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Abstract

When multiple samples are taken from the neoplastic tissues of a single patient, it is natural
to compare their mutation content. This is often done by bulk genotyping of whole biopsies,
but the chance that a mutation will be detected in bulk genotyping depends on its local fre-
quency in the sample. When the underlying mutation count per cell is equal, homogenous
biopsies will have more high-frequency mutations, and thus more detectable mutations,
than heterogeneous ones. Using simulations, we show that bulk genotyping of data simu-
lated under a neutral model of somatic evolution generates strong spurious evidence for
non-neutrality, because the pattern of tissue growth systematically generates differences in
biopsy heterogeneity. Any experiment which compares mutation content across bulk-geno-
typed biopsies may therefore suggest mutation rate or selection intensity variation even
when these forces are absent. We discuss computational and experimental approaches for
resolving this problem.

Author Summary

Researchers who take multiple samples from a cancer or pre-cancer tissue and find that
some samples show far more mutations than others are likely to conclude that the high-
mutation samples reflect cells with an abnormal mutation or growth rate. We considered
the common practice of testing a bulk sample for mutations, which finds only mutations
that are common within the sample. Our computer simulations show that even when all
cells have identical mutation and growth rates, testing bulk samples frequently leads to
spurious detection of rate differences. This can lead to false conclusions about the causes
and progress of cancer. We discuss possible solutions involving either genetic testing of
single cells or the use of computer algorithms to detect rare mutations within a sample.
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Introduction

The somatic genotypes of cancerous and pre-cancerous tissues are frequently assayed by taking
biopsies containing a substantial number of cells and genotyping each biopsy as a whole (via
SNP chip, exome or genome sequencing, or other techniques). For example, in a study of Bar-
rett’s esophagus genotypes were derived from biopsies containing approximately one million
epithelial cells (e.g. [1]). We will refer to this type of data collection as bulk-biopsy genotyping.
It is generally much less expensive and technically difficult than single-cell genotyping. In this
study we examine the use of multiple biopsies from a single tissue or tumor. It is tempting to
think that differences in mutation content observed in bulk-biopsy genotyping reflect underly-
ing differences in the number of mutations per cell, which could be informative about the spa-
tial or temporal evolution of the tissue. But is this really true?

The roles of mutations in cancer have often been assessed by analyzing single tumor samples
or paired tumor/normal samples from many patients. However, recently it has been recognized
that multiple samples from a single patient, separated in time or space, offer additional informa-
tion. Spatial heterogeneity of clones implies that sampling a single region of a neoplasm may not
be representative of the entire neoplasm. The force of natural selection may vary in different
parts of a tissue (edge versus center, primary tumor versus metastasis) or over time (early versus
late progression, before versus during or after chemotherapy). Multiple samples from a single
individual also offer the possibility of phylogenetic analysis to infer relationships among differ-
ent lineages and reconstruct past events in the history of the tissue. Table 1 shows a sampling of
recent studies in which multiple cancer samples per patient were obtained, and phylogenetic
methods were either used or could have been used. These studies considered both spatial separa-
tion-different parts of a tumor or neoplasm, a tumor and its metastases— and temporal separa-
tion— samples taken at different times, such as early and late in progression to cancer, or before
and after chemotherapy. They show the potential power of the multiple-sample approach,
which we expect will become increasingly important as genotyping costs decrease.

Table 1. Studies with multiple-sample data suitable for phylogenetic analysis. WGS, whole genome sequencing.

Phylogenetic analysis used

Cases Condition Method Reference

22 CLL Targeted resequencing [2]
Barrett’'s esophagus SNP arrays [3]

2 Breast cancer Single-cell WGS [4]

30 ALL FISH [5]

4 Renal-cell carcinoma WGS [6]

21 Breast cancer WGS and SNP arrays [7]

1,2 DS-ALL and ALL WGS, single cell targeted mutational profiling [8]

2 Breast cancer Single cell WGS [9]

13 Barrett’'s esophagus SNP arrays [1]

23 Glioma Exome sequencing [10]

15 Colorectal adenoma and carcinoma Multiple methods [11]

Phylogenetic analysis feasible

Cases Condition Method Reference

7 Pancreatic cancer Exome sequencing and SNP arrays [12]

21 ALL SNP arrays [13]

7 MDS and sAML WGS [14]

8 Acute myeloid leukemia WGS [15]

258 Barrett’'s esophagus SNP arrays [16]

doi:10.1371/journal.pcbi.1004413.t001
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Existing methods do not have the resolution to detect all variants present in a million-cell
sample. Variants present in just a few cells will go undetected. Peiffer et al. [17] found mini-
mum frequencies of 33% to 50% for reliable detection of copy-number variants in heteroge-
neous tumor data using a SNP array. Deep sequencing can detect single nucleotide variants in
cancer samples at lower frequencies, down to 1% [18] for 40x sequencing, but the threshhold
for reliable detection is much higher: even for an average of 2000x sequencing, single nucleo-
tide variants were reproducibly detected only at >15% allele frequency and indels at >5% allele
frequency [19]. Even when low-frequency variants are detected, they are often disregarded as
they are difficult to quantify and assign to haplotypes. Thus, the result of bulk-biopsy genotyp-
ing is generally a survey of locally high-frequency variants only.

