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Abstract

Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local
competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually
discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is
increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This
observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive
mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among
drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver
detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low
frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated
patterns of occurrence in time. We test this driver–passenger discrimination approach based on mutation timing in
extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA
and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked
predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as
many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction
methods. It will help identifying from cancer genome data the alterations that drive tumor progression.
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Introduction

Carcinogenesis is an evolutionary process driven by the

accumulation of advantageous mutations in single cells and the

subsequent outgrowth of those cells due to clonal expansion.

Mutations in certain genes are present in a large fraction of

cancers, such as TP53 mutations; others exhibit high mutation

rates in cancers of the same type such as BRCA1 in breast cancer.

The functional alterations of these recurrently mutated genes are

referred to as hallmarks of cancer [1].

However, cancer genomes contain many more mutations which

do not show high degrees of recurrence. There are several reasons

for these low rates of recurrence. Firstly, mutations at some loci

depend on the presence of mutations at other loci [2]. This

dependence may result from an epistatic interaction where a

mutation is selectively advantageous only in the context of other

mutations. However, cancer diagnoses do not occur at the same

point during carcinogenesis. Instead, some tumors are detected

very early, some very late, and most tumors are diagnosed at

intermediate stages. Therefore, mutations that are highly depen-

dent on other mutations tend to occur late, viz. after the right

genetic background has evolved. Hence they are present only in a

small fraction of patients. Secondly, mutations in single members

of functional groups, such as signaling pathways, are often

sufficient to disturb the pathway function. Mutations within those

pathways display patterns of mutual exclusivity and low mutation

rates across cancer samples, because additional mutations are

unlikely as they do not provide an additional selective advantage

[3,4]. Finally, cancer cells accumulate a large number of passenger

mutations in the process of carcinogenesis [5]. These mutations

are selectively neutral and occur at random, but they are also

manifested within a cancer cell population due to their co-

occurrence with advantageous driver mutations. The goal of

driver–passenger discrimination is to separate these harmless

passenger mutations from driver mutations which actually provide

a selective advantage and drive tumor growth.

Driver–passenger classification approaches fall into three

categories. They are either based on (i) mutation frequencies, (ii)

mutual exclusivity, or (iii) biological pathway or network

information. Mutation frequency-based methods aim at finding

either genome-wide or locus-specific mutation frequency cutoffs

which are optimal with respect to a given false positive rate or

other criterion [6–8]. Mutual exclusivity-based approaches try to

find sets of genes in which mutations are mutually exclusive, while

most of the cancer samples display a mutation in one of the genes

in these sets [9–11]. The third class of methods relies on

enrichment of the driver candidates in annotation databases or

in specific subgroups of biological networks [12]. Furthermore,
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combination of different methods has been used to get high

confidence predictions of drivers [13]. Besides computational

techniques, experimental approaches are also employed in order

to identify driver genes [14]. However, experimental approaches

are limited to mutations which show an effect on their own and do

not depend on a more complex mutational context. With the

exception of mutual exclusivity-based methods, all the above

methods assume that the selective advantage of drivers is

independent of the mutational and signaling context in which they

appear. Mutual exclusivity-based methods assume that the effect of

a driver is only present in the absence of other specific mutations.

Since some driver genes are dependent on mutations in other

genes, their mutation frequency across samples can be low. Here,

we describe a computational approach to identify driver genes that

have low mutation frequencies due to their conditional occur-

rence. The method takes cross-sectional binary mutation data as

input and aims to separate dependent events from independent

ones. Our approach is based on the observation that the

probabilities of neutral mutations increase linearly with the total

number of mutations, which is used here as a proxy for the

timespan between the start of oncogenesis and the detection of the

tumor. By contrast, non-neutral mutations that depend on other

mutations occur with probabilities displaying a non-linear pattern

of punctuated increase (Fig. 1).

