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Abstract
There is a critical need to better use existing antibiotics due to the urgent threat of antibiotic

resistant bacteria coupled with the reduced effort in developing new antibiotics. β-lactam

antibiotics represent one of the most commonly used classes of antibiotics to treat a broad

spectrum of Gram-positive and -negative bacterial pathogens. However, the rise of extend-

ed spectrum β-lactamase (ESBL) producing bacteria has limited the use of β-lactams. Due

to the concern of complex drug responses, many β-lactams are typically ruled out if ESBL-

producing pathogens are detected, even if these pathogens test as susceptible to some

β-lactams. Using quantitative modeling, we show that β-lactams could still effectively treat

pathogens producing low or moderate levels of ESBLs when administered properly. We fur-

ther develop a metric to guide the design of a dosing protocol to optimize treatment efficien-

cy for any antibiotic-pathogen combination. Ultimately, optimized dosing protocols could

allow reintroduction of a repertoire of first-line antibiotics with improved treatment outcomes

and preserve last-resort antibiotics.

Author Summary

Antibiotic resistance is a growing problem that the World Health Organization describes
as “one of the top three threats to global health.” To date, bacteria have developed resis-
tance to all antibiotics used in clinical settings. Unfortunately, the evolution of antibiotic
resistant bacteria is accelerating, as antibiotics continue to be misused and overused. As
the antibiotic pipeline is drying up, it becomes increasingly critical to utilize the antibiotics
already on the market more effectively. The key to designing better regimens lies in the
ability to predict how bacteria will respond to a particular antibiotic treatment. Because of
this, we need a simple metric that characterizes this pathogen-antibiotic interaction that
can be easily measured and used to design dosing protocols that will effectively clear an in-
fection. To help guide the design of effective protocols, we use quantitative modeling to de-
velop a metric that is easy to measure and quantifies the pathogen-antibiotic interaction.
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Through optimized antibiotic regimens, our strategy could extend the use of first-line anti-
biotics, improve treatment outcome, and preserve last-resort antibiotics.

Introduction
Bacteria eventually develop resistance to all antibiotics they encounter [1–3]. Unfortunately,
the evolution of antibiotic resistant bacteria is accelerating due to the widespread use of antibi-
otics [4,5]. As the antibiotic pipeline is drying up and the threat of antibiotic resistance is be-
coming more urgent [6,7], it is critical that we better utilize the antibiotics already on the
market [8–10].

One of the largest and most commonly used classes of antibiotics for treating both Gram-
positive and Gram-negative bacteria is the β-lactams [11–13]. Many β-lactams, such as penicil-
lin V, amoxicillin, and first-generation cephalosporins, are first-line antibiotics; they are rec-
ommended for initial therapy because they are highly effective against non-resistant
pathogens, have a lower risk of side effects, and are less expensive, relative to second-line anti-
biotics [14–16]. However, the rapid emergence of extended spectrum β-lactamase (ESBL) pro-
ducing pathogens has greatly limited the use of β-lactam antibiotics [13,17]. ESBL-producing
pathogens have significant adverse effects on clinical outcomes due to their ability to hydrolyze
penicillins, broad-spectrum cephalosporins, and monobactams [6,18,19]. Patients infected
with ESBL-producing pathogens have worse prognoses and, if given the incorrect treatment,
mortality rates of 42–100% greater than patients receiving the correct treatment [18,20]. Addi-
tionally, β-lactams could promote horizontal gene transfer of virulence factors [21] and could
be responsible for the spread of ESBL genes. As a precaution, most first-line β-lactams are
ruled out if ESBL-producing pathogens are detected, even for ESBL-producing pathogens that
appear to be sensitive to a particular β-lactam [22–25]. This is done largely out of concern for
complicating drug responses that have been observed in vitro, such as the inoculum effect, a
phenomenon in which the minimum inhibitory concentration (MIC) of an antibiotic increases
as the bacterial density increases [24,26–30].

With first-line β-lactams ruled out, second-line antibiotics, such as carbapenems, fluoro-
quinolones, β-lactam/β-lactamase inhibitor combinations, glycopeptides, and cephamycins,
are typically administered [31]. Although this practice is based on a valid concern, it has limita-
tions. Specifically, second-line antibiotics are associated with higher costs and more adverse ef-
fects [32–37]. Additionally, the more frequently bacteria are exposed to second-line antibiotics,
the faster the pathogens are likely to develop resistance to our last resort antibiotics [2,5].
Given the dearth of new antibiotics entering the market and the limited number of effective an-
tibiotics already available, we cannot afford to disregard potentially effective antibiotics.

First-line β-lactams could represent a missed opportunity for treating pathogens producing
moderate levels of ESBLs. Individual bacteria that produce moderate levels of ESBL can remain
sensitive to the antibiotic due to insufficient production or activity of ESBL; however, if enough
bacteria are present, then the population’s collective ESBL concentration will be sufficient to
render the population resistant to the antibiotic [38,39]. In other words, a low density popula-
tion of moderate ESBL producers would lyse entirely because its collective ESBL concentration
would be insufficient to inactivate the β-lactam, while a high density population would only ex-
perience partial lysis before its collective ESBL concentration can inactivate the β-lactam and
promote the recovery of the surviving bacteria. This collective population recovery is time de-
pendent [40]. Shortly after the antibiotic is first applied, the population will be reduced due to
lysis and appear susceptible because it will not have yet benefited from the activity of ESBLs.
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Ideally, a treatment could pinpoint the time window when the most lysis has occurred and the
least benefit has been experienced.

Extensive studies have been carried out to devise methods to optimize treatment efficacy of
antibiotics by changing the dosing period and amplitude. These studies typically examine
which metric(s) can capture the pharmacokinetic/pharmacodynamics (PK/PD) of an antibiotic
and be used to predict antibiotic efficacy [41–44]. Current metrics adopted in the clinical set-
ting, such as the MIC, do not account for the time course of antimicrobial activity and are not
sufficiently predictive of treatment efficacy [22,45–47].

Therefore, there is a need for a simple metric that characterizes this pathogen-antibiotic in-
teraction that can be easily measured and used to design dosing protocols that will effectively
clear an infection. Here, we use quantitative modeling to demonstrate a strategy for customiz-
ing regimens for a particular bacteria and antibiotic combination without needing to know the
full mechanistic basis for the bacteria-antibiotic interaction. Specifically, we focus on optimiz-
ing a dosing protocol to enable β-lactams to effectively treat a moderate ESBL-producing path-
ogen. To help guide the design of effective protocols, we develop a metric, the recovery time,
which is easy to measure and quantifies the pathogen-antibiotic interaction. Even though we
assumed specific molecular mechanisms underlying this collective antibiotic response, our
model illustrates that the predictive power of the recovery time is maintained for different spe-
cific molecular mechanisms and for different initial conditions. Through optimized antibiotic
regimens, our strategy could extend the use of first-line antibiotics, improve treatment out-
come, and preserve last-resort antibiotics.

