high e-
value hits are retained in the Smotif library), Smotif TF has an advantage over the other meth-
ods as reflected in the mean GDT_TS scores of the last ten entries with e-values > 0.1 in the
table. For these most difficult targets, Smotif T'F has a mean GDT_TS score of 35.24, which is
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Table 2. Performance of SmotifTF on the benchmarking test set in comparison to other methods

PDB

4viam
4rd5A
2mpvA
4ux3B
4nknA
3wzsA
4wwrA
4pqzA
4ro3A
4uzxA
4waiA
407kA
2mpoA
4ndsA
4qgtnA
4wygA

1
N res

109
156
145
64
116
140
49
131
103
54
82
190
182
74
236
119

122.50
132.00

152.75

ss?
Mainly-a
a+f
Mainly-8
a+f
Mainly-a
a+f3
Mainly-a
Mainly-a
a+f3
Mainly-a
Mainly-a
a+f
Mainly-B
a+f
Mainly-a
Mainly-a

' = Number of residues in the query protein

2
3
4

doi:10.1371/journal.pcbi.1004419.t002

e-value® Smotif TF* I-tasser* HHpred* Rosetta*
0.000001 47.64 53.21 55.28 30.73
0.006 16.67 17.31 20.35 20.99
0.0098 25.71 55.69 38.10 12.93
0.029 25.00 32.81 42.58 32.42
0.039 34.55 22.61 20.00 50.00
0.072 26.79 57.14 47.68 29.46
0.12 57.65 52.55 54.08 49.49
0.17 34.92 23.47 20.61 27.10
0.27 41.26 55.58 53.88 34.95
0.41 56.94 61.57 37.96 52.78
0.79 30.18 35.67 26.52 33.84
0.8 20.83 12.90 11.97 19.34
2.1 22.35 15.52 10.30 12.50
24 32.43 43.24 29.05 33.78
2.6 21.78 22.69 15.42 18.51
5.5 34.03 29.62 21.22 32.35
Mean (all rows)
0.96 33.05 36.97 31.56 30.70
Mean (rows with e-value of best hit > 0.1)
1.52 35.24 35.28 28.10 31.46
Mean (rows with e-value of best hit > 2.0)
3.15 27.65 27.77 19.00 24.29

= Major secondary structure class according to DSSP [57]
= e-value of the best hit in the dynamic database
= GDT_TS score of the best scoring model when compared to the native structure.

the best along with I-tasser (35.28). If we consider only the entries with e-values > 2.0 (bottom
4 rows), the difference in performance is even more striking with SmotifTF and I-tasser show-
ing the best performance amongst all the methods with an average GDT_TS of 27.65 and
27.77, respectively. As expected, the performance of HHpred drops the most (Mean GDT_TS
drops from 31.56 to 19.00), as this method is explicitly dependent on finding a reasonable over-
all template, while all other methods are able to combine fragments from a larger variety of
possible hits. Overall, there seems to exist a trend, which shows that SmotifTF has a better per-
formance compared to the other methods when the difficulty of prediction is greater as
expressed by the e-value of the best template available.

While the amount of data is not sufficient to draw statistically conclusive results, neverthe-
less, from among the 10 the most difficult targets (with e-values to the best PDB hit above 0.1),
SmotifTF has the most accurate models amongst the methods compared in four out of five
large targets (sizes 119, 131, 182, 190, 236 in Table 2), and in the fifth case, it is a close second.

We calculated the relative contact order [56] for the target proteins in Table 2 but no appar-
ent correlation could be seen when comparing it with accuracy. We also identified the protein
classes for these targets as shown in Table 2. Among the 16 proteins there are 8, 2 and 6 cases
that are mainly-o, o+f and mainly-P classes, respectively.

In terms of the time scales of the four different methods, HHpred server is the fastest, pro-
viding results within the order of minutes for all proteins in our benchmark set. I-tasser server,
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due to its intensive public use and waiting period, provided results within 24-48 hours after
submission. Smotif TF and Rosetta were carried out using our in-house linux cluster with 100
computing cores. While SmotifTF completed all jobs within 6-12 hours, Rosetta completed
most jobs within 12-24 hours.

