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Abstract
There has been an explosion of research on host-associated microbial communities (i.e.,

microbiomes). Much of this research has focused on surveys of microbial diversities across

a variety of host species, including humans, with a view to understanding how these micro-

biomes are distributed across space and time, and how they correlate with host health,

disease, phenotype, physiology and ecology. Fewer studies have focused on how these

microbiomes may have evolved. In this paper, we develop an agent-based framework to

study the dynamics of microbiome evolution. Our framework incorporates neutral models of

how hosts acquire their microbiomes, and how the environmental microbial community that

is available to the hosts is assembled. Most importantly, our framework also incorporates a

Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution

is studied on an evolutionary timescale. Our results indicate that the extent of parental con-

tribution to microbial availability from one generation to the next significantly impacts the

diversity of microbiomes: the greater the parental contribution, the less diverse the micro-

biomes. In contrast, even when there is only a very small contribution from a constant envi-

ronmental pool, microbial communities can remain highly diverse. Finally, we show that our

models may be used to construct hypotheses about the types of processes that operate to

assemble microbiomes over evolutionary time.

Author Summary

Microbial communities associated with animals and plants (i.e., microbiomes) are impli-
cated in the day-to-day functioning of their hosts. However, we do not yet know how these
host-microbiome associations evolve. In this paper, we develop a computational frame-
work for modelling the evolution of microbiomes. The models we use are neutral, and
assume that microbes have no effect on the reproductive success of the hosts. Therefore,
the patterns of microbiome diversity that we obtain in our simulations require a minimal
set of assumptions relating to how microbes are acquired and how they are assembled in
the environment. Despite the simplicity of our models, they help us understand the pat-
terns seen in empirical data, and they allow us to build more complex hypotheses of host-
microbe dynamics.
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Introduction
Microbial communities associated with animals and plants (i.e., microbiomes) are implicated
in the day-to-day functioning of their hosts in a variety of ways; microbes provide hosts with
access to nutrients [1–4], they protect against pathogens [5,6], confer drought resistance [7],
mediate hosts’ social interactions [8], and modulate host behavior [9–11]. Not surprisingly,
many studies have related human health to the human microbiome. Researchers have pro-
posed that perturbations in human microbiome composition may be associated with a range of
disorders, including inflammatory bowel disease [12–14], anxiety and depression [15], obesity
[16,17], autism [18,19], allergic responses [20] and respiratory ailments [21–23]. There is a
growing number of large-scale projects underway to characterize and analyze the collection of
microbes linked to human health and disease using advanced sequencing methods and tech-
nologies, including the Human Microbiome Project [24] and the European Metagenomics of
the Human Intestinal Tract [25].

Many microbiome studies focus on descriptions of microbial dynamics within hosts over
short periods [26–28], or on the composition and diversity of microbial communities amongst
hosts with different phenotypes or under different treatment regimes [17,29], but there is
increasing recognition that host-microbe dynamics need to be studied within the context of a
unified ecological or evolutionary framework. In a recent paper, Costello et al [30] listed four
ecological processes that mediate the diversity of human microbiota: environmental selection,
whereby the host environment favors the presence and persistence of certain microbial taxa;
historical contingency, in which differences in the timing and order of microbial colonization
leads to differences in succession and climax communities; random sampling, where stochastic
factors influence community assemblages; and dispersal limitation, where the availability of
microbial taxa is restricted by the local structure of host communities and environments. Yeo-
man et al [31] discuss many of these same factors, and frame the challenge of understanding
microbial diversity through the lens of evolution, identifying selection induced by competition
between individuals of the same or different microbial species, and host influences including
phylogeny, as important drivers of host-microbial variation.

In this paper, we take the first steps in developing an explicit framework for modelling the
evolutionary and ecological dynamics of microbial communities within a population of hosts.
The models we use are related to some of those that metacommunity theorists work with
[32,33], specifically, neutral models of ecology and biodiversity [34], but there is one significant
difference. Standard spatial models of community assembly, biogeography and biodiversity
assume that areas available for colonization remain indefinitely and are static. These models do
not apply to the evolution of microbiomes because the “spaces” these microbial communities
colonize–that is, the hosts–share an evolutionary history characterized by lineages that persist
or go extinct. For this reason, the pairing of host genealogy with microbiome assembly may
lead to different patterns of biodiversity than those expected under existing models of micro-
bial community assembly and metacommunity theory.

We develop an agent-based framework, similar to that used recently by Hellweger et al [35],
to capture the emergent patterns of microbial diversity over many host generations. In contrast
to Hellweger et al, we do not model mutations and speciation in microbial lineages but focus
instead on how ecological and evolutionary sampling processes affect the standing variation of
microbes in the environment and hosts. The neutral processes that are encapsulated in our
framework are based on those that have been proposed by others [30,31] with the added
dimensions of an evolutionary timescale and a genealogy of hosts, both of which contribute to
shaping the eventual composition and variation of microbial communities within and between
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hosts. Our models do not assume that hosts differ in their reproductive success as a conse-
quence of their microbial communities; nor do our models assume differences amongst
microbes in their propensities to persist in the host or the environment, or in their abilities to
disperse. Consequently, whereas our models do not capture the complexity of processes that
are likely to mediate the evolution of microbiomes, they serve as minimalist null models against
which empirical patterns may be compared.