Results

Model development and characterization
We developed a kinetic model comprising a set of ordinary differential equations (ODEs) to
capture the population dynamics of collectively tolerant, ESBL-producing bacteria being treat-
ed by a β-lactam (S1 Text) [40]. We further nondimensionalized the model to facilitate analy-
sis. In this model, introduction of the antibiotic inhibits bacterial growth and causes lysis.
β-lactamase (Bla) is naturally found in the periplasm of Gram-negative bacteria, where it can
benefit the host bacterium by hydrolyzing the β-lactams that diffuse into the periplasm [48].
However, moderate amounts of periplasmic Bla are insufficient to protect a bacterium from
high concentrations of antibiotic [38,49]. Conversely, sufficient amounts of Bla can accumulate
to protect a population if enough bacteria are initially present. With a dense enough popula-
tion, the collective intracellular and extracellular Bla, due to lysis or leaky secretion [50], will be
sufficient to degrade the antibiotic to a sublethal concentration before all cells are eliminated
(Fig. 1A). Thus, the survival of the population depends on establishing a collective antibiotic
tolerance (CAT)[30]. In general, Bla expression can be constitutive or inducible by the antibiot-
ic [51–54]. Here, we focus on constitutive Bla expression, which is most clinically relevant to
the pathogens that express plasmid-mediated ESBLs [39,55]. However, our conclusions also
apply to the case where Bla expression is inducible. They will likely apply to bacterial responses
to other antibiotics if the antibiotic causes an initial decline in the population density by killing
a subpopulation of cells and the population can recover when the antibiotic is subsequently de-
graded by an enzyme produced by the cells (whether or not the enzyme is released into the
culture).

Using physiologically relevant parameters, our model generates PK/PD profiles that are
characteristic of Bla-mediated CAT. Starting from a sufficiently high initial density, the popula-
tion exhibits an initial decline upon antibiotic treatment, followed by eventual recovery due to
intrinsic and Bla-mediated degradation of the antibiotic (Fig. 1B). Sufficient time is needed to
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observe this apparent drug tolerance. If examined shortly after antibiotic treatment, the popu-
lation will have just experienced significant lysis and will appear susceptible because the effects
of Bla have not yet been fully recognized.

For a fixed initial antibiotic concentration, the model predicts a switch-like dependence of
population survival over the initial population density: the population can only survive if start-
ing at a sufficiently high density (Fig. 1C). If too few bacteria are present, the total expression of
Bla from the entire population is insufficient to degrade the antibiotic fast enough to allow the
population to recover. If enough bacteria are present, however, the population can endure the
initial crash in density for a longer period. As such, some bacteria remain when the antibiotic
concentration decreases sufficiently, due to Bla-mediated degradation, to allow the population
to recover. The density-dependent survival of the population is the defining feature of the inoc-
ulum effect [28,56].

Recovery time as a metric to quantify bacterial response
Our results illustrate the defining features of a CAT bacterial response involving antibiotic-
triggered death. In particular, the population will appear resistant when its initial density is suf-
ficiently high and it is given enough time to recover. These features form the basis for the pre-
emptive practice of disregarding β-lactams when an ESBL-pathogen is identified. However, our
model also indicates that the population is sensitive when its initial density is sufficiently low
or when it is examined in a short time window. Given these properties, we reason that optimal
antibiotic dosing may remain effective in eliminating bacteria. If so, an immediate next ques-
tion is how to best design the treatment protocol.

This task would be straightforward if we could determine the specific molecular mecha-
nisms and defining parameters for each pathogen-antibiotic pair: under such a scenario, we
could in theory use a model specific to the pair to examine efficacy of different dosing proto-
cols. This is impractical, however, as many ESBL pathogens are poorly characterized at the mo-
lecular level and there are many different ESBL enzymes [57]. A more practical option would
be to identify an easy-to-measure, lumped metric based on a bacterial population’s response to
a single dose of antibiotic that will allow us to reliably predict its response to periodic antibiotic
treatment without needing to know the underlying molecular-level parameters.

Fig 1. Mechanism and dynamics of antibiotic-mediated death. (A) Antibiotic-mediated death. Black represents bacterial actions, blue represents Bla
actions, and red represents antibiotic actions. Arrows denote induction or activation; T-lines indicate inhibition; the dashed arrow represents the ability for the
model to simulate inducible or constitutive Bla production. (B) Typical time courses of bacterial density, antibiotic, and Bla after one dose of antibiotic
treatment. The antibiotic can cause cell lysis, which triggers the release of Bla into the environment. Sufficient degradation of the antibiotic by the Bla allows
the surviving bacteria to recover. (C) Collective tolerance. A bacterial population can only recover from an antibiotic dose if enough bacteria are present for
sufficient Bla to be produced.

doi:10.1371/journal.pcbi.1004201.g001

Designing Optimal Antibiotic Treatments

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004201 April 23, 2015 4 / 22



A typical metric to quantify efficacy of an antibiotic is the minimum inhibitory concentra-
tion (MIC), which can be measured by disk diffusion and microbroth dilution methods after a
certain duration of antibiotic treatment [58]. However, the MIC measured at a particular time
point does not capture the rich temporal dynamics of bacterial responses due to antibiotic-
triggered death. Instead, we propose to use another lumped metric: the recovery time; specifi-
cally, this defines the time it takes a population to return to its initial density after being ex-
posed to a dose of antibiotic (Fig. 2). By definition, the recovery time captures the dominant
dynamic features of bacterial temporal response. As such, it may be a more predictive metric
for the long-term outcome of periodic antibiotic treatment.

Predictive power of the recovery time for injection-based protocols
We first tested the predictive power of the recovery time in injection-based dosing protocols.
With the base-parameter set, our model predicts a monotonic dependence of the recovery
time on the antibiotic concentrations for single-dose treatment (Fig. 3A). Once the initial anti-
biotic concentration is high enough to cause cell lysis (a0 > 0.5), the recovery time increases ex-
ponentially with the initial antibiotic concentration until the antibiotic concentration is too
high (a0> 10) and the recovery time becomes infinite. This dependence is an intrinsic property
of antibiotic-mediated lysis. Under low concentrations of antibiotic (0.5< a0 < 10), the recov-
ery time is primarily determined by how fast the antibiotic is degraded by Bla. Under increasing
concentrations of antibiotic (a0 > 10), the rate of antibiotic degradation is essentially saturated
(limited by the population size and the constant production rate of Bla) and the recovery time
is primarily determined by the lysis rate. β-lactams’ killing rate is time-, not dose-, dependent
and is reflected in the model’s lysis rate’s non-linear dependence on the antibiotic concentra-
tion (Hill coefficient = 3) [59]. Once the antibiotic concentration is high enough, further in-
creasing the concentration does not increase the lysis rate.