In a well-mixed tissue such as blood, variants which are at high frequency in one sample
will generally be at high frequency in all samples. In such tissues, bulk genotyping will miss
low-frequency variants, and will thus be biased toward detecting older rather than younger
mutations. However, this bias will affect all samples equally and will not tend to produce spuri-
ous evidence of non-neutrality.

However, solid tissues are not well-mixed. We will consider the behavior of bulk-biopsy gen-
otyping in a simulated tissue similar to Barrett’s esophagus (BE): a sheet of tissue rolled into a
cylinder, with very limited mobility of cell lineages except during initial development. While our
simulations are inspired by BE, our conclusions should apply directly to neoplasms in two-
dimensional epithelial sheets such as colon, skin, bladder and lung, and conceptually similar
effects are also likely in three-dimensional tumors. The key factor is growth with limited mixing.

An increasingly common objective in taking multiple biopsies from a neoplastic tissues is to
look for evidence of natural selection or heightened mutation acting on specific clones. This is
distinct from standard methods of detecting selection or enhanced mutation via comparison of
single samples from many different tumors. A straightforward statistical approach to detecting
perturbing forces from multi-sample data would be to infer the evolutionary tree connecting
samples from the same individual, and test if that tree conforms to a molecular clock. We simu-
late this experiment on data which do have a molecular clock, and show that bulk-biopsy geno-
typing very often leads to the spurious rejection of the clock, and thus to a conclusion of non-
neutrality, even when the underlying data are completely neutral.

We emphasize that the bias we observe is not specific to the use of a phylogeny-based
molecular clock test, but will influence any formal or informal comparison of apparent muta-
tion content differences among biopsies. For example, if researchers use bulk genotyping to
identify a biopsy with an unusually high number of mutations, and conclude that the highly
mutant biopsy represents a genetically unstable lineage, they are implicitly assuming that bulk
data have a molecular clock in the absence of perturbing forces. As we will show, this is not the
case.

Methods
Model of the BE segment

We model the BE segment as a 300 x 300 grid of crypts rolled into a cylinder, approximating
the size of a typical BE segment. We treat a crypt as the basic replicative unit, since genetic drift
is expected to rapidly homogenize the genotype within each crypt. Crypts have a birth rate rep-
resenting crypt fission. According to Totafurno’s model of the crypt cycle, when stem cells dou-
ble in number crypt fission is triggered, which results in halving the doubled stem cell
population into two new daughter crypts [20]. In this study, we model the crypt fission cycle by
allowing a crypt to either eliminate a neighboring crypt or fill in a space lacking crypts. Crypts
also have a death rate, a dead crypt leaving an empty space.
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The BE segment is thought to expand from the gastro-esophageal junction. An alternative
possibility is that cells gain a BE phenotype and spread clonally from squamous duct glands that
are situated throughout the esophagus [21]. In both scenarios, BE segments must be rapidly
established, since BE segments have not been endoscopically observed in the process of expand-
ing. However, when we simulated the esophagus beginning from a uniform field of non-mutant
cells no tree structure arose even after many simulated decades. We do not show results for this
case as it is trivially predictable from coalescent theory: our simulations cover approximately 50
generations, and a thoroughly mixed population of size 90,000 will have an average of 1765 dis-
tinct ancestors 50 generations ago and will thus appear as approximately 1765 unrelated
patches. A less thoroughly mixed sheet of cells will be even patchier. This is not consistent with
actual BE data [1] which show mutations shared among biopsies. It is possible that BE arises in
situ and is then “overwritten” by an early selective sweep; but if so, this seems little different
from the BE segment itself arising by growth from one or a few ancestral crypts. We therefore
model the establishment of BE as an expansion from the gastro-esophageal junction.

Simulations

To simulate BE data we used the agent-based forward simulator of [22]. While this simulator
provides for loci whose mutant alleles modify the growth or mutation rates, in the majority of
experiments presented here we used a purely neutral model. We simulated 1000 neutral loci
for phylogeny inference. Mutations were scored as number of changes from ancestral state;
there was no back mutation. We considered neutral mutation rates per locus per crypt per year
(@) 0f 0.001 and 0.002. Data with the lower rate are fairly sparse, while data with the higher rate
are highly polymorphic. We set the probability that a dividing crypt could displace a neighbor
at 1. The crypt birth rate was 0.02 and death rate 0.001. We also did simulations with 100 neu-
tral loci and mutation rates of 0.001, 0.002, and 0.004, presented in Supporting Information.

For illustrative purposes we also did a small number of simulations with five potentially
selected loci, each having a mutation rate of 10~ per locus per crypt per year and a twofold
selective advantage for the mutant type over the wild type.

The mutation rates given here do not correspond directly to per-cell mutation rates since,
when a mutation arises in a crypt, it may be lost rather than fixed. The per-cell mutation rate
would be higher by a factor of the mean number of stem cells in the crypt. In any case our
mutation rates are chosen in order to give ample mutations for phylogenetic analysis with a
limited number of loci. Real data would have fewer mutations per locus, but far more loci. We
do not expect this to substantially change the results.

