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Abstract
Gene expression in individual cells is highly variable and sporadic, often resulting in the syn-

thesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-

fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differenti-

ation. It is generally assumed that bursts are geometrically distributed and that they arrive

according to a Poisson process. On the other hand, recent single-cell experiments provide

evidence for complex burst arrival processes, highlighting the need for analysis of more

general stochastic models. To address this issue, we invoke a mapping between general

stochastic models of gene expression and systems studied in queueing theory to derive

exact analytical expressions for the moments associated with mRNA/protein steady-state

distributions. These results are then used to derive noise signatures, i.e. explicit conditions

based entirely on experimentally measurable quantities, that determine if the burst distribu-

tions deviate from the geometric distribution or if burst arrival deviates from a Poisson pro-

cess. For non-Poisson arrivals, we develop approaches for accurate estimation of burst

parameters. The proposed approaches can lead to new insights into transcriptional bursting

based on measurements of steady-state mRNA/protein distributions.

Author Summary

One of the fundamental problems in biology is understanding how phenotypic variations
arise among individuals in a population. Recent research has shown that phenotypic varia-
tions can arise due to probabilistic cell-fate decisions driven by inherent randomness
(noise) in the process of gene expression. One of the manifestations of such stochasticity
in gene expression is the production of mRNAs and proteins in bursts. Bursting in gene
expression is known to impact cell-fate in diverse systems ranging from latency in HIV-1
viral infections to cellular differentiation. Recent single-cell experiments provide evidence
for complex arrival processes leading to bursting, however an analytical framework con-
necting such burst arrival processes with the corresponding higher moments of mRNA/
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protein distributions is currently lacking. We address this issue by invoking a mapping
between general models of gene expression and systems studied in queueing theory. The
framework developed and the results derived lead to new approaches for testing com-
monly used assumptions in modeling gene expression and for accurate estimation of burst
parameters. Notably, the phenomenon of stochastic bursting has been observed in a wide
range of disciplines ranging from neuroscience and finance to cell biology. The approaches
developed and results obtained in this work will thus contribute towards quantitative char-
acterization of burst processes in diverse systems of current interest.

Introduction
The cellular response to fluctuating environments requires adjustments to cellular phenotypes
driven by underlying changes in gene expression. Given the inherent stochasticity of cellular
reactions, biological circuits controlling gene expression have to operate in the presence of sig-
nificant noise [1–15]. While noise reduction and filtering is essential for several cellular pro-
cesses [16], cells can also amplify and utilize intrinsic noise to generate phenotypic diversity
that enables survival under stressful conditions [17]. Recent studies have demonstrated the
importance of such bet-hedging survival strategies in diverse processes ranging from viral
infections to bacterial competence [17]. Quantifying the kinetic mechanisms of gene expres-
sion that drive variations in a population of cells will thus contribute towards a fundamental
understanding of cellular functions with important applications to human health.

Recent experiments focusing on gene expression at the single-cell level have revealed strik-
ing differences from the corresponding population-averaged behavior. In particular, it has
been demonstrated that transcription in single cells is sporadic, with mRNA synthesis often
occurring in bursts followed by variable periods of inactivity [7, 18–28]. Such transcriptional
bursting can give rise to high variability in gene expression products and to phenotypic varia-
tions in a population of genetically identical cells [29–32]. Furthermore, dynamical parameters
that characterize transcriptional bursting of key genes can significantly influence cell-fate deci-
sions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation [17].
Correspondingly, there is significant interest in developing approaches for quantifying parame-
ters related to transcriptional bursting such as frequency and mean burst size.

In recent years, multiple studies have provided evidence for bursty synthesis of mRNAs [20–
25, 33, 34] and proteins [35, 36]. Experimental approaches in such studies include both steady-
state measurements and time-dependent measurements of the mean and variance of gene expres-
sion products at the single-cell level. While obtaining time-lapse measurements of bursts at the
single-cell level can be challenging, steady-state measurements at the single-cell level are now car-
ried out routinely. It would thus be desirable to develop approaches for making inferences about
burst parameters in gene expression using steady-state measurements at the single-cell level.

As noted in [37], steady-state measurements of the mean and variance alone cannot be used
for estimating burst parameters for general models of gene expression, e.g. when burst arrival
is governed by complex promoter-based regulation [38]. Additional insights into processes
leading to transcriptional bursting can potentially be obtained using measurements of higher
moments. However, analytical results for higher moments of steady-state mRNA and protein
distributions in general models of expression have not been obtained so far. The derivation of
the corresponding analytical expressions will elucidate how measurement of higher moments
can potentially lead to quantification of burst parameters. To address these issues, it is essential
to develop and analyze a general class of stochastic models of gene expression.

Stochastic Modeling of Bursting in Gene Expression
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A simple stochastic model that is widely used in analyzing bursting in gene expression is the
random telegraph model that takes into account the switching of promoter between transcrip-
tionally active (ON) and inactive (OFF) states [39–41]. This model has been used as the basis
for several studies focusing on inferring gene expression parameters based on observations of
the mean and variance of mRNA/protein distributions [13, 27, 42]. In this model, in the limit
that we have transcriptional bursting, the arrival of bursts is a Poisson process. Correspond-
ingly, the waiting-time distribution between arrival of mRNA bursts is assumed to be exponen-
tial. In general, this assumption is not valid as there are multiple kinetic steps involved in
promoter activation [37, 43, 44]. Recent experiments on mammalian genes [7, 45, 46] have
demonstrated that the waiting-time for arrival of bursts does not have an exponential distribu-
tion. In view of these experimental observations, it is natural to ask: Using steady-state mea-
surements, can we infer if the burst arrival process is not a Poisson process? If so, how can we
estimate the corresponding burst parameters?

