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Abstract

Understanding emotion is critical for a science of healthy and disordered brain function, but
the neurophysiological basis of emotional experience is still poorly understood. We ana-
lyzed human brain activity patterns from 148 studies of emotion categories (2159 total par-
ticipants) using a novel hierarchical Bayesian model. The model allowed us to classify
which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a
study with 66% accuracy (43-86% across categories). Analyses of the activity patterns en-
coded in the model revealed that each emotion category is associated with unique, proto-
typical patterns of activity across multiple brain systems including the cortex, thalamus,
amygdala, and other structures. The results indicate that emotion categories are not con-
tained within any one region or system, but are represented as configurations across multi-
ple brain networks. The model provides a precise summary of the prototypical patterns for
each emotion category, and demonstrates that a sufficient characterization of emotion cate-
gories relies on (a) differential patterns of involvement in neocortical systems that differ be-
tween humans and other species, and (b) distinctive patterns of cortical-subcortical
interactions. Thus, these findings are incompatible with several contemporary theories of
emotion, including those that emphasize emotion-dedicated brain systems and those that
propose emotion is localized primarily in subcortical activity. They are consistent with com-
ponential and constructionist views, which propose that emotions are differentiated by a
combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-
based models of emotion provide a foundation for new translational and

clinical approaches.
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Author Summary

Neuroimaging provides a unique way of understanding the ‘emotional brain’ by identify-
ing patterns across multiple systems that imbue each instance of emotion with its particu-
lar qualities. In this meta-analysis across 148 studies, we ask whether it is possible to
identify patterns that differentiate five emotion categories—fear, anger, disgust, sadness,
and happiness—in a way that is consistent across studies. Our analyses support this capa-
bility, paving the way for brain markers for emotion that can be applied prospectively in
new studies and individuals. In addition, we investigate the anatomical nature of the pat-
terns that are diagnostic of emotion categories, and find that they are distributed across
many brain systems associated with diverse cognitive, perceptual, and motor functions.
For example, among other systems, information diagnostic of emotion category was found
in both large, multi-functional cortical networks and in the thalamus, a small region com-
posed of functionally dedicated sub-nuclei. Thus, rather than relying on measures in single
regions, capturing the distinctive qualities of different types of emotional responses will re-
quire integration of measures across multiple brain systems. Beyond this broad conclu-
sion, our results provide a foundation for specifying the precise mix of activity across
systems that differentiates one emotion category from another.

Introduction

Emotions are at the center of human life. Emotions play a crucial role in forging and maintain-
ing social relationships, which is a major adaptation of our species. They are also central in the
diagnosis and treatment of virtually every mental disorder [1]. The autonomic and neuroendo-
crine changes that accompany emotional episodes may also play an important role in physical
health via peripheral gene expression and other pathways (e.g., [2]).

Because of their broad relevance, developing models of brain function to characterize and
predict emotional experience is of paramount importance in the study of health and behavior.
In animals, substantial progress has been made in linking motivated behaviors such as freezing
(e.g. [3]), flight (e.g. [4]), reward pursuit (e.g. [5]), and aggressive behavior (e.g. [6]) to specific
brain circuits. However, emotional experiences in humans are substantially more complex.
Emotions such as fear emerge in response to complex situations that include basic sensory ele-
ments such as threat cues [7] as well as mental attributions about context information (e.g., the
belief that one is being socially evaluated [8] and one’s own internal states [9,10]. A specific
emotion category, like fear, can involve a range of behaviors, including freezing, flight, aggres-
sion, as well as complex social interactions. Thus, in spite of groundbreaking advances in un-
derstanding the circuitry underlying basic behavioral adaptations for safety and reproduction
(including ‘threat’ behaviors; [11]), there is no comprehensive model of the neurophysiological
basis of emotional experience in humans.

While at first blush it might seem that we know a lot about the brain processes underlying
specific types of emotional experience, such as ‘anger,’ ‘sadness,” ‘happiness,’ etc., it is not obvi-
ous that any brain pattern specific to an emotion category and reproducible across studies exists.
The first two decades of neuroimaging saw hundreds of studies of the brain correlates of
human emotion, but a central problem for the field is that the regions most reliably activated—
e.g., the anterior cingulate, anterior insula, amygdala, and orbitofrontal cortex—are activated
in multiple categories of emotions [12], and during many other sensory, perceptual and cogni-
tive events [11,13]. Thus, activation of these regions is not specific to one emotion category or
even emotion more generally. And, while there are many findings that seem to differentiate
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one emotion type from another, it is not clear that these findings are reliable enough (with suf-
ficiently large effects) or generalizable enough across studies to meaningfully use brain infor-
mation to infer what type of emotion was experienced.

Recently, studies have begun to take a pattern-based view, using multivariate pattern analy-
ses to ‘decode’ affective and emotional experiences [14-18] and related affective psychopathol-
ogy [19-21]. For example, in an innovative recent study, Kassam and colleagues [14] identified
patterns of fMRI activity that distinguished multiple emotion categories. Though very promis-
ing, such approaches are limited in two basic ways. First, they are not really models of the gen-
erative processes sufficient to characterize a particular type of emotional experience. For
example, the most common method uses Support Vector Machines to discriminate affective
conditions (e.g., depressed patients vs. controls; [19]), and to discriminate 5 emotions, 10 sepa-
rate maps (5 choose 2) are required for ‘brute-force’ pattern separation. Other models, such as
the Gaussian Naive Bayes approach [14], rely on differnces in activity patterns without captur-
ing any of the interactions among brain regions that are likely critical for differentiating affec-
tive states [20,22,23]. Secondly, like univariate brain mapping, these approaches are beginning
to yield a collection of patterns that seem to differentiate one affective state or patient group
from another, but it remains to be seen how generalizable these predictive models are across
studies, task variants, and populations. If history is a guide, in the area of emotion, the patterns
that appear to reliably distinguish emotion categories may vary from study to study (e.g., [24]
vs. [25]), making it difficult to identify generalizable models of specific emtion types.

The study presented here directly addresses both these issues. In this paper, our goal was to
develop a generative, brain-based model of the five most common emotion categories—fear,
anger, disgust, sadness, and happiness—based on findings across studies. Developing such a
model would provide a rich characterization of the ‘core’ brain activation and co-activation
patterns prototypical of each emotion category, which could be used to both make inferences
about the distinctive features of emotion categories and their functional similarities across the
brain or in specific systems. In addition, a useful model should be able to go beyond identifying
significant differences across emotion categories and provide information that is actually diag-
nostic of the category based on observed patterns of brain activity. From a meta-analytic data-
base of nearly 400 neuroimaging studies (6,827 participants) on affect and emotion, we used a
subset of studies (148 studies) focused on the five emotion categories mentioned above to de-
velop an integrated, hierarchical Bayesian model of the functional brain patterns
underlying them.

We used this model to address two broad questions that have been of sustained interest in
emotion research, and which are fundamental to the development of a more complete model
of emotional experience. First, we asked whether it is possible to identify patterns of brain ac-
tivity diagnostic of emotion categories across contexts and studies. Second, we asked whether
emotion categories can be localized to specific brain structures or circuits, or to more broadly
distributed patterns of activity across multiple systems. For many decades, scientists have
searched to no avail for the brain basis of emotion categories in specific anatomical regions—
e.g., fear in the amygdala, disgust in the insula, etc. The amygdala and insula are involved in
fear and disgust, but are neither sufficient nor necessary for their experience. Conversely, emo-
tions in both categories engage a much wider array of systems assumed to have cognitive, per-
ceptual, and sensory functions [12], and damage to these systems can profoundly affect
emotionality [26,27]. This multi-system view of emotion is consistent with network-based the-
ories of the brain’s functional architecture [28,29] that have gained substantial traction in re-
cent years. Based on these findings, we predicted that anger, sadness, fear, disgust and
happiness emerge from the interactions across distributed brain networks that are not specific
to emotion per se, but that subserve other basic processes, including attention, memory, action,
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and perception, as well as autonomic, endocrine, and metabolic regulation of the body [30,31].
Empirical support for this network approach to emotion has begun to emerge in individual ex-
periments (e.g., [14,32-36]), and in task-independent (“resting-state”) analyses [37]. In Kassam
et al. [14], for example, emotion category-related fMRI activity was widely distributed across
the brain; and the same is true for recent work predicting depression from brain activity [19],
again illustrating the need for a network approach.