As noted above, the recovery time could represent a simple, yet reliable, metric in predicting
outcomes from periodic treatment. To test this notion, we examined the consequence of peri-
odic dosing of varying antibiotic concentrations. For each concentration, we varied the dosing
periods from 0.1 to 2 times the corresponding recovery time, and obtained the final population
density after 100 doses. Our modeling results confirmed the predictive power of the recovery
time: as long as the initial antibiotic concentration is sufficiently high to cause significant initial

Fig 2. Defining the recovery time. (A) Recovery time defined. The recovery time is the time it takes for a population to return to its starting density after
being exposed to a dose of antibiotic. (B) Each antibiotic concentration has a recovery time. To capture both the time- and concentration-dependent
relationship between an antibiotic and the bacterial population, the recovery time is measured for a range of an antibiotic’s concentrations. (Increasing
numbers labeling the curves correspond to increasing concentrations of antibiotic: 1 = weakest, 4 = strongest). (C) The recovery time curve links pathogen
to an antibiotic. The recovery times for a range of antibiotic concentrations produce an informative curve that represents the interaction between a pathogen
and a particular antibiotic.

doi:10.1371/journal.pcbi.1004201.g002
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lysis, the population will reach a high final density if the period is greater than the recovery
time; the population goes extinct otherwise (Fig. 3B).

Of the regimens leading to eventual population extinction (period< recovery time), differ-
ent combinations of antibiotic concentrations and dosing periods eliminate a population with
varying efficacy. To quantify this efficacy, we calculated the minimum number of doses neces-
sary to reduce the population density to below 10-10 (Fig. 3C). The resulting landscape shows a
strong dependence on antibiotic concentration and the corresponding recovery time. When
the antibiotic concentration is too low and the recovery time is close to 0, the number of doses
required to clear the infection is very large, regardless of the dosing frequency. When the anti-
biotic concentration is very high and the corresponding recovery times approach infinite, then
the number of doses is very low. However, there is an intermediate range of antibiotics with in-
termediate recovery times that show variation in the number of doses necessary to clear the in-
fection. Concentrations producing the longer recovery times require fewer doses because they
can reduce the bacterial density more severely than concentrations with shorter recovery times.

For intermediate antibiotic concentrations (1< a0 < 10) to be most effective, the model
suggests they should be delivered at low-to-intermediate period lengths (period = 20–50% re-
covery time) at which the population is most vulnerable. At the end of each period, the bacteria
are still lysing, have almost reached minimum density, but have not yet experienced the bene-
fits of Bla. At this point, the antibiotic has not been completely removed; thus the population
will be subjected to a slightly higher concentration of antibiotic at each additional dose. If the
antibiotic is delivered too frequently, the accumulated antibiotic increases the rate of lysis, thus
causing higher amounts of Bla to be released, ultimately leading to the faster removal of the an-
tibiotic. However, Bla cannot fully degrade the antibiotic before the next dose is added and the
population quickly dies off. Although the population is cleared, a higher number of doses is
necessary because the degree of lysis per dose is not maximized. In other words, subsequent
doses are applied before the full extent of lysis from the previous dose is observed. However, if
the antibiotic is delivered too infrequently, then the population will have the chance to recover
between doses. Once again, these conditions do not maximize the degree of lysis per dose and
more doses are necessary to achieve the same amount of population decrease associated with
doses applied more frequently.

A final aspect to consider when designing a regimen is the total amount of antibiotic deliv-
ered (Fig. 3D). Although some of the model’s regimens using higher concentrations of antibiot-
ic (a0 > 10) are associated with fewer doses, they have the highest net antibiotic concentration.
These concentrations may not be optimal, due to potential adverse effects associated with
using excessive amounts of antibiotic, such as the destruction of the normal microbial flora, in-
terference with the immune response, increased nephrotoxicity, and selection for antibiotic re-
sistant mutants [32,60–63]. Also, efficient use of antibiotics can help reduce treatment cost
[14,35]. Using dose number and total antibiotic delivered, an effective and realistic regimen
can be designed by minimizing the number of doses, the delivery frequency, and the total
antibiotic delivered.

We note that the predictive power of the recovery time is maintained for low or moderate
inoculum sizes. In particular, our modeling demonstrates that a multi-dose regimen will clear a
population if the time between doses is less than one recovery time, regardless of effective anti-
biotic concentration and inoculum size (S1 Fig). Similar to the base case, the regimen can be
optimized to have the fewest doses and the lowest net antibiotic concentration delivered by se-
lecting the lowest concentration of antibiotic associated with the longest recovery time.

Additionally, the predictive power of the recovery time is maintained for an antibiotic with
dose-dependent killing (Hill coefficient = 1) or an antibiotic with time-dependent killing (Hill
coefficient = 10): a multi-dose regimen will clear a population if the time between doses is less

Designing Optimal Antibiotic Treatments

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004201 April 23, 2015 6 / 22



than one recovery time, regardless of effective antibiotic concentration and degree of antibiotic-
mediated killing (S2 Fig).

The predictive power of the recovery time can be applied to bacteria with varying rates of
Bla synthesis and accumulation as long as the antibiotic concentration applied has an effective
recovery time (S3 Fig A-T). When the bacteria are producing and accumulating Bla at a very
fast rate (S3 Fig P-T), most individual bacteria can sufficiently protect themselves (CAT is no
longer necessary) and the population experiences little or no decline in density.

Fig 3. Recovery time guides design of effective injection based regimen. (A) Dependence of the recovery time on the initial antibiotic
concentration. If the initial antibiotic concentration is too low, then the population will not be affected and its recovery time will be zero. However, after the
initial antibiotic concentration is high enough, increasing the concentration results in an increase in the time it takes for a population to recover from a single
dose. (B) Predictive power of recovery time for the outcome of long-term periodic antibiotic dosing. For each antibiotic concentration-period
combination, we calculate the final population density after 100 antibiotic doses. Subplots demonstrate the outcomes for the first couple of doses of regimens
using periods less than one recovery time (bacteria final density is below the defined threshold of 10-10) versus regimens using periods greater than one
recovery time (bacteria final density returns to carrying capacity). (C) Dependence of treatment efficiency on the antibiotic concentration and the
dosing period. Each combination using an antibiotic concentration with a recovery time> 0 (a0> 0.5) and any period less than 1 recovery time can
eventually eliminate the population. Different combinations will reduce the population density to a pre-defined threshold (10-10) with varying efficiency: the
combination is more efficient if fewer doses are needed to reach the threshold. a0< 0.5 could not clear the infection in 100 doses. (D) Dependence of total
antibiotic usage on the antibiotic concentration and dosing period. The total usage is calculated as the antibiotic concentration multiplied by number of
doses needed to reduce population density to a predefined threshold.

doi:10.1371/journal.pcbi.1004201.g003
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Consequentially, the model predicts that effective treatment protocols would shift to higher an-
tibiotic concentrations capable of inducing significant lysis in more resistant bacteria.

