
RESEARCH ARTICLE

Genome Modeling System: A Knowledge
Management Platform for Genomics
Malachi Griffith1,2‡*, Obi L. Griffith1,3‡*, Scott M. Smith1‡¤a, Avinash Ramu1, Matthew
B. Callaway1, Anthony M. Brummett1, Michael J. Kiwala1, Adam C. Coffman1, Allison
A. Regier1, Ben J. Oberkfell1, Gabriel E. Sanderson1, Thomas P. Mooney1, Nathaniel
G. Nutter1, Edward A. Belter1, Feiyu Du1, Robert L. Long1, Travis E. Abbott1, Ian
T. Ferguson1, David L. Morton1, Mark M. Burnett1, James V. Weible1, Joshua B. Peck1,
Adam Dukes1, Joshua F. McMichael1, Justin T. Lolofie1¤b, Brian R. Derickson1,
Jasreet Hundal1, Zachary L. Skidmore1, Benjamin J. Ainscough1, Nathan D. Dees1, William
S. Schierding1¤c, Cyriac Kandoth1¤d, Kyung H. Kim1, Charles Lu1, Christopher C. Harris1,
Nicole Maher3, Christopher A. Maher1,3,4, Vincent J. Magrini1,2, Benjamin S. Abbott1,
Ken Chen1¤e, Eric Clark1¤f, Indraniel Das1, Xian Fan1¤e, Amy E. Hawkins1, Todd G. Hepler1,
Todd N. Wylie1, Shawn M. Leonard1, William E. Schroeder1, Xiaoqi Shi1, Lynn
K. Carmichael1, Matthew R. Weil1, RichardW. Wohlstadter1, Gary Stiehr1, Michael
D. McLellan1, Craig S. Pohl1, Christopher A. Miller1, Daniel C. Koboldt1, Jason R. Walker1,
James M. Eldred1, David E. Larson1,2, David J. Dooling1¤g, Li Ding1,2,4, Elaine
R. Mardis1,2,3,4,5, Richard K. Wilson1,2,3,4,5

1 The Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America,
2 Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of
America, 3 Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United
States of America, 4 Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri,
United States of America, 5 Department of Molecular Microbiology, Washington University School of
Medicine, St. Louis, Missouri, United States of America

¤a Current address: Counsyl Inc., South San Francisco, California, United States of America
¤b Current address: University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
¤c Current address: Liggins Institute, Auckland University, Auckland, New Zealand
¤d Current address: Memorial Sloan-Kettering Cancer Center, New York, New York, United States of
America
¤e Current address: Department of Bioinformatics and Computational Biology, The University of Texas MD
Anderson Cancer Center, Houston, Texas, United States of America
¤f Current address: University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of
America
¤g Current address: Monsanto Company, St. Louis, Missouri, United States of America
‡ These authors contributed equally and are listed in alphabetical order.
* mgriffit@genome.wustl.edu (MG); ogriffit@genome.wustl.edu (OLG)

Abstract
In this work, we present the GenomeModeling System (GMS), an analysis information man-

agement system capable of executing automated genome analysis pipelines at a massive

scale. The GMS framework provides detailed tracking of samples and data coupled with reli-

able and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics

development, allowing a large team to collaborate on data analysis, or an individual

researcher to leverage the work of others effectively within its data management system.

Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS pro-

motes systematic integration between the two. As a demonstration of the GMS, we per-

formed an integrated analysis of whole genome, exome and transcriptome sequencing data
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from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL).

These data are available for users to test the software, complete tutorials and develop novel

GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

This is a PLOS Computational Biology Software Article.

Introduction
The increasing sequence data output of massively parallel sequencing platforms [1] has allowed
the application of sequencing to an incredible diversity of research projects in the biological,
genomic, and medical fields [2–6]. These technologies have inundated their adopters with peta-
bytes of data, outpacing their ability to effectively manage and analyze the data. A rapid prolif-
eration of tools and resources to analyze these data [7–10] complicates the creation and
maintenance of analysis pipelines.

The GMS is the core analysis system at The Genome Institute (TGI) of Washington Univer-
sity, processing terabases of genomic data and proving integral to a wide variety of large- and
small-scale sequencing projects (Fig 1). Pipelines implemented within the GMS include refer-
ence sequence alignment, germline variant detection, somatic variant detection, RNA-seq
(expression, novel transcript detection, and fusion detection), differential expression, and oth-
ers (Table 1). The GMS also includes an integration, annotation, and interpretation pipeline,

Fig 1. Overview of the GMS. The genomemodeling system (GMS) is implemented to use a federated disk SAN, with meta-data stored in a PostgreSQL
relational database. Sample management tools allow the import of new samples and instrument data. Data are then processed through various analysis
pipelines (e.g., reference alignment, somatic variation detection, etc.) that in turn are managed and monitored by a workflow system (Box 1). Stand-alone
GMS tools, not part of automated pipelines, are available through a common tool tree. Most components of the system can be accessed through an Ubuntu
Linux command-line interface or Ruby-on-Rails web interface.

doi:10.1371/journal.pcbi.1004274.g001
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‘MedSeq’, which attempts to converge all single-subject data into a form suitable for identifica-
tion of clinically actionable events [11]. A typical genome analysis using the GMS might start
from any combination of whole-genome, exome or RNA-seq data and produce alignments
against a reference genome, somatic variant calls including single nucleotide variants (SNVs),
structural variants (SVs), copy-number variants (CNVs), transcript expression levels, RNA
fusion predictions, and more. To date, the GMS has been used to process>4,800 human whole
genome samples,>40,000 exomes and>1,400 transcriptomes for a total of>700 terabases of
sequence data (Table 2).

As a demonstration of the GMS, we describe a complete integrated analysis of whole
genome, exome and transcriptome sequencing of a breast cancer cell line (HCC1395) and a
matched lymphoblastoid cell line (HCC1395 BL). The complete dataset is publicly available
(https://xfer.genome.wustl.edu/gxfer1/project/gms/). The GMS is available as open-source
software with installation instructions at http://github.com/genome/gms. Once installed, users
can run tutorials, reproduce the results from this publication, and test novel GMS pipeline con-
figurations. This ability to replicate and iteratively improve upon large and complex genome
analyses will allow researchers to more easily manage the immense challenges of modern large-
scale sequence analysis.