Meta-analysis is uniquely suited to addressing our two questions because it examines find-
ings from many studies and laboratories that utilize different procedures, stimuli, and samples.
Our analysis included 148 PET and fMRI studies published from 1993 to 2011 (377 maps,
2159 participants) that attempted to specifically cultivate one of the five most commonly stud-
ied categories of emotion—happiness, fear, sadness, anger, and disgust. The studies were rela-
tively heterogeneous in their methods for eliciting emotion (the most common were visual,
auditory, imagery, and memory recall), and in the stimuli used (faces, pictures, films, words,
and others). There was some covariance between emotion categories and elicitation methods
(S1 Table), and we assessed the impact of this in several analyses. Studies used both male and
female participants, primarily of European descent. The goal of our analysis was to test whether
each emotion category has a unique signature of activity across the brain that is consistent de-
spite varying methodological conditions (ruling out the possibility that emotion activity maps
differ systematically because of method variables), providing a provisional brain ‘signature’ for
each emotion category.

The Bayesian Spatial Point Process (BSPP) Model

To develop a model for emotion categories and test its accuracy in diagnosing the emotions
being cultivated in specific studies, we constructed a generative, Bayesian Spatial Point Process
(BSPP) model of the joint posterior distribution of peak activation locations over the brain for
each emotion category (see Methods and [38]). The BSPP model is a hierarchical Bayesian re-
presentation of the joint density of the number and locations of peak activations within a study
(i.e., X, y, z coordinates) given its particular emotion category. The BSPP model differs from
standard univariate [12,13,39] and co-activation based [40,41] approaches to meta-analysis in
several fundamental ways. For instance, Activation Likelihood Estimation (ALE), multi-level
kernel density analysis (MKDA), and co-activation approaches are 1) not generative models of
the emotion, and 2) not multivariate in brain space. Because they are not generative models,
standard analyses provide only descriptive, summary maps of activity or bivariate co-activation
for different psychological states.

The BSPP, by contrast, can be used to predict the number and locations of activation in a
new study given its emotion category and the probability that a new study will contain peak ac-
tivations within a particular region or regions. The generative (or ‘forward’) model estimates a
set of brain locations, or ‘population centers’, that are consistently active during instances of a
given emotion category. Stochastic sampling from these population centers with study-level
variation (in methods, pre-processing, statistical analysis, etc.) and measurement-level spatial
noise is assumed to generate the observed data. The result is a rich, probabilistic representation
of the spatial patterns of brain activity associated with each emotion category. Once estimated,
the model can be used to [1] investigate the brain representations for each emotion implicit in
the model and [2] infer the most likely emotion category for a new study based on its pattern
of activation (‘reverse’ inference).

The generative model concerns the process by which emotional instances of a given catego-
ry produce observed peak activation foci, and the likelihood with which they do so. Activation
data from studies or individuals are modeled at three hierarchical levels (see Methods and [38]
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A BAYESIAN SPATIAL POINT PROCESS MODEL

for more details). At Level 1 is the individual study data, in the form of peak coordinate loca-
tions. Level 2 models the activation centers across study with a data-generating focus that can
result in variable numbers of reported locations depending on the smoothness in the image
and analysis/reporting choices. Level 3 models the location of ‘true’ population centers for each
emotion category with a probability distribution over space specified by the model.

The model parameters—including the number and locations of population centers and spa-
tial variation at study and peak levels—were estimated by fitting the model to peak activation
coordinates from our database using Markov Chain Monte Carlo (MCMC) sampling with a
generative birth-and-death algorithm for population centers. The MCMC procedure draws
samples from the joint posterior distribution of the number and locations of peak activations
in the brain given an emotion category. The posterior distribution is summarized in part by the
intensity function map representing the spatial posterior expected number of activation or pop-
ulation centers in each area across the brain given the emotion category; this can be used to in-
terpret the activation pattern characteristic of an emotion category (Fig. 1A). Since the BSPP
models the joint distribution of the number and locations of a set of peak coordinates, the pos-
terior distribution also includes information about the co-activation across voxels; thus,
MCMC samples drawn from it can be used to infer on the co-activation patterns and network
properties for each emotion category (discussed below).

B CLASSIFICATION ACCURACY
Anger H 0.07 0.28 0.15 0.08
Q Disgust 0.03 0.08 0.08 0.06

Intensny function map

True class

1 Fear 0.02 0.06 0.03
Findings from studies Model of study (level 2) Happy 0.00 0.07
and population (level 3)
centers Classification model sad 0.00 007 020 0.09
Anger Disgust Fear Happy Sad
C ESTIMATED INTENSITY MAPS FOR FIVE EMOTION CATEGORIES Classification based on brain
Anger Disgust Fear Happy

c Y Yoy

Fig 1. Classification of emotion category using the Bayesian Spatial Point Process model. A) A schematic of the method, which models the population
density of activation across the brain with a sparse set of multivariate Gaussian distributions at two levels (study center and population center). The intensity
function map summarizes the expected frequency of activation conditional on an emotion category. The model also represents the joint activation across
multiple brain regions, which is not captured in the intensity map. The model can also be used for classification by calculating the conditional likelihood of
each emotion category given a set of foci using Bayes’ rule. B) Confusion matrix for the 5-way classification of emotion category based on the model.
Diagonal entries reflect classification accuracy. C) The intensity maps for each of the 5 emotion categories. Intensity maps are continuous over space, and
their integral over any portion of the brain reflects the expected number of activation centers in that area for all studies with a particular emotion. The maps are
thresholded for display at a voxel-wise intensity of 0.001 or above.

doi:10.1371/journal.pcbi.1004066.9001
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Results
Predicting Emotion Categories from Patterns of Brain Activity

We applied the BSPP model to ‘decode’ each study’s emotion category from patterns of brain
activity in our meta-analytic database. Once the Bayesian model is estimated, it can be inverted
in a straightforward manner to estimate the posterior probability of each emotion category
given a set of brain activation coordinates (see Methods). We used Bayes rule to obtain these
probabilities, assuming no prior knowledge of the base-rate of studies in each category (i.e., flat
priors), and used leave-one-study-out cross-validation so that predictions were always made
about studies not used to train the model. The model performed the five-way classification of
emotion categories with accuracy ranging from 43% for anger to 86% for fear to (mean bal-
anced accuracy = 66%; Fig. 1B; S1 Table); chance was 20% for all categories, and absence of
bias was validated by a permutation test. The BSPP model outperformed both a Naive Bayes
classifier (mean accuracy was 35%) and a nonlinear support-vector-machine based classifier
(mean accuracy was 33%; see Supplementary Methods for details), confirming its utility in dis-
tinguishing different emotion categories.

Next, we examined whether the covariance between emotion categories and the methods
and stimuli used to induce emotion (S1 Fig) contaminated the classification accuracies. For in-
stance, 23% of the studies used recall and 50% used visual images to induce sadness, whereas
2% of studies used recall and 90% used visual images to induce fear. Thus, patterns for sadness
vs. fear might be differentiable because the different stimuli elicit different brain responses. We
verified that classification results were essentially unaffected by controlling for induction meth-
od (40-83% accuracy across the five emotion categories, and 61% on average; S1 Table). We
also attempted to predict the emotion category using several methodological variables, includ-
ing the method of elicitation (the most common were visual, auditory, imagery, and memory
recall), stimulus type (faces, pictures, films, words, and others), participant gender, control con-
dition, and imaging technique (PET or fMRI). Several of these variables accurately classified
some emotion categories in the five-way classification (S2 Table), but no methods variable per-
formed as well as the original BSPP model in accuracy. Stimulus type, task type, and imaging
technique predicted emotion significantly above chance, at 32%, 26%, and 26% accuracy, re-
spectively. Elicitation method, participant sex, and control condition for the emotion contrasts
were at 24%, 21%, and 18%, respectively, all non-significant). Thus, although there are some
dependencies between the methods used and the emotion categories studied, the emotion cate-
gory patterns that we identified with our BSPP approach appeared to generalize across the dif-
ferent methods (at least as represented in our sample of studies).

