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Abstract

Genome-wide maps of transcription factor (TF) occupancy and regions of open chromatin
implicitly contain DNA sequence signals for multiple factors. We present SeqGL, a novel de
novo motif discovery algorithm to identify multiple TF sequence signals from ChIP-, DNase-
, and ATAC-seq profiles. SeqGL trains a discriminative model using a k-mer feature repre-
sentation together with group lasso regularization to extract a collection of sequence signals
that distinguish peak sequences from flanking regions. Benchmarked on over 100 ChlIP-
seq experiments, SeqGL outperformed traditional motif discovery tools in discriminative ac-
curacy. Furthermore, SeqGL can be naturally used with multitask learning to identify geno-
mic and cell-type context determinants of TF binding. SeqGL successfully scales to the
large multiplicity of sequence signals in DNase- or ATAC-seq maps. In particular, SeqGL
was able to identify a number of ChlP-seq validated sequence signals that were not found
by traditional motif discovery algorithms. Thus compared to widely used motif discovery al-
gorithms, SeqGL demonstrates both greater discriminative accuracy and higher sensitivity
for detecting the DNA sequence signals underlying regulatory element maps. SeqGL is
available at http://cbio.mskcc.org/public/Leslie/SeqGL/.

Author Summary

Transcriptional regulation is the cell’s primary mode of controlling gene expression. Tran-
scription factors (TFs) are proteins that recognize and bind specific DNA sequence signals
to regulate the expression of target genes. Recent years have seen the rapid development of
genome-wide assays to profile the binding locations of a single TF or, more generally, re-
gions of open chromatin that are occupied by a complex repertoire of DNA binding fac-
tors. New methods are therefore needed to detect and represent DNA sequence signals in
these genome-wide regulatory element maps. Here we present a novel tool called SeqGL to
extract multiple TF binding signals from genome-wide maps. SeqGL employs a machine
learning framework to identify features that best discriminate the peaks, where we expect
DNA sequence signals to occur, from the flank regions that should not contain these
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signals. Our tool performed significantly better than widely used motif discovery methods
in discriminative accuracy and achieved higher sensitivity in detecting the numerous se-
quence signals underlying regulatory element maps.

Introduction

Transcription factor (TF) ChIP-seq profiles and genome-wide regulatory element maps based on
DNase I hypersensitive site sequencing (DNase-seq) or transposase-accessible chromatin sequenc-
ing (ATAC-seq) implicitly contain rich information about the cell-type specific and genomic-
context dependent binding of multiple factors. Traditional analysis of ChIP-seq profiles involves
searching for motifs that are significantly enriched in peaks relative to a background model, either
using a library of known motifs [1-3] or through de novo motif discovery algorithms [4-9]. How-
ever, we hypothesize that motif discovery approaches may miss more subtle cofactor signals that
explain a subset of the ChIP peaks and may fail to adequately generalize to the high multiplicity of
TF binding signals in DNase profiles. Meanwhile, several methods use DNase-seq profiles to scan
for instances of known motifs [10, 11], and one recently proposed approach exploits the read-level
properties of high-depth digital genomic footprinting (DGF) to improve localization of known
motifs [12]. However, these methods do not enable de novo discovery of binding signals that are
not represented in TF motif databases, and methods that rely on the depth and read-level proper-
ties of DNase I cleavage in DGF may not readily generalize to newer assays like ATAC-seq, which
can be used in low cell number settings where DNase-seq is not feasible.

Here we present a new and flexible discriminative learning tool called SeqGL (Fig 1) that
uses group lasso regularization [13] to identify multiple context-dependent TF binding signals
from a single ChIP-, DNase-, or ATAC-seq profile. SeqGL does not search for instances of
known TF motifs but rather learns binding signals de novo from the profile. These binding sig-
nals are based on weighted k-mer scoring and can be summarized as motifs and compared to
known TF motif databases; however, SeqGL has the potential to discover novel motifs or dis-
tinct variants of known motifs. In extensive benchmarking experiments on ENCODE TF
ChIP-seq data, we show that SeqGL outperforms widely used motif discovery methods both
for the discriminative task of distinguishing TF ChIP peaks from flanking sequences and for
cofactor signal detection. Further, SeqGL successfully scales to the complexity of regulatory sig-
nals in DNase-seq or ATAC-seq profiles, identifying numerous TF binding signals in DNase-
or ATAC-mapped regulatory regions that are confirmed by ChIP-seq. Finally, we show how
SeqGL can be trained in a multi-task setting, where we jointly train on experiments from multi-
ple cell types in order to identify shared and cell-type specific binding signals or encode infor-
mation about genomic context, such as gene proximity or chromatin state, into the task
structure to reveal more detailed regulatory sequence information.

Results

SeqGL identifies TF sequence signals underlying ChIP-seq or DNase-seq/ATAC-seq peaks by
training a discriminative model based on k-mer features on peaks (positive examples) versus
their flanks (negative examples), building on our previous efforts in learning discriminative
models of TF binding preferences [14, 15] (Fig 1). We use a k-mer-based feature representation
related to the wildcard kernel [16] for the learning framework (Materials and Methods). Hierar-
chical clustering of these features across peak and flank sequences reveals a block structure,
identifying subsets of k-mers that co-occur in subsets of examples. Thus we encode these k-mer
clusters or groups using a sparse group lasso constraint [13] in a logistic regression model,
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Fig 1. SeqGL identifies binding profiles in genome-wide regulatory maps. SeqGL uses sparse group lasso to identify the most important k-mer groups
that discriminate between ChIP-seq/DNase-seq peaks and flanks. Hierarchical clustering of k-mer counts across peak and flank sequences reveals a block
structure that defines k-mer groups. A representative heatmap of k-mer frequencies for a subset of peaks and flanks is shown. Sparse group lasso regression
sets some groups uniformly to zero; groups with non-zero weights define group signals that may represent binding sequence signals for individual TFs.
Significant hits for each group signal are identified, and sequence windows around these hits are extracted. HOMER is then applied to the windows to
associate these group signals with motifs for visualization and identification.

