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Abstract
Transformative applications in biomedicine require the discovery of complex regulatory net-

works that explain the development and regeneration of anatomical structures, and reveal

what external signals will trigger desired changes of large-scale pattern. Despite recent ad-

vances in bioinformatics, extracting mechanistic pathway models from experimental mor-

phological data is a key open challenge that has resisted automation. The fundamental

difficulty of manually predicting emergent behavior of even simple networks has limited the

models invented by human scientists to pathway diagrams that show necessary subunit in-

teractions but do not reveal the dynamics that are sufficient for complex, self-regulating pat-

tern to emerge. To finally bridge the gap between high-resolution genetic data and the

ability to understand and control patterning, it is critical to develop computational tools to ef-

ficiently extract regulatory pathways from the resultant experimental shape phenotypes. For

example, planarian regeneration has been studied for over a century, but despite increasing

insight into the pathways that control its stem cells, no constructive, mechanistic model has

yet been found by human scientists that explains more than one or two key features of its re-

markable ability to regenerate its correct anatomical pattern after drastic perturbations. We

present a method to infer the molecular products, topology, and spatial and temporal non-

linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphologi-

cal phenotypes resulting from genetic, surgical, and pharmacological experiments. We

demonstrated our approach by inferring complete regulatory networks explaining the out-

comes of the main functional regeneration experiments in the planarian literature; By

analyzing all the datasets together, our system inferred the first systems-biology compre-

hensive dynamical model explaining patterning in planarian regeneration. This method pro-

vides an automated, highly generalizable framework for identifying the underlying control

mechanisms responsible for the dynamic regulation of growth and form.
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Author Summary

Developmental and regenerative biology experiments are producing a huge number of
morphological phenotypes from functional perturbation experiments. However, existing
pathway models do not generally explain the dynamic regulation of anatomical shape due
to the difficulty of inferring and testing non-linear regulatory networks responsible for
appropriate form, shape, and pattern. We present a method that automates the discovery
and testing of regulatory networks explaining morphological outcomes directly from the
resultant phenotypes, producing network models as testable hypotheses explaining regen-
eration data. Our system integrates a formalization of the published results in planarian
regeneration, an in silico simulator in which the patterning properties of regulatory net-
works can be quantitatively tested in a regeneration assay, and a machine learning mod-
ule that evolves networks whose behavior in this assay optimally matches the database of
planarian results. We applied our method to explain the key experiments in planarian re-
generation, and discovered the first comprehensive model of anterior-posterior pattern-
ing in planaria under surgical, pharmacological, and genetic manipulations. Beyond the
planarian data, our approach is readily generalizable to facilitate the discovery of testable
regulatory networks in developmental biology and biomedicine, and represents the first
developmental model discovered de novo from morphological outcomes by an automated
system.

Introduction
Advances in developmental biology and regenerative medicine require a mechanistic under-
standing of the generation and repair processes that construct and repair complex anatomical
structures [1]. For example, a salamander can regenerate complete limbs, eyes, tails, and jaws
[2]; a tail grafted to its flank will, within a few months, becomes re-patterned into a structure
more appropriate to its new location—a limb [3, 4]. During metamorphosis, tadpole faces with
very abnormal organ positions become transformed into normal frog faces, as each organ un-
dergoes evolutionarily-novel movements to ensure that it ends up in the right position relative
to the others [5]. Planarian flatworms regenerate their complex body from almost any surgical
amputation, and cease new growth and remodeling when their correct body pattern has been
restored [6]. Learning to understand and harness these high-order pattern control programs is
of high importance not only to basic developmental and evolutionary biology, but also under-
lies the roadmap to transformative advances in regenerative medicine, birth defects, and syn-
thetic bioengineering.

High-resolution genetic analyses are revealing an increasing number of regulatory genes,
while developmental and regenerative research is producing a rich dataset of in vivo experi-
mental manipulations and their resultant morphological phenotypes [7]. Unfortunately, our
ability to understand and manipulate 3-dimensional patterning outcomes has not kept pace. A
fundamental gap exists between the gene products experimentally identified as necessary for
producing a morphological phenotype, and a mechanistic regulatory network that would be
sufficient to explain exactly how and why a complex morphology is generated in the precisely
correct size, shape, and orientation [8–10]. There exist individual examples of models that
incorporate geometry [11–19] and attempt to understand the dynamics of patterning [20–29],
but the most prevalent arrow diagrams derived from genetic experiments largely do not
specify, constrain, or explain the remarkable geometry and regenerative regulation of biological
systems.
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Finding the mechanisms responsible for a given set of anatomical phenotypic data remains
a significant challenge due to the non-linearity of many biological processes [30]. The increas-
ing deluge of genetic data does not generally result in constructivist models that truly explain
dynamic morphogenesis of living structures because it is simply too hard for human scientists
to invent a model with all of the appropriate higher-order patterning properties. Indeed each
additional dataset on patterning outcomes from some perturbation makes it more difficult, not
easier, to come up with a model that matches all of the results. Thus, there is a clear need for
automated tools to assist in the discovery of mechanistic models that explain the ever-
increasing set of functional phenotypic results in the scientific literature on developmental and
regenerative biology [1].

Tremendous progress has been made in developing bioinformatics tools for the reverse-en-
gineering of dynamical models of regulatory networks from microarrays and quantitative PCR
gene expression profiling data [31–43] as well as of metabolic networks from time-series con-
centration data [44–46]. However, these approaches produce models lacking spatial informa-
tion and are not applicable to patterning and morphological experimental data. Indeed,
inferring characterized regulatory networks from experimental resultant spatial patterns is ex-
ceedingly challenging due to the difficulties in robustly quantifying phenotypic data [47], eval-
uating spatial-temporal models with these data [48], and automatically characterizing known
and unknown products and their underlying complex, non-linear interactions resulting in the
desired patterning behavior [49, 50]. The gene circuit method [51–53] and subsequent auto-
mated approaches [54–63] have successfully reverse engineered a complex dynamical regulato-
ry network from spatial data: the gap gene network controlling Drosophila blastoderm
patterning. However, these methods are still limited to quantitative 1-dimensional gene expres-
sion data and are not amenable for morphological phenotypes resulting from surgical manipu-
lations and genetic and pharmacological treatments that are common in developmental and
regenerative biology.