Numerical estimates of BE crypt birth and death rates are not available. Our chosen num-
bers, which were roughly inspired by values measured for human colon crypts [23], produce
an initial spread which is slower than in BE, and a subsequent steady state which probably has
faster turnover. However, this is conservative for our conclusions: a faster initial spread and
slower subsequent turnover with the same expected amount of mutation would show even
greater distortion of the molecular clock. We believe that the details of our parameter choice
will not affect our qualitative conclusions as long as the pattern of rapid spread followed by
slow turnover is conserved.

We started with a single randomly placed crypt and simulated 20 years of growth. This was
generally enough to allow crypts to fill the lower esophagus. A small proportion of simulations
resulted in the death of the nascent Barrett’s epithelium; these were discarded. We then ran-
domly chose 10 biopsies which were squares of 10x10 crypts, constrained not to overlap.
Rarely, a biopsy was found to contain no live crypts; in such cases the entire simulation was dis-
carded. Additional simulations were run to replace discarded simulations.
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These simulation conditions imply a molecular clock, as the mutation rate is the same in all
crypts. We tested for presence of a clock in single crypt samples and in biopsies of different sizes
using PAUP* 4.0 [24]. For analytic purposes we treated all loci with one or more mutations as
one state, and loci with zero mutations as another state. This corresponds to the presence/
absence scoring typically used for BE data. To enable use of available phylogenetic software,
these states were coded as purine and pyrimidine ambiguity codons. We tested both estimation
of the state frequencies from the data using the EMPIRICAL algorithm in PAUP* (results shown
in paper), and setting the frequencies equal (results shown in Supporting Information). We per-
formed maximum-likelihood analyses of the recoded data with and without the clock constraint,
and assessed the difference in log-likelihoods using a likelihood ratio test [25, 26] with a 5% sig-
nificance cutoff. When multiple tied trees were produced, we used the first listed tree for analysis.

This use of the likelihood ratio test can be criticized as it assumes that the clocklike and
non-clocklike best trees had the same topology [26], which was not always the case. We applied
the test to all pairs of trees, even those differing in topology. Our argument is that when the
topological difference is trivial (rearrangement across branches of near-zero length) the result
of the test will be almost exactly the same as it would for identical topologies; and when the
topological difference is non-trivial rejection of the clock is justified even though an exact sta-
tistical test is not available.

To measure the influence of biopsy size on detection of rate heterogeneity, we subsampled
our biopsies. That is, to produce a 4x4 biopsy we took a 4x4 subsample from the original 10x10
biopsy. To avoid dead crypts, we examined subsamples in turn starting in the upper left and
chose the first one in which at least 1 live crypt was found.

To measure the influence of detection threshholds, we used the same sets of simulated biop-
sies, but varied the cutoff used to establish the biopsy “genotype.” For example, when the cutoff
was 30%, we scored a mutation as present if it appeared in 30% or more of the sampled living
crypts from the biopsy, and absent otherwise.

In the simulations with 100 loci and g = 0.001, which had the smallest amount of informa-
tion per phylogeny, a few cases with large biopsies and stringent cutoffs could not be run. Strin-
gent cutoffs can generate biopsies with no detectable mutations, and having too many such
biopsies in a single tree causes failure of the phylogeny analysis. Such runs were discarded. No
more than 15/500 runs failed for any combination of conditions; the number of failed runs for
each condition are given in the legends to S5 and S6 Tables.

Our simulated data is archived on Dryad at http://dx.doi.org/10.5061/dryad.hf93c.

Results

Our simulations were inspired by Barrett’s esophagus (BE), a neoplastic condition in which the
lower esophagus is colonized by a tissue organized into crypts. We treat crypts as the funda-
mental unit of our simulation, and assume that all spread of genotypes results from reproduc-
tion (fission) of crypts which either replace their neighbors or spread into unoccupied areas.
The details of the simulator are described in [22].

At the beginning of the simulation each crypt began with an identical genome of 100 or
1000 loci. Mutations in these loci were selectively neutral: they were used solely to infer the
relationships among biopsies.

The first striking effect of bulk sampling was seen when the simulation was seeded with a
completely filled grid of crypts. At the end of the simulation the tissue consisted of tiny patches
of related crypts, each patch unrelated to its neighbors. This reflects the very low gene flow in a
static crypt-organized tissue without natural selection. In a tissue of this kind, bulk genotyping
would lead to the incorrect conclusion that there are few or no mutations present.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004413  April 22, 2016 5/15
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Fig 1. Simulated BE segment. Black regions represent not-yet-colonized areas of the esophagus, and
small black dots represent crypts which have died and not yet been replaced. Colors indicate the first three
principal components of a PCA analysis of crypt genotypes at 1000 neutral loci, essentially labeling distinct
clones or cell lineages. Initial seeding of the esophagus was along the lower border of the figure. The left and
right sides of the image wrap around.

doi:10.1371/journal.pcbi.1004413.9001

Bulk biopsy sampling of actual BE segments shows abundant mutations [1]. We therefore
considered a theory of BE origin in which it spreads from a few crypts. We represented this by
seeding the simulation with a single randomly placed crypt. Biopsies sampled from such a tis-
sue did contain genetic variants detectable with bulk genotyping, consistent with actual BE
data.