doi:10.1371/journal.pcbi.1004271.9001
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which assigns non-zero weights to k-mer groups that significantly discriminate between peaks
and flanks while setting other groups uniformly to zero (Materials and Methods). We view each
non-zero k-mer group as the potential binding signal of a particular TF. In order to associate
each group signal with the TF motif for visualization and identification, we first determine ex-
amples that are significantly discriminated by the k-mer group using an empirical null distribu-
tion and extract sequence windows containing the significant hits (Materials and Methods). We
then use an existing motif algorithm (HOMER, [5, 17]) to generate a motif from these windows.
Note that the motifs identified by HOMER are used for visualization and comparison to existing
motif databases and not for prediction of binding sites. Thus SeqGL predicts multiple TF bind-
ing profiles for a DNase-seq/ATAC-seq or ChIP-seq experiment corresponding to k-mer group
signals, along with associated motifs and significant hits. TFs are organized as structural families
that often share a motif or have very similar motifs in existing databases. Therefore, SeqGL typi-
cally associates each non-zero k-mer group with the motif of a TF family rather than a specific
factor. In analyses and validations presented below, we used existing ChIP-seq data or mRNA
expression when available to resolve the specific factor of the family.

SeqGL outperforms existing motif algorithms for discriminating ChlP-seq
peaks

We compared the performance of our method for the task of discriminating peaks from flanks
to a number of widely used motif finding tools: HOMER (a PSSM-based approach designed for
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TF ChIP-seq data) [5], DREME (a k-mer-based discriminative motif tool in the MEME suite)
[4], and MEME-ChIP (an EM-based motif tool) [6]. Our benchmark dataset consisted of 105
different ENCODE [18] ChIP-seq experiments across two cell lines: GM127878, a lymphoblas-
toid cell line, and H1-hESC, an embryonic stem cell line. We used the multiple motifs identified
by each tool in different settings to compare the performance. “Best motif” uses PSSM scores
from the best motif identified by the tool for each example (mean auROC for HOMER:. 775,
DREME.:. 747 and MEME-ChIP:. 777). “Max motif” uses the maximum log odds score of any
motif for each example (mean auROC for HOMER:. 739, DREME:. 781 and MEME-ChIP:.
738). We found that SeqGL performs significantly better than all the tools in both these settings
(Wilcoxon rank sum p-values < 7e-3) (S1 Fig; mean auROC for SeqGL:. 921). We note that all
methods find the “known” motif in almost the same number of experiments (S2 Table); there-
fore, the performance advantage of SeqGL derives in part from combining multiple signals. For
this reason, we also trained a “Motif elastic” model for each motif discovery tool, using elastic
net logistic regression [19] with the PSSM scores for all motifs as features. (Materials and Meth-
ods). Motif elastic is the method most comparable to SeqGL since we expect each k-mer group
in SeqGL to represent binding preferences of a particular transcription factor. We note that the
“Motif elastic” is the best performance setting for each motif tool, and yet SeqGL significantly
outperforms “Motif elastic” for all tools (Fig 2, mean auROC for HOMER:. 858, DREME:. 846
and MEME-ChIP:. 876). This result demonstrates the advantage of representing binding sig-
nals as weighted k-mer scoring models and learning these signals at the same time as the
peaks-vs-flanks classifier.

SeqGL retains the discriminative advantage of SVM k-mer kernel
methods

Several other k-mer based discriminative models have recently been proposed to learn TF
binding preferences from ChIP-seq data, including two SVM methods: the di-mismatch kernel,
based on k-mer features in the dinucleotide alphabet counted with mismatches [14]; and the
gkm-SVM method [20], which is very similar to the wildcard kernel introduced some time ago
[16]. Importantly, both these kernel methods represent the binding model as a “bag of k-mers”,
which does not allow obvious extraction of multiple distinct binding signals. Nevertheless,
both methods were able to outperform single motif methods for the statistical task of discrimi-
nating peaks from non-peaks in held-out examples from the training ChIP-seq experiment,
and the gkm-SVM (similar to the wildcard kernel) computes the kernel over all k-mers with a
fixed length and number of wildcards and trains in the dual space. Therefore, it is worth com-
paring to these approaches to confirm that our group lasso regularization in the primal space
of a reduced set of k-mers still retains the advantage of previous kernel methods.

For our method comparison, we used SeqGL both with the default 5K features (8-mers with
up to two consecutive wildcards) and with 30K features. We compared to the di-mismatch ker-
nel using 5K features and published parameters and to gkm-SVM using 10-mers with up to
4 wildcards; we also performed a simple elastic net regularization with logistic regression on
the set of 10-mer features with up to 4 wildcards (Fig 2). When we evaluated performance dif-
ferences between SeqGL (5K features) and other k-mer methods with a Wilcoxon rank sum
test, no method significantly outperformed SeqGL, while SegGL did have a significant win over
the di-mismatch kernel (median auROC of. 921 versus. 884, p < 2e-10, Wilcoxon rank sum
test); when we used all di-mismatch features, its performance improved (median auROC of.
906) to a statistical tie with SeqGL. The gkm-SVM method obtained a slightly higher median
auROC of. 931, but the performance difference compared to SeqGL was not statistically signifi-
cant (p = 0.06, Wilcoxon rank sum test). When we increased SeqGL to retain 30K k-mer
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Fig 2. SeqGL performs significantly better than traditional motif discovery methods across different settings. (A) Plot showing the k-mer weight
inferred group lasso regularized logistic regression for PAX5 ChlP-seq in GM12878 cell line. A number of groups are uniformly set to 0 (Group 5), while other
groups are either significantly predictive of peaks or flanks (Group 3 and Group 2 respectively). Motifs identified for groups that are strongly predictive of
peaks and the corresponding TFs are also shown. (B) PAX5 ChIP-seq auROC on the test set comparing the discriminative performance of SeqGL with motif
finding tools and k-mer methods. The different colors correspond to the colors in Fig 2C. (C) Plots showing auROCs on test sets for 105 ChIP-seq
experiments using different tools and settings. Three different settings were used for the motif finding tools HOMER, DREME and HOMER (see S1 Fig). ‘Best
motif’ uses the highest-ranking motif from each method, as defined by the p-value; ‘Max motif’ uses the motif with maximum log odds score in each example;
and ‘Moitif elastic’ uses elastic net logistic regression across all motifs determined by the respective method. Only the ‘Motif elastic’ methods are shown in the
performance plots, since they outperform the ‘Best motif’ and ‘Max motif” methods. ‘SeqGL and other k-mer methods significantly outperform the different
motif finding tools across all settings (Wilcoxon rank sum p-values < 7e-3). gkm-SVM performs marginally (but not significantly) better compared to SeqGL
with 5K top discriminative features (Wilcoxon rank sum p-value = 0.06); SeqGL using a larger feature set (30K) gives identical performance to gkm-SVM (no
difference in the distribution of auROC scores based on a Wilcoxon rank sum test, using p-value < 0.05 for our threshold of significance). Furthermore, the
elastic-net regressor on the full SeqGL feature space using 10-mers with 3 wildcards (similar to settings used by gkm-SVM) also yields identical performance.
While the discriminative accuracy is comparable, unlike other k-mer methods, SeqGL identifies multiple distinct DNA binding signals from the same ChIP-seq
experiment (S3 Table).