Furthermore, in estimating burst size it is commonly assumed that mRNA/protein bursts
are geometrically distributed. This assumption, which has been validated by experimental
observations for some genes, is derived from the corresponding distribution of bursts in the
random telegraph model. However, given the complexity and diversity of gene expression
mechanisms, it is possible that several promoters involve multiple rate-limiting steps in the
transition from the ON state to the OFF state. In such cases, the transcriptional burst size dis-
tribution will not be a geometric distribution. This observation leads to the following question:
Can we use steady-state measurements of moments to determine if the burst distribution devi-
ates from a geometric distribution?

The aim of this paper is to address the above questions by considering models with general
arrival processes for mRNA creation. The paper is organized as follows. First, we introduce a
class of gene expression models with general arrival processes leading to mRNA/protein bursts
with arbitrary burst distribution. Then we review the mapping from gene expression models to
systems studied in queuing theory [43, 47, 48] and use this mapping to derive steady-state
moments for mRNA/protein distributions. The analytical expressions obtained for the steady-
state moments are used to develop approaches for estimating burst parameters for general
arrival processes. Finally, we use the results obtained to derive conditions relating experimen-
tally measurable quantities that determine if the arrival of mRNA bursts deviates from a Pois-
son process and if the distribution of mRNA bursts deviates from a geometric distribution.

Results

Model and preliminaries
We consider a general model of gene expression [43] as outlined in Fig 1. In the model,
mRNAs are produced in bursts, with f(t) representing a general arrival time distribution for
mRNA bursts. The mRNA burst distribution can be arbitrary. Each mRNA then produces pro-
teins with rate kp, and finally, both mRNAs and proteins decay with rates μm and μp, respec-
tively. Note that the model also allows for post-transcriptional regulation since the protein
burst distribution from each mRNA can be arbitrary; the only assumption is that each mRNA
produces proteins independently.

In the limit μp � μm, we can use the bursty synthesis approximation [40] for analyzing pro-
tein dynamics. This approximation consists of two steps: 1) obtaining the distribution of pro-
teins produced from each mRNA and 2) assuming that the proteins are produced in
instantaneous bursts. The corresponding distribution for the number of proteins created is
referred to as the protein burst distribution. A detailed justification of the validity of this
approximation has been provided in previous work [40, 49].

Stochastic Modeling of Bursting in Gene Expression
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Let apðzÞ ¼P1
n¼0 z

npðnÞ denote the generating function of the protein burst distribution p
(n) produced by a singlemRNA, and let ApðzÞ ¼P1

n¼0 z
nPðnÞ denote the generating function

of the protein burst distribution P(n) produced by all the mRNAs in a burst. If we denote by
Am(z) the generating function of the mRNA burst distribution, then we have the following rela-
tion between the generating functions

ApðzÞ ¼ Am½apðzÞ�: ð1Þ

The above relation follows from the observation that the number of proteins produced in a
burst is a compound random variable: the sum ofm independent identical random variables,
each of which corresponds to the number of proteins produced from a single mRNA in the
burst andm itself is a random variable denoting the number of mRNAs produced in the burst.

While the analytical results that we derive are valid for general mRNA and protein burst dis-
tributions, we will primarily focus on a specific class of burst distributions. Simple kinetic mod-
els and the results from multiple experiments indicate that mRNA burst distributions are
geometric [35]. Similarly, the burst distribution of proteins produced from a single mRNA is a
geometric distribution with mean hpbi = kp/μm. For a geometric distribution with mean hpbi,
the generating function is given by

apðzÞ ¼ 1

½1þ hpbið1� zÞ� :

Fig 1. Kinetic scheme for the gene expression with general arrival time distributions. Bursts of mRNAs arrive with a general arrival time distributions f
(t). Each mRNA produces proteins with rate kp and mRNAs and proteins decay with rates μm and μp, respectively.

doi:10.1371/journal.pcbi.1004292.g001
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If we condition the geometric distribution on the production of at least 1 mRNA, then the
generating function for the corresponding conditional geometric distribution is given by

AmðzÞ ¼ z
½1þ hmbið1� zÞ�

with (1 + hmbi) as the mean mRNA burst size. Note that in the limit hmbi ! 0, this distribution
reduces to exactly 1 mRNA produced in each burst. Thus the conditional geometric distribu-
tion provides a unified representation of both Poisson arrival process for mRNAs (hmbi ! 0)
and processes leading to transcriptional bursting (hmbi> 0).

Consider now the protein burst distribution produced by an underlying conditional geo-
metric mRNA burst distribution with mean (1 + hmbi). Using Eq (1), we see that the corre-
sponding generating function of the protein burst distribution is given by

ApðzÞ ¼ 1

1þ hmbihpbið1� zÞ :

This is the generating function for a geometric distribution with mean b = (1 + hmbi)hpbi),
where hpbi = kp/μp represents the mean protein burst size from a single mRNA.

Single-cell experiments have demonstrated that the protein burst mean b can be directly
measured in some cases [35]. However, if the protein production rate kp is not known, the pre-
ceding analysis implies that measurements of protein burst distributions (which determine b)
cannot be used to determine the degree of transcriptional bursting (1 + hmbi). Since the mean
transcriptional burst size is an important parameter characterizing bursting, it is of interest to
develop approaches for estimating it based on available experiments. Previous work [50] has
argued that the mean transcriptional burst size cannot be determined using measurements of
protein burst distributions alone or by using only protein steady-state distributions. It was sug-
gested that combining such measurements can potentially provide a way of determining the
mean transcriptional burst size. To explore this possibility, it is necessary to derive analytical
results connecting moments of burst and steady-state distributions for general kinetic schemes.