Design and Implementation
To address challenges of scale, tracking, optimization, and reproducibility, we have developed an
analysis information management system called the GenomeModeling System (GMS). The GMS

Table 1. Major GMS pipelines. A brief description of each analysis pipeline tested for initial release of the GMS.

Pipeline Description Products

Genotype
Microarray

Performs genotype calling on SNP array data against a reference
sequence.

SNVs BED file.

Reference
Alignment

Performs alignment and variant detection for reads from a single
sample. Works with WGS data and capture data.

BAM file of aligned reads, VCF files and BED files for germline
SNVs, Indels, SVs, and CNVs. Reports on coverage.

Somatic
Variation

Performs tumor/normal variant detection. Extends reference
alignment with somatic evaluation, LOH analysis, annotation and
prioritization. Works with WGS data and capture data.

VCF files and BED files for somatic SNVs, Indels, SVs, and
CNVs.

RNA-seq Uses Bowtie/TopHat/Cufflinks to assemble transcripts and
estimate abundance, alternative splicing, alternative promoter
usage, etc. Also uses various tools to perform comprehensive
quality and coverage analysis of RNA-seq libraries

Spliced alignment BAM, FPKM expression, digital expression,
fusion detection, etc.

Differential
Expression

Combines results from a pair of RNA-seq builds and performs
differential expression analysis.

CuffDiff and CummeRbund output.

Med Seq (aka
Clin Seq)

Integrates data from WGS, exome and transcriptome sequencing
of a single patient’s tumor. Visualization and annotation of somatic
events. Prioritization of somatic events by relevance to cancer
biology and therapeutic decision making.

Approximately 2,000 files, including: spreadsheets of ranked and
annotated variants, drug-gene interactions, Circos plots, copy
number images, mutation diagrams, etc.

doi:10.1371/journal.pcbi.1004274.t001

Table 2. Data processed by the GMS. A brief summary of data processed by use of the GMS at The Genome Institute of Washington University School of
Medicine in St. Louis (as of October 2014).

Metric Human Non-human Total

WGS cases (samples) 2,517 (4,349) 355 (534) 2,872 (4,883)

Exome/targeted cases (samples) 30,343 (35,366) 6,027 (8,270) 36,370 (43,636)

RNA/cDNA cases (samples) 375 (555 samples) 711 (855 samples) 1,086 (1,410)

Bp of Illumina NGS reads 622 terabases 82 terabases 704 terabases

doi:10.1371/journal.pcbi.1004274.t002
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tracks analysis processing steps while also managing project and sample information (Fig 1). It
records sufficient detail in a relational database about each computational experiment to repro-
duce it entirely frommetadata. The information is stored and indexed to enable free-form search.
Results are also stored in standard formats (e.g. BAM [12], Variant Call Format (VCF) [13],
Tabix [14]) with a record of the methods and inputs that produced them. The system can auto-
matically bypass regeneration of intermediate results when those results have already been created
as part of another process, hence saving immense amounts of disk and compute resources. It can
also automatically aggregate data across samples within a project to provide high-level overviews
of analysis status and results. Finally, the GMS facilitates the comparison of analysis results. A
user can compare the output of several analysis pipelines utilizing different alignment parameters,
variant callers, filters, and many more variables. The ultimate goal of the GMS is to make data
management, analysis, and integration more accessible at scale.

The GMS is driven by a flexible command-line interface and a web interface for monitoring.
The web interface includes search capability for all of the major entities stored in the system,
with free-form search based on full-text matching. The command-line interface is built around
a single command, "genome", which offers a multi-level tree of sub-commands. These com-
mands give access to all of the tools and data in the system (S1 Fig). The top level of the com-
mand tree allows interaction with instrument data, samples, and analysis results that are stored
in the database (Box 1), including the ability to create, list, update and delete them (Box 2).

Tool Tree and Application Programming Interface (API)
At the core of the GMS is a "tool tree", into which bioinformaticians collaboratively add com-
ponents to build up a software library of computational tools and methods for their organiza-
tion. Tools are accessible through the “genome tools” command, aliased by “gmt”. Adding a
component to the tool tree requires writing a command class by following detailed documenta-
tion aimed at prospective developers with basic programming skills. Tools work directly on
simple files, and provide fast access to the small scripts an analyst typically creates during their
daily bioinformatics work. These components can evolve into complex systems, gradually, and
only as needed. Additional features such as tests, documentation, and compositional pieces can
be added incrementally. A low barrier to initial entry is essential to keeping the tool tree at the
center of method development. S2 Fig shows an example tool, its position in the tree, its source
code, and the help text generated from metadata in the software module.

Any analyst using the system automatically works in their own software ‘sandbox’, allowing
private changes to any part of the system. Tools and pipelines can be added without outside
registration and function for that user as though the user had deployed the tool at large in the
GMS. The analyst can then push their changes to be used more broadly in the organization, or
share them with the community at large. The tool tree packaged with the GMS contains over
1,500 bioinformatics components organized into 150 categories. These include tools to work
with established bioinformatics software such as BWA [15], TopHat [16], Blat [17], HTSeq
[18], and liftOver [19], as well as in-house tools such as DGIdb [11].

Models
The central metaphor for analysis products in the GMS is the ‘genome model’ (Fig 2A). Each
model represents one state of belief about the sequence data and features of a given subject.
Multiple approaches to arrive at a conclusion for the same subject will be represented as multi-
ple models in the system, each with a different ‘processing profile’ to describe the methods in
precise computational terms (Box 1).