Fig. 1C shows the intensity maps associated with each emotion category. The distinctiveness
for each emotion category was distributed across all major regions of the cortex, as well as in
subcortical regions, as supported by additional analyses described below. Notably, limbic and
paralimbic regions such as the amgydala, ventral striatum, orbitofrontal cortex (OFC), anterior
cingulate cortex (ACC), brainstem, and insula were likely to be active in all emotion categories,
though with different and meaningful distributions within each region (as shown in analyses
below). In addition, regions typically labeled as ‘cognitive’ or ‘perceptual” were also engaged
and potentially differentially engaged across categories, including ventromedial, dorsomedial,
and ventrolateral prefrontal cortices (vmPFC, dmPFC, and vIPFC), posterior cingulate (PCC),
hippocampus, and medial temporal lobes, and occipital regions.
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Emotion-Predictive Brain Patterns: Relationships to Known Intrinsic
Networks

To characterize the BSPP intensity maps, we calculated the mean intensity for each emotion
category in 49 a priori regions and networks, which together covered the entire brain (Fig. 2A).
For cortical, basal ganglia, and cerebellar networks, we used results from Buckner and col-
leagues [42-44], who identified seven networks with coherent resting-state connectivity across
1,000 participants. Each of the seven included a cortical network and correlated areas within
the basal ganglia (BG) and cerebellum. We supplemented these networks with anatomical sub-
regions within the amygdala, hippocampus, thalamus, and the brainstem and hypothalamus.
We tested whether a) broad anatomical divisions (e.g., cortex, amygdala) showed different
overall intensity values across the five emotion categories; and b) whether the ‘signature’ of ac-
tivity across networks within each division differed significantly across emotions (S3 Table).
Our broad goal, however, was not to exhaustively test all emotion differences in all regions, but
to provide a broad characterization of each emotion category and which brain divisions are im-
portant in diagnosing them.

A RESTING-STATE NETWORKS ANATOMICALLY DEFINED REGIONS
dAN SMN

Hippocampus Thalamus
Prefrontal Premotor
Motor

L . Amygdala
Cortex Basal ganglia Cerebellum Braifatem
B ~ Cortex Amygdala
"*‘“‘-‘":T _L—---x\\ s B e Bl C FACTORIZATION OF CORTICAL NETWORKS
vAttention [ ]
Y 3 @ Anger
/ x 10 Q Fear
N N © Disgust
\ » | . 8 O Happy
\ ~ / / A 2. @ Sad
Limbie ™\ - / / \ )
N = o f
— - Default — o
R S i
Frontoparietal ) FR ““/ (=]
Basal Ganglia Thalamus visual/default/ 4
ot e T -
// 3 “x\.iomaromotor PECR _/"’\__q._h'“‘\ ParL
. \ 5 3
Premotor L _"_/ { \__\ MotorR 2 4 6 8
I "
{ | N x 102
Visual Premotor R, | Motorl Somatomotar/ \
| | : / : ]
\ i visual/vAttention
somL // visR NS
~ f ' A
somR T _ " Wis
TemL TemR

Fig 2. Emotion-predictive patterns of activity across cortical networks and subcortical regions. A) Left: Seven resting-state connectivity networks
from the Buckner Lab with cortical, basal ganglia, and cerebellar components. Colors reflect the network membership. Right: Published anatomical
parcellations were used to supplement the resting-state networks to identify sub-regions in amygdala (131), hippocampus (131, 132), and thalamus (133).
dAN: dorsal attention network; Def: default mode network; FPN: fronto-parietal network; Limbic: limbic network; SMN: somatomotor network; vAN: ventral
attention network; Vis: visual network. B) The profile of activation intensity across the 7 cortical and basal ganglia resting-state networks, and anatomical
amygdalar and thalamic regions. Colors indicate different emotion categories, as in Fig. 1. Red: anger; green: disgust; purple: fear; yellow: happiness; blue:
sadness. Values farther toward the solid circle indicate greater average intensity in the network (i.e., more expected study centers). C) Two canonical
patterns estimated using non-negative matrix factorization, and the distribution of intensity values for each emotion across the two canonical patterns. The
colored area shows the 95% joint confidence interval (confidence ellipsoids) derived from the 10,000 Markov chain Monte Carlo samples in the Bayesian
model. Non-overlapping confidence ellipsoids indicate significant differences across categories in the expression of each profile.

doi:10.1371/journal.pcbi.1004066.9002
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Cortical patterns. Overall, different emotion categories involved reliably different patterns
of activation across these anatomically circumscribed zones (Figs. 2B, S3 and S3 Table), and il-
lustrate how the BSPP model can be used to draw inferences across multiple anatomical levels
of analysis.

There are three salient features of the overall cortical architecture for emotion categories.
First, there were few differences among emotion categories in the overall level of cortical en-
gagement (summarized in S3 Table). Second, no emotion category mapped to any single corti-
cal network, but emotion categories could be distinguished by significant differences in their
profiles across networks (Fig. 2B, p <. 001 overall; S3 Table). To identify patterns across the
seven cortical networks, we used non-negative matrix factorization [45] to decompose these in-
tensity values into two distinct profiles (Fig. 2C). These profiles were differentially expressed by
different emotions (p < 0.01) and showed significant differences in 8 of the 10 pairwise com-
parisons across emotions (q < 0.05 FDR corrected; S3 Table). Adopting Buckner et al.’s termi-
nology for the networks, we found that anger and fear categories were characterized by a
profile that included mainly involved the ‘dorsal attention,” ‘visual’ (occipital), ‘frontoparietal,’
‘limbic,” and ‘default mode’ networks. Patterns for disgust, sadness, and happiness categories
were characterized by moderate activation of this profile and high intensity in a second profile
that included the ‘ventral attention,” ‘somatomotor,” and ‘visual” networks (Fig. 2C). When
combined, these two profiles differentiated all five emotion categories to some degree, as can be
seen in the nearly non-overlapping probability density functions (colored regions in Fig. 2C).
Third, the grouping of emotion categories in terms of cortical activity profiles did not match
folk conceptions of emotions (e.g., [46]) or the dimensions identified in behavioral emotion re-
search [47]. For example, happiness and disgust categories (one ‘positive’ and one ‘negative’
emotion) produced very similar profiles, but disgust and fear categories (both high-arousal
negative emotions) produced very different profiles.

Subcortical patterns. Different patterns across emotion categories were also discernable
in subcortical zones including the amygdala, thalamus, brainstem/cerebellum, and basal gan-
glia (Fig. 2B). Non-negative matrix factorization again produced distinct profiles for each
emotion category (S3 Fig), reveals several additional characteristics over and above the corti-
cal profiles. First, as with cortical networks, the largest differences were not overall intensity
differences across emotion categories, but rather the profile of differences across sub-regions.
Even the zones most differentially engaged in terms of average intensity, such as the amgy-
dala (Fig. 2B), showed appreciable intensity in all five emotion categories (see also Fig. 1),
consistent with previous meta-analyses. Second, whereas cortical networks discriminated the
fear and anger categories from the other emotions, hippocampal and cerebellar/brainstem
profiles discriminated fear from anger (q < 0.05 FDR; S3 Fig and S3 Table). Third, the rela-
tionships between cortical, BG, and cerebellar networks varied across emotion categories. For
example, the anger category produced the highest intensity in the cortical ‘dorsal attention’
network, whereas in the BG ‘dorsal attention’ zone, the disgust category was high and the
anger category was low (Fig. 2B). This suggests that the network coupling as observed in
task-independent data (i.e., ‘resting-state’) is not preserved when emotional experiences are
induced. Thalamic areas connected with motor and premotor cortices were most activated in
fear and disgust categories, as were ‘somatomotor’ BG regions, but the ‘somatomotor’ cortical
network is low in disgust and fear categories. These patterns suggest that simple characteriza-
tions such as more vs. less motor activity are insufficient to characterize the brain representa-
tions of emotion categories.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004066 April 8, 2015 8/27
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Network Co-activation Differences among Emotion Categories

One of the important differences between the BSPP model and previous meta-analytic ap-
proaches is that is it sensitive to co-activation patterns across regions. By saving the average in-
tensity values for each region/network from each MCMC iteration, we were able to estimate
the co-activation intensity as the correlation between average intensity values for each pair of
regions. We used a permutation test to threshold the co-activation estimates (using the most
stringent of the q <. 05 FDR-corrected thresholds across categories).