Our framework is a generic one, and we have not developed it specifically for any one spe-
cies of host, or indeed, any one systemic compartment within a host. Instead, our models incor-
porate simple host mechanisms for microbial acquisition, and we explore the effects of
parental inheritance of the microbiome, and microbial recruitment from the environment. Our
results indicate that parental inheritance tends to reduce microbial diversity and increase
homogeneity within hosts, while ongoing environmental acquisition works to maintain micro-
bial heterogeneity within hosts. Interestingly, we observe a non-linear relationship between the
degree of parental inheritance and between-host differences in microbiome composition.
Finally, we show how these neutral patterns allow us to make predictions about the processes
that are important in shaping microbiome diversity when applied to empirical data.

The models
Our framework applies to a population of hosts and an available pool of microbial colonists. As
a first step, we assume that hosts do not exert any preferences on the microbial taxa they
acquire. Similarly, we assume that microbes do not interfere with host reproductive capacity,
or the survivorship and reproductive success of other microbes in the community. As will
become clear, the only indirect effects that influence microbial recruitment and persistence
from one generation of hosts to the next are competition for space within hosts and the relative
abundance of microbial taxa. Simply put, we assume that the ecological and evolutionary pro-
cesses that operate on hosts and their microbiomes are neutral; in this regard, our framework is
analogous to neutral theories in evolutionary biology [36,37], ecology and biodiversity [34].
We expand on this analogy later, but for now, we note that neutral theories provide parsimoni-
ous accounts of the types of patterns that can emerge in complex systems, they serve as null
models for statistical hypothesis tests, and they provide platforms upon which we may con-
struct more elaborate representations of these same systems [38].

In this framework, hosts reproduce asexually in discrete generations, following a neutral
Wright-Fisher process [39,40], where each individual in a succeeding generation chooses a par-
ent randomly from the preceding generation. Hence, with a population of hosts of constant
size N, all asexual individuals will share a common ancestor after 2N generations, on average.
In our models, asexual reproduction is a computational convenience, and can be replaced with
sexual reproduction without changing the essential patterns that we observe.

We model how hosts acquire their microbiomes in three ways (Fig 1). First, under a strict
“parental-acquisition” (PA) process, all hosts acquire their microbial communities directly
from their parents. Second, with strict “environmental-acquisition” (EA), hosts acquire their
microbiomes solely from the environment. Between these two extremes, we also allow a third
“mixed-acquisition” (MAx) process, whereby hosts acquire some percentage, x%, of their
microbiomes from their parents and (100-x)% from the environment. MA0 is exactly equiva-
lent to EA, and MA100 to PA; as such, EA and PA designate boundary conditions of the eco-
logical processes that mediate microbial acquisition in hosts.

It is worth pausing at this point to clarify what we mean when we say that hosts acquire
their microbiomes from their “parents” or their “environments”. Our models do not explicitly
take account of the life events–illness, infections, changes in environments or diets–of each
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host within a generation, nor does it consider microbial fluxes within the lifespan of each host.
Instead, the microbial composition of each host is essentially measured as an aggregate over
the single generation that the host exists. Consequently, when we quantify the percentage of
microbes from parents and environment using, say, MA10, we mean that over the life of the
host, 90% of its microbes come from the environment and 10% from its parent. In our models,
it is possible that the parental contribution happened in the first 10% of the host’s life, or it
may be that over the entire lifespan of the host, there was an ongoing contribution by the par-
ent that amounted to 10% of the microbial composition.

Since we allow hosts to recruit microbes from an “environment”, we need to define how the
microbial content of this environment is constituted. In simulations, we characterize microbial
composition using a distribution of taxa’ relative abundances. We propose three processes that
determine the composition of the pool of microbes available for recruitment. First, we assume
that the environment has a microbial composition that remains fixed over time. For the “fixed
environment” (FE), all taxa are present in the environment throughout the simulation, and are
available to every generation of hosts. The second process we propose involves a changing envi-
ronmental microbial profile, whereby the relative abundance of each microbial taxon available
to the hosts in a given generation, is an aggregate of their abundances from all hosts of the

Fig 1. The relationship among parents, offspring and environment in different environmental and
acquisition models. The columns represents different models of the environmental pool; the rows
represents different models of microbiome acquisition. Arrows indicate how the environmental community is
assembled for each new generation, and how offspring acquire their microbiomes. The values of y% and x%
represent the percentage of host contribution under mixed environment (ME), and the percentage of parental
inheritance under mixed acquisition (PA), respectively.

doi:10.1371/journal.pcbi.1004365.g001
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preceding generation. Under this “pooled-environment” (PE), microbial composition is reflec-
tion of what was present in the parents of the current generation of hosts. A third, intermediate,
process is a combination of the previous two “environments”: the environmental microbial
pool available for recruitment contains a percentage, y%, from the parental pool of microbes,
and (100-y)% of microbes from the fixed environment. Under this “mixed environment”
(MEy), the proportion of contribution from host microbiomes is given by y. As with our acqui-
sition models, ME0 and ME100 are equivalent to the boundaries FE and PE, respectively.