The spatial distribution of mutations in real BE segments is poorly known, as normally only
a few biopsies are analyzed per individual. In our simulations we could readily examine the
entire pattern, as well as taking simulated biopsies. The simulated BE segments developed a
strongly sectored pattern, with small diverse patches of cells near the original seeding area, and
larger, more homogeneous patches far from it. Sharp borders between genetically distinct line-
ages were seen; these borders ran vertically along the simulated esophagus, roughly parallel to
the direction of tissue growth. A typical example, captured partway through colonization of the
simulated esophagus, is shown in Fig 1.

These patterns reflect the effect of “gene surfing” [27]. Gene surfing is a phenomenon in
population genetics, observed when a population is rapidly expanding into a new geographical
region but the mobility of individuals is limited. Colonization is therefore driven by a few indi-
viduals on the leading edge of the population, and their genotypes will be disproportionately
represented in the newly colonized area. Patterns visually similar to our simulations can be
seen when two different strains of bacteria are mixed and seeded onto a plate: sectors of pure
strains are generated by replication of the few individuals on the colony edge [28] even in the
absence of any selective advantage.

Our simulations, seeded with a single crypt, thus produced data that were broadly consistent
with observations of actual BE segments. We next asked whether biopsies sampled from these
purely neutral simulations would pass tests for neutrality. Based on ten biopsy samples from
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each of 100 simulated BE segments, we inferred phylogenetic trees and tested whether those
trees rejected the molecular clock at the 5% level. We considered biopsies of sizes from 1 (a sin-
gle crypt) to 10x10 (100 crypts). For biopsies of size greater than 1, we also considered detec-
tion cutoffs from 10% (mutations present in 10% or more of crypts were scored) to 100% (only
mutations present in all crypts were scored).

If biopsy sampling provided a phylogenetically unbiased sample of mutations occuring in
our data, we would expect to see a molecular clock in our inferred trees with any size of biopsy.
The proportion of inferences (out of 500) rejecting the molecular clock are shown in Figs 2 and
3 and are presented in table form in S1 and S2 Tables. In these figures, the white color seen at
the left-hand edge (single-crypt samples) represents an acceptable clock rejection rate of 5%.
(Note that detection cutoff does not affect the results from single crypts, and thus all of the left-
hand results represent the same analyses.) All larger biopsy sizes, even 2x2 biopsies with only 4
crypts, rejected the clock at high rates for all conditions studied.

The choice of cutoff had a noticable impact on clock rejection. Cutoffs in the 30%-50%
range were better than higher or lower cutoffs; the larger the biopsy, the lower the optimal cut-
oft. However, no cutoff tested restored the clocklike nature of the underlying data.

Superficially satisfactory results can be obtained by using only 100 neutral loci and inferring
frequencies of the mutant and non-mutant states (S3 Fig). However, this apparent improve-
ment merely represents lack of statistical power to detect clock violations, as seen by the dra-
matic worsening of results with 1000 neutral loci and the same model (Fig 2).

Use of equal frequencies of mutant versus non-mutant states produces higher clock rejec-
tion: results are shown for completeness in S1 and S2 Figs for 1000 neutral loci and S4, S5 and
S6 Figs for 100 loci.

We show a randomly selected pair of inferred trees from the simulation of S6 Table in Fig 4.
The topologies of the two trees differed in ordering of the short bottommost branches. Larger
discrepancies were seen in the branch lengths. The single-crypt tree (A) showed some hetero-
geneity of branch lengths, but it was well within the expected range for a data set of this size,
and the clock was not rejected. The 10x10 crypt tree (B) was much more distorted, and rejected
the molecular clock. It would be tempting to conclude that biopsy 10, in particular, had a
higher mutation rate than biopsy 8; yet they arose from a simulation with perfectly equal rates.

Discussion

We have presented our results in terms of rejection of the molecular clock in a formal test.
However, their significance is not limited to such tests. When we first examined bulk-geno-
typed BE data for multiple biopsies per patient we saw a striking difference in the mutation
content of different biopsies. It was natural to read this as a difference in the underlying muta-
tion rate. After further thought we realized that it could also reflect a difference in the growth
rate, since rapidly growing cells will form more uniform samples and therefore appear to have
more mutations. Only after performing simulations did we discover that hetereogeneity in
apparent mutation content is a general feature of this type of data and should be expected even
when neither mutation rate nor growth rate varies. Comparison of Figs 2 and S5 shows that the
more informative the data, the stronger this tendency to reject the clock. The clock test formal-
izes a scientist’s intuition, but both the test and the intuition are liable to error in this case.

We stress that our findings do not challenge the important role non-neutral processes play
in the development of cancer. Instead, they warn us against drawing conclusions about non-
neutrality that cannot be supported.