Extensive simulation studies are used in order to evaluate the

best-case performance of the mutation timing approach and to

assess its dependency on several factors, including the number of

samples, the genotyping error rate, and the variation of the

background mutation rates. We analyze real CNA datasets from

ovarian and breast cancer as well as SNV datasets from breast and

colorectal cancer obtained from the TCGA database. We find a

number of known oncogenes and tumor suppressors to be highly

ranked as well as genes which have not yet been implicated in

tumor development. Furthermore, we find a very low overlap of

genes highly ranked by our mutation timing approach and genes

which have high degrees of mutation recurrence in the datasets we

analyzed, indicating complementarity between our novel and

existing approaches.

Results

Timing of independent versus dependent mutations
In order to identify candidate cancer driver genes, we propose

to detect mutations whose occurrence depends on the presence of

other mutations (Fig. 1). The rationale for this approach is that

passenger mutations occur independently because they are

selectively neutral, whereas the selective advantage of many driver

mutations depends on the genetic background they occur in. For

example, mutation of KRAS tends to occur after mutation or loss

of FAP in colorectal tumorigenesis [2]. To distinguish indepen-

dent from dependent mutations, we study their rate of occurrence

among tumors. Independent mutations occur at a constant rate

(Fig. 1E), and our driver–passenger discrimination approach is

based on detecting deviation from this behavior. For example, if

mutations occur in a linear order, 1?2? . . .?m? . . ., then

mutation m can occur only after all its predecessors have occurred,

and once this has happened, the probability of mutation m
increases much faster than in the neutral case (Fig. 1D; S1 Text,

section 3.2). This difference in the rate of change of observing

mutations over time is the basis for our gene ranking procedure.

For each mutation m, we consider the conditional probability of

its occurrence given that in total at most k{1 mutations have

accumulated,

Pm(k)~Pr(mutation m has occurredDtƒk{1) ð1Þ

Here t is the total number of mutations, which we use as a

proxy for the time of observation relative to the onset of

tumorigenesis. Thus, we measure time in number of mutations,

k, and Pm(k) is the probability of observing mutation m before

time k. For independent mutations occurring at identical rates, Pm

is a linear function with constant slope 1=(2n), where n is the total

number of possible mutations (Fig. 1E; S1 Text, Eq. 21). By

contrast, for dependent mutations, Pm is non-linear with a sharp

increase in a more confined time interval. Furthermore, we

demonstrated that if m is involved in dependency relations, then

Pm(k) has a higher maximal slope than for independent mutations

(S1 Text, Theorem 1).

This finding shows that mutational dependencies can be

detected by considering the steepest slope of Pm(k). We model

the probability Pm(k) using the sigmoid function f (k)~
flimit=½1zexpfS(I{k)g�, where I is the location of the inflection

point, S the slope at I , and flimit the mutation frequency over all

samples (Fig. 1F; S1 Text, section 4.1). Mutation timing ranking

then ranks genes by decreasing slope values, S. Genes that tend to

have the same probability of occurrence over time will be ranked

low, whereas genes with a narrow window of high occurrence

probability are ranked high (Fig. 2).

Simulation studies
In order to evaluate the performance of the mutation timing

ranking, we conducted simulation studies and compared our

approach to the baseline frequency-based approach. We ranked

the simulated genes by the mutation timing method and by their

marginal frequency and computed and compared AUC values for

both rankings. We simulated samples according to a continuous-

time Conjunctive Bayesian Network model [15], in which

dependencies among binary mutational events are represented

by a directed acyclic graph (Fig. 1A). After generating the

mutation profiles we added noise by flipping every mutation

indicator with probability e (Methods).

The probabilities Pm(k) of all mutations that are early to

intermediate in the dependency structure or are independent of

the other nodes can be described very well by the sigmoidal

approximation (S1 Fig.). Late mutations with low marginal

frequencies suffer from higher fluctuations due to small sample

sizes. They are affected more by measurement noise (S1 Fig.).