Our framework allows us to combine different host-acquisition processes with different
ways of constructing the pool of available microbes in the environment. Conceptually, each of
these combinations is a particular neutral model, capturing some of the elements previously
discussed in the literature. For instance, PA or MAx incorporate the phylogenetic dependencies
that Yeoman et al [31] discuss, and EA x PE is equivalent to what Costello et al [30] call dis-
persal limitation, whereby the local host community influences microbial composition. It is
worth noting that the combinations PA x (FE, MEy, PE)–read as “PA in combination with FE,
with MEy or with PE”–will give identical results. This is because, in all cases, the environment
contributes nothing to host microbial content (see the first row in Fig 1).

We model the construction of the microbial community in each host by competitive ran-
dom sampling with replacement. Under this process, each host allows only a fixed and limited
number of microbes to populate its microbiome. If microbial acquisition occurs under EA,
each host samples randomly from the available pool of taxa according to the relative abun-
dance of each taxon in the environment. In the case of MAx, x% of microbes are selected from
the parent and (100-x)% from the environment. If hosts acquire their microbial taxa under PA,
then all microbes are inherited from the hosts’ parents, although the relative abundance of each
taxon fluctuates multinomially. By constructing microbial communities in this way, we allow
stochastic factors and indirect competition to modify taxon composition within and between
hosts, as proposed by Costello et al [30].

By simulating combinations of PA, MAx and EA against FE, MEy and PE forward in time
over many host generations and over a range of conditions, we are able to recover data on the
behavior of individual microbial taxa, as well as a variety of summary statistics, including the
expected time it takes individual taxa to invade all hosts or go extinct in the host population,
and the trajectories of microbial taxonomic richness (measured simply as the total number of
microbial taxa) and microbial taxonomic evenness (measuring the similarity in the frequency
of each taxon), microbial diversity within hosts (α-diversity), inter-host variation in microbial
composition (β-diversity) and the aggregate microbial diversity from all hosts in the population
(γ-diversity). Here, we report only on the latter three measures of diversity.

Results

Relative abundances of microbial taxa in the host population
Microbial diversity within the host population is a function of the proportion of microbes that
parents contribute directly to offspring and the proportion they contribute to the environment.
Fig 2 illustrates how population-level taxon abundances change under various combinations of
these proportions. In our simulations, the distributions of taxon abundances under high levels
of parental contributions are skewed, and may be approximated by commonly-applied distri-
butions, including the log-normal distribution and the Dirichlet multinomial (DM) distribu-
tion [41] (Fig 3; the DM distribution has the advantage of allowing α-, β- and γ-diversities to
be simulated–see S2 Fig). The ability to recover skewed abundance distributions is interesting,
because we begin our simulations with a uniform distribution of microbial taxa, and we retain
this uniform distribution in the fixed environment throughout the evolutionary history of the
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host population. Consequently, the emergence of dominant and rare taxa is a consequence of
repeated parental contributions either directly to the next generation of hosts or indirectly to
the environment.

Fig 2. Distribution of relative taxon abundance within the host population under combinations of MA and ME. (a) distribution of relative taxon
abundances with different parental contributions to the environment (ME), when the proportion of direct parental acquisition of microbes is low (i.e., MA(50) or
50% parental acquisition); (b) distribution of relative taxon abundances with different parental contributions to the environment (ME), when the proportion of
direct parental acquisition of microbes is high (i.e., MA(98.4) or 98.4% parental acquisition); (c) distribution of relative taxon abundances with different
proportions of microbes directly acquired from parents (PA), when the proportion of parental microbial contribution to the environmental pool is low (i.e., ME
(50) or 50% parental contribution); (d) distribution of relative taxon abundances with different proportions of microbes directly acquired from parents (PA),
when the proportion of parental microbial contribution to the environmental pool is high (i.e., ME(99.9) or 99.9% parental contribution).

doi:10.1371/journal.pcbi.1004365.g002
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In fact, all simulations in which there was complete parental acquisition of microbes (i.e.,
PA) resulted in the loss of all but one microbial taxon in the host population. Similarly, when
the environment was reconstituted each generation exclusively with microbes from the parents
(i.e., PE), the same pattern was observed with only a single microbial taxon remaining. These
result are consistent with predictions made under neutral models of community ecology [42],
and highlight the strong depressive effect of parental transmission, either directly from parent
to offspring or via parental contributions to a local pool of microbes, on population-level
microbiome diversity.