Mapping to queueing theory: Results for moments
To obtain steady-state moments for the model outlined in Fig 1, we invoke the mapping of this
gene expression model to systems studied in queueing theory [43, 48, 51, 52]. Broadly speaking,
queueing theory is the mathematical theory of waiting lines formed by customers who, arriving
according to some random protocol, stay in the system until they receive service from a group of
servers. Such queues are typically characterized by specifying a) the stochastic process governing
the arrival of customers, b) distribution of number of customers in each arrival, c) the stochastic
process governing departure of customers, and d) the number of servers. When the gene expres-
sion model in Fig 1 is expressed in the language of queueing theory, individual mRNAs/proteins
are the analogs of customers in queueing models. The production of mRNAs/proteins in bursts
corresponds to the arrival of customers in batches. Just as the customers leave the queue after
receiving service, mRNAs/proteins exit the system upon degradation. Thus the waiting-time dis-
tribution for mRNA/protein decay is the analog of service time distribution for customers in
queueing models. For the model in Fig 1, their decay time distribution is the exponential distri-
bution. Also, since mRNAs/proteins are degraded independently of each other, the correspond-
ing number of servers in queueing models is1 (which ensures that presence of a customer in
the system does not affect the service time of any other customer in the system).

Based on the above mapping, the queueing system corresponding to the model outlined in
Fig 1 is the GIX/M/1 system [43, 48]. In this model, the symbol G refers to a general waiting-
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time distribution for the arrival process, IX denotes customers arriving in batches of indepen-
dently distributed random sizes X,M stands for Markovian (i.e. exponential) service-time dis-
tribution for customers and ‘1’ stands for infinite servers.

For the GIX/M/1model, exact results for iteratively obtaining the moments of the steady-
state distribution of the number of customers have been derived [48]. Using these results,
explicit expressions for the first four moments of the steady-state distribution are provided in
the Supplementary S1 Text. Applying the mapping discussed above, these results can be trans-
lated into exact expressions for the moments of mRNA/protein steady-state distributions, as
discussed below.

Let us first examine the expressions for steady-state means of mRNAs, hmsi, and proteins,
hpsi, which are given by

hmsi ¼
kb
mm

hmbi; hpsi ¼
kb
mp

b; ð2Þ

where kb stands for the mean arrival rate of mRNA bursts and b = hmbihpbi is the mean of the
protein burst distribution (including contributions from all the mRNAs). Although Eq (2) has
been derived by assuming that the arrival of mRNAs/proteins is a renewal process, it is valid
for arbitrary arrival processes. This is because Eq (2) is a direct consequence of Little’s Law [47,
53] which is valid for general arrival processes.

The above equations, Eq (2), can be used to determine the mean transcriptional burst size,
provided the protein burst distribution can be measured experimentally. To see this, we note
that dividing the expressions for the mean mRNA and protein levels leads to

b
hmbi

¼ mp

mm

hpsi
hmsi

: ð3Þ

Since the steady-state means hmsi and hpsi as well as the degradation rates μm and μp are
parameters that can be measured experimentally, the above equation implies that the ratio b/
hmbi can be determined experimentally. Given b/hmbi = kp/μm, this implies that the mean pro-
tein production rate kp can also be determined experimentally. This is an important result
since it provides an approach for determining the mean protein production rate kp that is valid
for arbitrary arrival processes for mRNAs. Furthermore, the above equation implies that, if the
mean of protein burst distribution b can be measured [36], then the mean transcriptional burst
size hmbi can also be determined. Thus, if we have measurements for mean mRNA and protein
numbers and also the mean of protein burst distribution, then these measurements can be used
to determine the degree of transcriptional bursting hmbi as well as the parameters hpbi and kp.
It is noteworthy that this procedure for estimating the burst parameters is valid for arbitrary
stochastic processes corresponding to mRNA transcription.

We next turn to expressions for higher moments of mRNA and protein steady-state distri-
butions. The noise in mRNA steady-state distributions is given by

s2
ms

hmsi2
¼ 1

hmsi
þ mm

kb
þ mm

2kb
KgðmmÞ � 1þ s2

mb

hmbi2
� 1þ 1

hmbi
� �" #

; ð4Þ

where s2
mb

is the variance of mRNA burst distribution and Kg(μm) is the so-called gestation fac-

tor,

KgðmmÞ ¼ 1þ 2
fLðmmÞ

1� fLðmmÞ
� kb
mm

� �
; ð5Þ

Stochastic Modeling of Bursting in Gene Expression
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with fL(s) denoting the Laplace transform of arrival time distribution of mRNA bursts. The
function Kg(μm) encodes information about the arrival process. Specifically, we note that for
Poisson arrivals, we have Kg(μm) = 1.

For proteins (in the burst limit μm � μp), we obtain [43]

s2
ps

hpsi2
¼ 1

hpsi
þ mp

kb
þ mp

2kb
KgðmpÞ � 1þ s2

mb

hmbi2
� 1� 1

hmbi
� �

þ s2
pb

hpbi2
� 1þ 1

hpbi
� � !

1

hmbi

" #
ð6Þ

where Kg(μp) is given by Eq (5) and s2
pb
is the variance of protein burst distribution produced

by a single mRNA. The expression for protein noise is composed of the noise term for the basic
two-stage model of gene expression [40] and additive noise contributions due to: a) deviations
from exponential waiting-time distribution for the arrival process, b) deviations from condi-
tional geometric distributions for mRNA burst distributions and c) deviations from geometric
distributions for protein burst distributions. For both mRNAs and proteins, the noise in
steady-state distributions depends on all the moments of the burst arrival time distribution
through the term Kg. Therefore, arrival processes corresponding to different kinetic schemes
for transcription will make different contributions to the overall noise, even if they have identi-
cal means and variances for the the burst arrival time distribution.

We note from Eq (4) that, for Poisson arrivals, i.e. Kg = 1, and geometrically distributed
burst, i.e. s2

mb
¼ hmbiðhmbi � 1), the equations for the noise and mean have only two unknown

burst parameters, kb and hmbi. In this case, experimental measurements of the first two
moments of the steady-state distribution are sufficient to estimate the burst parameters, as has
been done in multiple studies. However, when the arrival process is non-Poisson or if the burst
distribution deviates from a geometric distribution, measurements of the first two steady-state
moments are not sufficient for estimating the burst parameters. This observation motivates the
need for analytical expressions for the higher moments which we turn to next.