Author Summary

Cancer genome sequencing projects result in vast
amounts of cancer mutation data. However, our under-
standing of which mutations are driving tumor growth and
which are selectively neutral is lagging behind. Functional
interactions among mutations can result in mutational
dependencies, and these mutations then display low
marginal mutation frequencies across tumor samples
complicating the identification of these drivers. Here, we
present a simple method for calling candidate driver
mutations by discriminating dependent mutations from
independent ones based on their dynamical patterns of
occurrence. The gene ranking procedure measures devi-
ation from neutral mutation timing patterns. We demon-
strate, for different types of cancers and genetic alter-
ations, improvement over classical frequency-based
approaches if drivers do not occur independently, and
we show complementarity to other approaches.

Identification of Constrained Cancer Driver Genes
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In order to evaluate the influence of the sample size on the

classifier performance, we drew samples of different sizes from

three different dependency networks (Fig. 3). For the error rate, e,

we used a value of 0.01. We applied our classifier to sets of size

100, 500, 1000, and 5000. Increasing the sample size improved the

performance of our classifier (Fig. 4A–C), whereas no perfor-

mance increase was observed for the frequency-based classifier.

Without observation error (e~0) and a sample size of 500 the

classifier works almost perfectly, for all three networks. With

increasing error rate, e, from 0 to 0.1 and sample size of 500, the

performance of the classifier drops to the level of the frequency-

based classifier and below in case of the linear network C

(Fig. 4D–F). The performance of the frequency-based classifier is

not affected by the error rate. The marginal probabilities of

mutations in network B and the marginal mutation probabilities of

late events of network C are lower than for network A. Therefore,

ranking by mutation timing is much more sensitive to the error

rate. In networks B and C, the marginal frequencies of nodes low

in the dependency structure are in fact smaller than the error

probability in some cases. In these cases, the mutation timing

method performs worse than random. This effec is due to the

sigmoidal curves getting flattened out by the noise, because the

noise is uniform with rising k. The effect of the noise, i.e., the

flattening of the mutation timing curve, is stronger on these low

nodes than on the independent nodes because the marginal

frequency of the low nodes in the dependency structure is on

average smaller than the marginal frequency of the independent

nodes.

Next, we investigate the influence of the variation of the waiting

times of the independent nodes, i.e., the per-gene evolutionary

rates. We varied the ratio between the minimum and maximum of

the support of the log-uniform distribution which is used to sample

the waiting time parameter for the independent nodes. The

geometric mean of the minimum and maximum was kept at 0.6,

0.25, and 0.15, respectively. The ratio between the maximum and

the minimum of the log-uniform distribution was set to 1, 4, 25,

and 100. Then, 500 samples were drawn from the networks with

an error rate of 0.01. The performance of the mutation timing

classifiers on the datasets of all three networks did not change

when varying the variation of the rate parameter of the

independent nodes (Fig. 4G–I). The performance of the frequen-

cy-based classifier drops due to the increased number of

passengers with higher marginal frequency after increasing the

variability of the passenger mutation rate. Increasing the number

of independent nodes (to 990, 989, and 990, respectively) hardly

changed the performance of both the mutation timing and the

frequency-based classifier (S2 Fig.).

The mutation timing classifier shows similar performance

improvements over the frequency-based classifier on random

networks with 10 connected nodes and 90, respectively 990

unconnected nodes (Fig. 5). The samples size for this analysis was

500 and the observation error was 0.01.

CNAs in ovarian cancer
We applied mutation timing ranking to CNAs identified in 569

ovarian cancer samples available from the TCGA database

Fig. 1. Schematic overview of the mutation accumulation process and the mutation timing approach to separate dependent from
independent events. (A) The occurrence of drivers is subject to hidden constraints, represented by a dependency structure (blue), whereas
passengers are independent (orange). (B) Every cancer sample is an independent realization of the common underlying oncogenesis process. (C)
Noisy cross-sectional mutation data from a set of tumor samples is the basis for discrimination of dependent from independent events. (D)
Conditional mutation probabilities Pm(k) = Pr(mutation m has occurred given k or less mutations have occurred so far) of dependent mutations
(blue) and (E) unconstrained mutations (orange) under the assumption of identical evolutionary rates have different characteristic shapes. (F)
Schematic representation of a sigmoidal curve fm(k) (black) used to approximate Pm(k) and the slope of this curve at the inflection point (red); this
slope is used for ranking the genes or loci of interest.
doi:10.1371/journal.pcbi.1004027.g001

