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Abstract
Robust methods for identifying patterns of expression in genome-wide data are important

for generating hypotheses regarding gene function. To this end, several analytic methods

have been developed for detecting periodic patterns. We improve one such method,

JTK_CYCLE, by explicitly calculating the null distribution such that it accounts for multiple

hypothesis testing and by including non-sinusoidal reference waveforms. We term this

method empirical JTK_CYCLE with asymmetry search, and we compare its performance to

JTK_CYCLE with Bonferroni and Benjamini-Hochberg multiple hypothesis testing correc-

tion, as well as to five other methods: cyclohedron test, address reduction, stable persis-

tence, ANOVA, and F24. We find that ANOVA, F24, and JTK_CYCLE consistently

outperform the other three methods when data are limited and noisy; empirical JTK_CYCLE

with asymmetry search gives the greatest sensitivity while controlling for the false discovery

rate. Our analysis also provides insight into experimental design and we find that, for a fixed

number of samples, better sensitivity and specificity are achieved with higher numbers of

replicates than with higher sampling density. Application of the methods to detecting circadi-

an rhythms in a metadataset of microarrays that quantify time-dependent gene expression

in whole heads of Drosophila melanogaster reveals annotations that are enriched among

genes with highly asymmetric waveforms. These include a wide range of oxidation reduc-

tion and metabolic genes, as well as genes with transcripts that have multiple splice forms.

Author Summary

Much biomedical research focuses on how the expression of genes changes over time.
Many genes’ activities vary periodically. For example, circadian rhythms repeat daily with
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the light-dark cycle. Understanding how such rhythms couple to biological processes re-
quires statistical methods that can identify cycling time series in typical genome-wide data.
In this paper, we improve on a method used to identify cycling time series by better esti-
mating the statistical significance of periodic patterns and, in turn, by searching for a
wider range of patterns than traditionally investigated. We apply these methods to a com-
pilation of data on gene expression in fruit flies, an important model organism. We find
that our method allows us to discover rhythmic biological activities that the other methods
tested are unable to reveal.

Introduction
Rhythmic behavior is ubiquitous across the spectrum of life [1–4]. Diverse fundamental biolog-
ical functions such as cell division, energy metabolism, and sleep are periodic, and a growing
body of evidence implicates temporal dysregulation as a contributing factor to depression, neu-
rodegeneration, cardiovascular disease, and metabolic disorders in higher organisms [5–9].
Arguably the most well-studied periodic patterns are circadian rhythms: oscillatory changes in
gene expression, metabolism, physiology, and behavior with approximately 24-hour (24 h)
periods that enable organisms to anticipate and respond to daily changes in their environment,
such as nutrient accessibility, temperature, and light [10–13].

Circadian rhythms arise from innate clocks. The components of the core clock are well
characterized and are strongly conserved across a wide range of species [14, 15]. However, it re-
mains to be determined how this clock couples to other molecular processes. Moreover, these
interactions are likely to depend on tissue type and environmental conditions [2, 7, 11, 16, 17].
There is thus a need to identify molecular profiles that cycle and to characterize them as a func-
tion of conditions. The advent of high throughput methods for measuring gene expression
now makes transcriptome-wide studies of this nature possible. Previous work suggests that
hundreds, possibly thousands, of genes are regulated by circadian clocks [10, 15, 18].

Despite the decreasing cost of measuring transcript levels, profiling time series genome-
wide continues to present formidable challenges: tissue-specific samples are difficult to collect,
and, in contrast to imaging, measuring transcript levels is destructive in nature, requiring sepa-
rate samples for each time point. As a result, gene expression time series are typically sparsely
sampled (e.g., every 2–4 hours (h) in circadian studies), often without multiple measurements
per time point, which we refer to here as “replicates”. These experimental limitations result in
low signal-to-noise ratios that prevent straightforward identification of cycling
gene expression.

Quantitative methods are thus needed to identify rhythmic time series from minimal data
with statistical confidence. These methods can aid researchers in assessing the tradeoffs be-
tween the amount of data acquired, statistical precision, and breadth of biological discovery.
While a number of different methods have been proposed for identifying cycling time series
[19–30], further analysis is needed to guide selection of the best method(s) for a given situation
and to aid in design of improved computational methods and further experiments.

In this paper, we improve on the JTK_CYCLE method [26]. The original method uses a
conservative estimation for its p-values and a cosine as its only reference waveform. Here, we
introduce a procedure, empirical JTK_CYCLE with asymmetry search, that provides accurate
empirically-calculated p-values for arbitrary waveforms. We test its performance for detecting
rhythms in simulated data and a circadian metadataset [27] against other algorithms: cyclohe-
dron test [20, 21], address reduction [22, 23], stable persistence [24, 25], F24 [31, 32], and one-
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way analysis of variance (ANOVA) [27]. The simulated data allow us to examine how perfor-
mance varies with sampling density, number of replicates and/or periods, noise level, and
waveform. Most methods provide accurate rhythm detection when sampling density is high
and noise is low. However, we find that the choice of method significantly affects rhythm detec-
tion when data are limited and/or noisy. In particular, JTK_CYCLE, F24, and ANOVA consis-
tently outperform the other methods and offer distinct advantages for certain types of data.
Our improved method, empirical JTK_CYCLE with asymmetry search, performs best of all for
data that include asymmetric waveforms. Application of our improved method, empirical
JTK_CYCLE with asymmetry, to a metadataset of whole head D. melanogaster circadian mi-
croarrays [27] reveals a strong lights-on peak in expression for genes involved in glutathione
metabolism, high enrichment for genes involved in oxidation reduction, many more metabolic
genes cycling than previously appreciated, and rhythmic genes with transcripts that have
alternative splicings.

Methods

Overview
The methods that we consider are general and can be applied to detecting periodic behavior in
any context, but we describe them here in terms of searching for circadian rhythms in gene ex-
pression for clarity. The methods that we test are cyclohedron test [20, 21], address reduction
[22, 23], stable persistence [24, 25], F24 [31, 32], one-way analysis of variance (ANOVA) [27],
and JTK_CYCLE [26]. We describe each briefly below and note specific features; additional de-
tails can be found in the references introducing the methods.

The methods can be broadly categorized as tests with and without reference waveforms.
Cyclohedron test, address reduction, stable persistence, and ANOVA seek to identify patterns
without specifying the waveform a priori. Address reduction, cyclohedron test, and stable per-
sistence test for monotonicity. ANOVA compares the means of different time points with their
variances to determine if differences are significant.

In contrast, F24 and JTK_CYCLE compare the time series in question to a reference wave-
form, which is typically sinusoidal. These methods also test for a specific period. As mentioned
above, here we assume a period of 24 h, but the period of the reference can be varied, in the
same manner that the phase can be varied, to search for rhythms on other time scales.

Cyclohedron test. Cyclohedron test [20, 21] maps data to a cyclohedron and joins data
points into sets according to their adjacency in rank-ordering. Monotonicity is quantified by
how the sizes of the sets scale as more data points are included. Cyclohedron test has an exact
null distribution computable from a generating function. The domain of test statistics increases
very quickly with the number of data points, however, so Monte Carlo (MC) sampling, in
which representations of the null model are randomly generated and evaluated, is required to
estimate p-values if there are more than approximately 20 time points due to the computational
cost of the generating function.

Address reduction. Address reduction [22, 23] measures the entropy of the dataset by
comparing the rank-ordering of adjacent time points. Low entropy data are monotonic and
score higher in the method. The null distribution for address reduction is estimated by
MC sampling.

Stable persistence. In stable persistence [24, 25], local minima are paired with surround-
ing local maxima, and the “persistences” of these features are characterized by the differences
in ranks of the paired extrema. A hierarchy of such features is established, and the test com-
pares the global persistence to local ones. In this way, stable persistence tries to robustly assess
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overall monotonicity of a time series. The null distribution for stable persistence is estimated
by MC sampling.

Analysis of variance (ANOVA). One-way ANOVA is a standard statistical test of the
equivalence of means in several groups. In this case, each time point is a different group, and
ANOVA is equivalent to testing for any statistically significant variation across the time points.
Because expression measurements are averages over many cells and different time points come
from different samples (as the measurement is destructive), only synchronized, consistent vari-
ation across all samples can generate a statistically significant trend. By this reasoning, signifi-
cant changes in expression across time points can be attributed to time-dependent expression
within the population, such as circadian rhythms. ANOVA tests for these time-dependent
changes in expression. ANOVA has an exact null distribution derived from an assumption of
normally distributed data; unlike the other five methods, however, ANOVA requires replicates
to estimate the variance of experimental measurements at each time point.