We now derive analytical expressions for the third moment, specifically the skewness
parameter. For mRNAs, the exact expression for skewness γms

is given by

gms
s3
ms

ms

¼ 1þ hmsihmbiK1ðmmÞ þ 2hmbi2K2ðmm; hmbiÞ

þ ðs2
mb

þ hmbi2 � hmbiÞK3ðmm; hmbiÞ

þ hmbðmb � 1Þðmb � 2Þi
3hmbi

;

ð7Þ

where we have defined

K1ðmmÞ ¼ Kgð2mmÞ � KgðmmÞ;

K2ðmm; hmbiÞ ¼ KgðmmÞ � 1

4

3

hmbi
þ Kgð2mmÞ � 1

� �
;

K3ðmm; hmbiÞ ¼ 3

2hmbi
þ KgðmmÞ þ Kgð2mmÞ

2
� 1:

ð8Þ

For proteins, we obtain in the burst-limit (μm � μp),

gpss
3
ps

ps
¼ 1þ ðAp

1Þ2
hpsi
b

K1ðmpÞ þ 2K2ðmp;A
p
1Þ

� �

þ Ap
2K3ðmp;A

p
1Þ þ

Ap
3

3Ap
1

;

ð9Þ

Stochastic Modeling of Bursting in Gene Expression
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where the functionsK1,K2,K2 are given by Eq (8), Ap
k is defined by A

p
k ¼ dkApðzÞ=dzkjz¼1 and,

using Eq (1) [54], we obtain the parameters Ap
k as:

Ap
1 ¼ hmbihpbi;

Ap
2 ¼ hmbiðs2

pb
� hpbiÞ þ ðs2

mb
þ hmbi2Þhpbi2;

Ap
3 ¼ hpbi3hmbðmb � 1Þðmb � 2Þi þ 3hmbðmb � 1Þihpbi

hpbðpb � 1Þi þ hmbi hpbðpb � 1Þðpb � 2Þi:

ð10Þ

Similarly, expressions for higher order moments of protein and mRNA steady-state distribu-
tions can be obtained iteratively. The corresponding expressions for the kurtosis are provided
in the S1 Text.

The analytical results derived above for proteins are exact in the burst limit, which assumes
that proteins are produced instantaneously from all the mRNAs in a burst. Going beyond the
burst limit (i.e. not limited to μm � μp), exact results for the higher moments of the protein
steady-state distribution will, in general, depend on the details of the kinetic scheme for gene
expression. However, we can derive approximate analytical expressions for general schemes by
requiring that: a) the results reduce to the exact results in the burst limit and b) they match the
exact results for the two-stage model of gene expression. For the two-stage model, exact results
for the first four moments have been derived by Bokes et. al [55]. Comparing these exact results
with our results derived in the burst limit, we observe that results of [55] can be reproduced by
a suitable scaling of the burst-size parameters Ap

k. For example, the exact expression for the
noise is obtained by the following scaling [43]:

s2
ps

hpsi2
� 1

hpsi

 !
! s2

ps

hpsi2
� 1

hpsi

 !
1

1þ mp
mm

: ð11Þ

Similarly, for the expression for skewness, the parameters Ap
2 and A

p
3 are scaled as:

Ap
2 ! Ap

2

1

1þ mp
mm

and Ap
3 ! Ap

3

1

1þ mp
mm

� �
1þ 2

mp
mm

� � : ð12Þ

As shown in Fig 2 (for the random telegraph model) the analytical expressions using this
approach are in good agreement with results from simulations [56].

It is noteworthy that the results derived are valid for a general class of kinetic schemes of
gene expression. For a specific kinetic scheme, we can determine the corresponding waiting-
time distribution for the arrival process and the burst distributions for mRNA and proteins.
Substituting these results in the equations derived leads to the corresponding expressions for
the moments of the steady-state distribution. The results obtained can thus provide insight
into how specific kinetic schemes of gene expression (e.g. combining promoter-based regula-
tion and post-transcriptional regulation) can be used to impact the noise and higher moments
of steady-state distributions.

Estimation of burst parameters
The results derived for the steady-state moments indicate that, if the burst arrival process is not
a Poisson process, then it is no longer accurate to estimate burst parameters based on measure-
ments of mean and variance only, as has been done in previous studies [13]. In the following,
we present approaches for estimating burst parameters in the general case.

We begin by considering the general kinetic scheme shown in Fig 3. This form for the kinetic
scheme is supported by recent experiments in mammalian cells which suggest the presence of

Stochastic Modeling of Bursting in Gene Expression
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multiple rate-limiting steps between transition of the promoter from OFF to ON state [45, 57].
However, as observed in these experiments, a promoter in the ON state switches to the OFF
state by a single rate-limiting step. We model the promoter switching fromOFF to ON state by
a general waiting-time distribution, g(t). The switching rate from ON to OFF state is given by β.

Fig 2. Steady state moments for proteins. (a) Kinetic scheme for the two-state random telegraph model. For this model, steady state variance (scaled by
10−5) and third central moment ν3 (scaled by 10−6) of proteins as a function of μm/μp are plotted in (b) and (c) respectively: lines represent analytic estimates
and points correspond to the simulation results. Parameters are: α = 0.5, β = 0.25, km = 2, hmbi = 5, kp = 0.5.

doi:10.1371/journal.pcbi.1004292.g002

Fig 3. Schematic representation of the general kinetic scheme with promoter switching. Thick line from inactive state D0 to active stateDa represents a
general kinetic scheme with g(t) as the waiting-time distribution for the promoter to switch to the ON state.

doi:10.1371/journal.pcbi.1004292.g003

Stochastic Modeling of Bursting in Gene Expression
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Burst parameters from the sequence-size function. To extract burst parameters for the
general scheme considered above, we first note that bursts are generated due to the interplay of
two time scales, one that corresponds to production of mRNAs (when the gene is active) while
the other one corresponds to the waiting-time between production events (when the gene is in
inactive state). For bursty gene expression, we expect a clear separation of time-scales between
the characteristic time periods for these two cases. Following [41], it is convenient to define a
sequence-size function,

�ðtÞ ¼ 1

1� R t

0
f ðtÞdt ; ð13Þ

where f(t) is the waiting-time distribution for the arrival of a singlemRNA starting with the pro-
moter in the ON state. For a fixed τ, the sequence-size function can be used to categorize time

intervals larger than τ as separating bursts. Correspondingly, the term 1� R t

0
f ðtÞdt represents

the fraction of all mRNA arrivals that correspond to the arrivals produced in a single burst; thus
ϕ provides the corresponding mean burst size. For bursty gene expression with a separation of
time-scales, for a specific choice of τ = τx, the sequence-size function can be related to the actual
mean burst size. If f(t) can be measured, then determination of τx can result in accurate esti-
mates of the burst parameters such as mean burst size and frequency. In the following, we dis-
cuss how to determine τx for the general class of arrival processes considered in Fig 3.