GenomeModeling System: A Knowledge Management Platform for Genomics
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Processing Profiles. Each processing profile describes in detail how an analysis should
occur. It does so in a declarative fashion. A processing profile embeds exact tool versions and
parameters, such that two models built with the same processing profile, inputs, and GMS soft-
ware version will have identical results (Box 1). This also allows all subjects in a given cohort to
be processed in the same way if consistency is desired (Fig 2B). Each pipeline in the GMS has a
collection of processing profiles that describe each of the ways the pipeline can be run. Each pro-
file is given an identifier in the database, and new processing profiles can be created to apply dif-
ferent computational approaches, either by constructing a new processing profile from scratch,
or by copying an existing one, and adjusting the parameters. For example, a user might decide to
detect variants with a different tool, or to apply read trimming before alignment. This system
allows an analyst to experiment with different methods almost as easily as describing those
methods in a conversation. Hence, complex workflows do not require manual construction and
can be computationally derived from a declarative specification (Box 1).

Subjects
The subject of a model determines which genome it intends to examine, much as the process-
ing profile determines how it will be examined (Box 1). The subject of a model is sometimes a

Box 1. Terminology for the GenomeModeling System. Brief descriptions of critical objects in the
GenomeModeling System.

Term Definition

Subject The entities around which analysis occurs. Exist at multiple levels of granularity. For
example, an individual, a cohort, a sample from an individual, or even a species.
Anything that can be described abstractly as “having a genome”. When the subject is a
human patient, use of the GMS will normally require appropriate ethics review and
informed consent of the patient. Related documentation will be linked to analyses via an
anonymized unique patient number (UPN) stored in the GMS subject database table
along with additional metadata.

Model The basic unit of analysis. Each model represents one state of belief about the
sequence and features of a given subject. Multiple models can be made of the same
subject, with different processing profiles, and/or different input data used as evidence.

Pipeline Each type of model defines a distinct analysis pipeline. The definition includes a
specification for inputs and parameters to each model, as well as logic to construct a
workflow to build results given specific values for those inputs and parameters.

Processing
Profile

A reusable collection of parameters describing how to build a model of a particular type/
pipeline. Each is a complete computational method specification, including exact tool
names and versions, as well as sufficient logic to determine the precise workflow. All
models with the same processing profile have been processed the same way, though
input data may vary.

Build One attempt to execute the required workflow for a model, given its inputs. The last
complete build for a model represents the current “state” of the model. While models
can be updated, the information content in each build is a static snapshot of results.

Instrument Data A unit of data from a sequencer, microarray instrument, or other device, used as
primary input to the GMS. Illumina data, for instance, produces one unit of instrument
data per flow cell, lane, and index sequence. It is typically associated with a file of
reads, and a collection of metrics.

Software Result A reusable intermediate result made by the build process. When the exact same
process is to occur a second time on the same inputs with the same parameters, the
software result produced the first time is detected. The GMS uses these to prevent
redundant work, and expedite processing after minor analysis protocol changes.

Disk Allocation A record of a slice of disk being allocated to a given owner. Builds, software results, and
instrument data are owners of disk allocations.

Workflow A graph of steps, and the data flow between those steps. A workflow is generated for
each attempt to build a model. Individual steps may also define subordinate workflows,
leading to a nested graph of tasks to accomplish the analysis goal.

doi:10.1371/journal.pcbi.1004274.t003
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particular individual, but is more often a specific sample from some individual. In germline
analysis of human disease, one model will be created for each individual, and a model group or
population model used to summarize across a cohort. In cancer analysis, one model will be
made for the genome of the tumor, and another for the genome of a matched normal, with a
third performing the comparison between the two. The MedSeq (aka ClinSeq) models target

Box 2. Example Usage

Simplified examples of command-line usage are provided for illustrative purposes (see
the tutorials at http://github.com/genome/gms/wiki for fully functional examples.) First,
samples are listed for a given patient/subject by anonymized identifier (patient1). All
commands that work with database entities support an expression syntax that allows
items to be selected from the database by ID, or by other characteristics. Next, specific
units of instrument data are examined for the first sample (S1). Processing profiles are
listed for the reference alignment pipeline. A model is then defined for the first sample
(S1) using the second processing profile (P2). Instrument data (I1, I2, and I3) are
assigned as an input. The build process is then initiated, recording the new build (B1)
uniquely in the database, and starting jobs on the compute cluster. A build view com-
mand is then used to monitor the steps involved in the build workflow, examine logs and
check run times. The results are accessible as files, for downstream analysis with addi-
tional metrics also in the database.

> genome sample list “individual.common_name = patient1”
id common_name individual.common_name
S1 tumor patient1
S2 normal patient1
S3 relapse patient1
> genome instrument-data list sample.id = S1
id flow_cell_id lane index_sequence sample.id
I1 ABC123 1<NULL> S1
I2 ABC123 2 AGCT S1
I3 ABC123 2 TCAG S1
> genome processing-profile list reference-alignment
id type_name name
P1 reference alignment BWA 0.5.9 and samtools
P2 reference alignment BWA-MEM 0.7.2a and Gatk
> genome model define reference-alignment--subject id=S1--processing-profile

id=P2--name=“TST1 tumor”
defined genome model M1
> genome model input add instrument_data id=M1 "flow_cell_id='ABC123'

and lane in [1,2]"
assigned instrument data I1, I2 and I3 to model M1
> genome model build start id=M1
new build B1 started for model M1 with data directory at /opt/gms/MYSYS1/fs/

model_data/M1/buildB1/
> genome model build view id=B1
> cd /opt/gms/XYZ123/fs/model_data/M1/buildB1
> samtools view alignment_results/12345.bam

GenomeModeling System: A Knowledge Management Platform for Genomics
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the individual in general, taking other models as inputs, each with more specific subjects relat-
ing to tumor or normal DNA or RNA. It should be noted that while this work primarily
describes a computational/analysis platform, when the GMS is applied to real patients its use
will normally require appropriate IRB review and informed consent as per the requirements of
the user’s jurisdiction and institutional policies.