24-hour Fourier projection (F24). F24 [31, 32] assesses periodicity by focusing on the
24 h period of the Fourier transform of the data. The test statistic for F24 is the projection of
the data onto the 24 h Fourier basis function, and the null distribution is obtained by recom-
puting the test statistic over repeated random permutations of the data. The phase is deter-
mined by projecting the data onto the cosine part of the Fourier basis function and finding the
optimal phase for the projection. We find that the null distribution can be modeled by the
Gamma distribution (S1 Fig.), which we parameterize from the mean and variance of the null
distribution. We estimate the null distribution from a small number of permutations (usually
100). This allows more rapid and precise computation of p-values than can be obtained by
standard permutation. Testing periods other than 24 h is accomplished simply by changing the
period of the Fourier basis function used to compute the test statistic.

Jonckheere-Terpstra-Kendall cycle (JTK_CYCLE). JTK_CYCLE [26] computes the Ken-
dall τ rank correlation coefficient between the data and a reference function over a range of
possible reference function phases. For two time series~x ¼ ðx1; x2; . . . ; xnÞ and
~y ¼ ðy1; y2; . . . ; ynÞ,

tð~x;~yÞ ¼
P

1�i<j�nsgnðxj � xiÞ � sgnðyj � yiÞ
1

2
nðn� 1Þ ð1Þ

where sgn(x) is −1 if x< 0 and +1 if x>0. The numerator is the number of pairs that vary con-
cordantly between the two time series minus the number that vary discordantly (Fig. 1A).
Every possible pair is included, not just ones between neighboring points in the time series.
The denominator is the total number of pairs, which normalizes the value of τ to the range
[−1, 1]. Perfectly correlated series score τ = 1, perfectly anti-correlated series score τ = −1, and
uncorrelated series score τ = 0. Like the cyclohedron test, the null distribution for JTK_CYCLE
can be computed exactly from a generating function [33], although again the test statistic do-
main grows quickly with time series size (becoming impractically large at 100–200 time points
with present computing power). However, for large time series the JTK_CYCLE null distribu-
tion is approximately normal, allowing for a convenient, fast p-value estimate.

Improvements to the JTK_CYCLE method
It is important to note that τ (Eq. 1) is calculated for a specific reference time series, and thus
JTK_CYCLE typically tests against a family of curves (e.g., to consider the possible phases of a
waveform, as illustrated in Fig. 1B). It is thus necessary to account for multiple hypothesis test-
ing across reference waveforms in assessing the significance of the results. Hughes et al. [26]

Improved Statistical Methods Enable Better Rhythm Detection

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004094 March 20, 2015 4 / 29



employed the Bonferroni correction [34] in their original formulation and implementation of
the method. This method is known to be conservative [34], and we illustrate this fact here ex-
plicitly for JTK_CYCLE (Fig. 2). These considerations motivate a new procedure for estimating
the significance of the results, which we describe. We end this section by discussing the com-
parison of time series to reference waveforms (Fig. 1C) other than the cosine waveform that
was used originally. Together, our improvements allow for the JTK_CYCLE method to include
additional reference waveforms in its rhythm detection without compromising sensitivity
and specificity.

Empirical p-values. By definition, a p-value is the likelihood of obtaining a test statistic
equal to or more extreme than the value that is observed if the null hypothesis is true—it in-
creases cumulatively as one progresses through a set of rank ordered test statistics. In the case
of JTK_CYCLE, under the null hypothesis, time series values are independent (and generated
by the same noise distribution) and so the rank ordering of time series values is random. For a
dataset generated from this null model, the p-values should be uniformly distributed from 0 to
1, exclusive: the highest Kendall’s τ out of N tests should have a p-value of 1/(N + 1), the second
highest test statistic has a p-value of 2/(N + 1), and the ith highest test statistic has a p-value of
i/(N + 1) [35]. Restated, the p-values should be a linear function of the ranks (black lines in
Fig. 2).

JTK_CYCLE computes the Kendall τ values for all the reference time series against the sig-
nal of interest and then performs a selection step for the lowest p-value (i.e., the highest τ),
which we refer to here as the “initial” p-value. This procedure biases the p-values (the blue and
green lines in Fig. 2A) such that they underestimate the true probability of obtaining test statis-
tics by chance (the black line in Fig. 2A). The previous version of JTK_CYCLE corrects for un-
derestimating the p-values with the Bonferroni correction, which controls the family-wide
error rate (FWER) by multiplying the p-values by the number of hypothesis tests being per-
formed. The FWER is the probability that there is at least one false positive for a given

Fig 1. JTK_CYCLE compares all possible pair relations for a time series to those for a reference
waveform. (A) JTK_CYCLE tests for pairwise agreement between a reference (blue) and a signal (cyan)
time series. Three discordant pairwise relationships are indicated by red lines. (B) The previous
implementation compared a time series to a set of phase-shifted cosines. (C) We add a set of asymmetric
waveforms to the reference. An example is shown here with the same phases as in A.

doi:10.1371/journal.pcbi.1004094.g001
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threshold. Therefore, a threshold of 0.01 means that there is a 1% chance that the list of time se-
ries with a Bonferroni adjusted p-value below 0.01 contains a false positive. This method, while
rigorous, is overly conservative and overcompensates for the bias that comes from selecting the
lowest p-value (blue and green lines in Fig. 2B). The likelihood of false positives is greatly re-
duced, but so is the likelihood of identifying true positives.

A common alternative to the Bonferroni correction is the Benjamini-Hochberg procedure
[36], which seeks to control the false discovery rate (FDR). The FDR is the fraction of the time
series that are identified as cycling that are false positive. For example, a Benjamini-Hochberg
adjusted p-value cutoff of 0.05 means that 5% of the positives are false. This is a less stringent
constraint than the FWER. In this procedure, the p-values are also multiplied by the number of
hypotheses tested, as in the Bonferroni procedure. However, the p-values are additionally or-
dered from lowest to highest and then divided by their rank order (the lowest p-value has rank
order 1, the second highest p-value has rank order 2, and so on). The p-values are also adjusted
such that there is no change in ordering: if the originally lowest p-value is adjusted so that it is
higher than the originally second lowest p-value, the lowest p-value takes the value of the ad-
justed second p-value so that the ordering is not violated. The same holds for the relationship

Fig 2. Empirical p-values are uniformly distributed for the null model of JTK_CYCLE. P-values versus their ranks from lowest (most significant) to
highest (least significant) for JTK_CYCLE testing phases at 2 h intervals (green line) or phases and asymmetries at 2 h intervals (blue line) with time series
consisting of Gaussian noise. Unbiased estimates should follow the black line (see text). (A) “Initial” p-values from JTK_CYCLE with multiple hypothesis
testing underestimate the true p-values. (B) The Bonferroni correction results in p-values that are too high (less significant). (C) The Benjamini-Hochberg
correction performs better than the Bonferroni correction but still results in p-values that are generally too high. (D) Empirical p-values that we calculate by
permutation are close to uniformly distributed, as desired; their correspondence to the null model improves as the number of hypotheses tested increases.

doi:10.1371/journal.pcbi.1004094.g002
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between the second and the third lowest p-values and so forth. While the Benjamini-Hochberg
procedure is a reasonable approach to multiple hypothesis testing in general, it does
not account for the selection step in JTK_CYCLE; it still is thus overly conservative
(Fig. 2C).

Consequently, we instead numerically compute the null distribution by applying the full
JTK_CYCLE procedure to time series in which the values have random rank orders. Since we
test a family of curves (e.g., spanning phases), we focus on positive correlations and compute
one-sided p-values. In the present study, these “empirical” p-values are based on 2 × 106 ran-
dom time series and are nearly uniformly distributed, as desired (Fig. 2D). Though this empiri-
cal calculation is more computationally expensive than the application of the Bonferroni
correction or the Benjamini-Hochberg correction, we show that empirically calculating the
p-values results in better rhythmic detection and biological insight. We term this improved
method empirical JTK_CYCLE, as we empirically calculate the p-values after selecting the
highest τ value for each time series.

Below, we compare the Bonferroni adjusted p-values, Benjamini-Hochberg adjusted
p-values, and empirical p-values directly. These have been adjusted on the basis of correcting
for multiple hypothesis testing across different waveforms for a single time series. When we
compare different time series to each other, we have to correct again for multiple hypothesis
testing, this time across time series. To do this we use the Benjamini-Hochberg correction, as
in the original implementation of the method [26]. When we refer to the Bonferroni, Benja-
mini-Hochberg, or empirical method, we refer to corrections across different waveforms for a
given time series; all corrections across time series are with the Benjamini-Hochberg method.
While the Bonferroni adjusted p-values, Benjamini-Hochberg adjusted p-values, and empirical
p-values represent different quantities (the FWER, the FDR, and the p-values, respectively)
they are all at least as conservative as the “true” p-values in the range that we are examining
(compare blue and green lines with black lines in Figs. 2B, C, and D). This means that the
FDRs that result from the Benjamini-Hochberg correction between time series are more con-
servative than the true FDRs.