Two factors combine to produce this spurious evidence for non-neutrality. Gene surfing
causes biopsies taken near the origin of the growing population to be much more

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004413  April 22, 2016 7/15



@-PLOS |s3toar o

Bulk Genotyping Detects Spurious Mutation-Content Heterogeneity

10%

20%

30%

40%

50%

60%

Detection cutoff

70%

80%

90%

100%

1x1 2x2

3x3

4x4 5x5 6X6 7x7 8x8 9x9 10x10

Biopsy size

Fig 2. Rejection of the clock with 1000 neutral loci, y = 0.001. Heat-map showing the percentage of cases rejecting the molecular clock at the 5% level;
lighter colors indicate lower rejection of the clock.

doi:10.1371/journal.pcbi.1004413.9002

heterogeneous than those taken far from the origin (see Fig 1). Bulk-biopsy sampling then
translates this difference in diversity into a difference in detectable mutation content: a homo-
geneous cell sample will have more high-frequency mutations than a heterogeneous one, and
bulk sampling detects only high-frequency mutations.

This is most easily understood by considering common ancestry. Consider, as an example, a
detection cutoff of 50%. Mutations which reach this cutoff must exist in 50% or more of the cells
in the biopsy, and thus, barring convergent evolution, must be inherited from a common ances-
tor of 50% of the cells. If this common ancestor existed early in the development of the tissue, it
likely had relatively few mutations, so few mutations will be shared by its descendants. If it
existed more recently, it likely had more mutations (since mutations accumulate over time) and
its descendants will have more shared mutations. Cells from a biopsy whose common ancestor
is ancient will, individually, have just as many mutations, but a much larger proportion will be
at low frequency in the biopsy. Such mutations are difficult to detect with bulk genotyping.

We did not model complicating factors in analysis of bulk data such as differences in ploidy
among lineages or typing errors. However, when a bias is present in analysis of clean, error-free
genotypic data, there is no reason to believe that better results would come from dirtier data.
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Fig 3. Rejection of the clock with 1000 neutral loci, y = 0.002. Heat-map showing the percentage of cases rejecting the molecular clock at the 5% level;
lighter colors indicate lower rejection of the clock.

doi:10.1371/journal.pcbi.1004413.9003

Regrettably, no tested frequency cutoff rule was successful in resolving this problem. We

suggest three possible approaches.

(1) Examine single-cell or single-crypt samples in preference to bulk genotyping. Single-crypt

samples from our simulation saw a molecular clock even though all larger samples did
not. Small sample genotyping (single crypts or cells) is technically challenging but possible
in some systems [9, 29]. This approach completely avoids the hazards of bulk genotyping.
However, a pure small-sample genotyping strategy may be inefficient, as little information
is gained about mutation frequency unless a large number of small samples are genotyped.
A single small-sample genotype is probably less useful than a bulk genotype for detecting
biologically critical mutations such as putative “drivers” as it will also contain many bio-
logically irrelevant private polymorphisms.

(2) Combine small-sample and bulk genotyping. For example, a sample could consist of a

bulk genotype of the whole biopsy and individual genotypes of a few cells or crypts from
it, as done for example by [11]. The single crypts provide information about the mutation
content of individual crypts, while the bulk samples provide frequency information [30].
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Fig 4. Single-crypt and bulk-biopsy inferred trees. Trees were inferred, without assuming a clock, from
the simulation of S6 Table. Upper panel, sample of size 1 crypt. Lower panel, bulk sample of size 10x10
crypts using a 40% cutoff.

doi:10.1371/journal.pcbi.1004413.9004

A biopsy in which the individual crypts show far more mutations than the bulk sample is
revealed to be heterogeneous, and frequencies inferred from it can be viewed in this light.

(3) Determine genetic diversity within a biopsy by computational means. Considerable recent
work has focused on determining the number and relative frequencies of different lineages
in a biopsy [31-33]. The problem is extremely challenging because different cells may
vary in underlying ploidy as well as in mutation content. Progress in this area may require
both computational improvements in deconvolution algorithms and experimental
improvements in data collection.

Once subclones within a biopsy have been detected via approaches (2) or (3), this informa-
tion needs to be incorporated into the analysis. For analytic methods involving phylogenetics,
mixed samples are particularly challenging because when two variants are found at similar fre-
quency in a sample, there is no easy way to determine whether they represent one lineage with
two mutations or two lineages with one mutation each [33]. In principle it would be possible
for a statistical analysis to sum over these possibilities using an approach analogous to that of
[34]. The high computational burden of this approach will have to be compared with the exper-
imental burden of small-sample typing. Alternatively, one could use the minority alleles to esti-
mate biopsy diversity, without attempting to reconstruct minority genotypes.

One potential use of diversity estimations would be as the basis for corrected mutational dis-
tances to be used in phylogeny inference. Simulations or heuristics could be used to establish
the relationship between observed mutational distance between two biopsies, internal diversity
of each biopsy, and the true mutational distance. Distances corrected according to this relation-
ship could then be used in a distance-based phylogeny algorithm to produce trees whose
branch lengths more accurately represented the underlying mutational frequencies. We are
currently developing such an algorithm.
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Accurate inference of branch lengths is important in distinguishing, for example, a mutation
rate increase in a specific lineage (presumably due to a mutator mutation or epigenetic change)
from a mutation rate increase at a given time across the entire tissue (presumably due to an
environmental change, since it manifests in unrelated lineages). Naive tree-drawing based on
uncorrected data, as shown by the results in this paper, cannot answer such questions as the
branch lengths of its trees are not proportional to time. This is shown dramatically in real BE
data, where no separation is seen between data collected from time points many years apart
[1]. This situation makes it difficult to draw conclusions about changes in rate over time,
though in some cases coherent patterns have been detected [1]. Genetic distances corrected for
the bias inherent in bulk-biopsy sampling could allow much more accurate separation of neu-
tral from non-neutral processes in the development of tissues and cancers.