Fig. 3 shows that each emotion category was associated with a qualitatively different config-
uration of co-activation between cortical networks and subcortical brain regions. In Fig. 3A,
force-directed graphs of the relationships among the 49 anatomical regions/networks demon-
strate very different topological configurations for the five emotion categories. In these graphs,
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Fig 3. Co-activation graphs for each emotion category. A) Force-directed graphs for each emotion category, based on the Fruchterman-Reingold spring
algorithm (134). The nodes (circles) are regions or networks, color-coded by anatomical system. The edges (lines) reflect co-activation between pairs of
regions or networks, assessed based on the joint distribution of activation intensity in the Bayesian model (Pearson’s r across all MCMC iterations) and
thresholded at P <. 05 corrected based on a permutation test. The size of each circle reflects its betweenness-centrality (48, 49), a measure of how strongly it
connects disparate networks. (B) The same connections in the anatomical space of the brain. One location is depicted for each cortical network for
visualization purposes, though the networks were distributed across regions (see Fig 3A). C) Global network efficiency (see refs. (135, 136)) within (diagonal
elements) and between (off-diagonals) brain systems. Global efficiency (135, 136) is defined as the inverse of the average minimum path length between all
members of each group of regions/nodes. Minimum path length is the minimum number of intervening nodes that must be traversed to reach one node from
another, counting only paths with statistically significant associations and with distance values proportional to (2—Pearson’s r), rather than binary values, to
better reflect the actual co-activation values. Higher efficiency reflects more direct relationships among the systems. Values of 0 indicates disjoint systems,
with no significant co-activation paths connecting any pair of regions/networks, and values of 1 indicate the upper bound of efficiency, with a perfect
association between each pair of regions. Co-activation is related to connectivity and network integration, though all fMRI-based connectivity measures only
indirectly reflect actual neural connections. Efficiency is related to the average correlation among regions (r = 0.76) but not the average intensity (r = 0.02; see
S5 Fig).

doi:10.1371/journal.pcbi.1004066.9003
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regions and networks are represented by circles (nodes), with significant co-activations (edges)
represented as lines. The size of each circle reflects the region/network’s betweeness centrality
[48,49], a graph-theoretic measure of the degree to which a region/network is a ‘connector’ of
multiple other regions. Colors reflect membership in six cerebral zones: Cortex, basal ganglia,
cerebellum/brainstem, thalamus, amygdala, and hippocampus. Fig. 3B shows the same graph’s
relationships in anatomical brain space. Finally, Fig. 3C shows estimates of average co-activa-
tion within (diagonals) and between (off-diagonals) the six cerebral zones. The co-activation
metric reflects global efficiency, based on the average shortest path length, a graph theoretic
measure of the shortest path connecting the regions in the co-activation graphs, and was calcu-
lated as the average (1/path length) between pairs of regions/networks.

Emotion patterns were distinguished by both their patterns of co-activation and by the re-
gions that are ‘connectors.” The anger category is characterized by relatively strong and uni-
form connections across cerebral zones compared to other emotion categories, with strong co-
activation among cortical, basal ganglia, and cerebellar networks, and other regions, particular-
ly the right amygdala. Connectors (90" percentile in betweenness-centrality) include the cor-
tical frontoparietal network, right amygdala, and brainstem. (Visual cortex was a connector for
all emotion categories except sadness). In disgust, by contrast, cortical networks connect to
basal ganglia regions and serve as a bridge to an otherwise isolated cerebellum. Connectors in-
clude the somatomotor basal ganglia network and brainstem. The fear category is marked by
reduced co-activation among cortical networks and between cortex and other structures, but
the basal ganglia are tightly integrated with the amygdala and thalamus. In happiness, intra-
cortical co-activation is higher, but cortical-subcortical co-activation is low, and connectors in-
clude the limbic cortical network, motor thalamus, and visual basal ganglia and cerebellum.
Sadness is characterized by dramatically reduced co-activation within the cortex, between cor-
tex and other regions, and between cerebellum and other regions. Intra-thalamic, intra-basal
ganglia, and intra-cerebellar co-activation are relatively preserved, but large-scale connections
among systems are largely absent. Connectors include the limbic cerebellum, brainstem, two
hippocampal regions, and the left centromedial amygdala.

Discussion

The results of our BSPP model indicate that emotion categories are associated with distinct pat-
terns of activity and co-activation distributed across the brain, such that there is a reliable brain
basis for diagnosing instances of each emotion category across the variety of studies within our
meta-analytic database. The brain patterns are sufficient to predict the emotion category tar-
geted in a study with moderate to high accuracy, depending on the category, in spite of sub-
stantial heterogeneity in the paradigms, imaging methods, and subject populations used.

The accuracy levels for predicting emotion category (43-86%) are substantially above
chance (20%) but below 100%, though they may be close to the limit that can be obtained using
such a heterogeneous population of studies, particularly given power issues due to small sample
sizes in most studies. In addition, the results have much greater specificity than the two-choice
classifications that are most common in fMRI studies. For example, though anger has only a
43% sensitivity, it has 99% specificity. In addition, the positive predictive value is above 60%
and negative predictive value above 89% for all categories (see Table 1). This means that if an
emotion is classified as an instance of a particular category, there is at least a 60% chance that it
truly belongs to the category; and if not classified as an instance of a category, there is at least a
~90% chance that it truly is not an instance.

However, the major value of the model is not merely in inferring the emotion category from
brain data in new studies, but in characterizing a canonical, population-level representation of
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Table 1. Population centers and 5-way emotion-classification performance.

Anger
Number of population centers
Mean 51.53
SD 2.64
Median 52
UCL 46
LCL 57
Model Performance
Sensitivity .43
Specificity .99
PPV .89
NPV .89

Disgust Fear Happy Sad
35.68 40.4 31.47 34.51
2.44 1.99 2.26 2.16
36 40 31 35

3il 36 27 30

41 44 36 39
.76 .86 .59 .65
.94 .80 91 .94
74 .63 .62 .67
.95 .94 .90 .93

Note: Number of population centers refers to the estimated number of discrete brain regions activated for each emotion category. SD denotes standard
deviation, and UCL and LCL denote upper and lower 95% posterior credible intervals, respectively. Model performance includes the hits rate (sensitivity),
correct rejection rate (specificity), positive and negative predictive values (PPV and NPV) for a test classifying each study as belonging to an emotion
category or not based on its reported brain foci. Performance statistics are based on leave-one-study-out cross-validated results.

doi:10.1371/journal.pcbi.1004066.t001

each emotion category that can constrain the development of theories of emotion and brain-
based modeling and prediction in individual studies. Whereas emotion-predictive features de-
veloped by multivariate pattern analyses (MVPA) within individual studies can be driven by
task- or subject-related ideosyncracies and fail to generalize, a strength of the representations
we have identified is that, because they were trained across heterogeneous instances, they are
likely to reflect generalizable features. Below, we discuss the value of the generative BSPP

model as a computational technique for characterizing emotion, and the implications for theo-
ries of emotion and brain network science.

The Value of the Generative BSPP Model as a Computational Approach

Because it is a generative model, the BSPP model of emotion categories is capable of making
predictions about new instances. Other methods—such as our previous MKDA analyses, ALE
analyses, and bivariate co-activation analyses that we and others have developed—are not gen-
erative models, and would not be expected to be appropriate to or perform well

in classification.

In addition, unlike 'brute force' pattern classification algorithms, we can classify emotions
with a single, generative representation of each emotion category. For example, when using
Support Vector Machines to discriminate the five categories, ten separate classifier maps
(5-choose-2) are required to predict the category, rather than relying on a single representation
of each category and the likelihood that a particular study belongs to it. In addition, the nonlin-
ear SVM model we adapted for meta-analytic classification performs substantially more poorly
in classification.

In the BSPP model, each representation includes information about both activation and co-
activation across systems. However, unlike data-driven pattern classification models, this
model can be queried flexibly—i.e., here, we present graphs of bivariate (2-region) co-activa-
tion strengths, but other, more comprehensive summaries can be used, including those that
were not explicitly used in model training. For example, we demonstrate this by using non-neg-
ative matrix factorization (NNMF) to derive canonical profiles of activation across cortical and
subcortical systems. We then re-calculate the model likelihood according to the new metric of
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canonical profile activation, without re-fitting the model, and are able to make statistical infer-
ences about the differences among emotion categories in that new feature space. This flexibility
is a hallmark of generative Bayesian models that provides advantages in allowing researchers to
test new metrics, features, and patterns, rather than being limited to a fixed set of features such
as pair-wise correlations.

Beyond these considerations of methodology and broad interpretation, the present findings
bear on theories of emotion, and the ways in which studies look for the hallmarks of particular
emotional experiences, in novel and specific ways. We elaborate on some of these below.

New Implications for Emotion Theories

External vs. internal response demand: A new way of grouping emotions. The present
findings constitute a brain-based description of emotion categories that does not conform to
emotion theories that are based on the phenomenology of emotion. Our findings do not sup-
port basic emotion theories [46], which are inspired by our phenomenology of distinct experi-
ences of anger, sadness, fear, disgust and happiness that should be mirrored in distinct
modules that cause each emotion. According to such theories, each emotion type arises from a
dedicated population of neurons that are [1] architecturally separate, [2] homologous with
other animals and [3] largely subcortical or paralimbic (e.g., infralimbic-amygdala-PAG).
Many theories also assume that the signature for an emotion type should correspond to activa-
tion in a specific brain region or anatomically modular circuit (e.g., [50]), usually within sub-
cortical tissue (e.g., [51]). In a recent review of basic emotion theories, Tracy wrote that the
“agreed-upon gold standard is the presence of neurons dedicated to an emotion’s activation”
([52], p. 398).