Asymmetric waveforms. There is no a priori reason biological time series need be sinusoi-
dal [37, 38], so it is of interest to test additional waveforms. In this regard, it is important to
keep in mind that for JTK_CYCLE the rank order of the points in the reference matters, so we
can represent a wide range of simple waveforms (e.g., Fig. 1C) by a triangle function with a
specified separation between the maximum and the minimum. This allows us to avoid func-
tionally defining an asymmetric cosine waveform. For the time series that we examine in this
paper the difference is insignificant (S2 Fig.). We term the size of the interval from the maxi-
mum to the minimum the “asymmetry”, and we express the asymmetry here in units corre-
sponding to a 24 h period. In this notation, a cosine has an asymmetry of 12 h, while a time
series with an asymmetry of 8 h has a more rapid fall than rise (the values decrease over 8 h
and increase over 16 h). The triangle reference waveforms have the same monotonicity as a
cosine, and we keep the convention that the peak value corresponds to the phase of the
time series.

To parse the effects of empirically calculating the p-values from those of including asymmet-
ric waveforms, we test our form of JTK_CYCLE with and without asymmetric reference time
series. In the former case, we denote searching over asymmetry values in steps of 2 h “by 2 h”,
in steps of 4 h “by 4 h”, etc. We expect these additional waveforms to be more sensitive to
asymmetric patterns of gene expression, resulting in discovery of additional rhythmic time se-
ries. It is important, however, to be cognizant of the fact that we are increasing the total number
of hypotheses that we test, resulting in a greater need for the empirical correction procedure.
Fig. 2 shows the different correction methods for the minimum p-values for JTK_CYCLE with
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searching over 12 phases (every 2 h, green line) or searching over 12 phases and 11 asymme-
tries (every 2 h, blue line). The added hypotheses for searching across asymmetries result in
larger selection bias when choosing the highest τ value (Fig. 2A) as well as larger correction bi-
ases (Fig. 2B and C) than when only searching across phases. The empirical calculation of the
p-values improves as the number of tests increases as well (Fig. 2), further justifying its use.

Results

Simulated data benchmarks
To assess the performance of our empirical form of JTK_CYCLE against the original form as
well as other methods, we utilize two simulated datasets. We employ the first simulated dataset
to understand the sensitivity of each method to different shapes of time series. It comprises
four types of waveforms: sine, ramp (a triangle with maximum asymmetry), impulse, and step,
as well as an equal number of time series consisting of Gaussian noise. We compare all the pre-
cision-recall curves for all the methods on these data via the area under the receiver operating
characteristic (AUROC), a measure of the sensitivity and specificity of the rhythm detection
methods that does not depend on the proportions of positives and negatives in the dataset. The
second simulated dataset contains 10% rhythmic time series of triangle waveform with uni-
formly distributed phases and asymmetries and 90% time series consisting solely of Gaussian
noise. We use it to further assess the importance of considering asymmetric waveforms, and
we explore how multiple hypothesis correction impacts the results when the true positives
represent a relatively small fraction of the simulated time series, as we expect to be the case in
genome-wide studies.

F24, ANOVA, and JTK_CYCLE outperform other methods. To construct the first data-
set described immediately above, for each of the four waveforms in Fig. 3A we generated
10,000 time series with uniformly distributed random phase shifts (always with a 24 h period)
and added Gaussian noise to each point with a standard deviation of 25% or 50% of the total
waveform amplitude, examples of which can be seen in Fig. 3B. We tested data with 4, 6, 8, or
12 evenly spaced points per 24 h period, and 1, 2, 3, or 4 replicates per time point (which is the
equivalent of 1, 2, 3, or 4 periods per time series). At each spacing and replicate count we also
generated 10,000 time series of Gaussian noise to serve as true negatives. The cyclohedron test,
address reduction, stable persistence, and F24 are designed for single-replicate data, so we
treated replicates as subsequent days of data, yielding multiple-period time series.

We scored each method by computing the area under the receiver operating characteristic
curve (AUROC). The receiver operating characteristic (ROC) curve plots the true positive rate
(TPR) as a function of the false positive rate (FPR) as the threshold for calling a time series as a
positive is varied. The TPR and FPR are the fractions of the 10,000 simulated or Gaussian noise
time series determined to be rhythmic at a threshold, respectively, and the threshold is varied
over the entire range of false positive scores, such that the FPR ranges from 0 to 1. The
AUROC is the integral of this curve; perfect classifiers have an AUROC of 1.0, while random
classifiers have an AUROC of 0.5. An advantage of the AUROC as a metric is that it does not
depend on the proportions of positives and negatives in the dataset because the TPR and FPR
are calculated separately, i.e., they are normalized by the total number of positives and nega-
tives, respectively. For stable persistence, the cyclohedron test, and address reduction, we calcu-
lated the AUROC from the test statistics themselves as opposed to the p-values, which we use
for the latter three methods. Although the AUROC for JTK_CYCLE can be in principle be
computed directly from the Kendall’s τ statistic, we include the multiple hypothesis testing cor-
rection because it impacts the TPR and FPR in practice; in particular, aggressive correction can
lead to a loss of rank information because p-values must be less than or equal to 1.
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The performance of the different methods at 50% noise can be seen in Fig. 4 (performance
at 25% noise can be seen in S3 Fig.). ANOVA requires multiple measurements at each time
point to determine the variance, so we define ANOVA to have an AUROC of 0.5 (performs no
better than random guessing) when there is only one replicate. At 25% noise and high sampling
rate, the cyclohedron test, address reduction, and stable persistence all perform roughly equiva-
lent to the JTK_CYCLE methods, F24, and ANOVA. However, the former do noticeably worse
than the latter at 50% noise. Empirical JTK_CYCLE out-performs original JTK_CYCLE, F24,
and ANOVA for the sine and ramp waveforms, while ANOVA generally outperforms the
other methods for the step and impulse waveforms.

While the empirical calculation approximates the null model well, it does not fully prevent
multiple hypothesis testing from weakening the ability to identify rhythmic time series. There-
fore, we do not sample phases and asymmetries more densely than the resolution of the data
(e.g., if the experimental time points are spaced every 4 h, then we do not test phase values
spaced every 2 h). We break this rule in Fig. 4 for the time series with 4–8 points for consistency
of the figure. Sampling phases and asymmetries more densely than the resolution of the data
needlessly reduces the power of our test, but does not affect the analysis in Fig. 4.

The JTK_CYCLE with Benjamini-Hochberg correction (JTK_BH) has AUROC values that
are in between the AUROC values for the original JTK_CYCLE with Bonferroni correction
(JTK) and empirical JTK_CYCLE. This is to be expected since the Benjamini-Hochberg meth-
od is more conservative than the empirical method but less conservative than the Bonferroni
method. An additional detail is that the original JTK_CYCLE here uses a cosine as a reference
waveform, in comparison to the triangle used by the other JTK_CYCLE methods. The methods
that use the triangle waveform do not do significantly worse than the methods that use the co-
sine waveform in any of the cases, justifying the use of the triangle waveform for
rhythm detection.

Fig 3. Examples of simulated data. (A) Different waveforms simulated with a 24 h period. From left to right,
cosine, ramp, step, and impulse (width at half-max is 2 h). Waveforms in figure may not be to scale. (B)
Cosine in black, with Gaussian noise with standard deviation of 25% (blue) or 50% (green) of amplitude.

doi:10.1371/journal.pcbi.1004094.g003
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Fig 4. AUROCs for simulated data with 50% noise (standard deviation of Gaussian noise as a percent of amplitude). An AUROC value of 1
represents perfect discrimination between rhythmic and arrhythmic time series, and a value of 0.5 corresponds to random guessing. In each panel, the
number of replicates increases from 1 to 4 replicates from left to right, and the number of sampled points per period is indicated by color. AUROC for single-
replicate ANOVA (for which the method is undefined) is set at 0.5 exactly. Imp: impulse waveform, Cyclo: cyclohedron test, Address: address reduction,
Stable: stable persistence, JTK: original JTK_CYCLE with Bonferroni correction, JTK_BH: JTK_CYCLE with Benjamini-Hochberg correction with symmetric
triangle reference, eJTK: empirical JTK_CYCLE with symmetric triangle reference, JTK_BH_aby2: JTK_CYCLE with Benjamini-Hochberg correction and
triangle references with asymmetries from 2 to 22 h by 2 h, eJTK_aby2: empirical JTK_CYCLE with triangle references with asymmetries from 2 to 22 h by
2 h.

doi:10.1371/journal.pcbi.1004094.g004
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The cyclohedron test, address reduction, and stable persistence fail to improve as the num-
ber of replicates increases, and perform worse for low sampling rates. For example, a sine wave
sampled at 4 time points per period for multiple periods has extrema at every other time point.
Because cyclohedron test, address reduction, and stable persistence are essentially tests of
monotonicity, they fail to detect the sparse periodic pattern in such data. In fact sparsely sam-
pled data sometimes results in scores consistently lower than expected by chance, leading to
the AUROC values less than 0.5 for these methods on some datasets in Fig. 4.