One further positive finding from this study is that the spread of a growing tissue tends to
produce a characteristic fan-shaped pattern, as seen in Fig 1. As dense sampling of cancer and
pre-cancer tissues becomes more feasible, it will become possible to detect this pattern or devia-
tions from it which may indicate selection. An example is shown in Fig 5, which shows four
typical results from a simulation with selected as well as neutral mutations. Note the disruption

A B

¥

: ‘g i-
Fig 5. Simulation including a positively selected locus. Panels A-D represent the results of four
independent simulations with selection. Black regions represent not-yet-colonized areas of the esophagus,
and small black dots represent crypts which have died and not yet been replaced. Colors indicate the first
three principal components of a PCA analysis of crypt genotypes at 100 neutral loci, essentially labeling
distinct clones or cell lineages. Initial seeding of the esophagus was in the bottom-center of the figure. The left
and right sides of the image wrap around. Arrows indicate clones carrying a selectively advantageous
mutation. These images were chosen from a larger collection to illustrate typical selection signatures and do
not represent a random sample. Selected clones appear more homogeneous and are round in shape
whereas clones which expanded neutrally are wedge-shaped.

doi:10.1371/journal.pcbi.1004413.9005
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of the fan pattern by lateral growth of selected clones. The spatial distribution of clones within
an expanding tumor or neoplasm may therefore reveal selective processes, as has been explored
by [11] in colorectal cancer. In other words, these simulations provide predictions for the
nascent field of tumor phylogeography. More work is needed both to detect these patterns and
to assess their significance.
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S5 Fig. Rejection of the clock with 100 neutral loci, g = 0.002, equal allele frequencies.
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(PDF)
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(PDF)

Acknowledgments

We thank Jon Yamato, Brian Reid, Carissa Sanchez, Patty Galipeau, Thomas Paulson, Ruchira
Datta, Trevor Graham, and Joseph Felsenstein for helpful discussions, and Jon Yamato for
assistance in preparing the paper.

Author Contributions

Conceived and designed the experiments: RK CCM MKK. Performed the experiments: RK
MKK. Analyzed the data: RK MKK. Contributed reagents/materials/analysis tools: RK MKK.
Wrote the paper: RK CCM MKK.

References

1. Kostadinov RL, Kuhner MK, Li X, Sanchez CA, Galipeau PC, et al. (2013) NSAIDs modulate clonal evo-
lution in Barrett's esophagus. PLoS Genetics 9: e1003553. doi: 10.1371/journal.pgen.1003553 PMID:
23785299

2. Campbell P, Pleasance E, Stephens P, Dicks E, Rance R, et al. (2008) Subclonal phylogenetic struc-
tures in cancer revealed by ultra-deep sequencing. PNAS 105: 13081-13086. doi: 10.1073/pnas.
0801523105 PMID: 18723673

3. Reid B, Kostadinov R, Maley C (2011) New strategies in barrett’s esophagus: Integrating clonal evolu-
tionary theory with clinical management. Clinical cancer research 17: 3512-3519. doi: 10.1158/1078-
0432.CCR-09-2358 PMID: 21498395

4. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, et al. (2011) Tumor evolution inferred by single-cell
sequencing. Nature: 1-6.

5. AndersonK, Lutz C, van Delft F, Bateman C, Guo Y, et al. (2011) Genetic variegation of clonal architec-
ture and propagating cells in leukaemia. Nature 469: 356—361. doi: 10.1038/nature09650 PMID:
21160474

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004413  April 22, 2016 13/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004413.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004413.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004413.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004413.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004413.s014
http://dx.doi.org/10.1371/journal.pgen.1003553
http://www.ncbi.nlm.nih.gov/pubmed/23785299
http://dx.doi.org/10.1073/pnas.0801523105
http://dx.doi.org/10.1073/pnas.0801523105
http://www.ncbi.nlm.nih.gov/pubmed/18723673
http://dx.doi.org/10.1158/1078-0432.CCR-09-2358
http://dx.doi.org/10.1158/1078-0432.CCR-09-2358
http://www.ncbi.nlm.nih.gov/pubmed/21498395
http://dx.doi.org/10.1038/nature09650
http://www.ncbi.nlm.nih.gov/pubmed/21160474

B PLOS | Suryanonat

Bulk Genotyping Detects Spurious Mutation-Content Heterogeneity

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.

27.