Identification of Constrained Cancer Driver Genes
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Fig. 2. Mutation timing schema. Sigmoidal curves are fitted for every gene and genes are subsequently ranked according to their likelihood of
having constraints, i.e., the steepest slope of the sigmoidal curve.
doi:10.1371/journal.pcbi.1004027.g002

Fig. 3. The three mutation dependency networks used for simulation. Nodes represent genes (or other mutatable entities, for example,
pathways) and arrows represent mutational dependencies. Evolutionary rate parameters (parameterizing exponential waiting time distributions for
modeling the time until an event happens) for each mutation are given next to the respective node. The evolutionary rate parameters for the
independent nodes were drawn from various distributions in the different simulation settings. The mutation processes are stopped at the time of
observation after an exponentially distributed waiting time with rate parameter 1 for all simulations. (A) Dependency network used for simulation
with ten dependent nodes. (B) Dependency network used for simulation with 11 dependent nodes. (C) Linear dependency network with ten
dependent nodes.
doi:10.1371/journal.pcbi.1004027.g003

Identification of Constrained Cancer Driver Genes
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(download on May 24, 2013). All analyzed TCGA data in this

paper was downloaded via the cBio portal [16]. The CNAs were

called jointly for all samples with GISTIC2 and subsequently

mapped to genes for the individual tumors [17]. Only amplifica-

tions and homozygous deletions were considered. Gains and

heterozygous deletions were not considered as CNAs since they

are very difficult to detect and prone to high false positives. Out of

9312 CNAs, 80% were present in between 9 and 60 tumors (10%

in less and 10% in more). Most tumors had between 55 and 1075

CNAs (10% less and 10% more).

For a certain CNA to be considered for ranking in this analysis,

it had to be present in at least 35 of the 569 samples (i.e., a

Fig. 4. Performance of mutation timing and frequency-based gene ranking in simulation studies on three fixed networks. The area
under the ROC curve (AUC) values shown were computed from 100 simulations for each setting. The AUCs for mutation timing ranking and
frequency-based ranking are always shown next to each other, with the left one (white) being the mutation timing classifier and the right one (grey)
being the frequency-based classifier. (A,B and C) For networks A, B and C, respectively, the sample size was varied, and the error rate was set to 0.01.
(D, E, and F) For networks A, B and C, respectively, the error rate was varied, and the sample size was set to 500. (G, H and I) For networks A, B anc C,
respectively, the variation of the passenger rates, lI , (corresponding to the independent nodes) was varied, while the error rate was constant at 0.01,
and the sample size was 500.
doi:10.1371/journal.pcbi.1004027.g004
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marginal frequency of at least 6%). Some CNAs affect multiple

genes. Those genes were grouped and ranked together. The

number of CNAs (genes or groups of genes), which were present in

at least 35 samples, was 2515 and their sample-wise mutation

profiles were unique among all 569 samples. For approximating

time (t), we used the overall number of CNAs present in each

sample. Lowly ranked CNA-altered genes exhibit a shape which

resembles a linear function as expected for passengers (Fig. 6,

bottom row), while highly ranked genes exhibit a punctuated rise

of their mutation frequency indicating deviation from neutrality

(Fig. 6, top two rows).

Since we do not consider amplifications and losses separately in this

analysis, we subsequently analyzed the type of all highly ranked

CNAs. All but ZNF426 (rank 10) show clear consistency in their type

of alteration, i.e., they were either mostly deleted or mostly amplified,

but not deleted in some samples and amplified in others (S3 Fig.).

Among the top-10 ranked genes (and gene groups) out of 2515

(Fig. 6, S1 Table) we find GRAMD4 (rank 2) which has p53-like

function and mediates p73-triggered apoptosis [18]. CNAs

affecting GRAMD4 are mostly homozygous or heterozygous

deletions (S3 Fig.). Furthermore, amplification of UQCRFS1 (rank

5) has been associated with high grade breast cancer [19] and

enhanced colony formation in cell lines [20]. C19ORF12 (rank 8)

and PLEKHF1 (rank 9) are almost always amplified together.