Our findings do not support theories that adhere to those tenets. The areas of the brain suf-
ficient to represent and classify emotion category in our results are not architecturally separate,
and include cortical networks that may not have any direct homologue in nonhuman primates
[53]. Our results suggest these cortical networks act as a bridge between subcortical systems in
different ways, depending on the emotion category, which is consistent with the anatomy and
neurophysiology of cortical-subcortical circuits (e.g., [54]). Though we do not have the resolu-
tion to examine small, isolated populations of cells (see below for more discussion), we are not
aware of findings that identify single neurons dedicated to one specific type of emotion within
prefrontal, somatosensory, and other networks. Thus, the weight of evidence suggests that cor-
tical networks are centrally and differentially involved in emotion generation and that they are
not conserved across species.

However, if our findings do not conform to predictions from basic emotion theories, nor do
our findings support so-called ‘dimensional approaches’ to emotion based on phenomenologi-
cal experience [47,55,56]. Valence, arousal, and approach-avoid orientation are descriptors
that are fundamental at the phenomenological level, but not necessarily at the level of brain ar-
chitecture that we studied here. Thus, theories of emotion have been underconstrained at the
neurophysiological level, with an absence of specific human brain data on the necessary and
sufficient conditions to differentiate across emotion categories, and our findings can inform
the evolution of emotion theories in specific ways.

We found that in the cortex, anger and fear categories are very similar, and preferentially ac-
tivate 'dorsal attention,' fronto-parietal,' and 'default mode' networks (as defined by resting-
state connectivity). Happiness, sadness, and disgust categories belong to another, distinct
group, with preferential activity in somatomotor and 'ventral attention' (or 'salience’) networks.
This distinction is pronounced and strong in this dataset, and it cannot be explained by the
methodological variations across studies that we examined. Importantly for emotion theories,
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neither can it be explained by traditional emotion concepts: The 'ventral attention' group in-
cludes two negative emotions (disgust and sadness) and one positive one (happiness), and one
most often labeled as high-arousal (disgust) and two as low-arousal (happiness and sadness), at
least with respect to the in-scanner paradigms typically used in these studies (that is, sadness
can be high-arousal, but in-scanner sadness manipulations are typically low-arousal). One
emotion is traditionally categorized as approach-related (happiness), and two as avoidance-re-
lated (sadness and disgust). The 'dorsal attention' group contains two negative emotions, one
traditionally categorized as approach (anger) and one as avoidance-related (fear). Thus, the
structure that emerges by examining the cortical patterns of activity across emotion categories
is not likely to be explainable in terms of any of the traditional phenomenological dimensions
used in emotion theories.

This pattern of findings suggests a potential new dimension around which emotional brain
systems may be organized. The 'dorsal attention' and 'fronto-parietal’ networks are consistently
engaged by tasks that require the allocation of attentional resources to the external world, par-
ticularly as guided by task goals [57,58]. By contrast, the ventral attention network (which is
largely spatially overlapping with the so-called salience network [59]) includes (a) more ventral
frontoparietal regions consistently engaged during exogenously cued, more automatic process-
ing of events, and (b) cingulate, insular, and somatosensory regions (e.g., SII) that are targets of
interoceptive pathways that carry information about pain, itch, and other visceral sensations
(for reviews, see [30,60]). The default mode network may provide a bridge between conceptual
cortical processes and visceromotor, homostatic, and neuroendocrine processes commonly as-
sociated with affect [61], including the shaping of learning and affective responses based on ex-
pectations [62]. It is consistently engaged during conceptual processes such as semantic
memory [63], person perception [64,65], and prospection about future events [66], as well as
in emotion [36,67], valuation, and conceptually driven autonomic and neuroendocrine re-
sponses [68-70] and their effects on cognition [71]. Thus, the modal patterns we observed sug-
gest that anger and fear categories preferentially engage cortical processes that support an
‘external orientation/object focused' schema, characterized by goal driven responses where ob-
jects and events in the world are in the foreground. By contrast, sadness, happiness, and disgust
engage cortical patterns that support an internal orientation/homeostatic focused schema,
characterized by orientation to immediate somatic or visceral experience, which prioritizes
processing of interoceptive and homeostatic events.

In sum, the new dimension of goal driven/external object focused vs. reactive/internal ho-
meostasis-focused, rather than traditional phenomenological dimensions, may be important
for capturing distinctions between emotion categories respected by gross anatomical
brain organization.

Further implications for dimensional models: Re-thinking the nature of valence. The
importance of the external/object versus internal/interoceptive dimension is also reflected in
the surprising observation that our attempts to classify positive versus negative valence across
the entire set largely failed. The finding that emotion categories are a better descriptor than va-
lence categories provides new information about how emotion categories are represented in
brain systems. We are in no way claiming that positive and negative valence is unimportant. At
the microscopic level, separate populations of neurons within the same gross anatomical struc-
tures appear to preferentially encode positively versus negatively valenced events [72-74]. Va-
lence may be an aspect of emotional responses that is particularly important subjectively, but is
not the principal determinant of which brain regions are engaged during emotional experience
at an architectural level. By analogy, the loudness of a sound has important subjective and be-
havioral consequences; but the brain does not contain a separate "loud sound system" and "soft
sound system." Because valence is important, it has been widely assumed that the brain must
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contain separate systems for positive and negative valence. Our results suggest they may be as-
pects of processing within emotion systems. In support of this view, recent work has demon-
strated that emotions frequently thought of as univalent, such as sadness, can be experienced as
either positive or negative, depending on the context.

The importance of specific, differentiated patterns of cortical-subcortical interactions.
Though we focus mainly on the cortex in our interpretations above, we are not claiming that
cortical patterns alone are sufficient to fully characterize differences across emotion categories.
Cortical-subcortical interactions have been central to emotion since the term ‘limbic system’
was coined (e.g., [75]). Subcortical responses are likely equally or more important, and show
different organizational patterns. The pattern of cortico-cerebellar connectivity differs marked-
ly across emotion categories (see Table 2): In anger, fronto-parietal cortex is co-activated posi-
tively with amygdala and cerebellum, and the dorsal attention network is negatively associated
with cerebellar activation; in disgust, somatomotor cortex associations with basal ganglia domi-
nate; in fear, visual-subcortical (esp. amygdala) co-activation dominates. And, perhaps most
prominently, sadness is characterized by a profound lack of co-activation between cortical and
subcortical cerebellar/brainstem networks, and a strong, preserved co-activation of hindbrain
(cerebellar/brainstem) systems.

With regard to sadness, this pattern might suggest reduced higher brain control over evolu-
tionarily ancient hindbrain visceromotor functions—which are otherwise capable of mediating
many types of affective responses and even affective learning without the rest of the brain [76-
78], producing a loss in flexibility. This pattern might provide hints as to why psychopathology,
and depression in particular, frequently impairments in the ability to describe emotional expe-
rience in a fine-grained, contextualized manner (e.g., alexithymia), which is a risk factor for
multiple psychiatric conditions (e.g., [79-83]). They also provide a new way of thinking about
the reasons for the observed benefits of subgenual cingulate cortical stimulation for depression
[84], as the subgenual cingulate and surrounding ventromedial prefrontal cortex have the dens-
est projections to the brainstem of any cortical region [85,86].

Our findings on prefrontal-cerebellar-brainstem co-activation also illustrate how the pres-
ent network-based study can provide new, theoretically and practically relevant information.
In spite of the existence of topographically mapped prefrontal-cerebellar circuits [87] that play
a prominent role in emotion as revealed by human brain stimulation and lesions (e.g., [88]),
the prefrontal-cerebellar-brainstem axis has not been a major focus of recent theoretical and
MVPA-based studies of depression (e.g., [17,89]) or emotion more generally (e.g., [14,15]),
and is often specifically excluded from analysis. However, cerebellar connectivity plays a cen-
tral role in some of the most discriminative whole-brain studies of depressed patients vs. con-
trols to date [19,21]. However, these latter studies omitted the brainstem (and note that “the
functional connectivity of the brainstem should be investigated in the future”). In our results,
the brainstem is also critical: In sadness, it is co-activated with the cerebellum only, whereas in
other emotions it is much more integrated with the thalamus, basal ganglia, and cortex. Thus,
our results can help inform and guide future studies on this system in specific ways.

Towards a multiple-system view of emotion. Our findings place an important constraint
on emotion theories that identify emotions with discrete brain regions or circuits. Since the in-
ception of the limbic system' concept by Paul MacLean [75], it has been widely assumed that
there is an 'emotional’ brain system that encodes experience and is dissociable from systems for
memory, perception, attention, etc. Our results provide a compelling and specific refutation of
that view. Single regions are not sufficient for characterizing emotions: Amygdala responsivity
is not sufficient for characterizing fear; the insula in not sufficient for characterizing disgust;
and the subgenual cingulate is not sufficient for characterizing sadness. While other meta-anal-
yses have reached this broad conclusion for individual brain regions, we also found that no
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Table 2. Summary of brain features characterizing each emotion category.