In summary, we find that all the methods tested can identify rhythmic expression patterns
when the sampling density, replicate number, and signal-to-noise ratios are high. If data are
sparse or noisy, however, method choice can significantly impact rhythm detection. In such
cases, we find that ANOVA, F24, and JTK_CYCLE consistently better distinguish true and
false positives. Empirical JTK_CYCLE outperforms ANOVA, F24, and original JTK_CYCLE
for sine and ramp waveforms, but ANOVA performs better for impulse waveforms.

Increasing replicate number for a fixed number of total measurements improves sensi-
tivity. The total number of samples required for an experiment is the product of the number
of time points and the number of replicates. Consequently, it is important to consider how best
to apportion resources. To this end, in Fig. 5 we compare possible combinations of numbers of
time points and replicates that give rise to 12 or 24 total samples (see S4 Fig. for additional
waveforms and numbers of samples). For this comparison, we consider sampling at a density
of 4 points per period to be the minimal requirement for the identification of rhythmicity. Fur-
thermore, we focus on genome-wide experiments where the experimental design is such that
there is no meaningful difference between data collected over multiple periods and data collect-
ed at the same sampling rate in replicate over a single period. This assumption does not hold
for experiments that follow the response to a synchronization event or other perturbation be-
cause time points from successive periods are not equivalent.

To optimize the performance of ANOVA, it is best to maximize the number of replicates at
the expense of the number of time points, which is not surprising given the importance of accu-
rately estimating the variance in this test. For JTK_CYCLE and F24, the choice is less clear, but
greater improvement is obtained with replicate increases in the case of the step and impulse
waveforms (S4 Fig.). By contrast, original JTK_CYCLE performs slightly better for sinusoidal
waveforms with higher numbers of time points, but empirical JTK_CYCLE does not. Overall,
the results suggest that limited resources are better directed at increasing replicate numbers
than the density of time points.

Interpolated pseudo-replicates improve ANOVA sensitivity. Given the importance of
replicates in improving sensitivity, we also explored interpolating neighboring time points to
create pseudo-replicates, which would double the number of time points in the data (S5 Fig.).
However, this requires recomputing null distributions via MC sampling because the construc-
tion procedure introduces correlations between data points, resulting in p-value underesti-
mates if not corrected. We found that the pseudo-replicates improved the performance mainly
of ANOVA when the replicate number was low (e.g., 1 or 2); in particular, they allowed
ANOVA to be applied and give good results for the single replicate case (S6 Fig.). We stress
that 2 or more biological replicates should be obtained if at all possible, and we do not recom-
mend using the pseudo-replicate approach if sufficient data are available.

Empirical JTK_CYCLE outperforms other methods after correcting for multiple hy-
pothesis testing. Our second benchmark comprises 15,840 times series, which was chosen to
allow equal numbers of time series with different phases and asymmetries. 10% of the time se-
ries were generated from a triangle waveform with noise added and 90% were generated entire-
ly from Gaussian noise. This composition was chosen to be reflective of a genome-wide
dataset. The rhythmic time series were 24 points long, with 2 periods, each with 12 time points.
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Here, we analyze two such datasets: one with only asymmetry of 12 h (analogous to a cosine)
and one with a uniform sampling of possible asymmetries (by 2 h from 2 to 22 h). In both
cases, phases (peak values) were uniformly distributed over the possible discrete values. We
added Gaussian noise with a standard deviation of either 25% or 50% of the amplitude of the
time series, as previously described. We tested these data against the empirical JTK_CYCLE
method with various asymmetries as well as original JTK_CYCLE, ANOVA, F24, and
Benjamini-Hochberg adjusted JTK_CYCLE with various asymmetries for comparison. In all
cases the JTK_CYCLE methods used the triangle waveform as the reference waveform, as it
was the waveform used to generate the data.

We show cumulative histograms of the number of cycling time series identified for a given
significance cutoff in Fig. 6. The methods shown yield comparable numbers for p-values less
than 0.05, a reasonable threshold (Fig. 6A and B). However, in reporting total cycling numbers,

Fig 5. Higher numbers of replicates provide greater sensitivity compared to increased density of time points for the same number of samples.
Results shown are AUROC values for sine and ramp simulated data with 50% noise (see S4 Fig. for additional waveforms and sample numbers). “Points”
refers to the number of time points per period (“Points 12” refers to 12 points per period) and “Replicates” refers to the number of replicates per time series
(“Replicates 2” refers to 2 samples per time point). Together, “Points 12 Replicates 2” refers to a time series that consists of 12 time points per period with 2
replicates per time point. Abbreviations are the same as in Fig. 4.

doi:10.1371/journal.pcbi.1004094.g005
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it is important to correct for the fact that we are testing many time series (as opposed to testing
many waveforms for a single time series, as previously). The p-values of empirical JTK_CYCLE
are approximately uniformly distributed (Fig. 2D), as are those of ANOVA and F24, which sat-
isfies the assumptions of the Benjamini-Hochberg correction [36], described above, so we use
it for this purpose. We also apply the Benjamini-Hochberg correction to the original
JTK_CYCLE with the intra-time series Bonferroni and Benjamini-Hochberg corrections dis-
cussed previously, which results in underestimates of the true FDR since their adjusted p-values
are conservative (Fig. 2B and C).

In Figs. 6C and D, we see that the performance of the methods differs considerably when
controlling for the false discovery rate (FDR). For these curves, the proportion of false positives
identified as cycling matches the FDR. Specifically, the Benjamini-Hochberg correction (for
many time series) penalizes methods with many p-values clustered at relatively high values
(corresponding to a rapid rise toward the right of Figs. 6A and B, as for ANOVA and F24).
Thus despite the fact that ANOVA and F24 perform comparably to JTK_CYCLE in the
AUROC analysis (Fig. 4), their p-values provide less discrimination between time series, and
thus they provide less sensitivity for a given FDR. In addition to looking at AUROC scores in
Fig. 4 and time series identification in Figs. 6C and D, we also computed the Matthews

Fig 6. Empirical JTK_CYCLE outperforms the other methods in the presence and absence of asymmetric time series. Simulated data with rhythmic
time series without asymmetry (left, A and C) or with evenly distributed asymmetry (right, B and D) were tested with different methods. The cumulative
histograms are plotted before (A and B) and after (C and D) Benjamini-Hochberg multiple hypothesis correction across time series. The vertical axis shows
the number of time series with a p-value (P) (A and B) or false discovery rate (FDR, the Benjamini-Hochberg adjusted p-value) (C and D) below or equal to a
significance threshold, shown on the horizontal axis. Results shown are for the second simulated dataset with 25% noise, but the effects of Benjamini-
Hochberg correction are significantly greater at 50% noise (not shown). The method abbreviations are the same as those in Fig. 4. The legends of A and B
correspond to C and D, respectively. The rightmost point on the horizontal axis is 0.2.

doi:10.1371/journal.pcbi.1004094.g006
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Correlation Coefficient [39], which quantifies the quality of a binary classification. A score of 1
indicates that a method correctly identified all true positives and true negatives, while a score
of −1 indicates that a method yielded all false positives and false negatives. S7 Fig. shows that
the JTK_CYCLE methods have higher-quality classification ability than F24 and ANOVA for
these simulated data. Furthermore, the figure shows that empirical JTK_CYCLE with asymme-
try search performs equally well with and without asymmetric time series, whereas the
JTK_CYCLE methods without asymmetry search perform worse when the dataset includes
asymmetric time series.

Therefore, in terms of genome-wide studies, empirical JTK_CYCLE with asymmetric wave-
forms is the method of choice for identifying rhythmic genes. S8 Fig. examines how the inclu-
sion of different asymmetries affects rhythm detection.

Microarray metadataset
Keegan et al. [27] previously assembled a metadataset comprised of data from four DNA mi-
croarray studies of Drosophila melanogaster under light-dark (LD) conditions (from Ceriani
[40], Claridge-Chang [18], Lin [41], and Ueda [42]). We do not include a fifth dataset from
that study [15], because it was limited to dark-dark (DD) conditions. Here, we discuss issues
that arise from merging data from different laboratories and use the resulting metadataset to
test the methods. We find that empirical JTK_CYCLE with asymmetry search identifies a larg-
er number of rhythmic genes and, in turn, enriched annotations among those genes, such as
oxidation reduction, glutathione metabolism, and alternative splicing.