The predictive power is upheld as long as the recovery times associated with subsequent
doses are sufficiently similar to the original recovery time measured from a single dose. Recov-
ery times of subsequent doses depend on two main factors: the activity of Bla in the environ-
ment and the concentration of antibiotic. On one hand, if there is insufficient time for Bla to
degrade between doses, then it will compound with each dose until the population is being pro-
tected by higher concentrations of Bla, relative to when the first dose was administered. As a re-
sult, the increasing pool of Bla will degrade the antibiotic faster, the recovery time of
subsequent doses will decrease, and the population can recover when dosed at period lengths
less than the original recovery time (S4 Fig A-B). This would happen in scenarios where the an-
tibiotic concentration applied is insufficient to counterbalance the Bla that is either expressed
at high levels or has an increased rate for hydrolyzing an antibiotic. The loss of predictive
power in this case can be avoided by using a sufficiently strong antibiotic concentration. On
the other hand, if there is insufficient Bla to degrade the antibiotic between doses, then the anti-
biotic will compound with each dose until the population is being exposed to higher concentra-
tions of antibiotic, relative to when the first dose was administered. As a result, the increasing
concentration of antibiotic will kill more cells, the recovery time of subsequent doses will in-
crease, and the population will not be able to recover when dosed with period lengths equal to
the original recovery time (S4 Fig C-D).

Predictive power of recovery time for intravenous-drip protocols
Many antibiotics, such as β-lactams, are most effective when applied continuously for long pe-
riods of time [64,65]. Thus, we also modeled the predictive power of the recovery time in intra-
venous (IV)-drip based protocols, where a set concentration of antibiotic is delivered over a set
duration during each dosing period. Here, we delivered the antibiotic dose over three time
units and measured the corresponding recovery time (Fig. 4A). Similar to the injection recov-
ery times, the IV-drip recovery times increase monotonically as the concentration of the dose
increases, more Bla is required to remove the antibiotic, and more of the population lyses. In
contrast, the IV-drip therapy has a narrower range of intermediate antibiotics with
0< recovery time< 100. Some of the lower concentrations that are effective for injection treat-
ment (0.5< a0 < 1) are ineffective for IV drip treatment because the dose is too weak when de-
livered over a longer period of time. However, when the dose concentration is sufficiently high,
the IV-drip recovery time is longer than the injection recovery time because the IV-drip is ex-
posing the bacteria to a higher concentration for a longer period of time (Fig. 4B).

Again, we use the recovery time from a single IV dose to establish the range of dosing fre-
quencies able to eliminate the bacterial population. At each dosing concentration (for a fixed
time duration of 3), we applied 100 doses of the antibiotic at periods ranging from the infusion
duration (τ = 3) to 2 times the corresponding recovery time and calculated the resulting final
bacterial density. The model shows that the predictive power of the recovery time is maintained
when the antibiotic dosing concentration is sufficiently large with a long enough recovery time
(a0 > 1.5): a multi-IV-dose regimen will eventually eliminate the population if the dosing peri-
od is less than one recovery time, regardless of effective antibiotic concentration (Fig. 4C).
There is slight deviation from this for a0 < 1.5 due to the corresponding recovery times being
too short for the Bla to be reduced to a baseline concentration before the next round of lysis
and Bla release occurs. As a result, periods less than one recovery time could fail to eradicate
the infection because the Bla concentration compounds with each subsequent dose, the antibi-
otic is degraded more quickly, fewer cells lyse, and the population can recover (S4 Fig).
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Similar to the injection based therapy, the IV-drip reduced a population constitutively pro-
ducing high concentrations of Bla as long as the period was less than one recovery time and the
initial antibiotic concentration was sufficiently high to cause significant initial decline (S3 Fig
U-Y). However, the IV-drip protocols retained a larger range of effective antibiotic concentra-
tions than the injection based protocols. This robustness is due to the antibiotic concentration
continuously being replenished from the IV-drip. If a high enough concentration is maintained
for sufficient time, the population’s Bla concentration will not be able to remove the antibiotic
fast enough to prevent lysis and the population will decrease with each subsequent round of
IV-drip infusion. Thus, these results suggest that IV-drip based regimens could serve as a plat-
form for effectively applying first-class β-lactams to clear constitutive producers of high levels
of ESBLs.

We next evaluated the efficacy of each effective concentration-period combination by calcu-
lating the minimum number of doses necessary to reduce the population density to below 10-10

(Fig. 4D). Relative to the injection protocol, the IV-drip therapy has a narrower region of inter-
mediate dose numbers, reflecting the narrow region of intermediate recovery times. Similarly
to the injection based regimens, the intermediate antibiotic concentrations (1< a0 < 5) require
the least doses when delivered at low-to-intermediate period lengths (period = 20–60%

Fig 4. Recovery time guides design of effective intravenous drip based regimen. (A) Dependence of the recovery time on the antibiotic
concentration during IV. We maintain each concentration for a fixed duration (time = 3) and then calculate the corresponding recovery time. (B) Time
course of an IV-drip regimen. The antibiotic was delivered for a fixed duration until the bacteria density dropped below a pre-defined threshold (10-10). (C)
Predictive power of recovery time for the outcome of long-term periodic antibiotic dosing. For each antibiotic concentration-period combination, we
calculate the final population density after applying 100 antibiotic doses. (D) Dependence of treatment efficiency on the antibiotic concentration and the
dosing period. The efficacy is determined in the samemanner as in Fig. 3. (E) Dependence of total antibiotic usage on the antibiotic concentration and
the dosing period. The total usage is calculated as in Fig. 3.

doi:10.1371/journal.pcbi.1004201.g004
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recovery time) because that is when the population is most vulnerable. Again, the initial antibi-
otic concentrations too low to have a recovery time (a0 < 1) do not clear the infection, regard-
less of the dosing interval or number of doses applied. The concentrations with an infinite
recovery time (a0 > 5) require only a single dose and thus the dosing frequency does
not matter.