doi:10.1371/journal.pcbi.1004271.9002

features, performance improved (mean auROC of. 927), giving a statistically tie with gkm-
SVM and elastic net on 10-mer features with up to 4 wildcards. All the k-mer based methods
outperformed all the motif elastic methods (p < 3e-4, Wilcoxon rank sum test, for all pairwise
comparisons). We therefore concluded that SeqGL, even with shorter k-mers and only 5K
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features, achieved statistically equivalent discriminative performance to more computationally
expensive kernel methods that use a much larger implicit feature space.

SeqGL identifies multiple TF binding signals in ChlP-seq profiles

PAXS5 is an important B cell lineage factor expressed at early stages of B cell differentiation
[21]. Therefore we used PAX5 ChIP-seq data in GM12878 to examine the co-factor binding
profiles identified by SeqGL (Fig 3). SeqGL was run with 20 groups and identified 7 groups to
be significantly predictive of peaks compared to flanks. The top panel of Fig 3A shows the
group scores for three highest scoring groups ranked by their predictive power of peaks com-
pared to flanks, and the bottom panel shows the ChIP-seq read counts for the corresponding
TFs. While SeqGL identified 7 groups as predictive of PAX5 peaks, we are highlighting the
three highest ranked groups for simplicity. As expected, the top-scoring group in the PAX5
ChIP-seq experiment identifies sites that are strongly associated with the canonical PAX5
motif. The other groups are associated with AP family and PU.1 motifs, which have prominent
roles in B cell function [21]. We next used existing ChIP-seq data to validate these predictions
(S2 Fig, Materials and Methods) and found that PAX5 peaks predicted by these two groups are
indeed bound by AP family factors and PU.1 respectively. Furthermore we also identified
BATF as the specific AP factors since peaks associated with this group are most enriched for
BATF ChIP-seq peaks. Interestingly, even though the PAX5 ChIP-seq read densities are uni-
form across all peaks, the group scores show significant differences, and a significant number
of PAXS5 peaks do not have a sequence signal for PAX5. We propose that this observation is
due to different modes of binding. Fig 3B shows specific examples of these modes of binding.
The left panel shows the direct binding mode: a TF recognizing its canonical motif. The middle
panel shows that even though there is a strong PAX5 peak, the sequence signal is actually de-
rived from a different factor, BATF, indicating either indirect PAX5 binding via a protein-pro-
tein interaction or potentially a distal looping interaction. This illustrates that for a region with
ChIP-seq peaks for multiple factors; the binding signals need only come from a subset of those
factors. Finally the right panel demonstrates co-binding of PAX5 and PU.1 with each factor
recognizing its respective motif. These observations are consistent with the different modes of
interaction between TFs identified by Wang et al. [8]. The fraction of peaks with non-canonical
signal is dependent on the TF; we observed a continuous spectrum across ChIP-seq experi-
ments, with some TFs showing exclusively canonical signals and others showing a mix of ca-
nonical and non-canonical signals (S3 Fig and S3 Table). We note that gkm-SVM has a
procedure for producing PSSMs from the top ranked k-mers in the model and reports three
motifs per TF ChIP-seq experiments. However, when we compared results with SeqGL and
HOMER, we saw that gkm-SVM missed many of the co-factor signals identified by SeqGL and
indeed often returned three variants of the same motif (S4 Table).

SeqGL reveals genomic context dependent and cell-type specific
binding signals

We next used SeqGL to examine the connection between binding context and sequence signals
in TF occupancy profiles. To this end, we used a multitask technique [22] to identify gene prox-
imal and distal binding profiles of POU2F2, a B cell maturation factor [23]. Briefly, proximal
and distal peaks are considered two different classification tasks for multitask learning. This
formulation combines the peaks of the two tasks to create a third task also called the “common”
task. All the three tasks are solved simultaneously to identify factors that are not only common
to both tasks but also specific to each task i.e., context independent as well as context-specific
factors (Materials and Methods, S4 Fig). Fig 4A illustrates that as expected the octamer motif
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Fig 3. SeqGL identifies binding signals in ChiP-seq occupancy profiles. (A) Heatmaps show predicted binding signals and ChIP occupancy of PAX5
and co-factors. SeqGL analysis of PAX5 ChlP-seq predicts BATF and PU.1 as the most significant binding partners of PAX5. The top panel shows the group
scores associated to three TFs from the PAX5 model, and the bottom panel shows the corresponding ChlP-seq read counts. This shows that a number of
PAX5 ChIP-seq peaks are indirect and obtained through DNA binding of partners rather than PAXS5 itself. The dashed boxes highlight the specific examples
illustrated in Fig 3B. (B) Specific examples of PAX5 profiles show various modes of binding detected by SeqGL. The left panel shows direct binding of a TF
(PAXS5 recognizing its motif). The middle panel shows that the sequence signal is associated to BATF, and hence the PAX5 peak at this location is either due
to interaction of the two factors and/or long distance looping. The right panel shows an example of co-binding of PAX5 and PU.1, each recognizing its
respective binding motif.

doi:10.1371/journal.pcbi.1004271.9003
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representing the OCT TF family is strongly associated with both proximal and distal peaks, as
is the motif for ETS, which binds at both proximal and distal sites. Interestingly, the proximal
sites show a strong association with CG-rich motifs whereas the distal sites are associated with
factors like BATF and TCF, which are necessary for B cell function [21]. This is consistent with
the observation that cell type information is encoded at distal enhancers rather than proximal
promoters [24]. Note that the motifs for YY1, ETS, ZNF and TCF families were detected specif-
ically by SeqGL and not by HOMER. On a similar note, we used the same multitask technique
to encode the cell type context of TCF12 by joint training on ChIP-seq data for this factor in
both GM12878 and H1-hESC (Fig 4B). As expected, the TCF motif is associated with peaks
common to both cell types whereas the candidate binding partners are completely different
and are key regulators of the particular cell type (BATF and RUNX for GM12878; TEAD and
PRDM for H1-hESC).