Details of individual modeling cases

(a) N-terminal domain of a protein with unknown function from Vibrio Cholerae (PDB:
4ro3A). This is an o+p protein with 103 residues. It has 7 Smotifs as identified from
PSIPRED. The best prediction from Smotif T'F has a GDT_TS of 41.26 and is better than the
Rosetta prediction although I-tasser and HHpred have even better models (Table 2). Most of
the protein core, including a beta hairpin, has been captured correctly in the model as shown in
the structural superposition with the native in Fig 3a. The errors mainly occur in the small beta
sheet region (marked by a red arrow), which has been incorrectly assigned in the PSIPRED pre-
diction. Fig 3a also shows the structures of the proteins that contributed fragments to the
assembly of this model. The Smotif fragments are found in very different protein structures,
which are also different from the structure of the query protein itself. This illustrates the
hypothesis that the existing Smotif fragments can be used to model new and existing protein
folds.

(b) RNA binding protein, Thol, from Saccharomyces Cerevisiae (PDB: 4uzxA). This is
a small o-helical protein with 54 residues and two Smotifs. Here, the SmotifTF prediction pro-
duced a very accurate model (GDT_TS score: 56.94; Fig 3b). Except for the small helix at the
C-terminus, the rest of the structure is captured correctly in the model. I-tasser predicts a better
model with GDT_TS score of 61.57 (Table 2).

(c) Mammalian Endoribonuclease dicer (PDB: 4wyqA). This is one of the toughest tar-
get in the benchmarking dataset where the e-value of the best hit is 5.5, indicating that the Smo-
tif fragments come from protein structures that are evolutionarily distant or unrelated to the
target protein. SmotifTF gives the best prediction with a GDT_TS of 34.03 (Fig 3¢), with
Rosetta, I-tasser and HHpred following with 32.35, 29.62 and 21.22, respectively. The structure
superposition shows that while SmotifTF is able to predict the some of the long helices in the
core correctly, the terminal helices are incorrectly captured. This example shows that as the dif-
ficulty of the targets increase, Smotif TF fragment assembly is able to step up and provide better
predictions compared to other methods.

If we examine the Smotif fragments that make up the best scoring model and the proteins
that contributed them to the dynamic database pool, we find that out of the 99 query Smotifs
in the benchmark data set (belonging to 16 test proteins), 66 best scoring Smotifs have been
identified from HHblits/HHsearch, 27 have been identified using delta-BLAST and 15 have
been identified using psi-BLAST (the total adds up to more than 100 because some hits are
identified by more than one method). Although the SmotifTF prediction algorithm starts with
the fragments provided by HHblits/HHsearch, the final predictions have improved upon the
HHpred predictions in many cases, where the same HHblits/HHsearch results are used as
homology modeling templates. This improvement is likely due to the fact that unlike HHpred,
SmotifTF follows a fragment assembly method and the Smotif fragments themselves are sam-
pled from many different proteins identified using HHblits/HHsearch, Psi-BLAST and delta-
BLAST.

Factors affecting model quality

(a) Secondary structure prediction method. The SmotifTF prediction algorithm depends
heavily on the quality of secondary structure prediction method, PSIPRED [43], to identify the
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Fig 3. Examples of SmotifTF predictions in the benchmark test set. The structural superposition of the
top-scoring model (pink cartoon) with the native structure (green cartoon) is shown in the middle. The
proteins that provide the Smotif fragments to the top-scoring model are shown in grey cartoon, with the Smotif
themselves colored according to the secondary structure elements present in them (helix = red,

strand = yellow, loop = green). The PDB id, chain id and residue numbers of the Smotif fragments are shown
along with the root mean square deviation (RMSD) of the respective Smotif fragments compared to the
corresponding native Smotif. The SCOP ids of the proteins are provided, where available. (a) N-terminal
domain of a protein with unknown function from Vibrio Cholerae (PDB: 4ro3A) (b) RNA binding protein Tho1
from Saccharomyces Cerevisiae (PDB: 4uzxA) (c) Mammalian Endoribonuclease Dicer (PDB: 4wygA).

doi:10.1371/journal.pcbi.1004419.9003
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putative Smotifs in the query protein. Accurate definition of Smotifs is essential to the method
and even minor errors in this first step can lead to drastic differences in the final predictions
(example: 4ro3, Fig 3a, Table 2). This is compounded by the fact that, most secondary structure
prediction methods themselves rely upon the existence of homologous sequences in the struc-
ture database and hence they falter more frequently in case of ab initio or template-free model-
ing targets, where reliable homologs cannot be found.