No tools yet exist for mining the published datasets of experimental morphological data in
regeneration and developmental biology. The complexity of anatomical and morphological
data, the elaborate surgical, genetic, and pharmacological perturbation experiments, and the
lack of methods to formalize in a mathematical language these data prevent us from reverse-
engineering the key regulatory networks in development and regeneration. In consequence, the
discovery of mechanistic regulatory networks has not kept pace with the increasing generation
of phenotypic data from perturbation experiments. For example, despite over 100 years of fo-
cused attention, no quantitative model has been found that reproduces more than a few of the
main features of the rich functional dataset on planarian regeneration [64]. We have learned
much about the molecular pathways regulating stem cell decision-making [65, 66], but the un-
derstanding of axial polarity, morphogenesis, and persistent changes to the bodyplan [67] still
lacks constructivist models. In order to make use of the ever-increasing data on patterning out-
comes of genetic, pharmacological, and surgical experiments, bioinformatics must be extended
to anatomy and pattern formation.

We present here an automated method for the discovery of regulatory networks explaining
the morphological patterning results from surgical, genetic, and pharmacological perturbation
experiments (Fig 1). Our system integrates a formalization of the published results in planarian
regeneration, a versatile in silico simulator in which the patterning properties of any regulatory
network can be quantitatively tested in a regeneration assay, and a machine learning module
that evolves networks whose patterning behavior optimally matches the dataset of planarian re-
sults. We demonstrate that regulatory networks comprising specific biological products can be
automatically inferred from phenotypic morphological data resulting from functional experi-
ments by an evolutionary computation process. The formalized experimental descriptions of
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surgical manipulations, genetic and pharmacologic treatments, and resultant phenotypes are
used to infer the necessary and sufficient molecular products, their interactions, and the spatial
and temporal dynamics of a regulatory network explaining the given set of phenotypic
experiments.

In inferring regulatory networks from phenotypic experimental data, unambiguous mathe-
matical formalisms must be used to describe the relevant characteristics of the experimental
dataset to explain (Fig 1). To this purpose, we used a functional mathematical ontology with an
adequate level of abstraction for the formalization of developmental and regenerative experi-
ments [47]. In contrast to ontologies based on natural language, our functional ontology uses
mathematical language for unambiguously describing the experimental procedures as a hierar-
chy of elemental actions and their morphological outcomes as a set of interconnected body re-
gions (head, trunk, and tail). Thus, the formalized experimental procedures can be reliably
performed in a simulator in silico, and the phenotypes of the formalized experiments are ame-
nable to automated comparison with the predictions of models. Using an evolutionary algo-
rithm search module, our system discovered the first quantitative, constructive model that
predicts the main features of planarian regeneration.

Results

Method to infer regulatory networks from morphological outcomes
We developed a generalized method to infer regulatory networks from a set of formalized,
morphology-based experiments (Fig 2). Focusing on the planarian regeneration data [68] for
the first proof-of-principle, our goal was to identify a regulatory network that could be executed
on every cell in a virtual worm such that the patterning outcomes of simulated experiments
would match the published data. Based on evolutionary computation principles [69], the algo-
rithm maintains an evolving population of candidate regulatory networks for searching the
space of possible networks. The algorithm searches simultaneously for the necessary products,

Fig 1. Discovering regulatory networks that explain experimental morphological data. (A) Surgical, genetic, and pharmacological experiments result in
a set of patterning phenotypes. (B) Using a mathematical functional ontology, the experimental manipulations and the resultant phenotypes are formalized in
a database. (C) Without any further knowledge beyond that dataset, the algorithm automatically infers a regulatory network that, when quantitatively modeled
in a simulator, explains all the resultant phenotypes in the experiments. Discovered regulatory networks comprise specific genetic products (β-catenin,
notum,wnt1), phenotypic products (head, trunk, tail, wound signal), and yet-unidentified products (labeled with single letters, e.g. ‘a’). Products can travel
intercellularly (dashed border) or be intracellularly confined (solid border). Regulatory interactions can activate (blue lines) or repress (red lines) a product
and these can be combined in a necessary (dashed lines) or sufficient (solid lines) fashion.

doi:10.1371/journal.pcbi.1004295.g001
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topology, specific regulatory interactions, and parameters of the regulatory networks, which
are implemented as a non-linear system of partial differential equations. Nodes in the regulato-
ry network can represent either signaling products or special products with a phenotypic
meaning specific to the dataset (head, trunk, and tail regions in the worm).

The initial population of candidate regulatory networks is made of simple networks with
random regulations and parameters. New regulatory networks are created in each generation,
by combining two existent (parent) regulatory networks from the current population and prob-
abilistically adding and removing products and regulations, and altering their parameters (see
methods section). The population is cyclically updated replacing old regulatory networks with
the new regulatory networks that better fit the experimental dataset. The algorithm stops when

Fig 2. Method to infer regulatory networks from phenotype-based experiments. Taking a dataset of formalized experiments as input, the algorithm
cyclically generates candidate regulatory networks, simulates the experimental manipulations, and discards the networks with the highest errors (lowest
predictive power); this process is repeated until a network with zero error is found.

doi:10.1371/journal.pcbi.1004295.g002
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a regulatory network is found that perfectly reproduces the same resultant phenotypes in all
the experiments as formalized in the input dataset.

Our system uses in silico experiments equivalent to the in vivo experiments formalized in
the dataset to evaluate the predictive ability of candidate regulatory networks. For this, we im-
plemented a simulator capable of performing the same kind of experiments formalized in the
dataset, including surgical manipulations and genetic and pharmacological perturbations. An
experiment stored in the dataset is simulated using a specific regulatory network in two stages:
the wild-type morphology stage where the regulatory network can reach a stable state and the
experimental stage where the resultant phenotypes are obtained. During the first stage, the
product concentrations are initialized and the system of partial differential equations with this
initial condition is numerically solved for a constant time interval. Phenotypic products are ini-
tialized to match the morphological regions pattern (head-trunk-tail) of the formalized wild-
type morphology, while the signaling products are set to a continuous parameter value auto-
matically found by the inferring method for each product. The second stage proceeds by apply-
ing the surgical manipulations and pharmacological treatments. Surgical manipulations
change the system boundaries, while genetic and pharmacological treatments alter specific pa-
rameters of the differential equations corresponding to the perturbed products. Next, the new
system of partial differential equations with the new initial condition and boundary is numeri-
cally solved for an additional constant time interval. The final state represents the resultant
phenotype corresponding to the simulated experiment.