Z-score-based procedure for preparing the metadataset. All of the measurements in the
contributing studies are at intervals of 4 h. Time points for circadian LD time series are refer-
enced as zeitgeber time points (ZT); the beginning of the light period is ZT0. Under 12 hours
of light and 12 hours of dark, ZT24 is the equivalent of ZT0. Three studies sampled at ZT0, 4,
8, 12, 16, and 20, and the fourth (Ueda [42]) sampled at ZT1, 5, 9, 13, 17, and 21. We found
that the differences in sampling protocols, together with variations from one laboratory to an-
other, consistently gave rise to a jagged structure in the time series of known cycling genes
(Fig. 7A). Microarray-wide normalization techniques such as quantile normalization were un-
able to produce curves consistent with independently measured profiles. Instead, we found that
the best approach was to convert the values in each time series to Z-scores—i.e., for each gene
in each dataset, we subtract its mean expression level and divide by its standard deviation.
Then we pool the Z-scores to generate the metadataset. Fig. 7 illustrates the effect of the pro-
cessing step on Pdp1, a known cycling gene. This method is equivalent to treating measure-
ments from the same zeitgeber time point as replicates. For probes that corresponded to the
same gene, we chose the probe with the highest mean expression value to use in the analysis.
This reduced 14,010 probes to 11,625 genes.

The metadata has many places where the values are not available (NA). To prevent the need
to recalculate the null distribution for every pattern of NAs in the data for empirical
JTK_CYCLE (there were 5005 unique NA permutations in the data), the NAs were replaced by
random noise drawn from a Gaussian distribution with mean and standard deviation that
match those of the data on the whole. While this adds noise to the time series, it should not
have a large effect given that each time series has 57 points. To mitigate the impact of this pro-
cedure on our study, however, time series that had more then half their points as NA were dis-
carded from the dataset, leaving 9,313 out of 11,625 genes. We consistently used the dataset
resulting from these preprocessing steps for all our analysis to ensure that comparisons be-
tween methods were fair; where comparisons with and without NA substitution were possible,
we found that NA substitution led to slight increases in cycling numbers in all cases except
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ANOVA (114 vs. 101). However, these differences did not change any of the ontological results
(discussed below).

Analysis of microarray metadataset. To evaluate the methods against genes for which we
know the rhythmicity a priori, we compared the p-values for 6 positive examples (per, tim, vri,
Pdp1, cry, and Clk) and 4 negative examples (cam, RpL32, cyc, and dco). S9 Fig. shows the per-
formance of the different methods for the known positive and negative examples. Stable persis-
tence, the cyclohedron test, and address reduction all have false negatives. The JTK_CYCLE
methods, ANOVA, and F24, however, detect all of the known cycling genes and none of the
non-cycling genes as rhythmic.

Having again established F24, ANOVA, and JTK_CYCLE as the better methods, we now
apply them to the full dataset (Fig. 8). As in Fig. 6, the Benjamini-Hochberg correction de-
creases the sensitivity of ANOVA and F24 relative to JTK_CYCLE for a given FDR (compare
Fig. 8A with Fig. 8B). Choosing a Benjamini-Hochberg adjusted p-value cutoff of 0.05 (i.e.,
5%), the number of genes and overlap between methods can be seen in Figs. 8C and D. All the
JTK_CYCLE methods outperform F24 and ANOVA. Empirical JTK_CYCLE with asymmetry
search by 4 h (eJTK_aby4) identified the most genes, showing a clear improvement over the
Bonferroni (JTK) and Benjamini-Hochberg (JTK_BH) methods with asymmetry search by 4 h
(aby4); eJTK_aby4 also identified more cycling genes than methods without asymmetry search,
and the genes were distinct.

Interestingly, among the JTK_CYCLE methods without asymmetry search the Bonferroni
and Benjamini-Hochberg methods identified more genes than the empirical method did. For
JTK_CYCLE without asymmetry search, there were only 6 hypotheses tested per gene time se-
ries (for each of the 6 phases searched), for which the Bonferroni and Benjamini-Hochberg cor-
rection across waveforms is very slight. For JTK_CYCLE with asymmetry search every 4 h, the
number of hypotheses tested becomes 30, for 6 different phases paired with 5 different asym-
metries, which results in a more stringent correction by the Bonferroni and Benjamini-Hoch-
berg methods. As experimental sampling rates and sampling densities enable more extensive
searching of phases, periods, and asymmetries, we expect the advantage for empirical
JTK_CYCLE relative to the original formulation to grow because the Bonferroni correction
strongly penalizes adding hypothesis tests. Provided that sufficient permutations are per-
formed, empirical JTK_CYCLE provides the more robust identification of rhythmic genes.

Fig 7. Z-score normalization allows combining of time series from different datasets into smooth time series. Pdp1 gene expression frommetadata
before (A) and after (B) Z-score normalization. Light gray crosses indicate individual replicates, and the black curve is the mean.

doi:10.1371/journal.pcbi.1004094.g007
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Another way of viewing this difference between the inclusion and exclusion of asymmetry
search is by examining the distributions of the Bonferroni-adjusted p-values against the empiri-
cal
p-values, as in S10 Fig. With asymmetry search, the empirical p-values are significantly lower
than the Bonferroni-adjusted p-values, a pattern that is less pronounced without
asymmetry search.

We examine the effect of searching multiple asymmetries with empirical JTK_CYCLE fur-
ther in S11 Fig. Searching for rhythmic genes with asymmetries of 8 and 16 h alone yielded 4
more genes than searching for rhythmic genes with asymmetries of 4, 8, 12, 16, and 20 h, with
an overlap of 293 genes and approximately 50 genes each that were separately called rhythmic
by each method. Comparing the two sets of cycling genes in S12 Fig., we find that searching by
4 h excludes genes with asymmetries 8 to 16 h that are barely below the adjusted p-value of

Fig 8. Empirical JTK_CYCLE with asymmetry search of 4 h (eJTK_aby4) identifies more genes than ANOVA, F24, and the other JTK_CYCLE
methods. (A) The vertical axis shows the number of genes with a p-value below or equal to the horizontal axis for the methods indicated. The rightmost point
on the horizontal axis is 0.2. (B) The Benjamini-Hochberg correction for testing multiple genes impacts the relative performance of the different methods. The
rightmost point on the horizontal axis is 0.2. The colors are the same as in A. (C) The number of genes with Benjamini-Hochberg adjusted p-values below
0.05 (blue) and below 0.20 (red) with the different methods is shown. (D) A comparison of the intersection (below the diagonal) and union (above the
diagonal) of genes identified as rhythmic with Benjamini-Hochberg adjusted p-values less than 0.05 for the different methods. JTK: the original JTK_CYCLE
method with Bonferroni correction. JTK_BH: the JTK_CYCLEmethod with Benjamini-Hochberg correction. eJTK: the JTK_CYCLEmethod with empirical
calculation of the p-values. “_aby4” refers to an asymmetry search every 4 h (at 4, 8, 12, 16, and 20 h).

doi:10.1371/journal.pcbi.1004094.g008
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0.05 (upper left quadrant), while searching at asymmetries of 8 and 16 h excludes genes that
have extreme asymmetries.

We also examined how our results depended on using a triangle vs. a cosine for the refer-
ence waveform. Figs. S13 and S14 show that there is no substantial difference in genes identi-
fied as cycling or in ontological results (discussed below). This can be attributed to the fact that
across many time points (57 in the case of the metadataset), the differences between the cosine
and triangle waveform are slight (S2 Fig.).

Comparison with Keegan et al. We compared our results to those of Keegan et al. [27],
an earlier analysis of this metadataset. There were two main differences in the way we con-
structed the dataset: we excluded time series that had more than half their values as NA, and
we excluded the dark-dark (DD) McDonald dataset, as discussed above. Of the 200 genes iden-
tified as cycling by Keegan et al., 169 remained after pre-processing to remove time series with
more than half of their values as NAs. Of those 169, 111 had Benjamini-Hochberg adjusted
p-values less than 0.05 for the empirical JTK_CYCLE with asymmetry search by 4 h
(eJTK_aby4). 58 genes that were identified as cycling by Keegan et al. were not identified by
eJTK_aby4. S15 Fig. compares the cycling genes identified by Keegan et al. with the cycling
genes identified by eJTK_aby4. Keegan et al. identified genes as cycling primarily on the basis
of scoring well (p< 0.05) on several tests following pre-screening by ANOVA. S15A Fig.
shows a comparison of the number of tests passed after the ANOVA pre-screening with the
Benjamini-Hochberg adjusted p-value from eJTK_aby4. While there appears to be a weak rela-
tion between the number of tests passed and the p-value, there is not a clear pattern that would
enable one to predict the cycling genes common to both Keegan et al. and eJTK_by4. S15B Fig.
shows the maximum amplitude measurements (after Z-scoring) for the genes identified as cy-
cling by Keegan et al., which are organized by whether they are identified as cycling by eJT-
K_aby4 as well. The genes identified by Keegan et al. but not by eJTK_aby4 tend to have larger
maximum amplitudes than the ones identified by both. The ANOVA pre-screening in Keegan
et al. can account for this difference; our results with empirical JTK_CYCLE suggest that there
are many cycling genes with lower amplitudes. S15C Fig. shows the asymmetries of the genes
identified by Keegan et al. as cycling, as determined by eJTK_aby4. A large number of genes
identified by Keegan et al., but not by eJTK_aby4, have asymmetry of 16 h. The bias in the ear-
lier study may reflect the fact that one of the tests that Keegan et al. employs is based on corre-
lation with the gene per, which has an asymmetry of 16 h. More generally, Keegan et al. fail to
identify 231 genes as cycling that eJTK_aby4 identifies with Benjamini-Hochberg adjusted p-
values below 0.05. Of these 231, 82 have Benjamini-Hochberg adjusted p-values below 0.01, 65
have values below 0.005, and 16 have values below 0.001.