Inputs
In the most basic case, a model’s inputs will include instrument data. The system can handle
sequence data generated by sequencing instruments from Illumina (GAII, HiSeq 2000, HiSeq
2500, and MiSeq), Pacific Biosciences and Ion Torrent. In addition to sequence data, microar-
ray data can also be supplied as input. Models often require reference sequences, annotation,
or lists of regions of interest, depending on the model type. The subject of a model may limit
what inputs can be assigned, ensuring that assigned reads are actually from the subject in ques-
tion, and that an input reference sequence applies to the species of the subject.

Builds (Performing Analysis)
Once a model is defined, it is ‘built’. Each attempt to build a model launches a ‘workflow’ on
the compute cluster, and adds a record of that build to the database for the model in question
to track processing. The workflow management process is described below.

A model may be built multiple times. This occurs typically when new instrument data are
assigned (Fig 2C), a new reference sequence becomes available, or new gene annotations are
published and imported into the GMS. It also occurs when processing errors cause a build to
fail. A complete build of a model represents a collection of results of the processing specified by
the model (e.g. germline variants discovered in blood, somatic variants discovered in a tumor,
novel transcripts expressed in a tissue, genes differentially expressed between conditions, etc.).
The disk space allocated for the build contains VCF files for variants, BAM files for alignments,
and a variety of other reports and images. At a logical level, the bundle of data produced during
the build process can be interrogated by build ID to query the state of the genome in question.
The resulting model can subsequently be used as an input to other models. In this case, each
build of the downstream model records the current build of the upstream model as an input
(Fig 2D). Because builds are conceptually immutable, every data product in the GMS can be
traced back to original sequencing instrument data, and can be reproduced reliably.

Pipelines
Each type of model defines a distinct analysis pipeline, including a specification for inputs and
parameters to be supplied when models are created as well as logic to construct the workflow
and to parse build results. Adding new pipelines requires writing a software module to describe
the new sub-type of model. The simplest pipelines are no more complicated than a small script,
and the most complicated have an elaborate graph of steps, each with distinct processing
requirements. As an example of the latter, Fig 3 details the workflow of the Somatic Variation
pipeline. In most cases, the exact tools and versions to use for any given stage in a pipeline are
configurable in the processing profile. Some fields are specific thresholds or other simple
parameters. In many cases, however, the processing profile fields contain expressions that can
be expanded into a sub-workflow. For example, variant detection is specified with four fields.
The ‘sv_detection_strategy’ shown in Fig 3 involves a pair of variant detectors, one of which is
run twice in different modes, and a series of different filters and intersection logic for the
results. The entire process will create a sub-workflow based on the specification shown. One of
the detectors defines another sub-workflow to process data by chromosome, and another to

GenomeModeling System: A Knowledge Management Platform for Genomics
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look for inter-chromosomal translocations. Some of the filters simply examine metrics, while
others perform realignment. Other filters perform small de novo assemblies to validate struc-
tural variant predictions in silico. This example illustrates how arbitrarily complex workflows
can be specified by creation of custom processing profiles.

Fig 2. Key concepts of the GMS. The genomemodeling system is architected around the idea of a ‘genomemodel’. The following vignettes illustrate key
concepts integral to these models: (A) A subject can be modeled multiple times, possibly each with distinct ‘processing profiles’. For example, two different
models can be defined for the HCC1395 genome using the ‘reference alignment’ pipeline. In Model 1, the processing profile specifies the use of BWA for
alignment and Samtools for variant detection. In Model 2, Bowtie2 and GATK are used for these steps instead. (B) A given processing profile can be used
across a group of models, ensuring, for instance, that all subjects in a cohort are processed in similar ways. In this example, two different cell line genomes
(HCC1395 and XY2123) have models defined of the exact same type, using the processing profile with BWA/Samtools specified. (C) A model has no results
until a build is generated. If the model is updated to have new inputs, a new build is required. Builds are immutable snapshots of modeling pipeline results. In
this example, the HCC1395 genome has a reference alignment model again making use of the BWA/Samtools profile. However, as new instrument data
becomes available, new builds are constructed to reflect the most complete data. (D) When models are used as inputs for other models, the last complete
build for the input model is used as an input for the downstream build. In this example, both tumor and normal genomes are available for an individual (in this
case HCC1395). Reference alignment models are built for each sample and then both are used as inputs for a third ‘somatic variation’model. In reality, it is
the underlying data in the reference alignment builds that are used to create a somatic variation build, identifying all variants that are thought to be tumor
specific.

doi:10.1371/journal.pcbi.1004274.g002
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Fig 3. Somatic variation processing profile and workflow. To illustrate key GMS concepts, the processing profiles and workflow for the somatic variation
pipeline are shown. Abbreviations: copy number variant (CNV), copy number amplification (CNA), genome analysis tool kit (GATK), insertion/deletion (Indel),
loss of heterozygosity (LOH), mapping quality (MQ), single nucleotide variant (SNV), structural variant (SV), variant allele frequency (VAF).

doi:10.1371/journal.pcbi.1004274.g003
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For additional details on design and implementation, refer to the Supplementary Methods
(S1 Text).

Results
The GMS has been used at The Genome Institute to analyze a large number of genomes in
both clinical and discovery contexts (Table 2). For example, the GMS has been instrumental
for the analysis of nearly all The Cancer Genome Atlas (TCGA), Pediatric Cancer Genome
Project (PCGP) [20], and other large-scale cancer genomics efforts at the Genome Institute,
helping to map the landscapes of endometrial carcinomas [21], acute myeloid leukemias [22],
pediatric low-grade gliomas [23], breast cancers [24], non-small-cell lung cancers [25], colon
and rectal cancers [26], and ovarian cancers [27], among others. The GMS has also been used
to assemble new genomes [28, 29], conduct studies of common [30] and rare disease [31, 32],
track the evolution of viruses [33], and characterize the human microbiome [34, 35].