Gerlinger M, Rowan A, Horswell S, Larkin J, Endesfelder D, et al. (2012) Intratumor heterogeneity and
branched evolution revealed by multiregion sequencing. New England journal of medicine 366: 883—
892. doi: 10.1056/NEJMoa1113205 PMID: 22397650

Nik-Zainal S, Loo PV, Wedge D, Alexandrov L, Greenman C, et al. (2012) The life history of 21 breast
cancers. Cell 149:994-1007. doi: 10.1016/j.cell.2012.04.023 PMID: 22608083

Potter N, Ermini L, Papaemmanuil E, Cazzangiga G, Vijayaraghavan G, et al. (2013) Single cell muta-
tional profiling and clonal phylogeny in cancer. Genome research. doi: 10.1101/gr.159913.113 PMID:
24056532

Wang Y, Waters J, Leung M, Unruh A, Roh W, et al. (2014) Clonal evolution in breast cancer revealed
by single nucleus genome sequencing. Nature 512: 155-160. doi: 10.1038/nature13600 PMID:
25079324

Johnson B, Mazor T, Hong C, Barnes M, Aihara K, et al. (2014) Mutational analysis reveals the origin
and therapy-driven evolution of recurrent glioma. Science 343: 189-193. doi: 10.1126/science.
1239947 PMID: 24336570

Sottoriva A, Kang H, Ma Z, Graham T, Salaman M, et al. (2015) A big bang model of human colorectal
cancer growth. Nature Genetics 47:209-218. doi: 10.1038/ng.3214 PMID: 25665006

Yachida S, Jones S, Bozic |, Antal T, Leary R, et al. (2010) Distant metastasis occurs late during the
genetic evolution of pancreatic cancer. Nature 467: 1114-1117. doi: 10.1038/nature09515 PMID:
20981102

van Delft F, Horsely S, Colman S, Anderson K, Bateman C, et al. (2011) Clonal origins of relapse in
etv6-runx1 acute lymphoblastic leukemia. Blood 117: 6247—-6254. doi: 10.1182/blood-2010-10-
314674 PMID: 21482711

Walter M, Shen D, Ding L, Shao J, Koboldt D, et al. (2012) Clonal architecture of secondary acute mye-
loid leukemia. N Engl J Med 366: 1090-1098. doi: 10.1056/NEJMoa1106968 PMID: 22417201

DingL, Ley T, Larson D, Miller C, Koboldt D, et al. (2012) Clonal evolution in relapsed acute myeloid
leukaemia revealed by whole-genome sequencing. Nature 481: 506-510. doi: 10.1038/nature10738
PMID: 22237025

Li X, G P, Paulson T, Sanchez C, Arnaudo J, Liu K, et al. (2014) Temporal and spatial evolution of
somatic chromosomal alterations: A case-cohort study of barrett’s esophagus. Cancer Prev Res: 114—
127.

Peiffer D, Le J, Steemers F, Chang W, Jenniges T, et al. (2006) High-resolution genomic profiling of
chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16: 1136—1148.
doi: 10.1101/gr.5402306 PMID: 16899659

Shah S, Morin R, Khattra J, Prentice L, Pugh T, et al. (2009) Mutational evolution in a lobular breast
tumour profiled at single nucleotide resolution. Nature 461: 809—813. doi: 10.1038/nature08489 PMID:
19812674

Cheng D, Cheng J, Mitchell T, Syed A, Zehir A, et al. (2014) Detection of mutations in myeloid malig-
nancies through paired-sample analysis of microdroplet-pcr deep sequencing data. J Mol Diagn 16:
504-518. doi: 10.1016/j.jmoldx.2014.05.006 PMID: 25017477

Totafurno J, Bjerknes M, Cheng H (1987) The crypt cycle. Crypt and villus production in the adult intesti-
nal epithelium. Biophysical Journal 52: 279-294. doi: 10.1016/S0006-3495(87)83215-0 PMID:
3663832

Leedham S, Preston S, McDonald S, Elia G, Bhandari P, et al. (2008) Individual crypt genetic heteroge-
neity and the origin of metaplastic glandular epithelium in human barrett’s oesophagus. Gut 57: 1041—
1048. doi: 10.1136/gut.2007.143339 PMID: 18305067

Kostadinov R (2012) Evolutionary dynamics of neoplastic cell populations in Barrett's esophagus. Dis-
sertation, University of Pennsylvania, Philadelphia. URL http://repository.upenn.edu/dissertations/
AAI3509163.

Cheng H, Matthew Bjerknes, Jack Amar, Geoffrey Gardiner (1986) Crypt production in normal and dis-
eased human colonic epithelium. The Anatomical Record 216: 44—48. doi: 10.1002/ar.1092160108
PMID: 3094402

Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version
4.0. Sinauer Associates, Sunderland, Massachusetts.