Although the number of doses necessary to clear an infection might be the same for a range
of antibiotic concentrations and periods, the least amount of total antibiotic is needed for inter-
mediate antibiotic concentrations applied at 20–60% of the associated recovery time (Fig. 4E).

Predictive power of the recovery time in mixed populations
A bacterial population often consists of phenotypically or genetically heterogeneous subpopu-
lations[66,67]. For instance, different cells may express different levels of Bla, have different
growth rates, or exhibit different sensitivities to the same antibiotic. This heterogeneity could
compromise the predictive power of the recovery time. To examine this notion, we extended
our injection-based model to account for two cases, each dealing with a mixture of two subpop-
ulations (S1 Text). In one case, one subpopulation grows much more slowly and exhibits much
greater tolerance to the antibiotic. In the other, two subpopulations display different degrees of
collective antibiotic tolerance.

Case I: A mixture consisting of normal cells and persister cells. The first case accounts
for the impact of persisters. Persisters are non- or slow-growing bacteria that are genetically
identical to susceptible cells, but are highly tolerant to antibiotics [68–73]. Because persisters
are generated at low frequencies and can only start to reestablish the population upon removal
of the antibiotic [71,74,75], the overall dynamics of persisters will happen at a much slower
time scale than for normal cells. Here, we assume persisters form a small fraction of the initial
population (< 1%), transition to and from normal cell phenotypes when the antibiotic concen-
tration is low enough, and grow and lyse at rates 100 to 1000 times slower than normal cells
[70,72]. When antibiotic concentrations are low (a0 < 0.3), the recovery time is 0, regardless of
the presence of persisters. As antibiotic concentration starts to increase (0.3< a0 < 26), the
population of normal cells starts to undergo the population crash and recovery while the per-
sisters grow and die very slowly (S5 Fig A,F). Once the antibiotic has been sufficiently degrad-
ed, then the persisters start being generated from and returning to the normal population. This
ability to transition between phenotypes is what allows for a population containing persisters
to recover under antibiotic concentrations (a0 > 26) that would normally kill a population
without persisters (S5 Fig B,G). The predictive power of the recovery time is upheld for the
population with persisters growing and dying 100fold more slowly, but not 1000fold more
slowly (S5 Fig C,H). Although the normal population is reduced below the threshold after a
few doses, the persisters’ net death rate determines the duration that the antibiotics need to be
applied. The persisters growing and lysing 100fold more slowly than normal cells have a death
rate high enough to reduce the persisters to 0 before the 100 doses of antibiotic have been ap-
plied at periods less than 1 recovery time (S5 Fig D). The fewest doses are needed for regimens
applying higher concentrations of antibiotic (a0 > 26) at period lengths> 0.3 recovery time.
The persisters growing and lysing 1000fold more slowly are still present at a low density at the
end of most of the different regimens tested. Here, the successful regimens are those delivering
high concentrations of antibiotic (a0 > 10) with long period lengths (period> 0.65 recovery
time) (S5 Fig I). Similar to the previous models, the persister model shows that regimens apply-
ing higher dose concentrations deliver a higher overall concentration of antibiotic (S5 Fig E,J).
These results suggest that, while the recovery time can help optimize regimens for relatively
slow- growing and lysing persisters, the power is lost for extremely slow- or non- growing
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persisters. This further confirms that if our model’s central assumption, that the population is
collectively antibiotic tolerant, is violated, then the predictive power of the recovery time
will diminish.

Case II: A mixture consisting of two distinct subpopulations that are both sensitive to
the antibiotic. Here, the divergence between the two subpopulations is much less than that
between normal and persister cells. The more resistant subpopulation has thresholds of growth
inhibition and lysis five times greater than the moderately resistant subpopulation. As a result,
the more resistant subpopulation does not lyse as much and recovers faster than the moderate-
ly resistant subpopulation (S6 Fig A,F). If the subpopulations can switch between states[76,77],
the more resistant subpopulation can re-establish the moderately resistant subpopulation once
the antibiotic concentration is sufficiently low. Otherwise, the moderately resistant subpopula-
tion will not recover. Because both subpopulations still undergo the process of lysing before re-
covering, the dosing protocol based on recovery time is still applicable (S6 Fig B,G). For 0.3<
a0 < 2.3, both subpopulations recover at similar rates, thus the population as a whole recovers
quickly. For 2.3< a0 < 26, the more resistant subpopulation recovers faster and determines
the population level recovery time. For a0 > 26 neither subpopulation can recover. The predic-
tive power is upheld for this mixed population: a multi-dose regimen will clear a population if
the time between doses is less than one recovery time, regardless of effective antibiotic concen-
tration and degree of antibiotic-mediated killing (S6 Fig C,H). Similar to other scenarios, the
dosing number and total antibiotic delivered can be determined and optimized, based on the
antibiotic concentration and period length (S6 Fig D-E, I-J). These results suggest that the re-
covery time could be used to optimize treatments for heterogeneous populations with more
than two subpopulations, as long as the phenotypic difference between these subpopulations is
not drastic.

Discussion
Most antibiotic regimens are based on empirical observations of how bacterial infections re-
sponded to an antibiotic [32,78,79]. However, these regimens may be suboptimal both because
they were not initially designed to handle resistant bacteria and because the current diagnostic
assays cannot accurately predict how resistant pathogens will respond to them. It is critical that
we develop a new strategy for using the existing antibiotics more effectively or our medical care
will return to a state equivalent to that of a pre-antibiotic era. Ideally, the new strategies would
be based on the molecular mechanisms underlying antibiotic resistance. However, this is im-
practical, given that many pathogens’ resistance mechanisms have not been characterized and
they evolve rapidly. To this end, we propose using the recovery time as a lumped metric that
can characterize a pathogen’s response to an antibiotic without requiring knowledge of the
underlying mechanism.

We used a kinetic model to test the ability of the recovery time to predict ESBL-producing
pathogens’ responses to periodic dosing of β-lactams. Our simulation results suggest that the
recovery time of a single dose can be used to design optimal multi-dose regimens for multiple
delivery methods, including injections and continuous IV drip, various inoculum sizes, bacteria
with a range of Bla production levels, and certain heterogeneous populations. Optimal dosing
regimens for treating Bla-producing bacteria with a β-lactam would apply intermediate con-
centrations of antibiotic that have long recovery times at time intervals corresponding with
when the bacterial density has been minimized. Furthermore, our modeling results suggest that
regimens using lower, yet still lethal, concentrations of antibiotic can be as effective as regimens
using higher concentrations. Reducing the amount of antibiotic the host is exposed to may be
important to minimize the perturbation of the host’s microbiota and other defense
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mechanisms [32,60–62,80], which could have long-lasting detrimental effects. Also, under cer-
tain conditions, a higher concentration of antibiotic can lead to selection of more resistant sub-
population of bacterial pathogens [81].