Thus, each candidate network model is tested in a virtual worm, under simulated experi-
ments, to determine its patterning properties in each case. Then, to determine the quality of a
candidate regulatory network, the algorithm compares the resultant phenotypes from the sim-
ulation of each experiment with real published data in our planarian database [47, 70]. To
quantitatively ascertain the predictive quality of each model (how well it matches the available
data), we calculate a composite error score representing how well each experiment’s final pat-
tern matches the known result of such an experiment in real planaria. For this purpose, we im-
plemented a phenotypic distance metric that measures how different any two morphological
phenotypes are [71]. The metric calculates the average differences between the phenotypic
product concentrations of the two phenotypes. The predictive error of a regulatory network is
then calculated as the average phenotypic distance between the resultant phenotypes from the
simulated experiments and those corresponding to the formalized experimental dataset.

Inferred regulatory networks from experimental data
Using this algorithmic approach, we inferred novel regulatory networks (Fig 3 and S1–S6 Mov-
ies) explaining the experimental data presented in a selection of key papers [72–79] studying
the head-versus-tail regeneration decision making in the planarian flatworms S.mediterranea
and D. japonica. First, we formalized datasets containing the surgical manipulations, pharma-
cological and genetic treatments, and their resultant experimental phenotypes for each of the
selected papers. We next applied the method individually to each dataset to infer the subjacent
regulatory networks explaining the experimental data presented on each of the papers. For
each dataset, the algorithm found a complete system of differential equations (S1 File) that rep-
resent a regulatory network explaining the dynamical regeneration of the correct position, 2D
shape, and proportions of the head, trunk, and tail regions of all the experimental phenotypes
in each dataset.

Remarkably, without any prior knowledge of genetic expression patterns or regulatory in-
teractions among genes, but using only the pharmacological, genetic, and surgical experimental
perturbations and the position, shape, and proportions of their morphological outcomes
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Fig 3. Regulatory networks inferred from experimental data formalized from the key papers of head-versus-tail planarian regeneration. The
algorithm infers both the parameters and topology of the regulatory networks containing specific experimentally-perturbed products when available and
unknown products when necessary, and explaining the regeneration dynamics of the correct position, shape, and proportions of the head, trunk, and tail
regions of the worm for all the experiments in each dataset. (A) β-catenin/APC knock-down experiments. (B)wnt1/wnt11-5 knock-down experiments [75]. (C)
β-catenin/notum/wnt1 knock-down experiments [76]; (D) β-catenin/hh/wnt1/ptc knock-down experiments [77]; (E) Gap junction communication blockage
with octanol [78]; (F) Classical trunk/anterior/posterior fragment cuts [79].

doi:10.1371/journal.pcbi.1004295.g003
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(encoded as head, trunk, and tail regions), the algorithm discovered the correct known regula-
tory pathways of several signaling mechanisms (Fig 3). For example, the algorithm discovered
theWnt/β-catenin canonical regulation (Fig 3C and 3D), the inhibition of head structures and
promotion of tail structures by β-catenin (Fig 3A, 3C and 3D), the inhibition of β-catenin by
both APC (Fig 3A) and notum (Fig 3C), and the cryptic lack of posterior tissue re-specification
(remaining as trunk) due to the knock-down of wnt1 and notum (Fig 3C), hh (Fig 3D), or wnt1
and hh (Fig 3D). In addition, several novel regulatory interactions and unidentified products
were detected as necessary for the correct prediction of the experiments in the datasets.

Fig 4 shows two experiments performed in silico using the regulatory network discovered
from the search of the model in Fig 3A. The concentration dynamics during both experiments
are shown for a selection of locations in the virtual worm. In the control experiment (Fig 4B),
no genetic or pharmacological perturbation was applied to the worm, resulting in the regenera-
tion of the correct head-trunk-tail pattern. However, when β-catenin is blocked in the second
experiment (Fig 4C), the same regulatory network predicts the regeneration of a double-head
worm, which is the exact phenotype resulting from the experiments in vivo. The discovered
regulatory network also predicted the known role of APC inhibiting β-catenin, which explains
the resultant double-tail phenotype after APC(RNAi) (Fig 3A).

Multiple knock-downs in the wnt1/wnt11-5 regulatory pathway are necessary to perturb the
resultant phenotype from a trunk fragment [75] (wnt1 and wnt11-5 were known as wntP-1 and
wntP-2, respectively [80]). When we applied the automated method to this dataset, the resul-
tant model found consisted in a redundant modular network (Fig 3B). Fig 5 illustrates the ex-
periments in this dataset performed in silico with the network automatically discovered. The
regulatory network presents both wnt1 and wnt11-5 activating the regeneration of tail and in-
hibiting the regeneration of head, and both of them activated by an unknown common prod-
uct. Due to this redundancy in the network design, the knock-down of either wnt1 or wnt11-5
results in the same phenotype than the control: the correct head-trunk-tail pattern. However,
when both wnt1 and wnt11-5 are simultaneously knocked down, the regenerated phenotype is
then a double-head worm, similarly to the phenotypes obtained in vivo.

The inferring method iteratively produces regulatory networks that better predict the exper-
iments in the dataset. Fig 6 shows a selection of candidate regulatory networks generated dur-
ing the search of the model in Fig 3C (see S1 File for the system of equations for each
regulatory network). The initial random regulatory networks (generation 0) usually cannot re-
produce any of the resultant phenotypes in the dataset, neither maintain the wild type mor-
phology pattern. New candidate regulatory networks are generated by randomly combining
previous networks and performing random changes, additions, and deletions, including nodes
representing knocked-down genes in the experiments or unknown nodes found de novo. Incre-
mentally, the new candidate networks can explain a higher number of experiments, and the
final regulatory network can correctly explain all the experiments in the dataset.