Both genes were found to be essential for cell proliferation [20].

There was no overlap between the 10 most frequent CNAs and

our top 10 ranked CNAs, and we found only two overlapping

genes between the two top-100 lists, namely ADAMTS10 and the

ADIPOR1/KLHL12 group.

CNAs in breast cancer
Next, we applied our ranking scheme to CNA data from 913

breast cancer samples from the TCGA database (download on

May 24, 2013). CNAs were called and processed in the same way

as describe above for ovarian cancer. The percentage of all 8309

CNAs present in between 7 and 85 tumors (10% in less and 10%

in more) was 80. Most tumors had between 4 and 622 CNAs (20%

less and 10% more). Due to the higher sample number and hence

increased power, we considered CNAs which are present at lower

marginal frequencies than in the ovarian study. The threshold for

consideration was set to 4%, or 37 of the 913 samples. This

threshold was passed by 1713 CNAs, which were subsequently

ranked.

Highly ranked CNAs as well as lowly ranked CNAs follow the

sigmoidal shape (with different slopes) very well (S4 Fig., S2

Table). Interestingly, all top-10 ranked genes showed amplifica-

tions (S5 Fig.). The highest ranked gene is GAL. The Galanin

signaling cascade has been proposed as a candidate pathway

regulating oncogenesis in human squamous cell carcinoma [21].

MRPL21 (rank 6), which is located near GAL in locus 11q13.2,

has been suggested to play a role in carcinogenesis [21]. Similarly,

SLC29A2 (rank 4) has been implicated in the carcinogenesis of

hepatocellular carcinoma [22]. CPT1A (rank 3) can also be found

in the list of highly ranked genes. It promotes cell motility and is

therefore thought to increase the risk of metastases [23].

POLD4 (rank 8) has been associated with genomic instability in

lung cancer [24]. However, the cancer driving effect of POLD4
was associated with downregulation of this gene [24] and here we

find it consistently amplified. Similarly, low levels of KDM2A
(rank 9), a JmjC-domain containing histone demethylase, have

been associated with carcinogenesis, and we find it consistently

amplified [25].

SNVs in breast cancer
Besides by CNAs, breast cancer progression is also driven by

SNVs [26]. Therefore, we applied mutation timing ranking to

SNV data from 772 breast cancer samples from the TCGA

database (download on May 24, 2013). Since SNVs do not exhibit

as high marginal frequencies as CNAs, we set the cutoff for SNVs

to be ranked to 1% or 8 out of 772. The final number of ranked

genes was 256.

SNVs do not show the punctuated rise in mutation frequency as

pronounced as CNAs (S6 Fig.). Some of the genes display much

higher conditional frequencies than marginal frequencies in early

time intervals. AOAH and BRCA2 are examples of this behavior

(S6 Fig.). This effect could either be due to higher relative

sampling fluctuations for SNVs, or it may have a biological reason.

For example, tumors containing these mutations could be more

aggressive and are therefore diagnosed earlier and do not have the

time to accumulate more mutations.

The set of top-30 ranked genes contains a number of known

drivers (S6 Fig., S3 Table). AKT1 has been associated to breast,

colorectal, and ovarian cancer formation [27]. Germline muta-

tions of BRCA2 are associated with increased risk for developing

breast and ovarian cancer [28]. However, also somatic mutations

of BRCA2, which are considered here, have been shown to drive

cancer progression [4]. Furthermore, known drivers such as

CDH1, CTCF, and GATA3 are found within the top-30 ranked

genes [26]. Of the top-30 ranked genes 16 have q-values below 0.2

(Bejamini-Hochberg). Of the rest only two more display q-values

below 0.2 (S3 Table).