As a demonstration we applied the GMS to an integrated analysis of whole genome (WGS),
exome, and transcriptome sequencing of a breast cancer cell line (HCC1395) and matched
‘normal’ lymphoblastoid cell line (HCC1395/BL [36]). The latter cell line is matched to the
same individual (also referred to as ‘TST1’ below). A total of 10 lanes of HiSeq 2000 (v3 chem-
istry) sequence data consisting of ~1.8 billion 2x100bp reads were produced for HCC1395 and
HCC1395/BL. Whole genome sequencing, exome sequencing and RNA-seq were performed as
described previously ([25, 37] and S1 Text). HCC1395 and HCC1395/BL were sequenced to
average coverage levels of 56x (WGS)/155x (exome) and 31X (WGS)/124x (exome), respec-
tively. RNA sequencing achieved 20x coverage of>50% of known junctions for 8,640 genes for
HCC1395 and 9,437 genes for HCC1395/BL respectively. Complete quality and coverage statis-
tics from automatically generated GMS reports were summarized for WGS (S1 Table), exome
(S2 Table) and RNA-seq data (S3 Table). Genotypes determined from whole genome NGS
data were compared to those determined by Illumina Infinium microarrays and an overall con-
cordance of 98.7% and 99.6% was observed for the tumor and normal calls respectively. Fig 4
shows the collection of models and their forward progression through the HCC1395 analysis.
All of the following statistics and figures were drawn directly from automated output of the fol-
lowing GMS pipelines: ‘genotype microarray’, ‘reference alignment’, ‘somatic variation’, ‘rna
seq’, ‘differential expression’ and ‘med seq’ (aka ‘clin seq’). Distinct somatic-variation process-
ing profiles were used for the whole genome and exome data sets. The HCC1395 data is made
publicly available (https://xfer.genome.wustl.edu/gxfer1/project/gms/) to allow GMS end users
to reproduce this analysis. All tutorials and examples in the online documentation are based on
these data. For complete details on how these data were generated, refer to the Supplementary
Methods (S1 Text).

Examples of key data produced by GMS analysis pipelines are summarized in Fig 5 and pro-
vided in the supplementary materials (S3–S11 Figs and S1–S7 Data). S3 Fig shows the copy-
number analysis for WGS data of tumor and normal, and one example of a selected CNV
amplification on chromosome 12. Amplifications of known cancer-related genes such as KRAS
and ETV6 are automatically labeled. Unsurprising for a cell line, the ploidy of HCC1395 is
highly aberrant with large-scale amplifications and deletions evident on all chromosomes. The
highly copy number altered genome of HCC1395 complicates accurate somatic event detec-
tion. The GMS facilitates integrated use of multiple variant detectors to take advantage of the
varying strengths of each. A breakdown of somatic SNV calls by algorithm, and the results
from manual review by the Integrative Genomics Viewer [38] (IGV) of those variants are pro-
vided in S4 Fig. A high mutation rate was observed in HCC1395 (47 mutations/Mbp), likely
due to the large number of cell divisions in multiple cell line passages and to the mutations we
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detected in DNA damage surveillance/DNA repair genes, including:MSH6, TP53, ATRX,
BRCA2,MSH5, and POLH. Selected lists of cancer genes, curated by the Genome Institute
from a variety of sources and released with this system, are intersected with high-confidence
variant calls (S5 Fig). This allows rapid sorting of mutated gene lists according to those identi-
fied as previously mutated in Cosmic [39] or belonging to cancer-relevant gene categories

Fig 4. HCC1395 (“TST1”) example input, models, and outputs. A test dataset for the HCC1395 cell line is provided with the GMS software to allow testing
of software installation, and facilitate further development. It is also used to illustrate much of the current functionality of the GMS. HCC1395 tumor and the
corresponding HCC1395BL ‘normal’ cell line DNA and RNA samples were sequenced by whole genome, exome, and RNA-seq methods producing six sets
of instrument data for input to various GMS pipelines. Additional required inputs for the pipelines include a reference genome (e.g., GRCh37), gene
annotations (e.g., Ensembl 67_37l), and variant databases (e.g., dbSNP37). Different versions (processing profiles) of the reference alignment were used to
align WGS and exome DNA reads to the reference genome. A separate RNA-seq pipeline similarly aligns RNA reads. Alternate versions of the somatic
variation pipeline are used to call various types of variants from exome andWGS data by comparing tumor and normal reference alignments. A differential
expression pipeline identifies significantly altered transcript expression levels by comparing the tumor and normal RNA-seq alignments. Finally, the MedSeq
pipeline summarizes all upstream pipelines into a single convenient result set. This includes a multitude of reports and visualizations for single nucleotide
variants (SNVs), Indels (insertions and deletions), SVs (structural variants), CNVs (copy number variations), transcript fusions, differentially expressed
genes, alternatively expressed isoforms, and much more. Data types are further integrated to, for example, identify which variants at the DNA level are
expressed at the RNA level and which events affect known cancer driver genes or druggable targets.