The time to converge to a satisfactory regulatory network depends on the complexity and
quantity of the experiments included in the input dataset (Fig 7). The inferring algorithm is in-
trinsically parallel, since the simulation and evaluation of a population of candidate regulatory
networks can be done independently. Using a parallel implementation of the algorithm in a
computer cluster, the time to find a regulatory network from knock-down experiments ranged
from an average of one hour for four-experiment datasets to seven hours for eight-experiment
datasets. Datasets with experiments blocking the diffusion of a product averaged four hours.
The dataset with three classical cut experiments averaged a time to find of 21 hours, suggesting
a higher difficulty in inferring de novo all the unknown components in the regulatory network.

We can visualize the evolution of regulatory networks during a search process by tracking
the error of the best network (lowest error) in the population and its complexity (the sum of
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Fig 4. Simulation of phenotypic experiments in silico. (A) Regulatory network used in the experiment, corresponding to the inferred network shown in Fig
3A. (B) An experiment is performed by loading and initializing the product concentrations according to the wild-type morphology, integrating the network
equations, performing the manipulation specified in the experiment, and integrating for a second time the network equations. The product concentrations
over time from a selection of locations in the worm are shown. Graph colors correspond to product colors in panel A. (C) Knock-down of β-catenin (RNAi) is
simulated by setting its production constant to zero, which alters the dynamics of the network and results in the regeneration of a double-head morphology.

doi:10.1371/journal.pcbi.1004295.g004
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the number of products and number of regulatory interactions in the network) over time (S1
Fig). The graphs show how the initial population contains networks with low complexity and
high error. Gradually over time, the error of the networks improves, while their complexity in-
creases, until a network with zero error is found by the algorithm. During the search process,
regulatory networks can evolve products and regulations that do not participate directly or

Fig 5. Simulation of multiple knock-down experiments. (A) Regulatory network used in the experiments, corresponding to the inferred network shown in
Fig 3B. (B) First stage of the simulation, where the wild-type morphology is loaded, and the regulatory network is numerically simulated for a constant amount
of time, converging to a stable state. The product concentrations of the anterior-posterior middle line are shown during different time steps. (C-F) Second
stage of the simulation of a set of knock-down experiments. Starting with the resultant stable state in the first stage, the manipulations are performed, and the
regulatory network is numerically simulated for a constant amount of time, converging to a stable state. The simulation shows how a simple cut or a single
knock-down of eitherwnt1 orwnt11-5 results in the wild-type morphology, but a double knock-down of bothwnt1 andwnt11-5 results in a double-
head morphology.

doi:10.1371/journal.pcbi.1004295.g005
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Fig 6. Selection of candidate networks evaluated during a search.Networks early in the search have low
complexity and a limited capacity to explain the experiments in the dataset. The algorithm produces new
networks by adding, deleting, and modifying products and regulations, until a network perfectly explaining all
the experiments is found. The networks shown are a selection from the search of the model presented in Fig
3C.

doi:10.1371/journal.pcbi.1004295.g006
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indirectly in the regulation of phenotypic products, and hence do not affect the dynamics of
the phenotypic products (S2 Fig). These auxiliary products are not included during the simula-
tion of a regulatory network, but they can evolve independently through neutral mutations,
and be reused at later generations by the search algorithm.

Inferred comprehensive model of planarian regeneration
We next applied the algorithm to a combined experimental dataset comprising all the selected
head-versus-tail planarian regeneration papers to determine whether our approach could iden-
tify a comprehensive regulatory network of planarian regeneration (Fig 8 and S7 Movie). Re-
markably, after 42 hours, the algorithm returned the discovered system of equations (S1 File)
representing a regulatory network that correctly predicts all 16 experiments included in the
dataset. The network comprises seven known regulatory molecules inferred from knock-down
experiments, one unknown gap junction-permeable diffusible product inferred from a gap
junction blockage experiment, and two unknown general regulatory products. This automati-
cally inferred regulatory network represents the most comprehensive model of planarian re-
generation found to date, the only known model that mechanistically explains anterior-
posterior polarity determination in planaria under many different functional experiments, and
the first patterning model discovered from morphological outcomes by an automated method
—a new successful application towards the augmenting of scientific discovery with artificial in-
telligence [81–83].

In order to characterize the two unknown regulatory products identified by the algorithm,
we searched for products with similar interactions in public molecular interaction databases.
Using the MiMI database [84, 85], we extracted all the known products (in Homo sapiens) in-
teracting with the products that were predicted to regulate node ‘b’ (β-catenin and hh; see
Fig 8) and found hnf4 as the only common product interacting with both of them. This is thus
an excellent candidate for node ‘b’, and a homolog for this gene has already been found in pla-
naria [86]. For node ‘a’, we used the STRING database [87], and identified the Frizzled family
of receptors as commonly interacting (with the highest confidence score of 0.9) with β-catenin,

Fig 7. Performance of the algorithm. The computation time increases with the number of experiments in
the dataset and their complexity. Knock-down experiments (RNAi) are faster to process than diffusion
blocking experiments (GJC), with surgical cut experiments being the most difficult to infer. Letters refer to
panels in Fig 3. Error bars denote the standard deviation.

doi:10.1371/journal.pcbi.1004295.g007
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wnt1, and wnt11. Indeed, several Frizzled protein homologs have been already identified in pla-
naria [72]; since phenotypes for each individual Frizzled gene product have not yet been un-
covered by loss-of-function analyses in the literature (suggesting redundancy), our network’s
node ‘a’ likely represents the regulatory actions of several of these family members as a group.

We next tested whether some regulatory pathways were robustly found by the search
method—consistently discovered by independent evolutionary searches. To this end, we per-
formed multiple runs of the method with the same comprehensive set of experiments. These
searches resulted in three different regulatory networks that can correctly reproduce the com-
plete set of experiments (Fig 9A–9C; A being the most parsimonious network that was pre-
sented in Fig 8). All the regulations shared by these three networks are seen together in a
common subnetwork (Fig 9D). Remarkably, 14 regulatory interactions were consistently found
by the search method, suggesting that these relationships are the most important interactions
explaining the comprehensive dataset of experiments.