(b) Size of the protein. It has been observed earlier that template-free prediction methods
perform well when the protein size is below 120 amino acids [10, 18]. In a similar trend, the
SmotifTF method is also able perform better for proteins of smaller size, with the quality of
prediction decreasing with larger proteins (Table 2). However, one major difference is that the
SmotifTF predictions are better for small proteins with less number of Smotifs because effective
sampling can be achieved in these cases even with the limited number of fragments in the Smo-
tif library. For instance, 4wwr and 4uzx are two proteins in our test set where Smotif TF has pre-
dicted models with GDT_TS above 50.00 and both are small proteins with just two Smotifs
each (Table 2). With large proteins, where sampling is computationally more expensive, the
SmotifTF prediction algorithm provides models of lower quality, although in some cases, it is
the best performing method amongst the four different methods compared (407k, 2mpo in
Table 2). Another important factor specific to the SmotifTF prediction algorithm is that sam-
pling is affected mainly by the number of Smotifs in the query protein rather than the actual
size of the protein in terms or the number of residues. This sometimes helps us in better predic-
tions for large proteins that have a more regular structure with fewer Smotifs. For instance,
4pqz (Table 2) has 131 amino acids but only 3 Smotifs and SmotifTF has a relatively good pre-
diction for this protein with a 34.92 GDT_TS model.

(c) Smotif ranking using HHalign. The SmotifTF prediction algorithm uses HHblits [46]
and HHalign [45] to obtain and align Hidden Markov Model (HMM) profiles of the query
Smotifs to the Smotifs in the dynamic library. The method further relies on the e-values pro-
vided by HHalign to rank the Smotif fragments in the library, which is then used to choose the
best fragments for the decoy sampling step. The e-values provided by HHalign fail to pick the
best available fragment in the library (in terms of RMSD to the query Smotif) in 66 of the 99
Smotifs in the benchmarking data set. However, for 43 of these 66 Smotifs, the method does
sample a library Smotif within 1A of the best available one, thereby neutralizing the effect of
the missed fragment.

Discussion

New methods for template-free modeling are needed to advance computational techniques of
protein structure predictions. We have developed a novel method that uses a fragment library of
supersecondary structure motifs to model protein structures. The method follows a fragment
assembly protocol using a tailor-made library of supersecondary structure fragments obtained
from remotely related proteins using weak sequence signals. The method predicts the core of the
protein and the overall fold correctly in over 75% of the cases in the training set and in 50% of
the cases explored in the benchmark test set of template-free targets. We have also shown that
the current method performs competitively when compared to other existing methods of tem-
plate-free prediction, which were the best performers in recent CASP experiments. Further, as
the difficulty of prediction increases, the Smotif-based template-free prediction method performs
better than the other methods compared. The method is relatively simple compared to some
other existing approaches, and its good performance is mainly acknowledged to the idea of using
an exhaustive set of supersecondary structure fragments. The Smotif-based prediction algorithm
is a promising approach to address one of the most challenging problems in molecular biology.
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Materials and Methods
Smotif system representation

The foundation of the Smotif TF method lies in the representation of protein structures as a set
of overlapping supersecondary structure motifs or Smotifs. Smotifs are defined as two regular
secondary structure elements (helices and strands) in a protein connected by a loop. In a previ-
ous study [37], we had built a library of Smotifs from all known protein structures in the Pro-
tein Data Bank [5]. This library consists of over 500,000 individual Smotifs classified based on
the type of the bracing secondary structure elements (HH, HE, EH and EE) and grouped into a
few thousand clusters based on their internal geometry. The Smotif library is a backbone-only,
geometrically defined fragment library with no side-chain information.

Prediction algorithm

The overall prediction method is summarized in Fig 1. The main aspects of the current method
are: (a) A dynamic library of Smotifs is built for each query protein using weak sequence signals
to remote homologs. (b) The weak sequence signals are further used to identify suitable frag-
ments from the dynamic Smotif library for sampling (c) Sampling of full protein conforma-
tions is explored using exhaustive enumeration of all possible combinations of the fragments
chosen earlier (d) The sampled full protein structures are scored using a composite energy
function to identify the best scoring model.

(a) Building the dynamic Smotif library. A “dynamic” library of Smotif fragments is
built specifically for each query protein, from all known PDB structures. The dynamic library
is built using sequence information from three sequence-based methods run with default
parameters: Psi-BLAST [31], delta-BLAST [44], HHblits/HHsearch [45, 46]. All three methods
provide confidence measures in terms of e-values, which can be interpreted as the likelihood
that the observed result occurred by chance. The templates provided by the three methods are
pooled together and the proteins are further broken down into their constituent Smotif frag-
ments. These fragments constitute the dynamic library of Smotifs, corresponding to the partic-
ular query protein (Fig 1). Missing loops in PDB files (which occur often) can lead to the loss
of Smotif fragments in the library. To overcome this issue, all the missing loops in the entire
PDB are built using Modeller [55].