With EA x FE, microbes are obtained randomly from a fixed environment that persists over
the evolutionary history of the hosts; unsurprisingly, the host population retains all microbes
found in the environment. Interestingly, when microbes are obtained both from parents and a
fixed environment (MA x FE), we still see the persistence of all or almost all microbes in the
host population (see Fig 2A and 2B, first column of each bar chart; ME(0) is equivalent to a
fixed environment with no microbial contributions from parents). This is true even when the
proportion of microbial taxa that an individual host acquires from the fixed environment at
each generation is very small, on the order of 0.001. Therefore, a very small contribution from
a constant environmental source of microbes is sufficient to retain high levels of microbial
diversity in the host population.

Measures of diversity
Microbial diversities are frequently measured in three ways: α-diversity, β-diversity, and γ-
diversity. Our simulations indicate that all three measures depend on the percentage of paren-
tal contribution to offspring microbiomes and the composition of the environmental microbial
pool (see S1–S3 Tables for simulation means and standard deviations).

Under our neutral model, in which the absence of host sub-population structure means that
all hosts sample their microbes from the same environment, α- and γ-diversities remain high,
and β-diversity remains low, for a large part of the range of direct or indirect parental

Fig 3. Log-normal and Dirichlet-Multinomial fitting of simulated abundance distributions.Relative frequency histograms represent the abundance
distributions of simulated microbial communities under two mixed models. The red lines are the probability density curves of fitted log-mormal distributions.
The green lines are smoothed density curves from Dirihchlet-Multinomial distributions.

doi:10.1371/journal.pcbi.1004365.g003
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contributions (i.e., to offspring or to the environment, respectively). Nonetheless, at high values
of parental contributions, there are discernible differences in diversities, and we have also
focused our simulations in these areas (Fig 4; see S4–S6 Tables for simulation means and stan-
dard deviations). In general, α-diversity (average diversity within hosts) and γ-diversity (overall
diversity within the entire population of hosts) increase as we increase the fixed environmental
contribution because a fixed environment helps maintain a uniform distribution of taxon
abundances and delays the loss of microbial taxa during evolution. Conversely, when hosts
acquire increasing proportions of their microbiomes from their parents directly, or indirectly
from a pooled environment, the variation of taxon abundance increases and taxon richness
tends to decrease, thus lowering both α- and γ-diversities (Fig 4A and 4B; S1, S2, S4 and S5
Tables). Inter-host variation in microbial composition, or β-diversity, also depends on the
degree of parental inheritance, and the ratio of fixed-to-pooled environmental components
(Fig 4C; S3 and S6 Tables).

Under the combination of PA x (FE, ME or PE), β-diversity tends to zero, because all hosts
descend from a single common ancestor and, as noted above, only a single microbial taxon
remains in all hosts. When we have the parental microbiome as the only source of microbiomes
in the next generation, ultimately, all lineages will have acquired their microbiomes from the
most recent common ancestor (MRCA) of the population of hosts. Additionally, from one gener-
ation to the next, stochastic sampling of microbes over evolutionary time will result in the loss of
all but one microbial taxon. Interestingly, with a high percentage of environmental acquisition,
β-diversity is also relatively low, because all hosts acquire a large proportion of their microbial
taxa from the same environmental pool, and consequently, will tend to acquire the same set of
taxa. As noted above, the highest β-diversity occurs in a relatively narrow range of values of pure
parental acquisition (between 87–99% of direct parental transmission; S6 Table).

If we focus on the relationship between β-diversity and the environmental pool, we see that
its behavior is similar to that of α- and γ-diversities: it decreases as we increase the pooled

Fig 4. Heatmap of α-, γ-, β-diversity with different combinations of acquisition models and environmental models. For each heatmap, the proportion
of parental inheritance increases and environmental acquisition decreases from left to right; similarly, the environment microbial composition is increasingly
derived from the parental microbiomes as we move from the bottom of each heatmap to the top. Each diversity value is averaged from 10 independent
simulations.

doi:10.1371/journal.pcbi.1004365.g004
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environmental contribution to offspring microbiome. This is because a pooled environment,
with contributions from the parental generation, tends to give rise to a non-uniform distribu-
tion of microbial taxa. As the degree of parental contribution increases, the environmental
community will be dominated by few highly abundant species which are likely shared by most
or all hosts within the population, accounting for high between-host similiarity in microbial
composition (Fig 4C; S3 and S6 Tables).

It is important to note that our simulations have not been performed with inference or pre-
diction in mind: the number of hosts, the number of microbes, and the number of taxa in our
simulations are not necessarily equivalent to those of real-world microbial communities and
their hosts, nor have we necessarily chosen the appropriate diversity indices or taxonomic reso-
lution to optimize prediction/inference. Nonetheless, it is helpful to examine how the simulated
values of diversity compare to empirical observations, and what these comparisons might tell
us about the evolutionary processes that are acting on microbiomes. As an example, we used
genus-level taxonomic data from the NIH Human Microbiome Project (HMP) [43], specifi-
cally, a table of relative abundance found in different compartments of the human body
(http://www.hmpdacc.org/HMSMCP/; see S1 Dataset). Several large samples from the anterior
nares, vaginal posterior fornix, stool, buccal mucosa, tongue dorsum and supragingival plaque
were chosen to calculate α-, β- and γ-diversities on genus level (Table 1).