The key insight is based on the observation that, due to the separation of time scales within
bursts and between consecutive bursts, determination of τx can be done by using a simple two-
state model as shown in Fig 2a. Even though the actual waiting time distribution between
bursts (g(t)) may differ from the exponential distribution for the two-state model, the short-
time behavior of the sequence-size function will be indistinguishable between the two cases
(given separation of time-scales). If τx can be connected to the short-time behavior, then ana-
lytical expressions for the sequence-size function ϕ(τ) for the two-state model can be used to
estimate τx and thereby the mean burst size.

For the two-state model, we find that burst size can be determined using a specific τx, which
corresponds to an inflexion point where the curvature of ϕ(τ) changes its sign. Specifically, for
the two-state model, we obtain f(t) by taking inverse Laplace transform of f(s) given by Eq (23).
In the burst-limit, i.e., α/β! 0, we find that the sequence-size function, using Eq (13), is given
by

�ðtÞ ¼ ðkm þ bÞetðkmþbÞ

km þ betðkmþbÞ ; ð14Þ

and the value of τ at which ϕ(τ) exhibits inflexion is

tx ¼
1

km þ b
ln

km
b
; km > b: ð15Þ

The sequence size function ϕ(τ) at this point (τ = τx) is given by:

�ðtxÞ ¼
1

2
1þ km

b

� �
¼ 1

2
1þ hmbið Þ; ð16Þ

Thus, the procedure for determination of the mean burst size (1 + hmbi), given f(t), is as
follows:

1. Obtain the sequence-size function ϕ(τ) from f(t). For bursty synthesis, ϕ(τ) will have an
inflexion point.

Stochastic Modeling of Bursting in Gene Expression
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2. The mean burst size (1 + hmbi) is simply twice the value of the the sequence-size function ϕ
(τ) at the inflexion point, τx.

This approach has been validated using stochastic simulations for multiple promoter mod-
els with correspondingly complex waiting-time distributions between bursts.

Estimation of f(t) from steady-state moments. The procedure outlined in the previous
section assumes that the waiting-time distribution f(t) can be determined. However, this can be
challenging experimentally, thus it is desirable to develop approaches for estimating f(t) based
on measurements of steady-state distributions.

To proceed in this direction, let us first obtain a relation connecting the two waiting-time
distributions f(t) (for single mRNA arrival) and g(t) (for burst arrival). In Fig 3, we note that
when the promoter is in the active state, Da, it can make multiple trips to D0 before producing
mRNA. Whenever gene is in Da state, it can either create mRNA or can switch back to D0 state.
Gene in Da state can produce mRNA either in a single step, i.e., without switching back to D0

state, or by making multiple trips to D0 before producing mRNA. Denoting the number of
trips made before producing mRNA by q, we obtain that the Laplace transform of the waiting-
time distribution f(t) is given by

fLðsÞ ¼
km

bþ km

X1
q¼0

b
bþ km

� �q

½gLðsÞ�q
km þ b

km þ bþ s

� �qþ1

; ð17Þ

which leads to:

fLðsÞ ¼
km

km þ sþ ½1� gLðsÞ�b
: ð18Þ

In order to determine fL(s), we will assume a specific functional form for gL(s). We consider
that gL(s) is given by the following rational function,

gLðsÞ � gmn ðsÞ ¼
1þ a1sþ a2s

2 � � � amsm
1þ b1sþ b2s2 � � � bnsn

; n > m: ð19Þ

This form for the Laplace transform of the waiting-time distribution is consistent with known
waiting-time distributions for phase-type processes [54] and thus is valid quite generally.

Once we have an explicit form for fL(s), the next step is to determine the parameters, km, β,
a1. . .am, and b1. . .bn. Thus, in general, we needm+n+2 measurements to estimate these param-
eters if we use gðsÞ ¼ gmn ðsÞ. The simplest case, gLðsÞ ¼ g01ðsÞ, implies the presence of one
kinetic step from inactive state to active state, with rate 1/b1, and so it corresponds to the stan-
dard two-state random telegraph model. For this simple kinetic scheme, we can find the
parameters, km, β, and b1, and hence fL(s) and the sequence size function by using three mea-
surements associated with either mRNAs or proteins.

The form, gLðsÞ ¼ g01ðsÞ, is exact for the two-state random telegraph model. Using the
expressions obtained for the first four steady-state moments, we can derive an analytic condi-
tion that determines whether the underlying mechanism can be represented by g01ðsÞ (see Sup-
plementary S2 Text). However, if the arrival process is complex and involves multiple rate-
limiting steps, then g01ðsÞ will not be an accurate representation of the underlying kinetic pro-
cess. In such cases, we need to use gL(s) of higher order. The next step in this iterative process is
to take gLðsÞ ¼ g02ðsÞ. This form of gL(s) is valid if there are only two rate-limiting steps in the
promoter transition from OFF to ON state. For kinetic schemes that involve more than two
steps, it will serve as an approximate reduced representation. Interestingly, it turns out that
even if gLðsÞ ¼ g02ðsÞ is not a correct representation of the underlying kinetic process, this
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reduced representation works very well as far as estimating burst size is concerned. In Fig 4, we
have illustrated the effectiveness of this approach for a complex kinetic scheme for the pro-
moter transition from OFF to ON state. The figure also illustrates the effectiveness of the
approach outlined in the previous subsection for determining the mean burst size using the
sequence-size function ϕ(τ).