The expression levels of binding partners may play an important role in determining the
context for binding of certain transcription factors. In both the POU2F2 and TCF12 analysis,
the enhancer and cell-type specific profiles respectively had cell-type specific transcription fac-
tors as candidate binding partners. To explore this further, we applied SeqGL to the binding
profiles of the enhancer binding factor p300 in different cell types. p300 peaks across different
cell types are largely cell-type specific (Fig 4C) and the binding profiles are enriched for factors
that are expressed specifically and thus functionally relevant in the respective cell type (Fig
4D). Please note that the specific factors were identified using mRNA expression for groups as-
sociated with TF families. BATF, IRF4 and IRF8 show GM12878-specific expression; TEAD4
and NANOG, genes that play a central role in embryonic stem cells [25], are specifically ex-
pressed in H1-hESC along with ELK1; HNF4A, a gene necessary for liver development [26], is
specifically expressed in HepG2, a hepatocellular carcinoma cell line; and finally GATAI,
which is involved in myeloid development [27], and MYB are specifically expressed in K562, a
myelogenous leukemia cell line. These results demonstrate that beyond the DNA sequence sig-
nal, the cell type and genomic context of binding for a particular TF may define its binding
partners, and furthermore the expression of potential binding partners can lead to altered
binding profiles.

SeqGL improves sensitivity for detecting binding signals in DNase-seq
profiles

SeqGL is particularly effective for determining TF binding profiles in DNase-seq data since
DNase peaks contain signals for a large multiplicity of transcription factors. Our group lasso
approach is well suited to capture this diversity of sequence signals in DNase peaks. We used
DNase-seq data from GM12878 because of the availability of an immense collection of ChIP-
seq experiments in this cell type. As a first step, we used MACS [28] to identify broad DNase
peaks, followed by PeakSplitter [28] to identify subpeaks within the broader peaks (S5 Fig). We
then used IDR [29] to identify a robust set of reproducible subpeaks across replicates (Materials
and Methods).

Fig 5A shows the predicted TF binding profiles of broad DNase peaks in GM12878 after
summarizing the group scores over subpeaks. A total of 16,891 peaks are shown with group
scores for top 30 groups. 68/200 groups are associated with DNase peaks and contain motifs
for 38 TFs (S5 Table). A number of groups are associated with motif variants of the same TF.
HOMER and MEME-ChIP were unable to identify 14/38 motifs (S5 Table). While HOMER is
able to find motifs that are significantly enriched in the peaks, SeqGL specifically identified mo-
tifs for TFs such as EBF1, E2A, and SOX4, which are important for B cell function but present
in a smaller fraction of DNase peaks. Furthermore we validated 37/46 groups with ENCODE
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specific binding and predicted TF signals. The cell-type specific expression of the p300 candidate binding partners partially explains the differing binding
profiles of p300 across cell types.

doi:10.1371/journal.pcbi.1004271.9004

ChIP-seq data (indicated by “*” in Fig 5A). There is a strong enrichment for transcription fac-
tors with known function in B cell identity and activity (S6 Table). Closer inspection of the
group scores revealed that a subset of peaks (9262 out of 34303) have a signal for a single tran-
scription factor (Fig 5B, left panel) whereas a larger subset (20048 out of 34303) have sequence
signals for multiple factors (FDR-corrected p < 0.01) (Fig 5B, middle panel). Note that the
BATF-RUNX pattern is one of the many strongly appearing co-binding patterns (S7 Table).
This observation is similar to the results from PAX5 ChIP-seq (Fig 3B), where a PAX5 peak is
not necessarily accompanied by an underlying PAX5 motif. Furthermore subpeaks identified
from a single broad peak can have sequence signals for different groups/factors (Fig 5B, right
panel) highlighting the value of splitting broad peaks into their constituent components. Thus
SeqGL learns extensive regulatory sequence information from DNase-seq by predicting bind-
ing profiles for multiple TFs and identifying their combinations. Furthermore, a number of
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Fig 5. Sequence preferences of GM12878 DNase-seq peaks. (A) Heatmap showing the group scores for top groups over 16,891 GM12878 DNase-seq
peaks. Note that some peaks have a sequence signal for a single factor while others have signals for multiple factors (FDR-corrected p < 0.01). All the group
predictions identified by “*” have been validated by ChIP-seq data, while “#” indicates no ChIP-seq data available in ENCODE. The dashed boxes highlight
the specific examples illustrated in Fig 5B. (B) The left panel shows a DNase peak with a strong score for a single transcription factor (NRF1). The middle
panel shows DNase peaks with moderate scores for both BATF and RUNX. The left panel shows different binding preferences in adjacent split peaks derived

from a single broad peak. All the predictions are

validated by ChIP-seq.

doi:10.1371/journal.pcbi.1004271.9005

groups are associated with motifs that only partially match to known motifs indicating that

these are either variants of existing motifs or potentially novel motifs that have not been char-

acterized (S6 Fig).
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Fig 6. SeqGL identifies sequence signals underlying ATAC-seq peaks. Distribution of top-scoring TFs across (A) DNase-seq and (B) ATAC-seq peaks.
TFs identified by SeqGL using ATAC-seq peaks are IRF, BATF and other cell-type factors that are strongly represented across peaks in both data types
whereas NRF and CTCF show enrichment in DNase-seq and ATAC-seq respectively. The fraction of intergenic enhancer peaks is significantly higher in
ATAC-seq, potentially explaining the higher occurrence of CTCF.