Speculative Interpretation,
psychological predictions/
inferences

Strong goal-driven attention
component, with central cerebellar
involvement for strong sensorimotor
integration; lower ‘impulsive’ general
motor priming than often assumed;
anger studied in scanner is more
calculated than impulsive

Strong cortical involvement,
emphasizing ventral attention and
somatosensory networks implicated
in exogenously driven attention;
Strong cortico-striatal coactivation
may prioritize immediate action
generation; low cerebellar
involvement suggests less fine-
grained control of responses

Fear as studied in scanner has
strong visual-to-subcortical
component; reduced demand on
cortically driven planned responses/
goal. Amygdala activity/co-activation
strong, but dominated by basalateral
complex implicated in cue-threat
associative learning.

Relatively low demand for integrated
planning/action systems
(somatosensory/cerebellar);
Particularly strong limbic network
implicated in psotive value and
endogenously driven expectancies;
Low amygdala involvement
consistent with reduced reliance on
€X0genous cues.

Very weak activation of integrated
planning/action systems (dorsal
attention/cerebellar), and systems
driven by exogenous cues (visual,
amygdala); very weak cerebellar
integration and system integration
overall; reflexive cerebellar-
brainstem responses strong and
operate without co-activation with
cortex

doi:10.1371/journal.pcbi.1004066.t002

Similarity

Cortical, amygdala pattern
similar to fear; hippocampal
and cerebellar pattern unique

Cortical pattern similar to
happiness and sadness, but
stronger engagement;
subcortical pattern in basal
ganglia relatively unique

Cortical, amygdala pattern
similar to anger; distinctive,
bilateral hippocampal pattern

Cortical pattern similar to
sadness and disgust;
distinctive left-sided
hippocampal pattern

Cortical patterns similar to
happiness and disgust; pattern
in cerebellum and brainstem
more similar to fear

Coactivation patterns

Strong visual-to-frontoparietal
cortex; strong cortico-cerebellar
and cortico-amygdalar, mainly
fronto-parietal and dorsal attention
networks; strong subcortical
coactivation

Strong somatomotor cortex to
basal ganglia; low cerebellar and
strong intracortical coactivation;
visual-to-frontal cortex network
coactivation is critical bridge
integrating subcortical systems

Weak cortical-subcortical
coactivation except visual cortex,
and weak intracortical
coactivation, strong basal ganglia
coactivation with amygdala and
thalamus

Strong within-system coactivation
(cortex, basal ganglia, thalamus,
cerebellum), but relatively weak
cortical-subcortical coactivation

Very weak intra-cortical and
cortical-subcortical coactivation
relatively isolated systems; strong
cerebellar-brainstem coactivation,
but weak cerebellar coactivation
with other systems

Activity patterns

Strong dorsal attention, fronto-
parietal cortico-cerebellar circuit;
default-mode cortical activity;
Relatively little basal ganglia

Anger

Ventral attention network in
cortex; dorsal attention in basal
ganglia

Disgust

Strong amygdala (basolateral) Fear
hippocampus; parietal and
somatosensory thalamus; visual,
default-mode, and limbic basal

ganglia

Low amygdala, thalamus, and
basal ganglia activity; Left-sided
hippocampus and medial
temporal

Happy

Low amygdala, hippocampal, Sad
thalamic activity; Limbic,

frontoparietal, and default basal

ganglia networks; Limbic

cerebellum

single network (at least as currently defined from resting-state connectivity; such networks are

widely used in inference and classification) is sufficient for characterizing an emotion category,
either. Rather, the activity patterns sufficient to characterize an emotion category spanned mul-
tiple cortical and subcortical systems associated with perception memory, homeostasis and vis-

ceromotor control, interoception, etc.

The examples above provide specific illustrations of how particular interaction patterns are
important for particular emotions. But, even beyond the examples we discuss, the rich patterns
that emerge from our model can inform future studies of other emotion-specific interaction
patterns. For example: The amygdala has been often discussed in relation to fear, but our
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results demonstrate that the preference for fear is limited mainly to the basolateral amygdalar
complex, and other sub-regions closer to the basal forebrain may play consistent roles across
multiple emotions. Happiness is characterized by low cortical co-activation with amygdala,
thalamus, and basal ganglia, tight basal ganglia-thalamic integration, and a novel left-hemi-
sphere dominance in the hippocampus that may be related to theories of lateralized valence
processing [90,91] (Table 2). In some cases, the results are counterintuitive based on previous
emotion theories, and in other cases they are consistent. For example, anger is widely thought
to involve increased action tendencies, and based on this one might predict increased activation
in somatomotor networks [92]. However, our results paint a picture more consistent with pre-
frontally mediated, goal directed regulation of motor systems. Conversely, sadness is associated
with reduced feelings of somatomotor activity in the limbs [93], consistent with overall ‘de-en-
ergization’ and internal focus. Consistent with this, both major motor-control systems (basal
ganglia and cerebellum) are more isolated from the cortex and limbic system in sadness than
any other emotion.

More generally, the novel finding that each emotion category can be described at the popu-
lation level by a pattern across multiple intrinsic brain networks provides a template for what
the relevant interactions are for future studies. The broad architecture of these networks was
predicted a priori by the Conceptual Act Theory [94], part of a new family of construction the-
ories hypothesizing that anger, sadness, fear, disgust, and happiness are not biological types
arising from dedicated brain modules, but arise from interactions of anatomically distrtibuted,
core systems [30,31,94-96]; however, the specific patterns and inter-relationships involved are
just beginning to be discovered. Even the broad principles of this architecture do not conform
to predictions of basic emotion theories, nor of appraisal theories, which imply that there is
one brain system corresponding to specific aspects of cognitive appraisal (e.g., valence, novelty,
control, etc.). We believe that previous theories on emotion have been underconstrained by
brain data, and the present findings constitute a specific set of constraints that may be integrat-
ed into future theories on emotion. In addition, the multi-network emotion representations we
identify here paint a picture of emotion that underscores the importance of NIMH’s recent
RDoCs approach, as well as recent papers taking a network approach to psychopathology
[19,97-100]—and they provide a specific template for testing specific network-topological pre-
dictions about the ingredients of emotion and the category-level responses that emerge from
their interactions.

Implications of Accuracy Differences across Categories

In this study, the five way decoding accuracy for emotion categories varies substantially across
categories. Fear was the most accurate overall, with 86% accuracy, whereas anger was the least
accurate, at 43%. These findings could indicate heterogeneity in the categories themselves.
However, it could also reflect the signal detection properties of the test itself, as we explain
below. Thus, it is premature to make strong claims about the diversity/heterogeneity of the
emotion categories based on these results.

Heterogeneity in the representation across categories occurs both because some of the meth-
ods used to elicit emotion are more diverse (52 Table) and because the categories are likely to
be inherently psychologically and neurally diverse.

We think of each emotion category as a population of diverse instances, rather than a homo-
geneous set of instances. Thus, there may be multiple types of ‘anger’ that activate different
subsets of regions and networks. What we observe is the population average across these poten-
tially disparate features. This is analogous to dwellings containing disparate architectural fea-
tures (e.g., an igloo vs. a castle) being grouped into a common category (‘dwelling’) because of
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their cultural functions rather than their architectures. On a more mundane level, the ways in
which researchers choose to study emotion categories can also contribute to the observed di-
versity (and reduced classification accuracy); researchers studying fear, for example, tend to
sample very similar instances by using a small range of fear-inducing methods, whereas anger
is elicited in more diverse ways.

A second potential reason for differences and accuracy relates to the signal detection prop-
erties of the model. Sensitivity and specificity can always be traded off by changing the decision
threshold for labeling an instance as ‘anger,” ‘fear,” etc., and accuracy in 5-way classification is
more closely related to sensitivity than specificity. Here, anger has the lowest sensitivity (43%),
but the highest specificity (99%, Table 1): Studies that are not anger are almost never catego-
rized as anger. Such differences in threshold preclude making strong claims about the diversi-
ty/heterogeneity of the emotion categories themselves based on these results. However, we
should not be too quick to dismiss all differences in decoding accuracy to methodological arti-
facts; true differences in category heterogeneity may exist as well.