While the reduced representation, gLðsÞ ¼ g02ðsÞ, works reasonably well for estimating burst
size, with additional data, it is possible to extend the process further. The iterative procedure
we propose is as follows:

1. Start with the simplest form g01ðsÞ and use three moments associated with either mRNA or
proteins (or both) to find fL(s) as discussed above. Then this fL(s) can be used to get analytic
predictions for higher moments [48].

2. If these analytic predictions are consistent with the corresponding experimental observa-

tions then g01ðsÞ provides a reasonable representation of the underlying kinetic scheme, else
a representation using more complex kinetic schemes is required.

3. To address more complex kinetic schemes, we iteratively change gL(s) from g01ðsÞ to
g02ðsÞ. . .and so on, and iterate the steps outlined to determine the underlying fL(s). However,
we note that for uncovering more complex kinetic scheme we need additional measure-
ments to estimate fL(s). If moment measurements are possible at different mRNA/protein
degradation rates, then these additional measurements can be used to estimate fL(s) and
hence the corresponding mean transcriptional burst size.

Effect of extrinsic noise on burst estimation. The burst estimation approach discussed in
the preceding section assumes that the dominant contribution comes from intrinsic sources of
fluctuations. However, extrinsic noise [1, 12], e.g. arising from different concentration of cellu-
lar components such as RNA polymerase, can also contribute significantly to the observed vari-
ations. It is thus of interest to examine how the proposed burst parameter estimation
procedure works if we also consider sources of extrinsic noise.

To explore the effects of such fluctuations, we consider the model shown in Fig 5. In this
kinetic scheme, the activation of gene from OFF to ON state involves two sequential steps, with
rates α1 and α2. To include extrinsic fluctuations in the model, we consider that the rate of tran-
scription km is a Log-normally distributed random variable with mean hkmi and standard devi-
ation σkm. For a given value of σkm, we determine the mean burst size following the procedure
outlined above: i.e. by taking gðsÞ ¼ g02ðsÞ and then using the simulation values for the first
four steady-state moments of mRNAs to estimate the unknown parameters (b1,b2,km,β), and
hence the burst size. By varying σkm we study how the estimated burst size hmbiσ deviates from
the one without extrinsic noise, hmbi0. As can be seen in Fig 5, for smaller values of σkm, the esti-
mated burst size hmbiσ is reasonably close to hmbi0, however, as expected, hmbiσ shows mono-
tonic deviations from hmbi0 for larger values of σkm.

Signatures for non-Poisson arrivals
The analytical expressions derived for the steady-state moments for mRNAs and proteins can
also be used to make inferences about the burst arrival process based on steady-state measure-
ments. Since multiple studies assume that the burst arrival process is characterized by an expo-
nential waiting-time distribution, it would be useful to determine if this assumption is invalid
using measurements of steady-state distributions. As shown below, we can obtain conditions
for the same using the results derived for higher moments.
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In the following, we will first focus on the cases that the mRNA burst distribution is condi-
tional geometric and the protein burst distribution is geometric, which is consistent with multi-
ple experimental observations. As discussed, choosing the conditional geometric distribution
for mRNAs allows us to consider both single mRNA arrivals and geometric mRNA bursts in
one framework. Since experiments can provide measurements of both mRNA and protein
steady-state distributions, it is useful to have conditions for the arrival process using either
mRNA data or protein data or both mRNA and protein data. Based on these three possibilities,
we present three different conditions in the following.

Using moments of mRNA steady-state distributions. Let us first consider the case where
we have only measurements of the mRNA steady-state distribution. We note that for Poisson
arrivals Kg(μm) = Kg(2μm) = 1, and using the expressions for mean and noise from Eqs (2) and
(4) we get, Fm = hmbi, where Fm ¼ s2

ms
=hmsi is the mRNA Fano factor. Further, using this in

the equation for skewness, Eq (7), we derive the following condition that must be satisfied if
the arrival of mRNA bursts is a Poisson process:

Dm � gms
s3
ms

hmsi 3ðFm � 1Þf1þ 2
3
ðFm � 1Þg þ 1

� 	� 1 ¼ 0: ð20Þ

ThusDm 6¼ 0 is a signature of non-Poisson arrival processes. Since the above prescription is

Fig 4. Estimation of mean burst size from sequence size function ϕ(τ). For the transcriptional scheme shown in (a), the variations of ϕ@(τ) and ϕ(τ) as a
function of time τ (scaled by 103) are shown in (b) and (c) respectively. The three lines correspond to three different values of β, 50 (dashed line), 100 (dotted
line) and 200 (dashed-dotted line), while keeping km = 500: Exact burst size for these three cases are 11, 6 and 3.5, respectively. Estimated mean burst size
has been indicated by filled symbols and the inflexion points in the sequence size function are shown by empty symbols. Other parameters: α1 = 1,α2 = 0.5,α3
= 0.25,α4 = 0.75,β1 = 0.1,β2 = 0.2,β3 = 0.5.

doi:10.1371/journal.pcbi.1004292.g004
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based on experimentally measurable quantities such as hmsi; s2
ms
; gms

and μm, it can be used to

determine if the assumption of a Poisson arrival process is invalid.
Using moments of protein steady-state distributions. We next consider the case where

we have access to only the protein steady-state distribution. The steps followed are similar to
those outlined for the mRNA case. For Poisson arrivals, Kg(μp) = 1, and using Eqs (2) and (11)
we get

b ¼ ðFp � 1Þ 1þ mp

mm

� �
;

where Fp ¼ s2
ps
=hpsi is the protein Fano factor. Substituting this in the expression for protein

Fig 5. Effects of extrinsic noise on burst estimation. For the transcriptional scheme shown in the inset, the relative error Δσ(hmbi) = (hmbi0−hmbiσ)/hmbi0
is plotted. Parameters as α1 = 1, α2 = 0.5, β = 50, hkmi = 500 and μm = 1.

doi:10.1371/journal.pcbi.1004292.g005
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skewness, Eq (9) with the scaled Ap
2 and A

p
3 given by Eq (12), we arrive at the following condi-

tion for Poisson arrivals.