doi:10.1371/journal.pcbi.1004271.9006

SeqGL generalizes to ATAC- mapped regulatory regions

We further assessed the ability of SeqGL to identify binding profiles for multiple TFs using the
recently developed ATAC-seq assay in GM 12878, an alternative approach for mapping regions
of open chromatin that can be performed on 500-50,000 cells [30]. Using the same settings as
for DNase-seq peaks, SeqGL identified 30 group signals associated with ATAC-seq peaks. Cor-
responding TF ChIP-seq data is available for 23 group signals, and we were able to validate the
predictions for 18 of these 23 groups (S8 Table). The TFs identified in ATAC-seq peaks are pri-
marily a subset of TFs identified using GM 12878 peaks with the more frequent TFs identified
in both datasets. Fig 6 shows the distribution of maximum scoring TFs for DNase-seq (Fig 6A)
and ATAC-seq peaks (Fig 6B). Cell type factors like BATF, IRF and RUNX are strongly repre-
sented in both datasets whereas the promoter binding TF NRF and insulator protein CTCF
have strong enrichment in DNase-seq and ATAC-seq peaks, respectively. Interestingly, the
fraction of intergenic peaks is significantly higher in ATAC-seq compared to DNase-seq (42%
in ATAC-seq compared to 33% in DNase-seq). This difference in TF signal distribution is also
present in peaks common to DNase-seq and ATAC-seq (S7 Fig), suggesting that the assay-de-
pendent training set alters the relative strengths of the group signals for different TFs.

SeqGL identifies context-specific sequence signals in DNase-seq
profiles

Cell type and chromatin state both provide the context determinants for the TF binding profiles
underlying mapped regulatory elements. For example, while a number of DNase peaks are cell-
type specific, a significant fraction show comparable accessibility in multiple cell types (S8 Fig).
We built binding profiles for DNase peaks common to both GM12878 and H1-hESC and peaks
specific to the two cell types (Materials and Methods). As expected, the cell-type specific profiles
are associated with cell-type specification transcription factors: BATF, IRF, PU.1 and RUNX in
GM12878 and OCT4, SPI1 and NANOG in H1-hESC (Fig 7A). Intriguingly, peaks that are
common to both cell types contain not only promoter-associated factors like NFY but also the
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Fig 7. Context determinants of DNase binding signals. (A) DNase peaks across cell types show significant differences in the underlying sequence
preferences depending on the context. DNase peaks that are common to both GM12878 and H1-hESC cell lines show strong preferences for either insulator
proteins (CTCF) or promoter associated regulators (NFY) whereas again cell-type specific peaks show preferences for cell-type specific regulators (BATF,
IRF, RUNX in GM12878 and OCT, SMAD, NANOG in H1-hESC). (B) The chromatin context of a DNase peak also defines a context for specific binding
preferences. DNase peaks in active promoter regions are associated with NRF, SP1 and NFY motifs whereas peaks in the enhancer regions are associated
with CTCF, SOX and TEAD motifs.

doi:10.1371/journal.pcbi.1004271.9007

insulator protein CTCF. This appearance of insulator/structural proteins was consistently ob-
served in many comparisons and thus may indicate that the broader domains of regulation re-
main consistent across different cell types [31]. Furthermore, we also explored the chromatin
context in the H1-hESC cell line. Using ENCODE ChromHMM segments [32], we predicted
TF binding profiles for DNase peaks in active promoters and enhancers. Active promoters as ex-
pected contained CG-rich and motifs for TFs such as NFY and SP1 that are known to bind pro-
moter regions whereas, interestingly, enhancers are associated not only with cell-type
specification factors but also with CTCEF (Fig 7B). This result suggests that both cell-type specifi-
cation factors and structural proteins are needed to build the enhancer landscape of cells.

Discussion

The use of k-mers for the representation and discovery of regulatory motifs has a long history.
Several early papers used over-represented k-mers to identify TF binding sites and other se-
quence signals (e.g. [33, 34]), and methods like Weeder and MITRA organized efficient
searches for enriched k-mers and composite k-mer patterns, respectively, using traversal of suf-
fix tree or retrieval tree data structures to count occurrences of k-mer occurrences with inexact
matches [35, 36]. The first k-mer based string kernels were introduced shortly afterwards [37,
38] for the problem of SVM classification of protein domains and used the same retrieval tree
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data structure for efficient kernel computation of k-mer features with mismatches, wildcards,
or gaps [16]. However, it was also recognized in those early years that k-mer based SVMs could
be used to model regulatory sequences in DNA and RNA. The original application in this do-
main was for extracting intronic splicing silencers and enhancers [39], and subsequently k-mer
kernel methods were introduced for recognition of alternatively spliced exons, gene structure
prediction, and nucleosome positioning [40-42], where in each case, the discriminative k-mer
model captured subtle regulatory sequence signals.

With the advent of large-scale in vitro and in vivo TF binding assays, discriminative learning
of TF binding preferences using discriminative k-mer methods became feasible. The first study
of this kind introduced the di-mismatch kernel with SVR and SVM models to learn TF binding
preferences from protein binding microarray (PBM) and TF ChIP-seq data [15], and this
model was later used to systematically examine the cell-type specificity of TF sequence prefer-
ences using large-scale ChIP-seq data from two ENCODE cell lines [14]. Other studies adapted
previous k-mer kernels to train discriminative models on TF ChIP-seq data [20, 43] or used k-
mer features with lasso regularization to investigate sequence signals associated with histone
marks [44]; many k-mer methods were also benchmarked in a DREAM competition for learn-
ing TF binding models from PBM data, though the focus of this study was clearly to compare
methods generating PSSMs [45]. Indeed, despite the 10-year history of k-mer based discrimi-
native learning methods and several previous reports that these methods outperform tradition-
al motif discovery for the statistical problem of discriminating TF ChIP-seq peak from non-
peak sequences [14, 20], it is inarguable that traditional PSSM methods are far more widely
used than k-mer based methods in the larger genomics and biology communities. It is therefore
worth asking what is the essential limitation of k-mer methods, as they exist in the literature,
that prevents their more widespread adoption.