doi:10.1371/journal.pcbi.1004274.g004
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Fig 5. Circos plot of HCC1395 tumor/normal comparison. Circos is a popular tool for summarizing genomic events in a tumor genome. This is just one of
many automatically generated visualizations made possible by the GMS. In this example, the WGS, exome and RNA-seq data for HCC1395 are displayed in
several tracks along with additional visualizations illustrating individual events. Moving inwards, SNVs and Indels are plotted on the outermost track, then
highly expressed genes, CNVs, and finally chromosomal translocations at the center. For events predicted to affect protein coding genes, additional plots are
auto-generated to display the mutation position relative to protein domains and previously reported mutations from the Cosmic database, as illustrated in the
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according to GO [40], the cancer gene census [41], Entrez [42], and other sources. A selection
of these mutations and associated annotations are provided in S4 Table. When variants affect
protein coding genes, ‘lolliplot’mutation diagrams of the predicted amino acid effect are auto-
matically generated, showing the location of the mutation(s) relative to known domains and to
the known mutational landscape according to Cosmic (S6 Fig). For example, in HCC1395 we
observed a potentially novel mutation in BRCA2 as well as mutations in NCOR2 and TP53 that
occur at previously observed hotspots. A complete list of all somatic SNVs detected in
HCC1395 is provided in S1 Data. S7 Fig shows a TAF1 deletion, with an image of the reads in
all five of the samples, and a clear visualization of the variant in the tumor DNA, WGS and
exome, as well as tumor RNA and a compelling absence of such variation in any of the normal
samples. The MedSeq pipeline automatically creates XML session files to allow rapid loading of
all necessary BAM alignment files, BED files of variant calls and the appropriate reference
genome in the IGV browser from which this screenshot was produced. We find this particu-
larly useful for putative Indels where a high false positive rate is common. A companion ‘lolli-
plot’ shows that this is an in-frame deletion of TAF1. The complete list of predicted Indels in
HCC1395 is provided in S2 Data. S8 Fig shows coverage and variant allele frequency (VAF)
data for tumor and normal samples and contrasts the values derived from the WGS, exome
and RNA-seq data. The complete list of predicted CNV events is provided as S3 Data. S9 Fig
shows a list of putative ORF-maintaining gene fusions detected with the SV pipeline using
BreakDancer [43] and CREST [44] (aka ‘SquareDancer’). A ‘pairoscope’ plot illustrates the
supporting reads for one of these potential fusions between PRTG andMALT1 on chromo-
somes 15 and 18 (S9 Fig). The complete list of predicted SVs from BreakDancer is provided as
S4 Data. A complete set of gene expression and exon splicing results are provided as S5 Data
and S6 Data. The complete list of RNA gene fusion predictions from ChimeraScan [45] is pro-
vided as S7 Data. S10 Fig shows a clonality plot, demonstrating a very pure and homogenous
sample as evidenced by a single clear distribution of variant allele frequencies (VAF) centered
almost exactly at 50% VAF, as expected for heterozygous variants. S11 Fig illustrates a small
sample of the many graphs automatically generated to interpret RNA-seq results. Library qual-
ity can be assessed by observed insert size distribution (S11A Fig) and end bias (S11B Fig)
plots. Alignment quality is evaluated by percentages of reads aligning to the expected tran-
scribed regions (S11C Fig) and coverage metrics for known exon-exon junctions (S11D Fig).
The observed patterns of splice site usage provide a general overview of alternative splicing pat-
terns (S11E Fig). Finally, the expression of individual genes can be compared to the overall dis-
tribution to identify potentially up-regulated outliers (S11F Fig).

The preceding analysis was repeated in its entirety multiple times on standalone installa-
tions of the GMS with various hardware configurations on systems at our center, on consumer
hardware available to ‘citizen scientists’, and on cloud computing services such as Amazon
AWS EC2 (see S5 Table for examples). While potential alternative genome analysis platforms
to the GMS are under development as both commercial and academic solutions, the breadth
and comprehensiveness of cancer analysis described above and combination of additional fea-
tures are to our knowledge unique to the GMS (S6 Table).

The GMS is a highly flexible and scalable system designed to enable genome analysts to
maximize the yields from their data by increasing their ability to run a wide variety of analysis

topmost plot. Moving clockwise, a screenshot of IGV demonstrates one of the somatic deletions identified. IGV XML sessions are automatically generated to
allow rapid manual review of all predicted events. Next, a histogram illustrates the expression of a single highly expressed gene relative to the distribution of
expression for all genes. Then, a CNV plot is shown for an amplified portion of one chromosome. Finally, the coverage and supporting reads for a
chromosomal translocation are depicted.

doi:10.1371/journal.pcbi.1004274.g005
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programs and explore the parameter space of each. The ability to reuse processing profiles
offers reproducibility for complex processes (S12 and S13 Figs). A researcher can thus focus on
just the variable of interest (e.g., tumor subtype, drug concentration, disease status, age of
onset, etc.), confident that other variables (e.g., alignment software version, variant calling soft-
ware parameters, reference genome sequence version, reference transcript annotation version,
etc.) are truly constant. It also acts as the foundation for hypothesis testing of new computa-
tional methods. By allowing an analyst to produce alternatives to a given analysis pipeline with
a few commands, the GMS permits an increased pace of tool and method development. Our
testing of the GMS on cloud computing platforms demonstrates a mechanism for sharing com-
plex results with collaborators or the community at large (S14 Fig). Finally, it allows standardi-
zation of analysis approaches when producing large sets of data in collaborative groups or
consortia. A UML diagram of key GMS concepts is provided as S15 Fig.

In addition to the development advantages of the GMS described above, adoption of the
GMS may provide practical advantages for a group attempting analysis of genome sequence
data, especially in the context of cancer genomics. For example, a current adopter has access to
well-vetted pipelines and tools for cancer genome analysis including: BWA, Strelka [46], VarS-
can2 [47], SomaticSniper [48], Pindel [49], GATK [50], BreakDancer [43], CREST,
TIGRA_SV, ChimeraScan, the Tuxedo suite [51], the HTSeq and edgeR [52] combination,
CopyCat (unpublished), and many more. Results include annotations according to cancer rele-
vance; useful visualizations such as ‘lolliplot’mutation diagrams, mutation spectrum diagrams,
Circos [53] plots, XML session files for manual review in IGV, and intersection of altered genes
with potential druggability from DGIdb.

Availability and Future Directions
The HCC1395 analysis demonstrates the current abilities of the GMS to detect, summarize,
visualize, and interpret the various types of somatic and germline events encountered in variant
analysis such as SNVs, Indels, SVs, CNVs, differential expression, alternative expression and
more. This analysis, while extensive, is still far from complete. Many further improvements are
currently under way and will be released publicly at regular intervals. The HCC1395 data itself
may also serve as a resource for external development. There are few publicly available datasets
of this quality, with all three of the major sequence data types (WGS, exome, and RNA-seq),
for a single tumor/normal pair, on a current platform, to facilitate development of tools. As the
clinical sequencing analysis facilitated by the MedSeq pipeline is a primary area of interest, sev-
eral new resources are under development for release in future versions of the GMS to further
aid the interpretation of genomic events in a clinical translation and reporting context.