Finally, we tested the robustness and predictive ability of the regulatory networks found by
our automated method in an experiment designed to test the predictive value of the discovered
models for data they had never seen (not included in the search process). We omitted three key
experiments from the comprehensive dataset, and used the automated method to find a regula-
tory network that could correctly reproduce this reduced (partial) dataset (Fig 10A and 10B).

Fig 8. Inferred comprehensive model of planarian head-versus-tail regeneration. (A) Regulatory network found by the automated system, which
explains the combined phenotypic experimental data of the key publications of head-trunk-tail planarian regeneration. (B) Simulation of the 16 experiments
comprising the dataset, resulting in the same reported experimental phenotypes. (C) Evolution of the error and complexity (number of products and
regulations) of the best regulatory network in the population over time during the algorithm search.

doi:10.1371/journal.pcbi.1004295.g008
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Crucially, the found regulatory network correctly predicted the outcomes of these three novel
experiments—the model correctly explained the outcomes that were not known to it during
the search (Fig 10C). These results validate the ability of the automated search method to find
regulatory networks capable of not only explaining the resultant phenotypes from the experi-
ments performed in vivo included in the learning dataset, but also of predicting the resultant
phenotypes from novel experiments. We conclude that the networks uncovered by this system
have predictive value for novel results, in addition to helping to understand existing data from
which they were extracted.

Discussion
Our system addresses the gap between the wet-lab discovery of genetic regulatory interactions
and an understanding of the dynamic patterning behavior of regenerative systems. Comprising
(1) a formalized database of functional patterning outcomes in the planarian literature, (2) a
simulator in which any (human- or computer-derived) regulatory model can be evaluated for
fit to known anatomical data, and (3) a network discovery machine learning method, this sys-
tem is a first step towards a new bioinformatics of shape. These three modules are integrated

Fig 9. Multiple searches result in different regulatory networks with shared common pathways. (A-C) Regulatory networks found by the automated
system during three different searches with the same 16 experiments of head-trunk-tail planarian regeneration as the input dataset. The three found networks
can correctly explain all the experiments in the comprehensive dataset. (D) Common regulatory interactions present in the three found networks. These
regulations consistently found by the automated method represent the most robust interactions that can be extracted from the comprehensive dataset.

doi:10.1371/journal.pcbi.1004295.g009
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into a workflow designed to help human scientists discover mechanistic, constructivist models
that optimally match the ever-growing dataset of regeneration data.

Our results demonstrate the discovery of regulatory networks directly from formalized ex-
perimental morphological data with the use of an automated computational algorithm—the

Fig 10. A subtraction control experiment with the automated method results in a regulatory network
that can correctly predict three novel experiments not included during the search. (A) Regulatory
network found by the automated system from a reduced comprehensive dataset excluding three
experiments. (B) Simulations of the reduced dataset of experiments used during the search with the found
network result in the regeneration of the correct phenotypes. (C) Simulations of the three novel experiments
not included during the search with the found network result in the exact correct phenotypes obtained in vivo.

doi:10.1371/journal.pcbi.1004295.g010
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first automated linkage of morphological output and molecular-genetic underpinnings. With
no prior information beyond the input dataset of functional outcomes of surgical, genetic, and
pharmacological experiments, the method is capable of identifying the necessary biochemical
products and their regulations and parameters that form a system of partial differential equa-
tions explaining the resultant phenotypes from the dataset. The networks discovered by our
system represent immediately testable hypotheses for the control algorithms underlying
regeneration.

Our method improves the current state of the art for reverse-engineering dynamic regulato-
ry networks in several areas. Foremost, our method is the first to be applicable to data contain-
ingmorphological outcomes and surgical perturbations, which is essential for the regeneration
field. Current methods are limited to inferring networks from dimensionless gene expression
profiling data or 1-dimensional expression data resulting from genetic perturbations. In con-
trast, our method is flexible enough to extract regulatory networks directly from resultant 2-di-
mensional morphological patterning outcomes and to process a wide array of experimental
perturbations, including surgical manipulations, pharmacological treatments, and genetic
knock-downs. To this end, we implemented a whole-body developmental simulator that differs
from current approaches [88–91] in that the input is a formalization of both the experimental
surgical and genetic perturbations to perform and the dynamical regulatory model to test. This
allows our method to be applicable to the reverse engineering of regulatory networks from the
morphological outcomes of developmental systems, previously out of the range of automated
inference methods, including the large experimental dataset of regenerative model organisms
lacking mechanistic dynamical explanations.

Importantly, our method can infer regulatory networks containing not only the specific
products and genes perturbed in the input experimental dataset, but also discover completely
de novo unknown products detected as necessary to explain the resultant phenotypes: predict
their existence, functional roles in the network, and properties of interaction with known mo-
lecular components. This makes our approach applicable to even datasets with perturbations
affecting unknown mechanisms, as well as datasets lacking all the experimental perturbations
necessary to explain all the experimental data. In this way, our method can infer regulatory
pathways not apparent from the input dataset and novel interactions not reported in the litera-
ture, whose yet-to-be-characterized products can be identified from the multiple interactome
databases available in the literature—these inferences then serve as predictions of the model
which can be empirically tested. We are currently implementing an automated method to char-
acterize such unknown products.

The inferred regulatory networks by our method contain more versatile regulatory interac-
tions than previous approaches. Due to their capability to model a diverse set of biological reg-
ulations, we employed Hill functions to model the regulation between two products. Using two
parameters per interaction (the Hill coefficient and the disassociation constant), the model can
accommodate a richer variety of non-linear interactions compared to linear and one-parameter
non-linear functions. Furthermore, the regulatory networks inferred by our method improve
current approaches by permitting different types of aggregated interactions between multiple
regulations for a single product, such as necessary regulations (both regulators are required),
sufficient regulations (any regulator is enough), or any combination of them. The high flexibili-
ty of the inferred regulatory networks makes our method a very versatile approach.