Comparison with Wijnen et al. In addition to comparing our results to those of Keegan
et al., we also compared our results to those of Wijnen et al. [32], who identified 336 genes as
rhythmic using an F24-based method. Again, we excluded time series that had more than half
their values as NA, and we excluded the dark-dark (DD) McDonald dataset. S16 Fig. shows a
comparison of the genes that are identified as rhythmic by eJTK_aby4, Keegan et al., and Wij-
nen et al. Whereas 31 genes that Keegan et al. identified as rhythmic were removed by the em-
pirical JTK_CYCLE analysis pre-processing, 57 genes that were identified by Wijnen et al. were
removed by the empirical JTK_CYCLE analysis pre-processing due to more than half their
time points being NA. These genes are “unassigned” in S16A Fig. because an asymmetry esti-
mate is not available. Wijnen et al. and eJTK_aby4 jointly identified 120 genes as rhythmic, of
which Keegan et al. identified 59 as well. Wijnen et al. uniquely identified 177 genes as rhyth-
mic, whereas eJTK_aby4 uniquely identified 167 genes. A comparison of the asymmetry distri-
butions for all the genes (S16A Fig.) shows that they are similar for eJTK_aby4 and Wijnen
et al.
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Validation with dataset-independent literature citations. As a first step toward valida-
tion the new genes that eJTK_aby4 exclusively identified as rhythmic (i.e., those genes not pre-
viously identified by Keegan et al. or Wijnen et al.), we examined the literature for references
that independently suggest that these genes are cycling. Specifically, for each gene, we identified
the references in FlyBase (http://flybase.org) that mention the gene. Of those references, those
that have the term “circadian” in their title or abstract were identified. S16B Fig. shows the dis-
tribution of genes based on their citation in FlyBase by a “circadian” paper, by the original five
dataset papers [15, 18, 40–42], or by neither. Genes identified by “circadian” papers but not by
the original five dataset papers represent further validation that the genes that we select as
rhythmic are related to circadian processes.

Among these references, there were some that discussed several genes. Kadener et al. [43]
assayed for genes regulated by the gene Clk and referenced 6 of the genes not mentioned by the
original five papers out of a total of 32 genes, which has less than 1.6% probability of occurring
by chance (Fisher’s Exact Test unadjusted p<0.016 [44]). One gene referenced by Kadener
et al. as well as Abruzzi et al., who also assayed for genes regulated by Clk, is cabut (cbt,
CG4427, FBgn0043364, referred to as EP2237 by Kadener et al.). The gene cbt was previously
unidentified as having rhythmic expression. The average time series from the metadata can be
seen in S17 Fig. The gene cbt is a metal-ion binding transcription factor downstream of the
JNK cascade and is involved in morphogenesis [45–48]. It has an asymmetry of 4 h, potentially
explaining why it was missed by previous methods but identified by eJTK_aby4. Abruzzi et al.
[49] also discuss another Clk-regulated gene that was uniquely identified by eJTK_aby4 as
rhythmic, twins (tws, CG6235, FBgn0004889), seen in S17 Fig. It has an asymmetry of 20 h,
which explains how, like cbt, it could have been missed by previous methods. These genes,
though previously unidentified as rhythmic, are strong candidates for having roles in circadian
regulation and processes based on our identification of them as rhythmic and the work of Kad-
ener et al. and Abruzzi et al. This warrants further experimental studies of these genes in a cir-
cadian context as well as the other genes that we have identified.

The gene cbt is also referenced by another study that discusses several genes identified as
rhythmic by eJTK_aby4. Fujikawa et al. [50] identified 114 genes that are up-regulated and
down-regulated in the head of D. melanogaster following 24 h of starvation. 16 of these genes
are not mentioned by the original five papers but are identified as rhythmic by eJTK_aby4,
which has less than 0.3% probability of occurring by chance (Fisher’s Exact Test unadjusted
p<0.003). Fujikawa et al. refer to several genes from the circadian dataset papers that also ap-
pear in their lists of differentially expressed genes, but they do not associate rhythmic behavior
with all the genes that they describe. In addition to the gene cbt, Fujikawa et al. reference other
genes that were previously unidentified as rhythmic: Esterase-Q (Est-Q, CG7529,
FBgn0037090) and 1, 4-Alpha-Glucan Branching Enzyme (AGBE, CG33138, FBgn0053138).
Both have asymmetries of 16 h, which is also outside the range of standard symmetric-wave-
form detection (S17 Fig.). The identification of these genes as rhythmic reinforces the connec-
tion between metabolism and circadian regulation and indicates other potential areas of
experimental exploration.

To further understand the relationship between circadian regulation that we see in the
genes eJTK_aby4 has identified as rhythmic and biological processes, we examined the enrich-
ment of functional annotations in the identified genes.

Functional classification of cycling genes. We used DAVID [51, 52] to analyze the onto-
logical enrichment of the genes contributing to Fig. 8 separately for each rhythm detection
method. Because many of the annotation terms are obviously related (e.g., “oxidoreductase”
and “oxidation reduction”), we manually grouped them. The grouped terms enriched with
Benjamini-Hochberg adjusted p-values less than 0.05 for the different methods can be seen in
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Fig. 9. Genes that are identified as rhythmic by F24 and ANOVA are enriched in the fewest
terms. They are mainly in rhythm/light/circadian categories, corroborating the selection of
these genes as cycling. The JTK_CYCLE methods without asymmetry search identify sets of
genes that are enriched for different terms in addition to the rhythm/light/circadian ones
found by ANOVA and F24, such as glutathione and oxidation reduction annotation terms.
The JTK_CYCLE methods with asymmetry search identify sets of genes enriched in the most
terms of all the methods. The original JTK_CYCLE method with Bonferroni correction and
empirical JTK_CYCLE method identify sets of enriched genes known to have alternative splice
forms of their RNA; JTK_CYCLE with the Benjamini-Hochberg correction and empirical
JTK_CYCLE identify sets of genes that are enriched for genes involved in
biosynthetic pathways.

Because eJTK_aby4 captures all the annotation terms of interest, we focus on its results for
the remainder of this section. The individual annotation terms that are enriched in the rhyth-
mic genes found by eJTK_aby4 can be seen with their adjusted p-values and phase distributions

Fig 9. Manual grouping of annotation terms identified as enriched by DAVID. The number of annotation terms enriched in the genes with Benjamini-
Hochberg adjusted p-values less than 0.05 that are identified by each method are shown in grey shading and red numbers. Annotation terms were enriched
with Benjamini-Hochberg adjusted p-values below 0.05 as identified by the DAVID web tool [51, 52]. Abbreviations are the same as in Fig. 8.

doi:10.1371/journal.pcbi.1004094.g009
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in Fig. 10A. Fig. 10B shows the total phase distribution of the genes, and Fig. 10C shows the

Fig 10. Annotation terms identified by DAVID as enriched for rhythmic genes.Rhythmic genes shown are those that are identified with eJTK_aby4 with
a Benjamini-Hochberg adjusted p-value less than 0.05. The terms shown are those identified by the DAVID web tool [51, 52] as enriched with a Benjamini-
Hochberg adjusted p-value less than 0.05. (A) The individual annotation terms are shown with their adjusted p-values and phase distributions. The red
numbers refer to the number of genes in that annotation term with that phase. The horizontal axis of A is the same as that of B. (B) Total phase distribution of
the cycling genes. (C) Total asymmetry distribution of the cycling genes.

doi:10.1371/journal.pcbi.1004094.g010
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total asymmetry distribution. Functionally, these genes fall into several annotation categories,
each of which we discuss in turn.

Many of the rhythmic genes involved in glutathione metabolism are also involved in drug
metabolism. The peak expressions of these genes are focused around ZT4, and these genes
mainly have asymmetries close to 12 h (Figs. 10A and S18). Glutathione and drug metabolism
are known to be circadian [53–55]; possible links to aging are suggested by the role of glutathi-
one metabolism in clearing reactive oxygen species [56]. Other oxidation-reduction related
terms peak at either ZT4 or ZT16-20 (Figs. 10A and S19). These genes have a broader distribu-
tion of asymmetries, with several with extreme values of 4 or 20 h.