Values of α- and γ-diversity obtained from all sampled sites of the human microbiome are
low, in comparison to most of the values we obtained in our simulations. In fact, human micro-
biome diversities are generally lower than those of other non-human primates [44,45]. If we
compare the empirical diversities to those obtained in our simulations (S1–S6 Tables), we
would have to posit very high parental contributions, both direct and indirect (>90%), to
account for the α- and γ-diversities across all human body sites. In contrast, values of β-diver-
sity appear to provide a little more discrimination amongst body sites: the site with the lowest
β-diversity is the vaginal posterior fornix, and its value is consistent with a very low degree of
direct parental contribution in our simulations (approximately between 0–15%). The β-diversi-
ties at other sites appear to suggest higher levels of parental contribution (again,>90%). In the
next section, we discuss the implications of these results, as they relate to human microbiome
evolution and how the neutral model may be used to construct hypotheses about relevant evo-
lutionary and ecological processes.

Discussion
In this paper, we introduce a simple and flexible framework to model the evolution of micro-
biomes within a population of hosts, which takes account of different modes of microbiome

Table 1. Diversities of microbiota associated with different human body sites.

Body Site α-Diversity1 γ-Diversity2 β-Diversity Number of samples

Posterior Fornix 0.041±0.067 0.097 0.175±0.294 38

Stool 0.267±0.093 0.381 0.464±0.213 94

Supragingival Plaque 0.457±0.061 0.531 0.455 ±0.136 85

Tongue Dorsum 0.399±0.051 0.454 0.387±0.137 87

Anterior Nares 0.223 ±0.071 0.318 0.451 ±0.210 69

Buccal Mucosa 0.265±0.079 0.315 0.318 ±0.135 77

1The α- and β- diversities are mean values and standard errors averaged over all samples or over all pairs of samples.
2The γ- diversity is a single value because it is calculated with a large sample that is pooled from all the samples within the same body site; hence no

replicates or ranges are available.

doi:10.1371/journal.pcbi.1004365.t001
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acquisition and environmental microbial composition. Under our neutral model, microbiome
composition is affected by sampling effects. Stochastic changes in microbial abundances may
affect the persistence of microbial taxa in the microbiome over one or a few generations (i.e.,
ecological drift), or over many generations. The latter may occur because host lineages die out;
when this happens, changes in microbial abundance across the whole population of hosts are
essentially equivalent to changes in allele frequencies (i.e., genetic drift).

The constitution of the microbial community in the environment also plays a considerable
role in determining the ultimate fate of microbial taxa within host microbiomes. With a fixed
environment, when there is a constant pool of the same microbial taxa from one generation of
hosts to the next, microbial taxa never go extinct from the host population as long as hosts
obtain some fraction of their microbiome from the environment. This is true, even when that
fraction that the environment contributes to each host’s microbiome is very small (e.g., 0.1%).
In contrast, when the environmental composition of microbes reflects the microbial content of
the hosts in previous generations (i.e., PE, the “pooled” environment in our model), microbial
diversity of the environment shrinks, as does the diversity of host microbiomes. Therefore, the
extent to which parents contribute to the microbiomes of their offspring (either directly or
through their contributions to the pooled environment) plays a crucial role in shaping micro-
biome diversity and constitution. In our simulations, values of α- and γ- diversities are at their
lowest when parental contribution to the microbiome is high. Inevitably, microbial taxa are
lost from the population as host lineages are lost.

Thus, under our neutral model, it is possible to recover skewed microbial abundance distri-
butions reminiscent of those obtained with real data, despite a fixed environmental component
that remains uniform and constant throughout our simulations. Increasing skewness–essen-
tially, decreasing eveness–is obtained as we increase the degree of parental inheritance. Of
course, we don’t claim any deep insight here: no one should be surprised that we are able to
recover skewed abundance distributions with our models, because there is a large body of liter-
ature on the mechanisms–both neutral or otherwise–that may lead to the emergence of skewed
abundance distributions (see [46] for an excellent synthesis). Our results reinforce what others
[34,47,48] have found, by adding yet another neutral mechanism to account for the emergence
of skewed abundance distributions.

Our framework includes sampling effects on an undivided host population, which evolves
under a Wright-Fisher process. Consequently, our models have some points of similarity with
those that have been developed in population genetics. For instance, Orive et al [49] analyze
the evolutionary dynamics of endosymbionts using a discrete-time Moran population genetic
model. In their model, endosymbionts are acquired either vertically, passed on from parent to
offspring, or horizontally from the environment. This corresponds to our MA x FE model and,
in agreement with our results, Orive et al find that increasing the environmental contribution
of endosymbionts to host cells results in greater diversity within cells and less diversity between
cells.

Our models do not include any mutational process or speciation acting on the microbes, as
time moves forward. In reality, of course, microbes acquire mutations in their genomes at a
rapid rate, but the measures of diversity we use in our analyses capture differences in taxo-
nomic composition, not genetic diversity. In our models, it is implied that no cladogenetic
events have occurred over the course of the simulations.