The discovered regulatory networks reveal several interesting properties of the inference
method. Networks matching many functional experiments that quantitatively and qualitatively
explain regeneration of anatomical polarity—which had eluded human scientists—could be
discovered in acceptable time by an automatic search performed by a computer. Surprisingly,
the fully parameterized regulatory networks that were identified by this process are not highly
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complex tangles, but are similar in complexity to qualitative models proposed by human scien-
tists in the literature and thus readily understandable. Moreover, the discovered networks con-
tain only a few to-be-identified gene products, which facilitate their identification from known
interactome data. Indeed, we could manually identify the two gene unknown products found
by our method using publicly available molecular interaction databases. Currently, we are de-
veloping an automated method to facilitate the characterization of such products. Precise pre-
dictions can readily be made from the simulation of novel experiments with the discovered
networks, guiding in the design of the best next set of experimental manipulations.

The comprehensive model of planarian regeneration reverse-engineered by our method
represents the first quantitative model able to recapitulate regeneration under genetic knock-
downs, pharmacological treatments, and surgical manipulations. Unlike conventional arrow
diagrams derived from molecular genetic experiments, this system identifies models that not
only include necessary components (without which regeneration cannot occur normally), but
are fully-specified as a constructive model showing which dynamics are sufficient to give rise to
the remarkable pattern homeostasis of planaria. Most models of regeneration are based on gen-
eralized mechanisms and do not consider the specific dynamic regulatory mechanisms or net-
work topology necessary to precisely recapitulate the observed patterning phenotypes [92–96].
Meinhardt’s pioneering work on the mechanisms of pattern formation represents the only dy-
namic models of planarian regeneration proposed to date, based on reaction-diffusion mecha-
nisms and able to recapitulate the head-versus-tail polarity regeneration and midline
formation [23, 64, 97, 98]. However, this approach was purely numerical as a proof of the gen-
eral dynamic mathematical principles, without characterizing any of the regulatory products,
and hence accounting only for surgical amputations. Our model was inferred directly from ex-
perimental data and includes particular genetic regulatory components able to precisely predict
genetic and pharmacological interventions in addition to surgical manipulations. Hence, the
models inferred with our method can be used to predict the morphological outcomes in specif-
ic genetic knock-downs.

The method can identify those interactions most strongly implied by the dataset, by per-
forming multiple searches and extracting the common pathways found in the resultant set of
regulatory networks. Interestingly, the consensus model found in this way includes most of the
genetic regulations of head vs. tail planarian regeneration published in the field to date, as well
as novel genetic regulations only discovered recently in other model organisms, such as the in-
hibition of wnt by notum [99]. Furthermore, the method can be used as a generable protocol
for automatically finding the less-universal regulatory interactions inferred from the data, and
for automatically suggesting additional perturbations for in vivo experimental testing. Impor-
tantly, the robustness of the method to infer predictive regulatory networks was validated with
a subtraction control test, which successfully produced a regulatory network that not only pre-
dicted all the experiments in the dataset used during the search, but also predicted the exact re-
sultant phenotypes from a set of new in vivo experiments that were not part of the search
process. In summary, these results validate the capacity of our method to reverse engineer ro-
bust regulatory networks with a high predictive power.

Although our method has produced the most comprehensive model of planarian regenera-
tion to date, it contains several limitations. We have restricted our experimental formalization
and simulation to 2-dimensional spatial data; thus, the discovered models do not yet address
the regulatory mechanisms necessary to specify the dorsoventral axis patterning in planaria
[100–103], or the detailed patterning of individual internal organs. In addition, the discovered
models are deterministic, and do not account for the stochasticity shown by some partial pene-
trance phenotypes. Adding a stochastic component to such equations does not represent any
technical difficulty; however, the computational requirements of the method to quantify the
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frequency for each of the possible resultant phenotypes in each experiment would increase by
several-fold. Because the basic paradigm is fundamentally very flexible, future work will ad-
dress these limitations, leading to further improvements in the ability to reverse engineer mod-
els that are more complete, including specific modeling of the numerous cellular mechanisms
that physically implement such outcomes, such as cell migration, division, differentiation,
or apoptosis.

Our approach is broadly applicable to any model system whose experimental procedures
and anatomical outcomes can be formalized [104, 105] and can readily be extended to other
problems in morphogenesis, including embryonic development or the programmed self-as-
sembly of hybrid systems such as bioinspired robots [106–109]. The models discovered with
this method allow the identification of the key mechanisms and the major regulatory products,
including those directly perturbed during the experiments as well as-yet unidentified necessary
products, explaining the resultant experimental phenotypes. Such models are required for the
identification of intervention strategies to produce desired changes in large-scale shape, for
birth defects, regenerative medicine, or synthetic bioengineering research. Our method repre-
sents a proof of principle towards the use of evolutionary search and quantitative spatial simu-
lation to help constructively understand complex morphological outcomes in embryogenesis,
regeneration, and synthetic bioengineering.

Methods

Formalizing experiments and morphologies
We created the input datasets of formalized experiments for the automated search algorithm
with the software tool Planform [70]. Planform uses a functional ontology based on mathemat-
ical graphs [47], a set of interconnected nodes [110], to unambiguously describe the main char-
acteristics of the morphology, including the overall shape and the location of specific
phenotypic regions (head, trunk, and tail regions in the worm). Experimental procedures are
described in the ontology as a nested set of basic operations, including amputations, cuts, ge-
netic/pharmacological perturbations, and their parameters. Using the graphical user interface,
we created a separated dataset with the phenotypic experiments presented in each of the main
publications of head-versus-tail planarian regeneration [72–79], and an additional dataset in-
cluding all the experiments together.

Mathematical model of developmental regulatory networks
To apply an automated discovery system capable of finding complex spatial and temporal dy-
namic networks, we modeled the behavior of gene, protein, and metabolite regulatory network
with a system of nonlinear partial differential equations (PDE). Products can act as intercellular
signals or be confined intracellularly, decay with time, and be activated or inhibited by other
products in the regulatory network. Each product can be regulated by several other products,
where interactions can be combined in either a necessary or sufficient fashion.