Although this model considers the population level response to an antibiotic, there is a sig-
nificant amount of gene-expression noise at the single cell level [66,67]. If an antibiotic were
applied such that the population would have the chance to recover between doses, then the an-
tibiotic would select for the bacteria expressing higher levels of resistance genes (as demonstrat-
ed in S6 Fig F). Ultimately, this would direct the evolution of the population towards an
inherently more resistant infection than before the antibiotic treatment was applied. Our pro-
posed method would minimize this problem by delivering subsequent doses of antibiotic be-
fore a more resistant population grew to a significant density.

The recovery time of a pathogen under a single dose of antibiotic is a metric that is easy to
measure and could guide the choice of an appropriate multi-dose antibiotic regimen for a wide
range of infections. Measurements of the recovery time can be carried out in high resolution
using commercially available microplate readers [82]. A critical step entails the construction of
a comprehensive recovery time database for various pathogens under different antibiotics
(Fig. 5). When a new bacterial pathogen is identified, its recovery times to a range of antibiotic
concentrations will be recorded in vitro for different starting densities. Based on these measure-
ments, regimens with varied concentrations and period lengths will be tested for different inoc-
ulum sizes. From these results, the period length, dose number, and antibiotic concentration
can be optimized for a particular pathogen in vitro. Before entering this information into the

Fig 5. Potential use of recovery time to guide clinical practice. A critical step entails the construction of a comprehensive database of the recovery time
curves of various pathogens under different antibiotics. Based on the recovery time curve, the optimal antibiotic concentration (X), dose number (Y), and
period length (Z) can be calculated for each pathogen-antibiotic combination and entered into a database. Given this database and a proper diagnosis of a
pathogen, one can readily identify the most effective treatment protocol.

doi:10.1371/journal.pcbi.1004201.g005
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database, the PK/PD of the particular antibiotic will be necessary to determine the concentra-
tion of antibiotic that should be delivered such that the concentration at the site of infection
matches the concentration selected from the in vitro experiments. Given this database, a proper
diagnosis of a pathogen, and an estimate of the severity of the infection (e.g. inoculum size),
one can readily identify the scenarios in which first- and second-line antibiotics may still be ap-
plied and chose the most effective treatment protocol. Whenever a new pathogen arises, it can
be evaluated and added to the library.

The ability to predict the outcome of a multi-dose treatment without knowing the underly-
ing resistant mechanism would remove the uncertainty that prevents clinicians from using
first-line β-lactams when an ESBL-producing pathogen is detected. Given ESBL-producing
bacteria’s prevalence [19,83–85], our proposed strategy could help to minimize the rate at
which these bacteria develop resistance to more extreme antibiotics by ensuring that we do not
overlook effective first-line antibiotics before moving on to more extreme antibiotics.

Methods
The interaction between a β-lactam and a bacterial population expressing Bla can be simplified
to the interactions between three main components: population density (n), antibiotic concen-
tration (a), and Bla concentration (b). Our base model consists of the following ordinary differ-
ential equations:

dn
dt

¼ ðg � lÞn ð1Þ

dbout
dt

¼ lb�in � g2bout � kIVðtÞbout ð2Þ

da
dt

¼ kIVðtÞainject � ðbout þ ab�inÞ
a

1þ a

� �
� g3a� kIVðtÞa ð3Þ

g ¼ ð1� nÞ s1

s1 þ a

� �
ð4Þ

l ¼ g1
aH

sH
2 þ aH

� �
s4

s4 þ bin

� �
ð5Þ

bin ¼ k
r

g þ g4

� �
ð6Þ

b�in ¼ bnbin ð7Þ

r ¼ a
s3 þ a

ð8Þ

where g and l represent bacteria growth and lysis, respectively. Initial conditions of n(0) = 0.1,
b(0) = 0, and a(0) = 0.01–100 were used for all simulation results, except for S2 Fig where n
(0) = 0.01 or 0.001. The rest of the parameters are defined in a table in S1 Text. See S1 Text for
further details of the model development and for the extended models that account for hetero-
geneous populations. Minor modifications are introduced to account for the IV drip protocol
or dynamics of a mixture consisting of two subpopulations (S1 Text).
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Supporting Information
S1 Text. Model development. The equations, nondimensionalizing terms, and parameter val-
ues are detailed here for the different models.
(DOCX)

S1 Fig. The effect of initial cell density on the predictive powers of recovery time. (A,F)
Time courses for populations with initial densities that are 10x and 100x smaller than the base
model. (B,G) Recovery time curves for populations with initial densities that are 10x and 100x
smaller than the base model. (C,H) Final density depends on dosing frequency. Despite the
lower initial densities, both models followed the trend where periods less than one recovery
time eliminate the population as long as the initial antibiotic concentration is sufficiently high
to cause significant initial decline. This indicates that the recovery time is a viable tool for pre-
dicting treatment outcomes for a range of population sizes. (D,I) Dose number necessary to
reduce a population below critical threshold depends on antibiotic concentration and peri-
od length. The fewest number of doses corresponds to the antibiotic concentrations with the
longest recovery times; however, intermediate concentrations can be effective when applied at
low to intermediate period lengths. (E,J) Total antibiotic concentration delivered depends
on single dose concentration. The regimens applying doses of lower concentrations of effec-
tive antibiotic will eliminate the population just as effectively as the regimens using high con-
centrations, but with less total antibiotic.
(PDF)

S2 Fig. The effect of the Hill coefficient on the predictive powers of recovery time. (A,C) Re-
covery time depends less on antibiotic concentration if the Hill coefficient (H) is high
enough. When H = 1, the recovery time is dose dependent, increasing as the antibiotic concen-
tration increases. When H = 10, the recovery time quickly transitions from being 0 to infinite
(the population has been wiped out). Once past the threshold, increasing the antibiotic concen-
tration will not continue to increase the recovery time. (B,D) Final density depends on dosing
frequency. Despite the different Hill coefficients, both models followed the trend where peri-
ods less than one recovery time eliminate the population as long as the initial antibiotic con-
centration is sufficiently high to cause significant initial decline. This indicates that the
recovery time is a viable tool for predicting treatment outcomes for a range of antibiotics with
different modes of killing (time vs. dose dependent).
(PDF)