The models presented here provide an opportunity to construct hypotheses, and make qual-
itative predictions, about the patterns of diversity we can expect to find in different biological
situations. For example, the effects of “pure” pooled versus fixed environments on micro-
biomes can be found in a comparison of social and solitary bees. Social bees exhibit behaviors
that are likely to result in the transmission of microbes from a microbial pool within the colony
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[50]. In contrast, solitary bees acquire their microbiomes from the environment, through feed-
ing or burrowing. Our model would predict that social bees would have lower α-diversity and
lower taxonomic richness than solitary bees. This is consistent with the results obtained by
Martinson et al [51] who surveyed the microbiomes of eusocial bee species Apis spp. and Bom-
bus spp. and non-social bees (11 species) and wasps (3 species): they found depauperate micro-
biomes in social bees compared to non-social bees.

Whereas it is reassuring to obtain empirical corroboration for our models, arguably neutral
models are most useful when real-world observations run counter to predicted outcomes. Falsi-
fication of neutral models provides a justification for augmenting these models to include addi-
tional processes that account for the phenomena under study. In this regard, our analysis of the
Human Microbiome Project data is instructive. As we have noted above, our simulations
should not be used for inference, and we should be cautious about reading too much into the
comparisons between empirical and simulated patterns of diversity. Nonetheless, at least for
some sites, i.e., the stool, the tongue dorsum, the supragingival plaque, the anterior nares and
the buccal mucosa, the low empirical values of α- and γ- diversities appear to point consistently
to a high level of parental inheritance when compared against values obtained in our simula-
tions. There is evidence that the human microbiomes at various sites are seeded at birth by the
mother, particularly if this birth is through the vaginal tract [52]. There is also reasonably
strong evidence that families share microbes to a greater extent than unrelated individuals in a
population [53], and at least in some human populations, mothers share more microbes in
common with their offspring than with unrelated children [54]. It is not clear, based on the
studies that have been done to date [55], whether the values of direct or indirect parental con-
tribution we obtain when we compare empirical and simulated diversities are significantly
higher than would be obtained in real populations, but we expect that the intuition of mosts
microbial ecologists is that percentages of direct and pooled parental contributions> 90% are
likely to be too high. Putting to one side the caveats about inference, we accept that while this
intuition does not constitute evidence against the neutral model, it is likely to engender scepti-
cism about the model’s correctness. If it is, in fact, true that direct or indirect parental contribu-
tions to the next generation’s microbiomes are not as high as our simulations suggest, how do
we account for the apparent depression in α- and γ-diversities, and elevation of β-diversities at
these sites? One hypothesis that explains low α- and γ-diversities, and high β-diversities, and
does not require the action of non-neutral processes, is the existence of local host subpopula-
tions. The existence of subpopulations of hosts, with limited immigration and sharing of
microbes between subpopulations, is likely to give the appearance of high parental contribution
from one generation to the next. Certainly, this is a plausible explanation for patterns of micro-
biome diversity in the oral cavity (i.e., the buccal mucosa, tongue dorsum and supragingival
plaque) and stool samples, because of the likely influence of familial [53] or cultural dietary
preferences/practices [56] or lifestyles [57] on these microbiomes. A similarly explanation may
account for patterns of microbiome diversity of the anterior nares.

The vaginal posterior fornix presents an interesting contrast to the other body sites because
the α- and γ-diversities suggest high parental contributions (although they cannot distinguish
between direct or indirect contributions), whereas β-diversity suggests a low direct parental
contribution. This inconsistency may again cause us to reject the neutral model in favor of an
alternative explanation, but in this case, subpopulation structure may play a minor role relative
to selection for a vaginal microbial community that is common amongst hosts. Such a selective
filter is likely a consequence of a complex suite of factors including host immune defences, hor-
monal cycling, pregnancy, and the presence of apparently beneficial microbial species (e.g.,
Lactobacillus spp.) [58]. This hypothesis explains both the high level of α- and γ-diversity (i.e.,
a few abundant species with many rare species), and the low β-diversity.
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For the human microbiome, neutral models have the potential to help identify additional
processes that may account for patterns of diversity. As noted, of the two processes identified
above–host subpopulations and selective filters–the former still remains part of an underlying
neutral process, and a plausible extension to the neutral framework presented here. Rejection
of a simple neutral model therefore allows us to identify incremental additions that may
increase explanatory power.

Another example of empirical data that appears to contradict the expectations of our models
is the comparison of microbiome diversities in high microbial abundance (HMA) and low
microbial abundance (LMA) sponges [59]. HMA sponges have large numbers of associated
microbes, in contrast to LMA sponges. Additionally, researchers have shown that microbial
diversity in LMA sponges is lower than that of HMA sponges [60,61]. Based on our results, we
would predict that there is a greater degree of vertical transmission in LMA sponges, but it
turns out that this is not the case: Schmitt et al [62] have found that “vertical transmission, as a
mechanism to obtain bacteria, seems to occur mainly in HMA sponges”. Giles et al [60] pro-
pose two possible reasons to account for the low diversity in LMA sponges. First, there may be
selective filters that permit only certain microbial taxa to colonize the sponges; second, the ini-
tial colonization event is stochastic, but serves to constrain or exclude successive colonizations.
As with the human microbiome data, the sponge example is important because it does not rely
a priori on non-neutral processes to account for the low diversity in LMA sponges; instead,
selection (or other ecological and/or evolutionary processes) is invoked only after it is shown
that vertical transmission in LMA sponges is unlikely, thus indicating that our neutral models
are an inadequate explanation for the observed data.