A subset of the genes involved with oxidation-reduction are also associated with iron and
have a bimodal distribution of phases, with peaks at ZT4 and ZT16-20 (Fig. 10A). Various
iron-related genes have been implicated as important in circadian rhythms. Recent studies,
however, have only looked at the effect of iron-related genes on whole organism activity, or on
particular circadian genes, such as per or tim [57, 58]. These studies have shown that individual
iron-related genes affect circadian rhythms. To our knowledge, no studies to date have found
as many iron-related genes displaying rhythmic behavior as we have described here.

Genes that have multiple protein forms due to alternative splicing peak at times that are
evenly distributed throughout the day (Figs. 10A and S20). They have a broad distribution of
asymmetries as well, with several genes with extreme values of 4 h and 20 h, such as tws, the
newly discovered cycling gene previously mentioned as having an asymmetry of 20 h and as a
regulatory target of Clk. The existence of these alternatively spliced genes with extreme asym-
metries explains why “alternative splicing” was only found to be enriched in the genes identi-
fied as rhythmic by methods searching for asymmetric waveforms. Alternative splicing has
been found to be important in circadian rhythms in Drosophila as well as in other species.
Most studies, however, have focused on specific experimental findings that discovered particu-
lar genes that modulate circadian rhythms [59, 60]. No studies exist that have found that so
many genes with alternative splicing are rhythmic.

Discussion
In this paper, we compare several rhythm detection methods. These approaches are general
and can be applied to detecting periodic behavior in a wide range of contexts, but we focus on
time series representative of genome-wide expression data. Deckard et al. [28] recently re-
viewed a number of earlier studies of rhythm detection methods and selected four algorithms
for comparison (de Lichtenberg, Lomb-Scargle, JTK_CYCLE, and persistent homology) based
on their mathematical properties and applicability to genome-wide expression data. They test
the methods with simulated data and experimental data for the metabolic cycle in yeast, circa-
dian rhythms in the mouse, and the root clock in the flowering plant Arabidopsis thaliana (see
[28] for references). They find that there is no all-around best method and construct a decision
tree for picking an algorithm based on the expected nature of the data. For increasing noise
and decreasing sampling rate, they favor JTK_CYCLE and Lomb-Scargle, a Fourier-like meth-
od. These recommendations are consistent with our own findings that JTK_CYCLE and F24
were consistently more accurate than the monotonicity tests (represented by persistent homol-
ogy in [28]) and justifies our focus on improving JTK_CYCLE.

Also recently, Zielinski et al. [29] reviewed six different Fourier-like methods for their ability
to estimate periods in periodic time series. They focus on time series that are well-sampled (36
and 72 time points were the lowest-sampled time series they examined, 720 was among the
highest), as might be obtained from tracking a luminescence reporter for a single gene. The
fundamentally different nature of their data from ours highlights the fact that it is important to
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match the computational tool with the task of interest. Zielinski et al. [29] seek precise period
determination for genes already known to cycle. By contrast, here we focus on discovering
rhythmic time series that represent only a fraction of a genome-wide dataset. JTK_CYCLE can
provide estimates of a periodic time series’ phase, period, and asymmetry, but it resolves these
parameters only to the level of the sampling (or search) depth. It is likely that there is a tradeoff
between robust separation of rhythmic and arrhythmic time series and precise estimation of
the cycling parameters; presently, no algorithm achieves both these goals simultaneously.

Zielinski et al. [29], as well as earlier studies [37, 38], note that biological oscillations are ex-
pected to have asymmetric patterns of expression. Thaben andWestermark recently published
one approach to this problem [30]. Their method, RAIN, employs the Mann-Whitney U test
[61] between different time points to look for a rising pattern followed by a falling pattern.
They show that RAIN outperforms the original JTK_CYCLE method as well as a cosine-fitting
method [62] for simulated data consisting of sinusoidal and ramp waveforms. They also ana-
lyze genomic and proteomic data for the mouse liver. Their work reinforces our finding that
searching for asymmetric waveforms can produce better rhythm detection sensitivity and vali-
dates our efforts. Thaben andWestermark suggest that modifying JTK_CYCLE to allow for
asymmetric waveforms would provide a useful complement to their approach. In particular, in
contrast to RAIN, JTK_CYCLE can search for specific waveforms, including arbitrary shapes
with multiple peaks. We meet that need here.

We were able to expand JTK_CYCLE to search for asymmetric waveforms without degrad-
ing sensitivity because we empirically calculate p-values, which yields much more accurate sig-
nificance estimates than the Bonferroni correction employed in the original formulation of
JTK_CYCLE [26]. Our analysis of two different simulated datasets and the fly head metadata-
set clearly shows the importance of accurate significance estimates. As sequencing costs contin-
ue to decrease, we expect sampling density to increase. This trend should favor use of empirical
JTK_CYCLE over alternative means of correcting for multiple hypothesis testing because the
increase in data will enable more phases, asymmetries, and periods to be examined. Our analy-
sis shows that certain gene ontologies have many genes with highly asymmetric patterns of ex-
pression. It will be interesting to determine the prevalence of different waveforms in additional
biological datasets and to understand how their features depend quantitatively on genotype,
tissue, and environmental conditions.

Conclusions
In this paper, we compare methods for detecting rhythmic time series in genome-wide expres-
sion data. With regard to experimental design, we find that increasing the number of replicates
is more important than increasing the sampling density for achieving greater sensitivity. A key
aspect of our study is that we improve the estimation of p-values in JTK_CYCLE. This enables
control of the false discovery rate and testing waveforms beyond sinusoidal ones. For both sim-
ulated data and a circadian metadataset [27] the resulting empirical JTK_CYCLE with asym-
metry search exhibits the greatest sensitivity among the methods that we evaluated. The
annotation terms that are enriched among the genes that we identify as cycling include
rhythm/light/circadian, glutathione/drug metabolism, oxidation-reduction, iron metabolism,
and alternative splicing. These findings are consistent with known circadian biology but also
suggest new investigations.

Supporting Information
S1 Fig. Evaluation of Gamma distribution modeling for the F24 null distribution. The time
series used for this example was a 24 h sine wave sampled every 2 h for 1 period (no replicates);
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noise was added at 25% of the amplitude. (A) Convergence of the mean and variance estimates,
used to parameterize the Gamma distribution, as a function of the number of permutations
performed, for testing the 24 h period (blue curve in A; convergence for 4 h and 48 h periods
were similar, data not shown). (B) The cumulative distributions obtained by random permuta-
tion fit to the Gamma distribution, as shown by their proximity to the diagonal (black). Shown
are fits for testing a 24 h period, plus a 4 h period and a 48 h period (i.e., F4 and F48). For these
fits, 100 permutations were used.
(EPS)

S2 Fig. The triangle waveform is highly correlated with the cosine waveform. The correla-
tion between triangle and cosine waveforms are compared for time series of different lengths
for three different correlation metrics: Pearson, Spearman, and Kendall. Correlations can range
from −1 (completely anti-correlated) to +1 (completely correlated).
(EPS)

S3 Fig. AUROCs for simulated data with 25% noise (standard deviation of Gaussian noise
as a percent of amplitude). Layout and abbreviations are the same as in Fig. 4.
(EPS)

S4 Fig. Full set of comparisons used to evaluate the trade-off between increased numbers of
replicates and increased densities of time points per period. Layout and abbreviations are
the same as in Fig. 5.
(EPS)

S5 Fig. Interpolation scheme for increasing replicate counts. (A) A pseudo-replicate (�) for
time ti (indicated by the arrow) is obtained by linearly interpolating between time points ti−1
and ti+1 (dashed line). (B) Repeating this procedure for each time point (modulo 24 h) gener-
ates a new time series (� symbols).
(EPS)

S6 Fig. Interpolating the data points to generate pseudo-replicates improves AUROCs
when the number of actual replicates is low.We compare performance with (Interp) and
without (Normal) pseudo-replicates for the first simulated dataset with 50% noise.
(EPS)

S7 Fig. Matthews Correlation Coefficient shows that JTK_CYCLE methods outperform
ANOVA and F24 in the presence and absence of asymmetric time series. Simulated data
with rhythmic time series without asymmetry (A) or with evenly distributed asymmetry (B)
was tested with different methods. The vertical axis shows the Matthews Correlation Coeffi-
cients (MCC) [39] for different Benjamini-Hochberg adjusted p-value cutoffs (FDR) along the
x-axis. These data are with 25% noise, but the effects of Benjamini-Hochberg correction are sig-
nificantly greater at 50% noise (not shown). The method abbreviations are the same as those in
Fig. 4.
(EPS)

S8 Fig. Searching for asymmetric waveforms is detrimental if none are present, but is oth-
erwise advantageous. Simulated data with rhythmic time series without asymmetry (left, A
and C) or with evenly distributed asymmetry (right, B and D) was tested with different asym-
metries. The cumulative histograms are plotted before (A and B) and after (C and D) Benja-
mini-Hochberg multiple hypothesis correction across time series. The vertical axis shows the
number of genes with a p-value (P) (A and B) or false discovery rate (FDR, the Benjamini-
Hochberg adjusted p-value) (C and D) below or equal to a significance threshold, shown on