SNVs in colorectal cancer
Dependencies among mutations were initially studied in

colorectal cancers and adenomas [2]. However, the number of

sequenced colorectal cancer samples in TCGA is still relatively

small. Furthermore, it was shown that in colorectal cancer (among

Fig. 5. Performance of mutation timing and frequency-based
gene ranking in simulation studies on random networks. Area
under the ROC curve (AUC) values were computed from 100 different
random networks. The AUCs for mutation timing ranking and
frequency-based ranking are always shown next to each other, with
the left one (white) being the mutation timing classifier and the right
one (grey) being the frequency-based classifier. The error rate was
constant at 0.01, and the sample size was 500.
doi:10.1371/journal.pcbi.1004027.g005
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others) the number of mutations is correlated with the age of the

patient and is therefore a poor measure of tumor age [29].

Nevertheless, we applied mutation timing ranking to SNV data

from 223 colorectal cancer samples from the TCGA database

(downloaded on July 31, 2014). We set the cutoff for SNVs to be

ranked to 5% or 12 out of 223. Furthermore, we excluded all

samples which supposedly exhibited a mutator phenotype.

Therefore, we used a cut-off of 1000 SNVs in the analyzed

samples. This resulted in 212 samples used for mutation timing

ranking. The final number of ranked genes was 69 (S7 Fig., S4

Table). The classical colorectal cancer genes APC, KRAS and

TP53 (all rank 1) are among the top-predicted constrained genes

[30]. Furthermore, known drivers NRAS and PIK3CA (rank 16

and 18, respectively) are highly ranked [31,32]. Since the number

of samples and ranked genes is very small the mutation timing-

ranked list is probably unstable. Of the highly-ranked genes in

colorectal cancer, APC, KRAS, and TP53 are significant at a false

discovery rate of 0.2 (Benjamini-Hochberg).

Dependencies among highly-ranked drivers in breast
cancer

In order to check for dependencies among highly-ranked cancer

drivers we used the oncogenetic tree model, because it is an

alternative method to our conjunctive Bayesian network model

used here to motivate the mutation timing method [33]. The

driver list we used is a union of different driver lists from http://

www.bushmanlab.org/links/genelists accessed on August 5, 2014.

In the ranked 256 breast cancer SNV-affected gene list, 62 drivers

are present (S5 Table). We split the 62 identified drivers into top

and bottom half according to their rank in the mutation timing

ranking, i.e., 31 top drivers versus 31 bottom drivers. Subsequent-

ly, we learned oncogenetic trees separately for both (top and

bottom half) subsets. Since for oncogenetic trees, there is no

posterior probability for single edges available and they are very

unstable, we bootstrapped the data and relearned the trees 1000

times. We considered not only direct but also indirect dependen-

cies, i.e., the transitive closure of the trees in this analysis. If we

compare dependencies with bootstrap confidence scores above

60% then the number of drivers with at least one dependency in

highly-ranked genes versus lowly-ranked genes is 26 versus 2

(pv0:0001, Fisher’s exact test). Thus, there is an enrichment of

dependent drivers in the list of highly-ranked drivers. Since CNA

driver lists are very sparse we could not perform the same analysis

for the mutation timing-ranked CNA genes. Furthermore, the list

of ranked genes in colorectal cancer was too short for this type of

analysis.

Discussion

We have presented a driver–passenger discrimination method

which specifically aims at identifying cancer-driving mutations that

are constrained in their occurrence during carcinogenesis. It is

known that the selective advantage of several drivers depends on

the genetic background they occur in. Hence, genetic constraints

that result from epistatic gene interactions have been our main

motivation. However, the mutation timing approach does not

make any assumption about the biological origin of the

constraints. They may be unobserved and can include, for

Fig. 6. Top 10 (top two rows) and bottom 5 (bottom row) ovarian cancer copy number altered genes according to mutation timing
ranking. The mutation probability Pm(k)~Pr(Xm~1Dtƒk{1) is plotted against k, the cumulative number of CNAs. The sigmoidal approximation
fm(k) is shown in red. The grey line represents the kernel density estimate of the number of samples with k mutations in the study. The scale of this
density is shown in grey on the right side axis of the plots.
doi:10.1371/journal.pcbi.1004027.g006
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example, epigenetic, transcriptional, post-transcriptional, or envi-

ronmental constraints.