S3 Fig. The effect of Bla production levels on the predictive powers of recovery time. (A-E)
No Bla production. (A) Time course. The recovery of bacteria that do not produce Bla de-
pends on the intrinsic removal of the antibiotic caused by natural degradation and turnover by
the body’s fluid. (B) Recovery time curve. Because the bacteria still undergo the process of lys-
ing before recovering, the dosing protocol based on recovery time is still applicable. Without
the production of Bla to aid in the recovery of the population, the recovery time is longer and
monotonically dependent on the antibiotic concentration. (C) Final density. Protocols using
periods of less than one recovery time are effective at eliminating the population, regardless of
antibiotic concentration. (D) Dose number. For each antibiotic concentration and period
combination, the corresponding number of doses necessary to eliminate the population was
calculated. The regimens using antibiotics associated with longer recovery times require the
fewest doses; however, low concentrations of antibiotic (a0 � 1) can be effective if applied at
period lengths of 0.10–0.50 period/RT. (E) Total antibiotic delivered. Despite many different
regimens requiring the same number of doses to clear an infection, the regimens could be dif-
ferentiated by the total amount of antibiotic delivered. When comparing regimens with the
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same number of doses, the amount of antibiotics delivered decreases as the dose concentration
decreases. (F-J) Low inducible Bla production. (F) Time course. The population recovers
faster than a population that does not produce Bla because it generates sufficient Bla to degrade
the antibiotic; however, the recovery time is slower than a population that constitutively pro-
duces Bla because more bacteria lyse before sufficient Bla accumulates to effectively remove the
antibiotic. (G) Recovery time. The recovery time increases as the initial antibiotic concentra-
tion increases. (H) Final density. Protocols using periods of less than one recovery time are ef-
fective at clearing an infection, regardless of antibiotic concentration. (I) Dose number. A
larger range of antibiotic concentrations require the lowest number of doses because the popu-
lation is more sensitive to lower antibiotic concentrations, relative to constitutive producers.
(J) Total antibiotic delivered. Despite the higher number of doses, the least amount of antibi-
otic is delivered for regimens using lower antibiotic concentrations. (K-P) High Inducible Bla
Production. (K) Time course. Increased Bla production results in less lysis, faster antibiotic
degradation, and, consequently, a faster population recovery. (L) Recovery time curve. The
non-monotonic dependence reflects the generation of the Eagle effect: a higher antibiotic con-
centration can generate faster population response. (M) Final density. Protocols using periods
of less than one recovery time are effective at clearing an infection, regardless of antibiotic con-
centration. (N) Dose number. The dose number is highly complex in terms of the dependence
on the initial antibiotic concentration and period length. The dependence on the recovery
time, however, appears simpler: the fewest number of doses is needed for antibiotic concentra-
tions with the longest recovery times that are delivered at intermediate-to-long dosing frequen-
cies. Concentrations producing the longer recovery times require fewer doses because they can
reduce the bacterial density more severely than concentrations with shorter recovery times.
(O) Total antibiotic delivered. Despite the higher dose numbers, the least antibiotic is deliv-
ered for regimens applying low concentrations of antibiotics at intermediate-to-long periods.
(P-T) High constitutive Bla production. (P) Time course. Here, bacteria constitutively pro-
duce Bla at a rate an order of magnitude greater than the bacteria that constitutively produce
low amounts of Bla. As a result, the bacteria produce sufficient Bla such that the private Bla
present in the periplasm can provide sufficient protection against the antibiotic. As such, the
overall population growth rate is always greater than the lysis rate; thus the population will al-
ways increase in density. (Q) Recovery time. Because the bacteria produce such high amounts
of Bla, the population experiences no or little initial decrease in density. Thus, the recovery
time is close to 0 until stronger antibiotic concentrations are applied. (R) Final density. Proto-
cols using periods of less than one recovery time are effective at clearing an infection, as long as
the antibiotic concentration induces a sufficiently long recovery time (see S5 Fig). (S) Dose
number. The shorter periods are associated with increased number of doses because there
would be less time between when cells lyse and the Bla will not have the chance to naturally de-
grade before the next round of lysis adds more Bla to the environment. Higher concentrations
and longer period lengths result in lower dose numbers. (T) Total antibiotic delivered. The
least amount of antibiotic delivered is associated with regimens using lower dose concentra-
tions and intermediate-to-long periods. This supports the notion that longer periods allow for
the large amounts of Bla to degrade before the next dose, thus allowing each dose to be as effec-
tive as possible. (U-Y) High constitutive Bla production, IV-drip treatment. (U) Time
course. The antibiotic was infused into the system over 3 time units, resulting in a sustained
high concentration that led to a sustained decline in the population density. The Bla produced
was insufficient to effectively degrade the antibiotic while it was being infused, so the popula-
tion could not start to recover until after the infusion had ended. (V) Recovery time. A higher
concentration of antibiotic was necessary to elicit a recovery time. Relative to the population
constitutively producing Bla that was treated with an injection regimen, the IV-drip treatment
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produced longer recovery times. (W) Final density. IV-drip therapy results support the predic-
tive power of the recovery time for populations constitutively producing high levels of Bla.
Doses delivered at periods less than 1 recovery time clear the infection whereas doses delivered
at periods longer than 1 recovery time fail. (X) Dose number. The fewest doses are required
for regimens using high antibiotic concentrations delivered at intermediate-long periods. (Y)
Total antibiotic delivered. The least amount of antibiotic was delivered for regimens deliver-
ing the intermediate concentrations of antibiotic at intermediate-to-long periods.
(PDF)

S4 Fig. Predictive power is lost when single dose recovery time does not predict recovery
time of subsequent doses. (A-B) Population recovers at periods< 1 recovery time. (A)
Final Density. Populations can recover from an antibiotic applied at periods less than one re-
covery time if the bacteria are producing extreme levels of Bla and the antibiotic concentration
is too weak to induce sufficient lysis (i.e. has a short recovery time). If the recovery time is too
short, then the time between doses is too short for the Bla to return to a baseline level. As a re-
sult, the net Bla compounds with each subsequent dose, allowing populations to survive an an-
tibiotic applied at periods less than one recovery time. (B). Time curves for cell density, Bla,
and antibiotic concentration. Because each subsequent dose of antibiotic causes more cells to
lyse and release Bla before the Bla from the previous dose is degraded, there is an increase in
the base amount of Bla always present. As a result, the cells can clear the antibiotic faster on
subsequent doses compared to the first dose. Consequentially, the observed recovery time from
the multi-dose regimen is actually shorter than the expected response time calculated from the
single dose. Here, A = 1.4 and period = 0.60 RT. (C-D) Population fails to recover at peri-
ods = 1 recovery time. (C) Final Density. Populations fail to recover from a low antibiotic
concentration applied at periods less than one recovery time if the bacteria are producing low
levels of Bla. Because the antibiotic concentration is low, the recovery time and its derived dos-
ing periods are short. The time between doses is insufficient for the Bla to degrade enough of
the antibiotic to recover. As a result, the antibiotic concentration compounds with each subse-
quent dose, preventing populations from recovering at periods greater than one recovery time.
(D). Time curves for cell density, Bla, and antibiotic concentration. With each subsequent
dose of antibiotic, more cells lyse and release Bla; however, the cells produce insufficient Bla to
degrade the current dose of antibiotic before the next dose is delivered. As a result, the antibiot-
ic accumulates with each subsequent dose and the cells are killed. Here, A = 0.63 and peri-
od = 1.33 RT.
(PDF)