Improved Statistical Methods Enable Better Rhythm Detection

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004094 March 20, 2015 23 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004094.s008


the x-axis. These data are with 25% noise, but the effects of Benjamini-Hochberg correction are
significantly greater at 50% noise (not shown). The legend in A applies to B, C, and D as well as
A. The rightmost point on the horizontal axis is 0.2. eJTK_aby2: asymmetries sampled every 2
h, from 2 h to 22 h, eJTK_aby4: asymmetries sampled every 4 h, from 4 h to 20 h, eJTK_a04-
12-20: asymmetries sampled at 4 h, 12 h and 20 h, eJTK_a08-16: asymmetries sampled at 8 h
and 16 h, eJTK: no asymmetry (i.e. asymmetry of 12 h, equivalent to a cosine).
(EPS)

S9 Fig. Metadata results for known positive and negative examples. The positive examples
are known cycling genes per, tim, vri, Pdp1, cry, and Clk. The negative examples are known
non-cycling genes cam, RpL32, cyc, and dco. As plotted, large values for the positive examples
and small values for the negative examples are desirable. The magenta line marks a p-value of
0.05 (−log10 0.05 = 1.3). Since 2 × 106 permutations were used to generate the empirical
JTK_CYCLE p-values, they cannot be lower than 5 × 10−7. Abbreviations are the same as in
Fig. 8.
(EPS)

S10 Fig. Comparison of the p-value distributions of the original JTK_CYCLE method
(with Bonferroni correction) with the empirical JTK_CYCLE method without (A) and with
(B) asymmetry search.
(EPS)

S11 Fig. Comparison of the intersection and union of genes identified as rhythmic with
Benjamini-Hochberg adjusted p-values less than 0.05 (blue bars) and 0.20 (red bars) for
empirical JTK_CYCLE with different asymmetry searches. (A) The number of genes with a
Benjamini-Hochberg adjusted p-value (FDR) below 0.05 (blue) and 0.20 (red) are shown.
(B) A comparison of the intersection (below the diagonal) and union (above the diagonal) of
genes identified as rhythmic with Benjamini-Hochberg adjusted p-values less than 0.05 for the
different methods. Abbreviations are the same as in S8 Fig.
(EPS)

S12 Fig. Comparison of JTK_CYCLE asymmetry search depths. Points represent genes, col-
ored by the asymmetry search by 4 h-estimated asymmetries. The black vertical and horizontal
lines mark a FDR of 0.05 (−log10 0.05� 1.30). Genes to the the right of the vertical line pass
the threshold cutoff for eJTK_aby4, while genes above the horizontal line pass the threshold
cutoff for eJTK with asymmetry search of 8 and 16 h. Genes that are above the horizontal line
but left of the vertical line barely pass the threshold and have asymmetries in the range of 8 to
16 h. Genes that are right of the vertical line but below the horizontal line pass the threshold
much more significantly than the previously mentioned genes and have asymmetries that are
more extreme.
(EPS)

S13 Fig. Using a cosine as a reference waveform instead of a triangle does not produce sub-
stantially different results in genes identified as cycling. A comparison of the intersection
and union of genes identified as rhythmic with Benjamini-Hochberg adjusted p-values less
than 0.05 (blue bars) or 0.20 (red bars) for empirical JTK_CYCLE without asymmetry (eJTK),
and empirical JTK_CYCLE with asymmetry search of 4, 8, 12, 16, and 20 h (eJTK_aby4) calcu-
lated with a reference waveform of a triangle (no prefix) or with a reference waveform of a co-
sine (prefix “cos”). (A) The number of genes with a Benjamini-Hochberg adjusted p-value
below 0.05 (blue) and 0.20 (red) are shown. (B) A comparison of the intersection (below
the diagonal) and union (above the diagonal) of genes identified as rhythmic with Benjamini-
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Hochberg adjusted p-values less than 0.05 for the different methods.
(EPS)

S14 Fig. Using a cosine as a reference waveform instead of a triangle does not produce sub-
stantially different results in annotation terms enriched for in genes identified as cycling.
Annotation terms identified as enriched by DAVID share many similarities and were therefore
grouped. The number of annotation terms enriched in the genes discovered by each method
are shown in grey shading and red numbers. Empirical JTK_CYCLE methods with and without
asymmetry search (“_aby4” and no suffix, respectively) and with a triangle as a reference wave-
form or cosine as a reference waveform (no prefix or “cos”, respectively). The annotation terms
displayed are enriched with Benjamini-Hochberg adjusted p-values below 0.05.
(EPS)

S15 Fig. Comparison of genes identified as cycling by Keegan et al. and empirical
JTK_CYCLE with asymmetry search of 4 h (eJTK_by4). (A) All the genes shown passed the
ANOVA pre-screen, but only the green ones are identified as cycling by Keegan et al. [27].
Higher negative logarithms of p-values are more significant than lower ones: the horizontal
black line indicates a Benjamini-Hochberg adjusted p-value for eJTK_aby4 of 0.05. (B) All the
genes shown were identified as cycling by Keegan et al. The mean and variance of the genes
identified as cycling by Keegan et al. and eJTK_aby4 (blue), are 4.34 and 0.54, respectively. The
mean and variance of the genes identified as cycling by Keegan et al. and but not eJTK_aby4
(red), are 4.75 and 0.56, respectively. (C) All the genes shown were identified as cycling by Kee-
gan et al. The asymmetry of the genes was determined by eJTK_aby4.
(EPS)

S16 Fig. Comparison of genes identified as cycling by Keegan et al., Wijnen et al., and em-
pirical JTK_CYCLE with asymmetry search by 4 h (eJTK_by4). (A) Comparison of genes
identified as rhythmic by Keegan et al. [27], Wijnen et al. [32], and eJTK_by4. Stacked bars are
colored to represent the asymmetry, as determined by eJTK_aby4. eJTK_aby4 identifies more
genes with non-12 h asymmetries than the other methods. “Unassigned” refers to genes that
were excluded from the empirical JTK_CYCLE analysis. (B) For each gene, the references on
FlyBase (http://flybase.org) that mention the gene were identified. The genes identified by
eJTK_by4, Keegan et al., and Wijnen et al. are shown in a histogram with stacked bars colored
to represent the genes being cited by references with “circadian” in the title or abstract, genes
cited in the original five dataset papers, or neither. While there are more genes uniquely identi-
fied by Wijnen et al., there are more total genes identified by eJTK_by4, as well as more genes
that are cited in papers that have “circadian” in their title or abstract.
(EPS)

S17 Fig. Z-score expression time series of cbt, tws, Est-Q, and ABGE averaged across repli-
cate time points.
(EPS)

S18 Fig. KEGG pathway “dme00480: Glutathione metabolism” is enriched in genes identi-
fied as rhythmic by eJTK_aby4. Peak expression (phase) of these genes is mainly in the light
period. (A) Z-scored gene expression of genes from the metadataset involved in glutathione
metabolism averaged across 24 h and interpolated to every 2 h. (B) Phase and asymmetry dis-
tribution of the genes from the metadataset involved in glutathione metabolism.
(EPS)

S19 Fig. Gene ontology “GO:0055114 oxidation reduction” is enriched in genes identified
as rhythmic by eJTK_aby4. Peak expression (phase) of these genes is distributed over 24 h.
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(A) Z-scored gene expression of genes from the metadataset involved in oxidation reduction
averaged across 24 h and interpolated to every 2 h. Black indicates time points where data were
not available (NA). (B) Phase and asymmetry distribution of the genes from the metadataset
involved in oxidation reduction.
(EPS)

S20 Fig. PIR keyword “alternative splicing” is enriched in genes identified as rhythmic by
eJTK_aby4. Peak expression (phase) of these genes is distributed over 24 h. (A) Z-scored gene
expression of genes from the metadataset involved in alternative splicing averaged across 24 h
and interpolated to every 2 h. (B) Phase and asymmetry distribution of the genes from the
metadataset involved in alternative splicing.
(EPS)

S1 Data. This Excel spreadsheet file contains the time series for the metadataset, with offi-
cial gene names, after Z-scoring has been performed.
(XLSX)

S2 Data. This Excel spreadsheet file contains several pages referring to the output of the
rhythm detection methods on the metadataset, as well as the DAVID results for those
methods. The method results provided are all for the metadataset after pre-processing:
eJTK_aby4, eJTK_a12, JTK_BF_aby4, JTK_BF_a12, cos_eJTK_aby4, cos_eJTK_a12, ANOVA,
and F24.
(XLSX)

S3 Data. This Excel spreadsheet file contains several pages referring to the output of the
rhythm detection methods on the metadataset. The method results provided are all for the
metadataset after pre-processing: JTK_BH_aby4, JTK_BH_a12 (these two come with DAVID
results), eJTK_a04-12-20, and eJTK_a08-16.
(XLSX)
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