Flexibility, scalability, and ease of use have been the guiding principles behind development
of the GMS. The GMS makes open, high-throughput genome analysis available to groups cur-
rently tasked to analyze the deluge of data from high-throughput sequencing experiments.

The GMS is made available under the open source GNU Lesser General Public License Ver-
sion 3 (http://www.gnu.org/copyleft/lesser.html) and can be found on the GitHub Genome
Institute pages (https://github.com/genome/gms).

Supporting Information
S1 Fig. GMS data management. (A) The top level command tree provides major entry points
to data and tools in the system. (B) When developing extensions to the system, the bioinforma-
tician’s sandbox is automatically recognized, and used instead of the production release.
(PDF)
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S2 Fig. Genome modeling tools. (A) The “genome tools” command tree is the primary way to
access common bioinformatics components. An alias “gmt” is provided to make access less
verbose. There are 134 top-level gmt sub-trees, with over 1,500 components available at the
time of publication. This software is developed live on github and expands continually. (B)
Each top-level command provides access to a list of tools, or further sub-trees. (C) The example
“gmt fasta” sub-tree (highlighted below) contains script-like components for working with
FASTA files. (D) Each tool has auto-generated help, built from the tool metadata. (E) The code
for a GMT tool can be as simple as a short script. (F) Additional code can be added to the mod-
ule to explicitly or dynamically generate other documentation.
(PDF)

S3 Fig. CNV plot of HCC1395 tumor/normal comparison. (A) The top two panels show
genome-wide ‘single-bam’ copy number plots for tumor and normal respectively. Extensive
CNVs are apparent in the tumor as well as spurious peaks in both tumor and normal, especially
around centromeres and telomeres. (B) The bottom panel shows a CNV plot of the difference
in tumor versus normal for just chromosome 12 indicating a region of one, two, three and four
copy gain with several known cancer genes affected including KRAS.
(PDF)

S4 Fig. HCC1395 comparison of somatic SNV callers integrated in a single processing pro-
file. (A) Variants called by three somatic SNV callers are summarized as a Venn diagram
where the combination of calls from each combination of callers is indicated as a percentage of
the total unique variants called. (B) The percentage of variant calls called by each combination
of somatic variant callers that pass or fail manual review of read data in IGV are shown as a
stacked bar plot.
(PDF)

S5 Fig. Annotation of HCC1395 SNVs with respect to cancer relevant gene categories. (A)
Genes with SNVs, insertions, or deletions in HCC1395 are displayed as a bar plot to show the
number times the same amino acid mutation was observed in Cosmic. (B) The number of SNV
mutated genes belonging to various cancer related gene categories are provided as a bar plot. A
complete list of all somatic SNVs detected in HCC1395 is provided in S1 Data.
(PDF)

S6 Fig. Visualization of amino acid position and Cosmic mutation recurrence data. Pre-
dicted amino acid effects are displayed as a ‘lollipop plot’ (aka mutation diagram) for mutations
observed in HCC1395 and are contrasted to selected mutations from the Cosmic database for
three example genes: (A) BRCA2, (B) BCOR2, and (C) TP53.
(PDF)

S7 Fig. Indel plot of HCC1395 tumor/normal comparison. (A) A screenshot of an IGV ses-
sion auto-generated by the GMS MedSeq pipeline is shown for a single deletion in TAF1. The
source of sequence reads is indicated at the left of each panel. (B) The predicted amino acid
effect of this deletion is shown as a mutation diagram with the mutation discovered in
HCC1395 contrasted with mutations in this gene obtained from the Cosmic database and the
position of protein domains indicated as colored bars.
(PDF)

S8 Fig. HCC1395 data integration between WGS, exome and RNA-seq. Various statistics
are summarized for exonic somatic SNV positions discovered by WGS and/or exome sequenc-
ing. (A) The distributions of normal sample read coverage (sequence depth) are shown as a his-
togram for WGS and exome data. (B) WGS read coverage is shown as a histogram for the
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tumor sample. (C) Tumor variant allele frequency (VAF) fromWGS data is plotted against the
VAF for exome data. (D) VAF from exome data is plotted against the VAF from RNA-seq
data. The expression of level of each gene harboring an SNV is indicated on a colored scale
(yellow indicates low expression; red indicates high expression).
(PDF)

S9 Fig. HCC1395 SV/Fusion examples. (A) A list of putative ORF maintaining gene fusions
detected with the SV pipeline using BreakDancer [43] and SquareDancer are provided as a bar
plot indicating the number of supporting discordant read pairs. (B) A ‘pairoscope’ plot illus-
trates the supporting reads for one of these potential fusions between PRTG andMALT1 on
chromosomes 15 and 18. The complete list of predicted SVs from BreakDancer is provided as
S4 Data.
(PDF)

S10 Fig. Clonality plot for HCC1395. (A) A clonality plot, displaying the distribution of
VAFs plotted against WGS sequencing coverage is provided as a kernel density plot. (B) To
obtain a clonality plot that excludes regions of copy number alteration, VAFs were limited to
those from selected regions of a chromosome 21 with a copy-neutral state. These regions are
indicated as dotted boxes on a plot of chromosome positions against tumor-normal copy num-
ber difference, where a value of 0 represents no difference in copy number between tumor and
normal.
(PDF)

S11 Fig. HCC1395 RNA expression and splicing. A sample of graphs automatically generated
by the GMS to interpret RNA-seq results. (A) Library quality assessed by observed insert size
distribution. (B) End bias plots showing the distribution of RNA-seq reads across the length of
sequenced transcripts. (C) Percentage of reads aligning to the expected transcribed and non-
transcribed regions. (D) Sequence coverage of known exon-exon junctions. (E) The observed
patterns of splice site usage (F) The expression of an individual gene, NPM1, compared to the
overall distribution of gene expression values.
(PDF)