Riffing on the theme that “Essentially, all models are wrong, but some models are useful”
[63], Hubbell, writing about models in community ecology, says “Probably no ecologist in the
world with even a modicum of field experience would seriously question the existence of niche
differences among competing species on the same trophic level” [64]. But, he continues, “[Neu-
tral theory] begins with the simplest possible hypothesis one can think of . . . and then adds
complexity back into the theory only as absolutely required to obtain satisfactory agreement
with the data”. We agree with Hubbell: to paraphrase, given what we know about the interplay
between hosts, their microbial communities, and the environment, we would hesitate to put
money on the table and bet that many microbiomes have evolved under the simplest neutral
models that we have constructed here. But we would be equally hesitant betting in favor of the
null hypotheses evaluated in statistical tests of significance. The value of these hypotheses
resides not in their rightness or wrongness but in their ability to protect against overconfidence
in our favorite, more complex model. Whereas it is true that biological processes are frequently
complex, Occam’s Razor dictates that we construct as simple explanations (or models) as possi-
ble. In this way, we remain vigilant against the addition of unnecessary and unjustifiable com-
plexity. Much as we do with statistical hypothesis tests, we accept stronger alternative
explanations only when we are sufficiently confident that our neutral hypotheses are unlikely.

This is not to say that neutral models only serve as strawmen; in molecular evolution, for
instance, neutral models are frequently effective at explaining molecular variation [65]. And
even in cases when the assumption of neutrality is questionable, the use of neutral models of
substitution applied in molecular phylogenetics does not appear to jeopardize the accuracy of
tree reconstruction [66]. Consequently, without taking account of the evolutionary processes
of mutation, speciation, selection or recombination, or the ecological processes that operate in
the context of spatial, environmental, and temporal heterogeneity, what we have developed is a
framework on which we can begin to evaluate empirical patterns of diversity, and where neces-
sary, add more elaborate ecological and evolutionary scenarios. We believe that even this sim-
ple framework, devoid as it is of all the embellishments afforded by evolution and ecology, can
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serve a useful purpose: it is a suitable staging ground on which we can construct null models of
microbiome diversity in populations of hosts and it allows us to make strong, testable
predictions.

Materials and Methods
Simulated host populations consisted of a fixed number of virtual host individuals (N = 500).
Each host was allocated a virtual microbiome with a limited capacity or "slots" of microbes
(n = 1000). The environmental pool consisted of 150 microbial taxa. Large number of hosts
(N = 2000), microbes (n = 100000) per host and microbial taxa (m = 500) were also simulated
with our neutral model, and similar patterns of diversity were observed (S1 Fig).

The microbiomes of the initial generation of host individuals were seeded randomly, with
bacteria sampled from a uniform distribution of taxon abundances. We used an initial uniform
distribution of taxa because we wanted to ascertain whether the equilibrium distribution of
abundances obtained at the conclusion of our simulations would recover patterns seen in natu-
ral microbiomes.

For each subsequent generation, the microbiome of each individual host was simulated by
populating each of the available "slots" in the individual's microbiome by sampling microbial
taxa with replacement (multinomial choice) from either the environment (with probability
given (1-x)) or from the microbiome of a "parent" host individual (selected with uniform ran-
dom probability from the population of the previous generation).

When sampling from a parental/environmental microbial community, the probability that
the new host microbiome will acquire a particular microbial taxon is given by the relative abun-
dance of that taxon within the community (see below for details on how environmental micro-
bial taxon abundances were calculated).

The probability, x, that a particular "slot" in a new individual host's microbiome was occu-
pied by a microbial taxon sampled from a randomly selected parent was varied across simula-
tions. Two sets of simulations were performed: (1) x and y varied linearly, between 0 and 1,
with increments of 0.1 (see S1–S3 Tables for means and standard deviations of diversities); and
(2) with values of x, y 2 (0.0, 0.5[0,1,2. . .10]) (see S4–S6 Tables for diversities). When x = 0.0, a
host’s microbiome was sampled directly from the environment, i.e., the probability of a micro-
bial taxon being selected was equal to the relative frequency of the microbial taxon in the envi-
ronment. When x = 0.50 = 1, a host's microbiome was sampled multinomially from the
microbiome of its "parent" who was selected with uniform random probability from the previ-
ous generation. Similarly, when y = 0.0, there is no contribution from the previous host genera-
tion to the environmental microbial resource, whereas when y = 0.50, all microbes are replaced
each generation by the pool of microbes resident in the hosts of the previous generation.