A regulatory network is made of phenotypic products and signaling products. Phenotypic
products represent phenotypic regions in the organism, and as such cannot regulate other
products. In this way, morphological features of the phenotype are abstracted as a single prod-
uct, resulting in inferred regulatory networks centered on the signaling mechanisms and not
the molecular details to form specific morphological features. For example, full-body worm
phenotypic data are formalized using head, trunk, and tail regions, whereas the inferred net-
works employ corresponding specific products representing head, trunk, and tail outcomes.

Signaling products can regulate other products, and they can represent the product of spe-
cific genes (such as β-catenin or wnt1) inferred from the perturbation experiments in the
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dataset, or be found de novo as necessary by the search algorithm. In addition, special products
are used to model specific aspects of an experiment. In particular, we implemented a wound
signal product, which is produced in the area adjacent to a surgical cut during an experiment.

Each equation in the system models the production rate of a product as the linear relation
between a production term, a decay term, and a diffusion term. The production term is mod-
eled with a combination of Hill functions, a widely-used nonlinear model of biochemical inter-
actions and genetic regulation [111]. Each Hill function models the activation or repression of
a product by another product (including itself). A product can be regulated by several regulato-
ry interactions simultaneously, and these interactions can be grouped in a necessary (both reg-
ulators are required to produce the regulated product), sufficient (one regulator is enough to
produce the regulated product), or any combination of them. Sufficient interactions are
grouped together in amax operator, while necessary interactions are grouped together in amin
operator; the set of sufficient interactions is considered as a necessary interaction by itself, and
hence it is included inside themin operator. The rate or production is modulated by a produc-
tion constant, which multiples the result of the combined Hill functions regulation. Products
decay in an exponential fashion. Thus, the decay term is modeled with a decay constant multi-
plying the product current concentration. Intercellular signaling mechanisms are essential in
the regulation of developmental and regenerative processes. We modeled the propagation of
intercellular signals as a diffusion term in the differential equation, modulated by a diffusion
constant. This allows the implementation of products that can propagate intercellularly, carry-
ing signals regulating other products. The diffusion constant of a product can be zero, in which
case the product is considered exclusively intracellular.

The following equation illustrates a model of the production of product a as regulated by
two necessary products (activator b and inhibitor c) and two sufficient products (activator d
and inhibitor e):

@a
@t

¼ ramin
bZ1

a1Z1 þ bZ1
;

a2
Z2

a2Z2 þ cZ2
;max

dZ3

a3Z3 þ dZ3
;

a4
Z4

a4Z4 þ eZ4

� �� �
� laaþ Dar2a

where ρa is the production constant, ηi are the Hill coefficients, αi are the dissociation constants
in the Hill functions, λa is the decay constant, and Da is the diffusion constant.

In summary, each product of a regulatory network is defined according to four parameters
(production, decay, and diffusion constants, and the initial concentration value), while each
regulatory interaction is defined with three parameters (Hill coefficient, dissociation constant,
and whether the regulation is necessary or sufficient). The values of all the parameters are auto-
matically inferred by the search algorithm.

Performing phenotypic experiments in silico
We implemented a simulator able to load morphological phenotypes and perform surgical, ge-
netic, and pharmacological experiments formalized with the functional ontology. The simula-
tor takes as input a formalized experiment with the functional ontology and a regulatory
network described with a system of PDEs. The simulator outputs the resultant morphology
after numerically integrating the PDE system and performing in silico the formalized experi-
ment. Due to the dynamic boundaries of a developmental and regenerative simulated organ-
ism, we implemented an Euler finite difference method [112] to integrate the set of PDEs
corresponding to a regulatory network.

The simulator performs an experiment in two stages. During the first stage, the original
wild-type morphology is loaded into the simulator, the initial product concentrations are set
according to the model, and the regulatory network defined in the PDE system is integrated for
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a fixed amount of time. This first stage allows the dynamical system to converge into a steady
state, which will be used for the initial state in the second stage. A formalized morphology and
regulatory network is loaded into the simulator by setting the initial concentration value for
every product in the regulatory network. The concentration of phenotypic products (head,
trunk, and tail in the worm dataset) is initialized according to the corresponding phenotypic re-
gions. For example, the positions corresponding with a head region will be initialized with
head product concentration of 1.0 and trunk and tail product concentrations of 0.0, whereas
the positions corresponding with a trunk region will be initialized with trunk product concen-
tration of 1.0 and head and tail product concentrations of 0.0. Signaling products are initially
set homogenously according to either a numerical parameter for each product between 0.0 and
1.0 stored in the model or indicating a configuration similar to a phenotypic product.

During the second stage of the simulation, the surgical manipulations and genetic and phar-
macologic perturbations are performed and the PDE system is integrated for another fix
amount of time. The final state of the system is the resultant morphology of the in silico experi-
ment. Surgical manipulations change the boundary of the system and set the concentration of
all products outside of the new boundaries to zero. A genetic knock-down (RNAi) will elimi-
nate all the activation regulations of the corresponding product. Pharmacological treatments
(octanol) will set the corresponding product diffusion constant to zero, simulating a block of
gap junction channels.

Calculating the error of a regulatory network
To calculate the error (predictive power) of a regulatory network, the resultant phenotypes of
the simulated experiments using the network are scored by comparing them with the resultant
phenotypes from the physical experiments. For this end, we implemented a distance metric
between phenotypes.

Wild type planarians can vary their size by about an order of magnitude due to feeding and
starvation [113], a common situation during regenerative experiments where worms may lack
the ability to feed. In consequence, we made the distance metric between phenotypes tolerant
to small variations between phenotypes. More precisely, the phenotypic metric is invariant in
scale, for which the phenotypes are first centered and scaled before comparison. In addition,
we included a concentration tolerance parameter (ε) and a radius tolerance parameter (r) with-
in the metric, as defined below, which even out small differences between phenotypes.

The goal of the search algorithm is to find regulatory networks that produce stable pheno-
types, and not transient states that are only temporally similar to the resultant phenotypes of
the physical experiments. To bias the search towards stable networks, we included a concentra-
tion change penalty that is applied when the maximum concentration change in the last time
step of a simulation is higher that certain parameter threshold (μ).