S12 Fig. Cohort analysis. Both the concept of “subject” and “model” can be applied at multiple
levels of granularity. This example builds on Fig 2B, wherein several individual subjects are
modeled individually, using a processing profile that aims to analyze a single sample in a con-
sistent fashion. Following that, a model of a different type might be defined that draws further
conclusions about a cohort, given the prior conclusions of its input models. In this example a
mutational significance model runs the MuSiC suite, identifying significantly mutated genes in
the cohort.
(PDF)

S13 Fig. Build view. The “genome model build view” command displays the status of all of the
tasks within a build workflow. The following images show the build process for the WGS
somatic variation build used in the example analysis. This is the same workflow illustrated in
Fig 3. Image (A) shows the header for the build report, including the name of the model, the
user who launched the build, and the ID for the processing profile. A table of steps is then pre-
sented. Each step has a database identifier, and also an ID for the job in the cluster management
system (LSF). The status of the job is indicated in color. Where steps are nested, indentation of
the name is used to suggest the situation visually. Variant detectors such as Pindel (A) and
Breakdancer (B) have subordinate workflows, dividing work by genomic region. The TIGRA
in silico SV validation step also divides work by chromosome (B, C andD), and is performed
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for each SV detection approach. For this build, the execution of VarScan2 and Strelka “short-
cut” (B), indicating that the data set required already exists for the same inputs and parameters,
presumably because of a prior build performing work with some overlap. The end of the report
shows steps that merge results across approaches, and perform final annotation of variants.
(PDF)

S14 Fig. Web interface. The GMS web search interface provides high-speed access to large vol-
umes of data. (A) It offers separate tabs to allow searching by model, build, processing profiles,
instrument data, or subject. The free-form search box provides direct access to querying the
database without the analyst knowing exact field names and nomenclature. The results in each
tab have links to the other related entities in the system, as well as the ability to drill down for
additional detail about the entity in question. This example shows a search for models related
to the HCC1395 cell line subject. (B) This page for an individual sample shows general data
about the sample, followed by a link to information about DNA fragment libraries, behind
which are specifics about instrument data. Below this page begins a list of models that have
been made with this sample as the subject. (C) Each listed model shows its processing profile
and inputs, as well as a list of build attempts, and respective build statuses. In this example,
exome-capture based alignment and variant detection are running. The genotype microarray
analysis of the same sample has completed successfully, but prior to that had one failed attempt
at processing. (D) The fourth image shows details for a specific build, including a list of specific
steps, and the status of each on the compute cluster. Links are present to the log files of each
step, and also to the log file for the build process as a whole.
(PDF)

S15 Fig. UML diagram of key GMS components. A unified modeling language (UML) dia-
gram of some critical components of the GMS.
(PDF)

S1 Table. HCC1395/BL whole genome (DNA) sequence metrics.
(PDF)

S2 Table. HCC1395/BL whole exome (DNA) sequence metrics.
(PDF)

S3 Table. HCC1395/BL Transcriptome (RNA) sequence metrics.
(PDF)

S4 Table. HCC1395/BL selected candidate cancer associated SNVs.
(PDF)

S5 Table. Test hardware configurations.
(PDF)

S6 Table. The GMS, conceptually related resources, and their features.
(PDF)

S1 Data. HCC1395/BL tier 1 somatic SNVs (Sniper, VarScan, Strelka). ‘Top’ transcript vari-
ant annotations of SNVs from the somatic variation pipeline, cancer annotations, Cosmic
annotations and expression status from the MedSeq pipeline.
(ZIP)

S2 Data. HCC1395/BL tier 1 somatic Indels (GATK, VarScan, Pindel, Strelka). ‘Top’ tran-
script variant annotations of Indels from the somatic variation pipeline, cancer annotations
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and Cosmic annotations from the MedSeq pipeline.
(ZIP)

S3 Data. HCC1395/BL somatic CNVs (cnvhmm). CNV segments and CNV amplified and
deleted genes from the MedSeq pipeline.
(ZIP)

S4 Data. HCC1395/BL somatic SVs (breakdancer). Annotated SV predictions from the
somatic variation pipeline and candidate SV fusions from the MedSeq pipeline.
(ZIP)

S5 Data. HCC1395/BL RNA expression values (Cufflinks). Gene and transcript expression
values (FPKMs) from the MedSeq pipeline.
(ZIP)

S6 Data. HCC1395/BL observed splice junctions and their abundance (Tophat). Exon-exon
junctions identified as expressed and annotated in the RNA-seq pipeline.
(ZIP)

S7 Data. HCC1395/BL RNA gene fusions (ChimeraScan). RNA fusions predicted by Chi-
meraScan in the RNA-seq pipeline.
(ZIP)

S1 Text. Supplementary Methods and References.
(PDF)
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MBC, JME, JH, BRD, JTL, EC, AAR, MG, OLG and SMS, with contributions of LIMS integra-
tion from SML, CSP, TGH, ID, BSA and AEH. Cancer analysis processing profiles and tools
were developed by MG, OLG, DEL, LD, MDM, JRW, DCK, NDD, CL, CAMi, CAMa, CCH,
WSS, XS, JH, TNW, CK, MBC, KC, XF, GES, AAR, FD, SMS and BSA. Germline analysis pro-
cessing profiles were developed by DEL, DCK, CL, WSS, TEA, CCH, RLL, and GES. Reference
sequence code was written by EAB, KHK, TEA, and AAR. UR and App API were the work of
SMS, AMB, TGH, DJD, CSP, JME, EC, NGN, BRD, TEA, BJO, ID, JRW and MBC. The sample
and patient tracking was designed by SMS, CSP, LKC and BRD. The disk allocation system was
developed by WES, MJK, TGH, AEH, BSA, ID, JTL, CSP, BRD, NGN, BJO, JVW and AMB.
The web interface was developed by BJO, JTL, EC, JFM, ACC and BJO. The computational
platform behind the GMS was developed by DJD, RWW, MBC, GS, MRW, NGN, EC, CSP,
JFM, AMB, ACC, BRD and SMS. The system federation was developed by SMS. Installation
testing and debugging was done by SMS, MG, OLG, ARa, ZLS, ARa and MJK.
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