Limitations

A number of important issues and limitations remain to be addressed. First, our analyses reflect
the composition of the studies available in the literature, and are subject to testing and report-
ing biases on the part of authors. This is particularly true for the amygdala (e.g., the activation
intensity for negative emotions may be over-represented in the amygdala given the theoretical
focus on fear and related negative states). However, the separation of emotion categories in the
amygdala was largely redundant with information contained in cortical patterns, which may
not be subject to the same biases. Likewise, other interesting distinctions were encoded in the
thalamus and cerebellum, which have not received the theoretical attention that the amygdala
has and are likely to be bias-free.

Secondly, these results are limited by the inherent resolution and signal properties of the
original studies. Some regions—particularly the brainstem—are likely to be much more impor-
tant for understanding and diagnosing emotion than is apparent in our findings, because neu-
roimaging methods are only now beginning to focus on the brainstem with sufficient spatial
resolution and artifact-suppression techniques (Satpute et al., 2013). Other areas that are likely
to be important, such as the ventromedial prefrontal cortex (e.g., BA 25 and posterior portions
of medial OFC) are subject to signal loss and distortion, and are likely to be under-represented.

Thirdly, there is always the possibility that differences in study procedures or the involve-
ment of processes not directly related to emotional experience could partially explain some
findings. A meta-analytic result is only as good as the data from which it is derived, and a brief
look at S1 Fig indicates that there are some systematic differences in the ways researchers have
studied (and evoked instances of) different emotion categories. We have tried to systematically
assess the influence of methodology differences in this paper, but our ability to do this is imper-
fect. However, though we cannot rule out all possible methodological differences, we should not
be too quick to dismiss findings in ‘sensory processing’ areas, etc., as methodological artifacts.
Emotional responses may be inherently linked to changes in sensory and motor cortical pro-
cesses that contribute to the emotional response (e.g., [101]). This is a central feature of both
early and modern embodiment-based theories of emotion [92,102-104]. In addition, most
major theories of emotion suggest that there are systematic differences in cognitive, perceptual,
and motor processes across emotion categories; and in some theories, such as the appraisal the-
ories, those differences are inherently linked to or part of the emotional response [105].

Finally, the results we present here provide a co-activation based view of emotion represen-
tation that can inform models of functional connectivity. However, co-activation is not the
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same as functional connectivity. The gold-standard measures of direct neural connectivity use
multiple single-unit recording or optogenetics combined with single-unit electrophysiology to
identify direct neural connections with appropriate latencies (e.g., < 20 msec). Much of the in-
formation processing in the brain that creates co-activation may not relate to direct neural con-
nectivity at all, but rather to diffuse modulatory actions (e.g., dopamine and neuropeptide
release, much of which is extrasynaptic and results in volume transmission). Thus, the present
results do not imply direct neural connectivity, and may be related to diffuse neuromodulatory
actions as well as direct neural communication. However, these forms of brain information
processing may be important in their own right.

Methods
Database

The dataset consists of activation foci from 397 fMRI and PET studies of emotion published
between 1990 and 2011, which included a total of 914 unique study activation maps and 6,827
participants. Activation foci are coordinates reported in Montreal Neurologic Institute stan-
dard anatomical space (or transformed from Talairach space). Foci are nested within study ac-
tivation maps, maps of group comparisons between an emotion- or affect-related condition
and a less intense or affectively neutral comparison condition. We used the foci associated with
study activation maps to predict each map’s associated emotion category. Studies were all peer-
reviewed and were identified in journal databases (PubMed, Google Scholar, and MEDLINE)
and in reference lists from other studies. A subset of studies that focused specifically on the
most frequently studied emotion categories were selected (148 studies, 377 maps, 2519 partici-
pants). Categories included anger (69 maps), disgust (69 maps), fear (97 maps), happiness (77
maps), and sadness (65 maps).

Bayesian Spatial Point Processes (BSPP) for Neuroimaging Meta-
Analysis

The BSPP is built on a hierarchical marked independent cluster process designed for functional
neuroimaging meta-analysis [38]. We model the foci (peak activation locations) as the off-
spring of a latent study center process associated with a study activation map. The study centers
are in turn offspring of a latent population center process. The posterior intensity function of
the population center process provides inference on the location of population centers, as well
as the inter-study variability of foci about the population centers.

Specifically, the model has three levels of hierarchy. At level 1, for each study, we assume the
foci are a realization of an independent cluster process driven by a random intensity function.
These processes are independent across studies. The study level foci are made up of two types
of foci: singly reported foci and multiply reported foci. For a given activation area in the brain,
some authors only report a single focus, while others report multiple foci, however this infor-
mation is rarely provided in the literature. These differences are attributable to how different
software packages report results, and simply author preference. We assume that multiply re-
ported foci cluster about a latent study activation center, while the singly reported foci can ei-
ther cluster about a latent population center or are uniformly distributed in the brain. At level
2, we model the latent study activation center process as an independent cluster process. We as-
sume that the latent study activation centers can either cluster about the latent population cen-
ter or are uniformly distributed in the brain. At level 3, we model the latent population center
process driven by a homogeneous random intensity (a homogeneous Poisson process). The
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points that may cluster about the population centers are singly reported foci from level 1 and
study activation centers from level 2.

We make inference on the latent population centers in a Bayesian framework. In particular,
we use spatial birth and death processes nested within a Markov chain Monte Carlo simulation
algorithm. The details of the algorithm and pseudo code are provided in [38].

Bayesian Spatial Point Process Classification Model

The BSPP model estimates the posterior distribution for reported foci across studies. Foci re-
ported in each emotion category can be modeled as an emotion-specific spatial point process.
This leads to a joint model for foci from studies with different categories of emotions, and it
can be used to classify the emotion category of studies given their observed foci, by choosing
the emotion category that maximizes the posterior predictive probability. To be more specific,
suppose we have # studies, let F; and E; denote the foci and the emotion category for study i re-
spectively, for i = 1, .. ., n. The BSPP model specifies the probability nt (F;|E;, 1), where A repre-
sents the collection of all the parameters in the BSPP model. The posterior predictive
probability of emotion category for a new study E, ., is given by

Pr(En+1 = e| (FN Ei):,:ﬂ Fn+1) X
Pr(En+1 = e) f H?:l T (Fi |Ei7 2) TC(FnJrl |En+1 =6 ;“) T ()“) di,
fore=1, ..., m, where m represents the total number of emotion categories. Pr(E,,; = e)

represents the prior probability of emotion category for the study type and 7(4) is the prior
of parameters.

The performance of the proposed classifier is evaluated via leave-one-out cross validation
(LOOCYV) on all the observed data, i.e., leaving one study out. We conduct Bayesian learning of
the model parameters on the foci reported from a set of training studies consisting of all studies
except a left-out study, k. We then make a prediction for study k based on its reported brain
foci. We repeat the procedure for each study (1. . .K) and compute the classification rate across
all studies. The above procedure for a Bayesian model can be very computationally expensive
since it involves multiple posterior simulations. We employ an importance sampling method
to substantially reduce the computation. See [106] for details.

Emotional Signatures Across Networks and Regions of Interest

To investigate the similarities and differences among emotion categories in defined resting-
state fMRI and anatomical networks, we identified a priori networks and regions from pub-
lished studies as described above [42-44, 107, 108] (see also Fig. 2 legend). These networks cov-
ered the entire cerebrum, excluding white matter and ventricles. Within each of the 49 regions,
we calculated the average BSPP intensity value across voxels for each emotion category. Analy-
ses of the mean intensity across regions/networks are visualized in Figs. 2 and S3 and S1 Text.

Calculation of region/network mean intensity. For Markov chain Monte Carlo
(MCMC) iterations ¢t = [1...T] (T = 10,000 in this analysis), region/network r = [1. . .R], and
emotion categories ¢ = [1...C] (C =5 in this analysis), let M. be a T'x R matrix of mean inten-
sity values in each region for each iteration for emotion c. We calculated the mean intensity

T T T

‘signature across regions’ for each emotion category, M .= Z’:a{w B Zt:;{wm e Z[:a{vlcm >
which are shown for subsets of regions in Figs. 2 and S3. In addition, the matrix M, contains
samples from the joint posterior distribution of regional intensity values that can be used for
visualization and statistical inference. Mean intensity values for each region/network served
as nodes in co-activation analyses.
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Co-activation and graphical representation. Visualizations of the configuration of re-
gions associated with each emotion (Figs. 4, 54) was performed by estimating the pairwise cor-
relations among all regions r = [1. . .RJacross MCMC iterations (e.g., for regions i and j, the
correlation between M, eiand M. «j). Thresholded correlations served as edges in co-activation
analyses. The correlations were thresholded using a permutation test, as follows: We permuted
the rows of each vector M, er, for r = [1. . .R], independently, and calculated the maximum cor-
relation coefficient across the R x R correlation matrix for each of 1000 iterations. The 95th
percentile of this distribution was used as the threshold, which controlled for matrix-wise false
positives at P <. 05 family-wise error rate corrected. The most stringent threshold across emo-
tion category (r > 0.0945, for sadness) was used for all emotion categories, to maintain a con-
sistent threshold across graphs. The location of each node (region/network) on the graph was
determined by applying the Fruchterman-Reingold force-directed layout algorithm (as imple-
mented in the MatlabBGL toolbox by David Gleich) to the thresholded correlation matrix.