Three different models were used to model the relative abundance of taxa in the environment.
First, for FE ("fixed environment"), the abundances of the microbial taxa in the environment
were fixed to the initial uniform distribution and did not vary over the course of the simulation.
Second, under PE ("pooled environment") the abundances of the microbial taxa in the environ-
ment were composed of the pooled microbiomes of all the hosts of the previous generation, i.e.,
by summing over the abundances of the respective microbial taxa in hosts’microbiomes, and
renormalizing to relative abundances. Third, under MEy (“mixed environment”), the abundances
of the microbial taxa in the environment were calculated by combining the fixed environment
and pooled environment with y% derived from the pooled environmental component.

A particular simulation regime consisted of a distinct combination of pooled/fixed en-
vironmental ratios and environmental factors. A total of ten replicates were run under each
simulation regime. The plots of γ-diversity were inspected, and simulations were halted when
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these stabilized. The number of generations for each simulation varied between 104 and 106

generations.
After each generation was simulated, the diversities of microbiomes are measured by

scaled Shannon-Wiener index (α-diversity and γ-diversity) or Bray-Curtis dissimilarity

index (β-diversity). The scaled Shannon-Wiener index is calculated as�
PR

i¼1
pilnðpiÞ

lnR
, where

R represents the total number of taxa and pi represents the relative abundance of ith taxon
within the community. The calculation of the Bray-Curtis index is given by the formula:

2
ðn�1Þn �

Pn
i¼2

Pi�1

j¼1

Pm
k¼1

jpik�pjk j
2

, where n represents the total number of hosts in the population,

m represents the total number of microbial taxa within the host population, and pik and pjk rep-
resents the relative abundance of kth taxon within the community of host i and host j.

Empirical data from the human microbiome were obtained from the website of the NIH
Human Microbiome Project (http://www.hmpdacc.org/HMSMCP/). The original community
profiling data is a table of relative abundances for each of 690 samples and 718 taxa of bacteria
and archaea (from 2 kingdoms to 397 species). As is described on the HMP website, all the
samples were collected from 16 body sites from 103 healthy humans and processed with
Whole Genome Shotgun sequencing. Specific information of each sample is available on the
website (http://www.hmpdacc.org/HMIWGS/all/). We selected data of microbial communities
associated with anterior nares, buccal mucosa, supragingival plaque, stool, tongue dorsum and
vaginal posterior fornix because of their large numbers of samples, and removed the replicated
samples from the same human subject for each body site (see S1 Dataset). The HMP data pro-
vides relative abundances for different taxonomic levels. We calculated diversities for all taxo-
nomic levels ranging from species to kingdom, and found that the values of diversities for
genus, family and order were similar. Consequently, we chose to use genus-level diversities.
The relative abundances of genera for each site and all samples is given in S1 Dataset.

Fitting simulated results into log-normal and Dirichlet-multinomial distributions was per-
formed in R with methods “fitdistr” of package MASS and “dirmult” of package dirmult.

All simulations were carried out using Python scripts and Java programs, available from
https://github.com/qz28/microbiosima.git

Java code: https://github.com/qz28/microbiosima/tree/master/java
Python scripts: https://github.com/qz28/microbiosima/tree/master/python

Supporting Information
S1 Table. α-diversity under different combinations of acquisition and environment models
with linear scales for MA(X) and ME(Y).
(DOCX)

S2 Table. γ-diversity under different combinations of acquisition and environment models
with linear scales for MA(X) and ME(Y).
(DOCX)

S3 Table. β-diversity under different combinations of acquisition and environment models
with linear scales for MA(X) and ME(Y).
(DOCX)

S4 Table. α-diversity under different combinations of acquisition and environment models
with power scales for MA(X) and ME(Y).
(DOCX)
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S5 Table. γ-diversity under different combinations of acquisition and environment models
with power scales for MA(X) and ME(Y).
(DOCX)

S6 Table. β-diversity under different combinations of acquisition and environment models
with power scales for MA(X) and ME(Y).
(DOCX)

S1 Dataset. Relative abundance data of empirical human microbial communities associated
with anterior nares, buccal mucosa, stool, posterior fornix, tongue dorsum and supragingi-
val plaque from Human Microbiome Project.
(XLSX)

S1 Fig. Heatmap of α-, γ-, β-diversity with different combinations of acquisition model
and environmental model (Simulated with 2000 hosts, 100000 microbes per host, and 500
microbial taxa until 15000 host generations). The diversity patterns are also represented with
heatmaps in a similar way (the proportion of parental inheritance = 1–0.5x with x ranging
from 0 to 20; the proportion of pooled environmental component = 1–0.5y with y ranging from
0 to 20), and a similar pattern were still observed regardless of the increasing numbers of hosts,
microbes and microbial taxa.
(TIF)

S2 Fig. Heatmap of α-, γ-, β-diversity reconstructed from Dirichlet-Multinomial distribu-
tion. The same log-scales as in Fig 4 is used, and each square represents a re-estimated diversity
value from a fitted Dirichlet-Multinomial distribution with ten replicates.
(TIF)
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