(b) Identifying Smotif fragments from the dynamic database. The secondary structures
in the query protein are predicted using PSIPRED [43] and the putative Smotifs in the query
protein are identified (Fig 1). Next, we search for suitable Smotif fragments from the dynamic
library for each Smotif in the query protein using Hidden Markov Model (HMM) profiles built
from HHBblits search [46]. For every query Smotif, a set of Smotifs from the dynamic library is
selected that (i) belongs to the same Smotif type as the query Smotif (ii) the loop lengths of the
query and the library Smotifs match with a +/- 1 deviation. The HMM profiles of the shortlisted
library Smotifs are aligned to that of the query Smotif using HHalign [45]. HHalign provides a
reliability score in terms of the e-value, which is used to the rank the library Smotifs. The top
4-24 Smotifs are selected for each query Smotif based on the e-value ranking (Fig 1). The num-
ber of Smotifs selected for model building is varied depending on the size of the query protein to
generate about a million models in total. For smaller proteins (with fewer than six query Smo-
tifs), a larger set of fragments (around 12-24 per Smotif) is selected and for larger proteins (with
more than six query Smotifs), a smaller set of fragments is selected (around 4-8 per Smotif).

(c) Sampling and scoring of Smotif combinations. Since the Smotif fragments are large
in size (average Smotif size is 27.44 amino acid residues in the test set used), it allows us to
carry out an exhaustive enumeration of all possible combinations of the Smotif fragments
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chosen in the previous step. Successive Smotifs are joined by optimally superposing their over-
lapping secondary structures. Length of secondary structures of the sampled Smotifs are
extended or shortened to fit the query sequence. In the process of joining Smotifs, a limited
number of steric clashes (equal to the number of total Smotifs in the structure) are allowed.

(c) In the next step, a composite scoring function is used to score and rank the million sam-
pled models to identify the best model. The scoring function consisting of a linear combination
of four different components: radius of gyration using Co. carbons, an orientation dependent
statistical potential [47-49], a knowledge-based long-range backbone hydrogen bond potential
[50] and an implicit solvation potential [51]. All components are converted into statistical Z-
scores before combining them. The weights for the linear scoring function were optimized on a
set of decoy structures obtained from five proteins of varying sizes and secondary structure
composition (1PTF, IM7T, 1ZLM, 2LIS, and 2DC3), all of which were disjoint from the pro-
teins used to develop this algorithm. The best scoring structures from this scoring scheme are
relaxed using Modeller [55] to resolve steric clashes, fix side-chains and maintain
stereochemistry.

Benchmarking the algorithm

We developed the algorithm on a set of 20 proteins (Table 1). These were randomly chosen

to represent proteins from different folds. Ab initio conditions were simulated by systematically
removing high-quality templates from the dynamic Smotif library with e-values better than
10'°, 10,107 and 10°, respectively (Table 1).

The method was further tested on a new set of 16 proteins (Table 2). These were specifically
chosen to be ab initio targets from new PDB structures released each week starting from 10-8-
2014 to 12-31-2014. The sequences of new PDB releases were obtained each week, clustered
using CD-hit [58] at 90% to eliminate similar sequences and then tested using psi-BLAST [31]
and HHsearch [45] against the rest of the PDB to eliminate homology modeling targets. The
predictions of the Smotif T'F algorithm were compared to three other prediction methods: I-tas-
ser [12], Rosetta [11] and HHpred [52], which performed well in recent Critical Assessment of
Structure Prediction (CASP) experiments [18, 29]. We have chosen new weekly releases from
the PDB and focused on those proteins with no templates in the PDB (other than itself) to
identify ab initio targets. The advantage of doing this is that it mimics blind testing of the meth-
ods with minimal intervention from already existing templates in the PDB.

Software availability

SmotifTF is a free software package created using Perl and is distributed under the Artistic
license version 2.0 (GPL compatible). The complete package can be downloaded from the
Comprehensive Perl Archive Network at http://search.cpan.org/dist/SmotifTF/. The current
version supports multiple cores for parallel computing.
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