S5 Fig. The effect of persisters on the predictive powers of recovery time. Our model as-
sumes that persisters form a small fraction of a population, grow and lyse at rates much slower
than normal cells (gp � gN, lP � lN), and, when the antibiotic concentration is low enough
(a< σ1), they are generated from and revert to a normal cell phenotype at the slow rates of κP
and κN, respectively. Population with persisters that grow and lyse at rates 100 times more
slowly than normal cells (A-E). (A) Time course. The bacteria lyse due to the antibiotic, re-
lease Bla to degrade the antibiotic, and then recover once the antibiotic concentration is low
enough. At this point, persisters (dashed black line) are generated from and return to the nor-
mal cell population (solid black line). Here, the initial density of persisters and normal cells are
0.00001 and 0.1, respectively. (B) Recovery time. The recovery times are the same between the
population containing persisters (black line) and the population containing no persisters (grey
line) until. a0 > 0.3. From 0.3< a0 < 26, both populations take longer to recover with increas-
ing antibiotic concentration; however, the population containing persisters recovers slightly
faster. When a0 > 26, then the population without persisters fails to recover, whereas the
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population with persisters is able to re-establish the population. (C) Final Density. After 100
doses of antibiotic, the final total density was measured. Periods greater than 1 recovery time
resulted in the full recovery of the population; however, periods less than 1 recovery time ap-
peared to suppress the population’s recovery. (D) Dose number. For each antibiotic concentra-
tion and period combination, the corresponding number of doses necessary to reduce the total
population density to a critical threshold was calculated. The regimens using antibiotics associ-
ated with longer recovery times and longer periods require the fewest doses. (E) Total antibiot-
ic delivered. Despite many different regimens requiring the same number of doses, the
regimens could be differentiated by the total amount of antibiotic delivered. When comparing
regimens with the same number of doses, the amount of antibiotics delivered would decrease
as the dose concentration decreased. Population with persisters that grow and lyse at rates
1000 times more slowly than normal cells (F-J). (F) Time course. Similar to (A). (G) Recov-
ery time. Similar to (B). (H) Final Density. Similar to general trend of (C), where final densi-
ties are high when using periods> 1 recovery time and are low otherwise. However, many of
the low final densities achieved after 100 doses with periods< 1 recovery time are close to, but
not exactly, 0. This means that once the regimen is completed and sufficient time has passed,
the population will be able to regrow. (I) Dose number. For each antibiotic concentration and
period combination, the corresponding number of doses necessary to reduce the total popula-
tion density to a critical threshold was calculated. The regimens using antibiotics associated
with longer recovery times and longest periods require the fewest doses. The regimens using
lower concentrations of antibiotic (a0 < 10) and/or shorter dosing periods (period< 0.65 re-
covery time) were not successful at reducing the population below the threshold after 100
doses. This is due to the presence of persisters. (J) Total antibiotic delivered. The total amount
of antibiotic delivered for each regimen was calculated and suggests that an injection based reg-
imen would need very high concentrations of antibiotic to sufficiently reduce a population
with persisters. Schematic for how a population with persisters responds to antibiotic. Black
represents bacterial actions, blue represents Bla actions, and red represents antibiotic actions.
Arrows denote induction or activation; T-lines indicate inhibition; the dashed arrow represents
the ability for the model to simulate inducible or constitutive Bla production.
(PDF)

S6 Fig. The effect of a mixed population on the predictive powers of recovery time. The
model represents a mixed population with equal starting densities of two subpopulations
(n1 and n2) with different levels of antibiotic resistance. n1 has the same parameter values as
the base case from the homogeneous model; however, n2 has increased thresholds for antibiotic
effects. Particularly, n2 requires higher concentrations of antibiotic to inhibit growth (σ5 = 5σ1)
and induce lysis (σ6 = 5σ2). Although this model accounts for two distinct subpopulations, it
could be extended to multiple populations displaying some degree of collective antibiotic toler-
ance. Subpopulation can switch between states (A-E). (A) Time course. Both subpopulations
start at the same starting density (0.05) and start to lyse due to antibiotic. One subpopulation
(n2) is more resistant than the other (n1), with thresholds for growth inhibition (σ5) and lysis
(σ6) 5 times higher. Both populations contribute Bla to degrade the antibiotic. Once the antibi-
otic concentration is sufficiently low, then the subpopulations can start to recover. Since n1 and
n2 can switch between states, n2 can help n1 recover under concentrations that would otherwise
be lethal. (B) Recovery time curve. Because both populations still undergo the process of lysing
before recovering, the dosing protocol based on recovery time is still applicable. When 0.3< a0
< 2.3, both n1 and n2 are recovering at similar rates, thus the population as a whole recovers
quickly. Once 2.3< a0 < 26, then n2 recovers faster and determines the population level recov-
ery time. When a0< 26, then both subpopulations cannot recover. (C) Final density. Protocols
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using periods of less than one recovery time are effective at eliminating the population, regard-
less of antibiotic concentration. (D) Dose number. For each antibiotic concentration and peri-
od combination, the corresponding number of doses necessary to eliminate the population was
calculated. The regimens using antibiotics associated with longer recovery times require the
fewest doses; however, lower concentrations of antibiotic (10< a0 < 26)can be effective if ap-
plied at period lengths of 0.10–0.50 period/RT. (E) Total antibiotic delivered. Despite many
different regimens requiring the same number of doses to clear an infection, the regimens
could be differentiated by the total amount of antibiotic delivered. When comparing regimens
with the same number of doses, the amount of antibiotics delivered would decrease as the dose
concentration decreased. Subpopulations cannot switch between states (F-J). (F) Time
course. Same as in (A) except n1 and n2 do not switch back and forth. Thus the more resistant
subpopulation, n2, is selected to recover. (G) Recovery time curve. Same as in (B). (H) Final
density. Same as in (C). (D) Dose number. Same as in (D). (J) Total antibiotic delivered.
Same as in (E). Schematic for a mixed population’s response to antibiotic. Black represents
bacterial actions, blue represents Bla actions, and red represents antibiotic actions. Arrows de-
note induction or activation; T-lines indicate inhibition; the dashed arrow represents the ability
for the model to simulate inducible or constitutive Bla production.
(PDF)
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