Statistical inference on activation ‘signatures across regions.”. The MCMC sampling
scheme also provided a means of making statistical inferences on whether the multivariate ‘pat-
tern of regional’ of intensity differed across pairs of emotion category (S1 Table). 1). For any
given pair of emotion categories i and j, the difference between the intensity fingerprints is

given by the vector M 4= Wi -M ;|- As the elements of M are samples from the joint posteri-

or distribution of intensity values, statistical inference on the difference M ; depends on its sta-
tistical distance from the origin, which is assessed by examining the proportion P of the

samples that lie on the opposite side of the origin from M »» adjusting for the fact that the mean

M , could occur in any of the 2" quadrants of the space defined by the regions. This is given by:

R T R ) L
P== g . Zrzl abs(sign(M,, — M,,) — sign(M, )) > R This corresponds to a non-

parametric P-value for the difference in posterior intensity profiles across regions from the
c(c-1)
2
comparisons at g <. 05. It is an analogue to the multivariate F-test in parametric statistics. This
test can be conducted across profiles within a set of regions/networks (e.g., cortical networks

MCMC algorithm, which is subjected to false discovery rate control across the pairwise

shown in Fig 4A), across all regions, or across the intensity scores in non-negative components
of activation ‘patterns across regions.’

Non-negative Matrix Factorization

Non-negative matrix factorization (NNMF) is a way of decomposing a complex data set into
simpler, additive components that are particularly interpretable [109]. Here, we used it to de-
compose the matrix of activation intensities for each of the five emotions across subgroups of
49 regions into simpler, additive ‘profiles’ of activation shown in polar plots in Figs. 2 and S3.
The activation matrix A is decomposed into two component matrices W(nek) and H(kem)
whose elements are non-negative, such that A = WH, with the number of components (k) se-
lected a priori (here, k = 2 for interpretability and visualization). The squared error between A
and WH was minimized via an alternating least squares algorithm with multiple starting
points. The rows of H constitute the canonical profiles shown in figures, and emotion-specific
activation intensity values from the BSPP model are plotted in the 2-dimensional space of the
two recovered canonical activation profiles.

NNME is a particularly appropriate and useful decomposition technique here, because acti-
vation intensity is intrinsically non-negative [110,111]. In such cases, NNMF identifies compo-
nents that are more compact and interpretable than principal components analysis (PCA) or
independent components analysis (ICA), and better reflect human intuitions about identifying
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parts that can be additively combined into wholes. Here, the parts reflect interpretable, canoni-
cal activation profiles, and the whole is the observed activation profile for each emotion catego-
ry across multiple brain systems.

Supporting Information

S1 Text. Support Vector Machine analyses. The Bayesian Spatial Point Process Model classi-
fication results are compared against the support vector machine-based classification
described here.

(PDF)

S1 Table. Classification accuracy tables and confusion matrices for five-way emotion classi-
fication for several methods. Results from the Bayesian Spatial Point Process Model [38,106]
are the focus of this paper, and other methods are included for comparison purposes. Row la-
bels reflect the true category, and column labels the predicted category. Diagonals (red) indi-
cate accuracy or recall proportions. Off-diagonals indicate error proportions. *: Accuracy is
significantly above chance based on a binomial test.

(PDF)

S2 Table. A summary of statistical tests on co-activation patterns in the network analysis.
(PDF)

§3 Table. Emotion classification based on methodological variables.
(PDF)

S1 Fig. Information about methodological variables in the studies. A) Map of relationships
between emotion categories and methodological variables, including emotion elicitation method,
stimulus type used, participant sex, and imaging technique. Colors represent proportions of studies
in a given emotion category that involved each method variable; columns each sum to 1 (100% of
studies) within each method variable. Ideally, stimulus category and other methodological vari-
ables would be evenly distributed across the five emotion categories (i.e., each row would be ap-
proximately evenly colored across emotion categories), although this is impractical in practice, and
the distribution depends on how investigators have chosen to conduct studies. See S2 Table for ad-
ditional information about classification of emotion type from these methodological variables.
(PDF)

S2 Fig. Images of each of the five emotion category intensity maps across the whole brain.
Intensity maps for each of the five emotion categories. Intensity maps reflect the distribution of
study activation centers (Level 2 in the Bayesian model) across brain space. They are continu-
ously valued across space, though they are sampled in voxels (2 x 2 x 2 mm), and the integral of
the intensity map over any area of space reflects the expected number of study-level centers for
that emotion category. Brighter colors indicate higher intensity, and the maps are thresholded
at a value of 0.001 for display.

(PDF)

S3 Fig. Intensity profiles and non-negative matrix factorizations for subcortical structures.
Subcortical zones and activation intensity profiles within each. A) Left: Basal ganglia regions of
interest based on the Buckner Lab’s 1000-person resting state connectivity analyses (9-11),
along with amygdala and parahippocampal/hippocampal regions of interest based on the prob-
abilistic atlas of Amunts et al. (12) (see Main Text). Network labels follow the conventions used
in the Buckner Lab papers. Right: Intensity maps for each emotion category displayed on sur-
face images of the basal ganglia, amygdala, and hippocampus. B) Intensity profiles for each
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emotion category (colored lines, colors as in (A)) in subcortical zones. Values towards the pe-
rimeter of the circle indicate higher activation intensity. In the amygdala, LB: basolateral com-
plex; CM: corticomedial division; SF: superficial division. L: left; R: right hemisphere. In the
hippocampus: FD, dentate; CA, Cornu Ammonis; SUB, subicular zone. C) Intensity distribu-
tion for each emotion (colors) in the space of the first two factors from non-negative matrix
factorization of the intensity profiles. The colors correspond to the emotion category labels in
(A), and the colored areas show the 95% confidence region for the activation intensity profiles.
(PDF)

S4 Fig. Network topology graphs with labels for all nodes. Connectivity graphs for each emo-
tion category, as in Fig. 3, but with labels for all regions/networks. A) anger; B) disgust; C) fear;
D) happy; E) sad. The layouts are force-directed graphs for each emotion category, based on
the Fruchterman-Reingold spring algorithm. The nodes (circles) are regions or networks,
color-coded by anatomical system. The edges (lines) reflect co-activation between pairs of re-
gions or networks, assessed based on the joint distribution of activation intensity in the Bayes-
ian model at P <. 05 corrected based on a permutation test. The size of each circle reflects its
betweenness-centrality (ref), a measure of how strongly it connects disparate networks. Region
labels are as in Figs. 2 and S3. Colors: Cortex, red; Basal ganglia, green; Cerebellum/brainstem,
blue; Thalamus, yellow; Amygdala, magenta; Hippocampus, cyan/light blue. Network names
follow the convention used in the Bucker Lab’s resting-state connectivity papers: V, visual net-
work/zone (in cortex and connected regions in basal ganglia and cerebellum); dA, dorsal atten-
tion; VA, ventral attention; FP, fronto-parietal; S, somatosensory; DM, default mode; L, limbic.
Thalamic regions are from the connectivity-based atlas of Behrens et al. (13). Tem, temporal;
Som, somatosensory; Mot, motor; Pmot, premotor; Occ, occipital, PFC, prefrontal cortex con-
nectivity. Other regions: Hy, hypothalamus; B (yellow letter on blue node), brainstem.

(JPEG)

S5 Fig. Average correlation values within and between region groups, and relationship
with global network efficiency and regional activation intensity. Average co-activation with-
in and between each region/network grouping, for comparison to global network efficiency val-
ues based on path length in Fig. 3. Top: Average correlation in regional intensity across 10,000
MCMC samples in the Bayesian model. These correlations provide a measure of co-activation
across disparate brain networks. The overall pattern is similar to Fig. 3; however, the average
correlation does not reflect some of the structure captured in global efficiency and reflected in
the graphs in Fig. 3. Bottom left: Average correlation is related to global efficiency across net-
work groups and emotion categories (r = 0.76). Each point reflects an element of the matrices
in the top panel. Bottom right: Global efficiency is unrelated to average activation intensity
within the regions being correlated (r = 0.02), indicating that the efficiency metric used in the
main manuscript provides information independent of the marginal activation intensity.
(PDF)
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