Dp � gpss
3
ps

hpsi 3ðFp � 1Þ 1þ 2

3

mm þ mp

mm þ 2mp

 !
ðFp � 1Þ

( )
þ 1

" #� 1

¼ 0

ð21Þ

Again, non-zero value ofDp is a signature of non-Poisson arrivals.

Using both mRNA and protein steady-state distributions. Finally, if we have both
mRNA and protein steady-state distribution measurements available, then the condition for
Poisson arrivals can be obtained by combining measurements of second moments of mRNA
and protein distributions as follows: Using Eqs (2),(4) and (11), we get,

Dmp � Fm

hmsimm

� ðmm þ mpÞðFp � 1Þ
mmhpsimp

¼ 1

2kb
KgðmmÞ � KgðmpÞ
h i

;

ð22Þ

which vanishes for Poisson arrival of mRNA bursts. Thus non-zero values ofDmp indicate non-

Poisson arrival of mRNA bursts. Interestingly, for this condition there is no need to assume
that the mRNA burst distribution is geometric. That is, the condition holds true for arbitrary
mRNA burst distributions. Also, the condition does not require measurement of third
moments.

Signatures for a simple kinetic scheme. To illustrate the prescription derived for deter-
mining non-Poisson arrival processes, we consider a specific kinetic scheme, Fig 2a. For this
kinetic scheme, the mRNA arrival time distribution in the Laplace domain is given by (Eq (S3–
9) Supplementary S3 Text)

fLðsÞ ¼
kmðaþ sÞ

kmðaþ sÞ þ sðaþ bþ sÞ : ð23Þ

Using this in Eq (5) we find the gestation factor, Kg, and hence the mean, Fano factor and skew-
ness for both mRNAs and proteins. Finally, we derive exact analytic expressions forDm,Dp

andDmp from Eqs (20), (21) and (22) respectively. The expression forDm reads

Dm ¼
2kmbð1� hmbiÞy 1þ ð1þaÞðaþbÞhmbikm

yðhmbi�1Þ

� �
ð2þ aþ bÞðyþ bkmÞðð2hmbi � 1Þyþ 2kmhmbibÞ

; ð24Þ

where

y ¼ ðaþ bÞðaþ bþ 1Þ; ð25Þ

and we have set μm = 1 for simplicity. As expected, we note thatDm vanishes for the Poisson
arrival processes, i.e., either when β is zero, or when the switching rates α and β are very large
compared to the rate of transcription, km. The general expression forDp is complicated. How-

ever, to gain insight about the arrival process, we can write down a simpler expression forDp in
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the burst limit, μm = 1� μp:

Dp ¼ � 2hmbi2k2mk2pab
ðaþ bÞ4 þ 3hmbikpðaþ bÞ2cþ 2hmbi2k2pc2

; ð26Þ

where

c ¼ kmbþ ðaþ bÞ2: ð27Þ
Again, for Poisson arrival processesDp vanishes. Finally, we obtain an analytic expression for

Dmp, which is given by

Dmp ¼
bðmp � mmÞ

aðaþ bþ mmÞðaþ bþ mpÞ
; ð28Þ

and as expected, we note thatDmp vanishes for Poisson arrivals and is negative for μp < μm. In

Fig 6, we have plotted the three analytic expressions together with simulation results as a func-
tion of β.

Signatures for non-geometric bursts
As discussed in the previous section, it is widely assumed that the mRNA burst distribution
can be represented by a conditional geometric distribution (i.e. including both single mRNA
arrivals and geometrically distributed burst arrivals). While this assumption is consistent with
multiple experimental observations, for general kinetic schemes the possibility of non-geomet-
ric mRNA burst distributions has to be considered. Thus, it is of interest to examine if the
results obtained can be used to determine if the mRNA burst distribution deviates from a con-
ditional geometric distribution.

To address the possibility of non-geometric mRNA burst distributions, let us first consider that
the random variable corresponding to the mRNA burst distribution (mb) has a conditional geo-
metric distribution. That is, the probability that a burst produces nmRNAmolecules is given by

Pðmb ¼ nÞ ¼ ð1� pÞn�1p; ð29Þ

where 0< p� 1, and n = 1, 2, 3. . .1. This distribution leads to

s2
mb ¼ hmbiðhmbi � 1Þ: ð30Þ

Fig 6. Signatures for non-Poisson arrival. The quantitiesDm,Dp andDmp are plotted for the model shown in Fig 2a as a function of off rate β. Analytic
estimates are shown by lines whereas points correspond to the simulation results with parameters: α = 0.25, km = 2, hmbi = 5, kp = 0.5, μm = 1, μp = 0.01.

doi:10.1371/journal.pcbi.1004292.g006
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Using Eqs (2) and (30) in Eq (4), and denoting Fm ¼ s2
ms
=hmsi as the Fano factor of mRNA copy

number, Eq (4) can be rewritten as

FmðmmÞ ¼
hmbi
2

1þ KgðmmÞ
h i

: ð31Þ

Similarly, using the burst size distribution from Eq (29), the skewness in Eq (7) is given by

gms
s3
ms

hmsi
¼ 1þ hmsihmbiK1ðmmÞ þ 2hmbi2K2ðmm; hmbiÞ

þ 2ðhmbi � 1Þ½ð1þK3ðmm; hmbiÞÞhmbi � 1�:
ð32Þ

We note that Eq (32) connects experimentally measurable moments of the steady-state dis-
tribution to the parameters Kg(μm), Kg(2μm) and hmbi. Furthermore, note that Eq (31) can be
recast as Kg(μm) = (2Fm(μm)/hmbi)−1. Now, considering a change in the degradation rate from
μm to 2μm (keeping the mean burst size, hmbi invariant), we obtain