We then define a Euclidian distance between two locations a and b that measures the
squared averaged distance between a set p of phenotypic products within a tolerance ε:

k a� bkε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p�P

ðð½p�a � ½p�bÞ2 � εÞþ
s

where [p]a and [p]b are the concentrations of product p in the locations a and b, respectively.
Then, we define a distance metric between two phenotypes A and B of size w-h as the mean

logarithmic minimum distance between every location a of phenotype A and every location b
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inside a radius r from a of phenotype B:

dðA;BÞ ¼ 1

w � h
Xw

i¼1

Xh

j¼1

logð1þ min
d;y2ð�r;rÞ

k ai;j � biþd;jþykεÞ

Finally, we define the error of a regulatory network modelM for a set E of n experiments as:

errorðM; EÞ ¼ 1

n

Xn

i¼1

ðdðCM
ei
;Pei

Þ þ ðDM
ei
� mÞþÞ

whereCM
ei
is the resultant phenotype of simulating experiment ei with the modelM, Pei

is the

resultant phenotype from the physical experiment ei, D
M
ei
is the average concentration change

in the last time step of simulating experiment ei with the modelM, and μ is the penalty concen-
tration change threshold. The error of a network is calculated with the set of experiments for-
malized in the input dataset, plus an additional experiment with no surgical manipulation or
perturbation to assure that a discovered regulatory network maintains the correct wild type
morphology in the absence of any perturbation.

Searching for regulatory networks
Having an automated measurement of the error of a given regulatory network model for a set
of formalized experiments, we then implemented an optimization method to search for models
that minimize the error. Our method is flexible enough to find the parameters, the topology,
and the necessary products of the network.

We employed an evolutionary algorithm [114] approach to search for regulatory networks,
where a population of candidate networks evolve in parallel until a network with zero error is
found. The initial population comprises random networks with random parameters and regu-
lations between the phenotypic products, the wound product, and the genetic and pharmaco-
logical perturbed products from the set of experiments to search.

New regulatory networks are produced from existing ones through crossover and mutation
operators. A crossover mixes randomly two networks to produce two new networks. Products
that are in common between the two networks are copied to the new networks randomly, each
network receiving one of each product, while products not shared are distributed randomly be-
tween the two new networks. Products are copied to a new regulatory network together with
their regulatory links. If the regulatory product of a copied link does not exist in the new net-
work, it is substituted randomly by another regulatory product.

Mutations alter the regulatory network randomly. Each product or link parameter can be
substituted by a random value with 1% probability. Products and links are duplicated with 1%
probability. After duplicating a product, a new regulatory link and a new regulator link is creat-
ed for the new product. After duplicating a link, the regulated and regulator products are cho-
sen randomly. Products and links can be deleted with 1.5% probability, except phenotypic and
perturbed products in the experiments, which cannot be deleted. These evolutionary parame-
ters are not optimized; however, a higher probability of deletion with respect duplication is
necessary to bias the evolution towards simpler networks and prevent bloating [115].

The evolutionary algorithm stops when a network with zero error is found and the complex-
ity (number of products and links) of the simpler network with zero error have not been de-
creased for a certain number of generations. This extra evolutionary time is used to simplify
the best network found, since the mutation operators are biased towards simpler networks.
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Evolutionary algorithm implementation
Since new regulatory networks in a population can be simulated and evaluated independently,
we implemented a parallel version of our evolutionary algorithm in a cluster computer using
256 cores. We used an island distribution approach [116], which improves performance and
preserves genetic diversity by using many independently-evolving subpopulations. We used 32
parallel subpopulations with 64 regulatory networks each. For every 250 generations on aver-
age, all subpopulations are randomly paired and their regulatory networks are shuffled ran-
domly; this compensates the trend for a single suboptimal regulatory network to saturate a
single subpopulation.

We used the deterministic crowding selection method [117] with 75% crossover, 1% param-
eter change mutation, 1% duplication mutation, and 1.5% deletion mutation. All the parame-
ters in the regulatory network can vary in the range (0,1), except the Hill coefficient, which can
vary in the range (1,5). To calculate the regulatory network error, we used an Euclidian distance
tolerance ε of 0.1, a distance comparison radius r of 2, and a penalty concentration change
threshold of 10–4. We used 250 extra generations in the criteria to stop the algorithm after a
network with zero error is found.

The simulation and search method was implemented in C++ using the Standard Library
and the Eigen library (http://eigen.tuxfamily.org). Visualizations used the Qt libraries (The Qt
Company Ltd.) and the Qwt library (Uwe Rathmann and Josef Wilgen). The software is freely
available at http://www.daniel-lobo.com/planarianmodels.

Supporting Information
S1 Fig. Error and complexity over time of the best regulatory network of several search pro-
cesses. (A-F) Each panel corresponds with the evolutionary search that resulted in the finding
of the regulatory networks shown in Fig 3A–3F, respectively.
(TIF)

S2 Fig. Regulatory networks can include auxiliary products and regulations that do not af-
fect the dynamics of the network but can evolve through neutral mutations during the
search. (A-F) Final regulatory networks including known morphological and genetic products,
novel products (labeled with letters), and auxiliary products (numbered, light grey) corre-
sponding to the inferred networks shown in Fig 3A–3F, respectively. Both the auxiliary prod-
ucts and novel products are found de novo by the search algorithm; however, in contrast to the
novel products, the auxiliary products do not have regulatory interactions affecting directly or
indirectly morphological outcomes (head, trunk, and tail products) and hence are not consid-
ered part of the final discovered signaling network.
(TIF)

S1 Movie. Simulation of β-catenin/APC regulation model.
(MP4)

S2 Movie. Simulation of wnt1/wnt11-5 regulation model.
(MP4)

S3 Movie. Simulation of β-catenin/notum/wnt1 regulation model.
(MP4)

S4 Movie. Simulation of β-catenin/shh/wnt1/ptc regulation model.
(MP4)
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S5 Movie. Simulation of gap junction communication model.
(MP4)

S6 Movie. Simulation of classical cuts model.
(MP4)

S7 Movie. Simulation of comprehensive model of planarian regeneration.
(MP4)

S1 File. System of equations of inferred regulatory networks.
(PDF)
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