Here we propose that the key limitation of existing k-mer based discriminative methods is
the difficulty of determining what information the model is using to achieve its improved per-
formance, extracting these sequence signals from the model, and using them to dissect the reg-
ulatory code. We are indeed aware of only one previous method that tries to interpret the
sequence information from a k-mer based discriminative model, the POIM (positional oligo-
mer importance matrix) framework for weighted degree kernels [46], and this method requires
that examples are aligned to each other and assumes at most a single “motif” per position. In
our setting, a discriminatively trained k-mer model for TF ChIP-seq data may be capturing
subtle preferences of the ChIP-ed TF, co-factor signals, and general compositional biases asso-
ciated with regions of open chromatin—all of which are biologically interesting sequence sig-
nals but are difficult to deconvolve from a standard k-mer kernel SVM. These sequence signals
also depend on cellular context, suggesting that we should be cautious about touting perfor-
mance on the purely statistical problem of predicting occupancy on held-out peaks/non-peaks
from the training experiment. From a practical standpoint, this is an artificial problem, as ge-
nome-wide occupancy in the training experiment is already known; the more meaningful ques-
tion is how well the discriminative model can explain occupancy in a distinct cell type, so that a
new ChIP-seq experiment need not be done. This problem necessitates an investigation into
what the TF binding model is capturing, and how well we might expect it to generalize to a new
cellular context. In our previous di-mismatch work [14], we showed that for some TFs, dis-
criminative k-mer models indeed capture cell-type specific TF binding preferences, which we
were able to interpret as variants in the binding model of the ChIP-ed TF. What were unable to
do what do cleanly extract co-factor signals that may also account for cell-type specificity of TF
occupancy. A more recent study using the gkm-SVM method [20] (similar to the wildcard ker-
nel [16]) presented a heuristic for extracting PSSMs from the SVM but also largely missed co-
factor signals. This gap in the literature motivated the current work.
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SeqGL represents a new methodology for deciphering multiple binding sequence signals in
epigenomic data sets. It combines discriminative learning on a wildcard k-mer representation
with group lasso regularization to retain the better accuracy of k-mer based methods compared
to traditional motif discovery algorithms while achieving greater sensitivity for identifying
multiple sequence signals. Furthermore, the framework scales to handle the large multiplicity
of TF binding signals in DNase-seq data. Through multitask training; SeqGL can identify TF
binding signals that are common or specific to different genomic contexts or cell types. The use
of structured constraints in the primal space (here based on group lasso) together with multi-
task learning provides the necessary framework to disentangle multiple constituent signals as-
sociated with context-specific regulatory information. As such, we believe that SeqGL
represents an important advance for using discriminative k-mer methods to address biological-
ly meaningful questions in regulatory genomics. SeqGL is available as an open source R pack-
age at http://cbio.mskcc.org/public/Leslie/SeqGL/.

Materials and Methods
Data and preprocessing

ChIP-seq and DNase-seq data was downloaded from ENCODE [18]. We used a total of 105 TF
ChIP-seq experiments for the GM12878 and H1-hESC cell lines (S1 Table). Peaks called by EN-
CODE were used for ChIP-seq analysis and histone context was identified using the ENCODE-
defined ChromHMM segments. ENCODE data accession numbers: GSE32465, GSE31477,
GSE29692.

DNase-seq peak calling

We first pooled DNase-seq data for all replicates of a given cell type and identified peaks using
MACS [28] with a low threshold of FDR-corrected p < le-3 using the Benjamini-Hochberg
procedure for multiple hypotheses correction. The broader peaks identified by MACS were
then split into smaller peaks, to localize binding of a single TF, using PeakSplitter [28]. Repro-
ducible peaks were then identified using IDR [29] at a threshold of 0.01 in every pairwise repli-
cate comparison (S9 Fig). We identified a total of 43,105 subpeaks spanning 34,303 peaks in
GM12878 and 102,349 subpeaks spanning 78,180 peaks in H1-hESC.

ATAC-seq data processing

ATAC-seq data was processed using the procedure described for DNase-seq data. We used
fragments of length < = 100 for peak calling and downstream analysis.

Gene expression

We downloaded the RNA-seq bam files for all cell types from ENCODE. We used the summar-
izeOverlaps function from the GenomicRanges Bioconductor package [47] to count the reads
mapping per gene. We used these counts to determine mean RPKM values for each gene across
replicates for a cell type.

SeqGL

Model overview. SeqGL performs a classification task between peaks and flanks to identify
sequence preferences of transcription factors and their binding partners (Fig 1). We use k-mer-
features rather than known motifs to capture these sequence preferences. We use a window of
150 bp around the peak summit as positives and a 150 bp window, 300 bases upstream of the
peak summits as negatives in the classification task. We assume that the sequence signal for the
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transcription factor is present in this window. Our feature representation is related to the wild-
card kernel [16], where we use all k-mers of length 8 with up to two consecutive wildcards to
define features. Note that we use all exact-matching k-mers and k-mers with wildcards as sepa-
rate features. A k-mer and its reverse complement are treated as a single feature and include
the counts of the k-mer and its reverse complement.

We then use hierarchical clustering of these k-mer features using Spearman correlation as a
distance metric to identify clusters/groups of non-overlapping k-mers underlying subsets of ex-
amples. We chose 20 groups with 5000 top discriminative features between peaks and flanks
for ChIP-seq experiments and 200 groups with 30K top discriminative features for DNase-seq
experiments by empirical testing. These groups are then encoded in a group lasso constraint in
the classification problem. We use logistic regression as our classification tool with sparse
group lasso constraints [13] to identify the most discriminative groups of k-mers.

This is defined by the objective function:

Min,, > log(1 + exp(—yw - %)) + 4 D /L lIwl, + 2, > 1w
i g m

where x; represents the k-mer count vector for example i; y; are the labels: +1 for peaks and -1
for flanks; w, = (w', w? ... w) is the vector of k-mer weights of group g; [, is the number of k-
mers in group g and w™ is the weight of k-mer m. The first summation is over all the examples
(peaks and flanks) and defines the logistic loss function. The second summation encodes the
group lasso constraint across all k-mer weights w, for all groups g. The third constraint encodes
the sparsity constraint over all k-mers. The two regularization parameters A; and 1, control
sparsity at the group level and k-mer level respectively [13]. We used the SPAMS toolbox for
solving the classification problem [48], and As were chosen by 10-fold cross-validation on the
training sets.