Kgð2mmÞ ¼ ð2Fmð2mmÞ=hmbiÞ � 1: ð33Þ

Using the above in Eq (32), we get an expression connecting experimentally measurable quan-
tities associated with moments of the mRNA steady-state distribution. The resulting expression
is:

Gm � gms
s3
ms
hmsi�1

2Fmð2mmÞðhmsi � 1Þ þ Fmð1� 2hmsi þ 2Fmð2mmÞÞ
¼ 1:

ð34Þ

We note that the above expression has been derived by making just one assumption,
namely, the mRNA burst distribution is a conditional geometric distribution. The derived
expression thus indicates that a combination of experimentally measurable quantities has to
deviate from 1 if the mRNA burst distribution deviates from a conditional geometric distribu-
tion. Thus the analytical results derived provide a signature for deviation from conditional geo-
metric mRNA bursts using measurements of the first three moments of the mRNA steady-
state distribution.

The main requirement for using the above relation is that measurements of mRNA steady-
state distribution can be carried out at two different rates of the mRNAs μm and 2μm. Given
that mRNA degradation rates can be tuned experimentally, a straightforward strategy to ensure
that the degradation rate is tuned to twice the original value (2μm) is to compare the mean
mRNA levels at μm and 2μm. Given these measurements, a value of Gm 6¼ 1 implies that bursts
are not distributed geometrically. The strength of this result lies in the fact that it holds for gen-
eral arrival processes for mRNA bursts with arbitrary waiting-time distributions.

Let us consider a specific simple model to illustrate the condition derived above. First, let
the arrival process for mRNA bursts be a Poisson process. For this, arrival time distributions of
mRNA bursts in the time domain, t, and in the Laplace domain, s, are given by

f ðtÞ ¼ kbe
�kbt; fLðsÞ ¼ kb=ðkb þ sÞ; ð35Þ

where kb is the rate of arrival of mRNA bursts. For the mRNA burst distribution, let us assume
that it is given by the negative binomial distribution, i.e.

Pðmb ¼ nÞ ¼ ðnþ r � 1Þ!
n!ðr � 1Þ! pnð1� pÞr; ð36Þ
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where 0< p� 1, r	 1, and n = 0, 1, 2, 3. . .1. For r = 1, the above reduces to the geometric dis-
tribution and therefore we expect Gm = 1 in this limit. Using the expressions for the moments
derived in the previous section, we obtain an explicit expression for Gm (Supplementary S3
Text):

Gm ¼ 1

3
� pþ 1

pr þ 1
þ 4

pðr � 1Þ þ 2
þ 2

� �
: ð37Þ

Notice that for the geometric bursts (r = 1) we get Gm ¼ 1, as expected. However, for non-geo-
metric bursts, deviations of Gm from 1 are observed (also see Fig S3–1 in Supplementary S3
Text). Two additional examples of microscopic models for non-geometric bursts (the two state
random telegraph model and a model with three promoter states where mRNAs are produced
from two states) are discussed in the.

The preceding analysis can be extended to protein steady-state distributions to derive a sim-
ilar condition for deviations from geometric burst distributions in terms of steady state
moments associated with proteins (see Supplementary S4 Text).

Discussion
In this paper we study stochastic gene expression models with a general renewal-type arrival
process for mRNAs. By mapping such a generic model of gene expression to systems studied in
queueing theory, we derive analytical expressions for the moments for mRNA and protein
steady-state distributions. While the focus of this work is on using approaches drawn from
queueing theory, it is noteworthy that the kinetic scheme defined in Fig 1 can also be analyzed
using the general theory of branching processes with immigration [58]. In future work, it
would be of interest to explore potential connections between complementary approaches to
such models based on branching processes and queueing theory.

While previous studies [37, 43] have focused on protein noise, in the present work we derive
analytic expressions for higher order moments of both mRNA and protein steady-state distri-
butions. For arbitrary kinetic schemes, the results obtained determine how the moments of
steady-state distributions depend on model parameters. They elucidate how different sources
(promoter-based regulation, transcriptional bursting, post-transcriptional regulation) combine
to determine the overall noise and higher moments. Furthermore, the results derived show
how parameters of interest (such as mean protein production rate kp) can be estimated for gen-
eral models (i.e. without making any assumptions about specific features of the models).

The expressions derived for the moments can also be used to infer if the arrival process for
mRNAs is non-Poisson or if the mRNA burst distribution deviates from the geometric distri-
bution. Correspondingly, we obtain analytic conditions that provide signatures for non-Pois-
son arrivals of mRNA bursts and for non-geometric mRNA burst distributions. These
conditions involve relations between combinations of of experimentally measurable quantities
and can thus be tested by using measurements of either mRNA steady-state distributions or
protein steady-state distributions or both. Apart from obtaining insights into the statistics of
the arrival process, we can use the results derived for steady-state moments for accurately esti-
mating burst parameters using an iterative approach. Notably, the results and the approaches
developed in this work are valid for general models of gene expression i.e., given the general
assumptions made, they do not depend on the specifics of the kinetic schemes.

It is important to note that the burst parameter estimation approaches presented in this
paper rely on the accurate measurements of higher order moments, such as skewness or kurto-
sis. This, in turn requires that we have relatively large sample sizes. For example, simulations of
two state random telegraph model (see Supplementary S5 Text) indicate that for the standard
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error in skewness to be below 10%, the sample size should be* 1000. Current experimental
limitations on measurements of mRNA distributions (e.g. using RNA FISH) do not allow for
such large sample sizes and thus do not lead to accurate computation of skewness or kurtosis.
While accurate measurements of higher moments are not readily available in the existing data,
it is hoped that our results will provide motivation for carrying out the corresponding experi-
ments in future. The combination of these experimental results with our theoretical approaches
can be used in obtaining accurate representations of the arrival process and burst parameters
for a wide range of cellular systems.
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