Felsenstein J (1981) Evolutionary trees from dna sequences: a maximum likelihood approach. J Molec-
ular Evolution 17: 368-376. doi: 10.1007/BF01734359

Felsenstein J (1988) Phylogenies from molecular sequences: Inference and reliability. Annual Review
of Genetics 22: 521-565. doi: 10.1146/annurev.ge.22.120188.002513 PMID: 3071258

Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions. Trends
Ecol Evol 23: 347-351. doi: 10.1016/j.tree.2008.04.004 PMID: 18502536

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004413  April 22, 2016 14/15


http://dx.doi.org/10.1056/NEJMoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
http://dx.doi.org/10.1016/j.cell.2012.04.023
http://www.ncbi.nlm.nih.gov/pubmed/22608083
http://dx.doi.org/10.1101/gr.159913.113
http://www.ncbi.nlm.nih.gov/pubmed/24056532
http://dx.doi.org/10.1038/nature13600
http://www.ncbi.nlm.nih.gov/pubmed/25079324
http://dx.doi.org/10.1126/science.1239947
http://dx.doi.org/10.1126/science.1239947
http://www.ncbi.nlm.nih.gov/pubmed/24336570
http://dx.doi.org/10.1038/ng.3214
http://www.ncbi.nlm.nih.gov/pubmed/25665006
http://dx.doi.org/10.1038/nature09515
http://www.ncbi.nlm.nih.gov/pubmed/20981102
http://dx.doi.org/10.1182/blood-2010-10-314674
http://dx.doi.org/10.1182/blood-2010-10-314674
http://www.ncbi.nlm.nih.gov/pubmed/21482711
http://dx.doi.org/10.1056/NEJMoa1106968
http://www.ncbi.nlm.nih.gov/pubmed/22417201
http://dx.doi.org/10.1038/nature10738
http://www.ncbi.nlm.nih.gov/pubmed/22237025
http://dx.doi.org/10.1101/gr.5402306
http://www.ncbi.nlm.nih.gov/pubmed/16899659
http://dx.doi.org/10.1038/nature08489
http://www.ncbi.nlm.nih.gov/pubmed/19812674
http://dx.doi.org/10.1016/j.jmoldx.2014.05.006
http://www.ncbi.nlm.nih.gov/pubmed/25017477
http://dx.doi.org/10.1016/S0006-3495(87)83215-0
http://www.ncbi.nlm.nih.gov/pubmed/3663832
http://dx.doi.org/10.1136/gut.2007.143339
http://www.ncbi.nlm.nih.gov/pubmed/18305067
http://repository.upenn.edu/dissertations/AAI3509163
http://repository.upenn.edu/dissertations/AAI3509163
http://dx.doi.org/10.1002/ar.1092160108
http://www.ncbi.nlm.nih.gov/pubmed/3094402
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1146/annurev.ge.22.120188.002513
http://www.ncbi.nlm.nih.gov/pubmed/3071258
http://dx.doi.org/10.1016/j.tree.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18502536

B PLOS | Suryanonat

Bulk Genotyping Detects Spurious Mutation-Content Heterogeneity

28.

29.

30.

31.

32.

33.

34.

Korolev K, Miiller M, Karahan N, Murray A, Hallatschek O, et al. (2012) Selective sweeps in growing
microbial colonies. Phys Biol 9: 026008. doi: 10.1088/1478-3975/9/2/026008 PMID: 22476106

Xu X, HouY,Yin X, Bao L, Tang A, et al. (2012) Single-cell exome sequencing reveals single-nucleo-
tide mutation characteristics of a kidney tumor. Cell 148: 886—895. doi: 10.1016/j.cell.2012.02.025
PMID: 22385958

Eirew P, Steif A, Khattra J, Ha G, Yap D, et al. (2014) Dynamics of genomic clones in breast cancer
patient xenografts at single-cell resolution. Nature. doi: 10.1038/nature 13952 PMID: 25470049

Roth A, Khattra J, Yap D, Wan A, Laks E, et al. (2014) Pyclone: statistical inference of clonal population
structure in cancer. Nature Methods 11: 396-398. doi: 10.1038/nmeth.2883 PMID: 24633410

Ha G, Roth A, Khattra J, Ho J, Yap D, et al. (2013) Titan: inference of copy number architectures in
clonal cell populations from tumor whole-genome sequence data. Genome Res 24: 1881-1893. doi:
10.1101/gr.180281.114

Andor N, Harmess JV, Muller S, Mewes HW, Petritsch C (2014) Expands: expanding ploidy and allele
frequency on nested subpopulations. Bioinformatics 30: 50—60. doi: 10.1093/bioinformatics/btt622
PMID: 24177718

Kuhner MK, Beerli P, Yamato J, Felsenstein J (2000) Usefulness of single nucleotide polymorphism
data for estimating population parameters. Genetics 156: 439-447. PMID: 10978306

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004413  April 22, 2016 15/15


http://dx.doi.org/10.1088/1478-3975/9/2/026008
http://www.ncbi.nlm.nih.gov/pubmed/22476106
http://dx.doi.org/10.1016/j.cell.2012.02.025
http://www.ncbi.nlm.nih.gov/pubmed/22385958
http://dx.doi.org/10.1038/nature13952
http://www.ncbi.nlm.nih.gov/pubmed/25470049
http://dx.doi.org/10.1038/nmeth.2883
http://www.ncbi.nlm.nih.gov/pubmed/24633410
http://dx.doi.org/10.1101/gr.180281.114
http://dx.doi.org/10.1093/bioinformatics/btt622
http://www.ncbi.nlm.nih.gov/pubmed/24177718
http://www.ncbi.nlm.nih.gov/pubmed/10978306