Class scores and significant hits. We determined a ranking of groups using the following
scoring scheme. For each group, we identify a “positive class score” and “negative class score”
which measures the contribution of the group to identify positive and negative examples re-
spectively.

score(g,i) = log(1 + eXP(_}’in : Xi,g))

score(g, class) = Z score(g, i)

i€class

We associate the group with either the positive or negative class depending on which score
is the maximum. Next we identify peaks that are significantly defined by each group. For a pos-
itive class associated group g, we use the group scores of all the negative examples of g as the
empirical null distribution. We used a Benjamini-Hochberg procedure to identify group mem-
bers at a 5% false discovery rate (S10 Fig). We use groups with at least 25 examples for motif
finding. Similarly for a group associated with the negative class, the scores of the positive exam-
ples are used as the empirical null. This group membership scheme can be applied to any set of
sequences to predict binding of specific TFs.

Groups to motifs. We use the HOMER motif-finding tool [5] to associate each group
with a motif. We first identify the maximum scoring position within the 150 base span for each
group member. We then use a 50 base window around this position for finding motifs using
HOMER (Fig 1). Thus we use subregions of sequences for a subset of examples to find the
motif underlying each group. The statistics of the group size are primarily a function of the di-
versity of sequence signals in a given experiment. As an example, we find that most of the
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training and test peaks for EBF1 have the canonical motif, and therefore most of informative k-
mers are clustered into a single group.

The SeqGL tool is available as an R package at http://cbio.mskcc.org/public/Leslie/SeqGL/.
A complete table of candidate binding partners for different ChIP-seq experiments can be
found at http://cbio.mskcc.org/public/Leslie/SeqGL/chip_results/index.html.

Performance comparison

We compared the performance of SeqGL to a number of motif finding tools: HOMER, DREME
and MEME-ChIP. We analyzed 105 different ChIP-seq experiments from the GM12878 and
H1-hESC cell lines (S1 Table) and used area under the Receiver Operating Curve (auROC) on
the test set as the performance measure. We determined the top 2000 peaks in each ChIP-seq ex-
periment and split them evenly into training and test sets. auROCs were determined for the test
sets after using the training set for learning the model or motifs. The same training and test sets
were used for SeqGL, HOMER and DREME. A first order Markov model was estimated from the
negative sequences in the same training set for MEME-ChIP. Note that increasing the number of
peaks used for training and test does not significantly alter performance (S11 Fig). We also tested
SeqGL using dinucleotide shuffled sequences as negatives instead of sequences in the flanks (512
Fig). This leads to significantly better performance (p < 2e-7, Wilcoxon rank sum test), demon-
strating that shuffled sequences are relatively “easy” negatives and therefore not a strong adver-
sary. Dinucleotide shuftled sequences also lead to better performance compared to HOMER and
MEME-ChIP in the “Motif elastic” setting (S11 Fig; p < 2e-10, Wilcoxon rank sum test). Elastic
net was performed using the glmnet R package [19].

Context dependent partners: ChiP-seq

We used regularized multitask learning as proposed by Evgeniou & Pontil [22] (S3 Fig) to
learn context-specific candidate binding partners for POU2F2 and TCF12 ChIP-seq (Figs 4A
and 4B). In addition to the two tasks (POU2F2: (a) Proximal peaks vs flanks & (b) Distal peaks
vs flanks and TCF12: (a) GM12878 peaks & (b) H1-hESC peaks respectively), we defined a
“common” task that solves both the tasks as a single classification problem. The common task
is expected to capture the information common to both the tasks (POU2F2 and TCF12 binding
preferences respectively) whereas the task specific model will capture the context-dependent
binding partners. We ran clustering for each task separately to identify task specific groups.

We then learned models for all these tasks using the multitask learning formulation below. Let

L(x;, 3, 1;) = log(1 + exp(—y (W, + W, ) - x))

represent the logistic loss, and the objective function can be defined as

Ming, v, v DL E) + s ( S Slwl +8Y ||wc<,g|2>

tef{ti.tr} g g

ea(x 3 Shrenyi)

te{t|,ty} m m

where w,, wr; and wr, are the common, first task, and second task models respectively. L(x;, y;,
t;) is the logistic loss defined for each example belonging to task t;. The second component of
the equation encodes the group lasso constraints for all group models, and third component
encodes the sparsity constraint with w ., representing a vector of k-mer weights which belong
to group g in task t and w,” representing the m-th k-mer weight in task #.  and f trade off
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between the task specific and common task components. We used o = 1.5 and = 1 which
gave us the best test performance.

Validation of binding predictions by ChIP-seq

We validated the binding partner prediction using existing ChIP-seq data from ENCODE. We
again used the auROC measure for validation (S1 Fig). We first identified the overlaps of the
training set with the peaks of a particular TF. These overlapping peaks are considered positive
examples and the non-overlapping training peaks as the negative set. We then used the group
scores for each sample as predictions to determine the auROC. We consider a motif prediction
validated if the predicted TF or a member of the TF family is in top five auROC predictions.
Many of the cases that are not validated show only marginally matching motifs to the TF under
consideration. In these cases, the derived motif and known TF motif are dissimilar to each
other, and therefore the associated TF might not necessarily be correct. We resolve the ambigu-
ity among TF family members by using the expression levels of different family members in
the cell type or the ChIP-seq experiment with the best auROC in this validation. As an exam-
ple, BATF is identified as co-factor of PAX5 since Group 11 is best predicted by BATF and not
other members of the AP.1 family, and RUNX3 is identified in GM 12878 DNase-seq since
RUNX3 is expressed at significantly higher levels compared to other RUNX family members.

Context dependent partners: DNase-seq

We learned all the models separately for identifying context-dependent binding signals using
DNase-seq data. We used DNase peaks falling completely within specific ChromHMM states
for learning the results in Fig 7B. The ChromHMM state “Active Promoters” was used for pro-
moter peaks and “Weak Enhancers” and “Strong Enhancers” states for the enhancer peaks.

Supporting Information

S1 Fig. Comparison of SeqGL to different motif and k-mer methods. We compared the dis-
criminatory power of SeqGL to three widely used motif finding tools: (1) HOMER, (2)
DREME and (3) MEME-ChIP. Multiple motifs are identified by each method and we use three
different settings for comparison: “Best motif” uses the PSSM score from the best motif identi-
fied by the tool, “Max motif” uses the maximum log odds score of any motif for each example
and “Motif elastic” uses elastic net logistic regression with PSSM scores for all motifs as fea-
tures. SeqGL with 5K top discriminative features outperforms these methods across all the
three settings (Wilcoxon rank sum p-values < 7e-3). We also compared the results of SeqGL to
different k-mer kernels: SeqGL with standard 5K features significantly outperforms the publish
di-mismatch kernel which used 1K features (Wilcoxon rank sum p-value < 2e-10) and di-mis-
match with all features performs more comparably (Wilcoxon rank sum p-value < 0.3). SeqGL
with 30K features gives comparable performance to the recently described gkm-SVM (Wil-
coxon rank sum p-value < 0.4). The performance is again similar using the SeqGL features
with different k-mer lengths and wildcards using elastic net regression.

(PDF)

S2 Fig. Validation of co-factor sequence signal prediction by ChIP-seq. Example plot show-
ing receiver-operating curves for validation of co-factor signal prediction. SeqGL associates the
BATF motif with Group 8 in the IRF4 ChIP-seq experiment. For each TF with ChIP-seq data,
the corresponding peaks overlapping with the IRF4 peaks are considered as positive examples
and those not overlapping as negative examples, and the group scores are used as a ranking to
determine the ROCs. The top three TFs as ranked by auROCs are shown in the plot. The red
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line represents the ROC for BATF, blue and green for JUND and FOXM], respectively. The
best auROC for IRF4 Group 8 is BATF thus validating the BATF motif prediction.
(PDF)

$3 Fig. Canonical and non-canonical sequence signals in ChIP-seq experiments. A number
of TFs show strong presence of the canonical sequence signal in a majority of peaks. At the
other end of the spectrum some TFs are not associated with the canonical sequence signal in
any of the peaks. These include TFs like STAT (5S4 Table).

(PDF)

$4 Fig. Multitask representation. We use a multi-task learning framework to identify motifs
common to both the tasks. The model of each task is then encoded as sum of task specific and
common models. The features of the two tasks are stacked to create a common feature matrix
and define groups for each of set of features separately.

(PDF)

S5 Fig. Identification of subpeaks. Peak callers like MACS [28] identify broad peaks in region
of high DNase density. MACS identified the region shown in the plot as one single peak. We
used the PeakSplitter tool to identify constituent subpeaks and treated them as separate exam-
ples in our learning model. The split peaks are often associated with different TF motifs

(Fig 2B).

(PDF)

S6 Fig. SeqGL identifies novel motifs and variants of existing motifs. A number of groups in
GM12878 DNase-seq analysis are associated with motifs that only partially match to known
motifs. These motifs are potentially novel motifs that have not been characterized or variants
of known motifs.

(PDF)

S7 Fig. TF distribution among peaks common to DNase-seq and ATAC-seq peaks. The en-
richment of NRF and CTCF motifs in DNase-seq and ATAC-seq respectively is also observed

in peaks common to both datasets. We identified common peaks by finding peaks that overlap
by at least 90% after defining windows of 150 bases around the peak summits.

(PDF)

S8 Fig. Shared and differential DNase peaks for GM12878 and H1-hESC. The scatterplot of
log read counts of DNase peaks between two cell types shows both a large number of cell-type
specific peaks as well as common peaks. DESeq [49] was used to identify the cell-type specific
and common peaks. FDR corrected p-value of 0.01 was used for cell-type specific peaks where-
as peaks with FDR corrected p-value > 0.25 were used as common peaks. The peaks in green
and blue are used as H1-hESC and GM12878 specific peaks and peaks in black are used as
common peaks for identification of motifs in Fig 2C.

(PDF)

S9 Fig. Reproducible DNase peaks using IDR. We use IDR with a cutoff of 0.01 to identify re-
producible subpeaks in each cell type. The plot shows the identified subpeaks in H1-hESC.
(PDF)

$10 Fig. Identification of peaks associated with each group. Group members for the positive
class are determined using the scores of the negative class as the empirical null distribution
(black line). We calculate an FDR-corrected p-value for each positive peak using this empirical
null. A 5% FDR threshold was used in the association of peaks with groups.

(PDF)
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S11 Fig. Increasing sample size does not affect SeqGL performance. In order to test the effect
of increasing noise in the training set, we used (a) 5000 examples and (b) 10000 examples for
training and test in ChIP-seq experiments where sufficient peaks are available. Increasing the
number of training examples does not significantly affect performance either with 5000 exam-
ples (p < 0.6, Wilcoxon rank sum test) or 10000 examples (p < 0.25, Wilcoxon rank sum test)
(PDF)

$12 Fig. Using dinucleotide shuffled sequences as negatives leads to significantly higher
performance. (A) We used dinucleotide shuffled sequences instead of flanking sequences as
negatives and observe a significantly better SeqGL performance with shuffled sequences

(p < 2e-7, Wilcoxon rank sum test). Thus shuffled sequences are “easy” negatives and do not
present a strong adversary. Moreover, SeqGL using dinucleotide shuffled sequences as nega-
tives significantly outperforms HOMER and MEME-ChIP on this task (p < 2e-10, Wilcoxon
rank sum test). (B) Plot showing distribution of nucleotide frequencies in the negative flank se-
quences across all 105 ChIP-seq experiments. This shows that negative flank sequences are not
enriched for polyA sequences. We also enumerated the number of low complexity sequences
in the dataset (a sequence was defined to be low complexity if a particular nucleotide is repeat-
ed in 50% of sequence positions). <2% of the flank sequences were identified as low complexity
(as opposed to <1% of peak sequences) indicating that flank sequences are not enriched for
low complexity sequences.

(PDF)

S1 Table. List of ChIP-seq experiments.
(XLSX)

$2 Table. Identification of known TF motifs by SeqGL and HOMER.
(XLSX)

$3 Table. Canonical and non-canonical sequence signals.
(XLSX)

S$4 Table. Cofactors identified by SeqGL, HOMER and gkm-SVM.
(XLSX)

S5 Table. TFs associated with each group and ChIP-seq validation for GM127878 DNase-
seq peaks.
(XLSX)

S6 Table. Biological significance of TFs underlying GM12878 DNase peaks identified by lit-
erature search.
(XLSX)

S7 Table. GM12878 co-binding patterns.
(XLSX)

S8 Table. GM 12878 ATAC-seq binding profiles.
(XLSX)
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