The novelty of the mutation timing approach presented here is

that it identifies constrained gene mutations. Several computa-

tional methods have been developed for estimating the actual

dependency structure among a small set of genes [34–37].

Mutation timing ranking can be used to identify these genes that

are amenable to modeling cancer progression in more detail. We

emphasize that our mutation timing approach does not require

estimating the dependency structure, which is a statistically and

computationally challenging problem. Instead, we are only

detecting deviation from independence of mutations.

The computational time complexity of mutation timing depends

linearly on the number of genes and samples. Thus, the method

can be applied efficiently to datasets of virtually any size, including

genome-wide measurements of large patient cohorts. Here, we

have applied mutation timing ranking to two different CNA

datasets and two SNV datasets on a gene level. Once there are

larger datasets available, the method can readily be applied to

mutations on an amino acid or nucleotide level.

In some cancers about half of the somatic mutations found in

tumor samples are assumed to be present already before tumor

initiation [29]. In these cases the implicit assumption made here,

that mutation accumulation starts about the same time as tumor

initiation and the bulk of the mutations occurres during

carcinogenesis is violated. Therefore, the results of the mutation

timing method might be less stable in those cases.

We have developed a method for assessing the significance of

the mutation timing-ranked genes based on a weighted permuta-

tion test. However, we only applied this test to SNV datasets here.

CNAs on the gene level are highly dependent on each other

because in some cancers a single CNA might be larger than in

others and alter more neighboring genes then in others. It is

assumed that only a small number of genes in CNA-altered regions

has cancer-driving effects. However, it is very difficult to

discriminate which ones are drivers and which ones are

passengers. Mutation timing highly-ranked genes have often very

similar CNA profiles across tumors. And significance analysis is

with our test not possible because it assumes that CNAs are only

dependent on timing. Therefore, we get very high numbers of

significant genes. In order to make the method more appropriate

for CNAs, a reliable method for counting copy number events per

tumor is needed.

Mutation timing-based driver–passenger discrimination is com-

plementary to existing approaches, including those based on

mutation frequencies, mutual exclusivity, and prior network

information. Thus, it can also be expected to improve the

performance of ensemble methods, which integrate different

classifiers [38]. Among the existing approaches, only the frequency

cutoff-based approach scales to larger datasets the way mutation

timing does, and our simulation studies have highlighted the

improvements of mutation timing in the presence of dependencies.

Like any other approach, mutation timing has some limitations.

One limitation is its difficulty to detect drivers that are already

present at very early (measured by the total number of observed

mutations) carcinogenesis stages, because generally there will be

few samples observed at this time and most of them will already

harbor such a mutation. Therefore, we can not observe a steep rise

in conditional mutation frequency when increasing the number of

mutations we condition on. An example of this behavior is PTEN
in the breast cancer CNA analysis. Such a pattern may result, for

example, from genetic subgroup structures among tumor samples,

where a mutation is an early unconstrained event in one subgroup,

but not in the others. However, these very early mutations can

easily be identified by their high overall frequency in the dataset,

i.e., by the complementary frequency-based approach.

Similarly, unconstrained drivers, i.e., mutations that increase

the fitness of cells independently of the mutational context, can not

be detected by mutation timing. They are expected to have a

higher rate of occurrence than neutral mutations, but not a

different temporal pattern. In general, unconstrained drivers with

high mutation frequencies can again be detected by their increased

frequencies. An implicit assumption made in the mutation timing

as well as the frequency-based method is that changes in

evolutionary rates over time do not affect the underlying driver–

passenger dependency structures; they only cause the observation

time point (relative to the number of observed mutations) to be

shifted.

The number of available tumor samples and the accuracy of

mutation calling are two additional limiting factors. Our

simulation studies show that the mutation timing method performs

well for datasets with more than 500 samples and genotyping error

rates below 1%. Furthermore, as a rule of thumb, marginal

frequencies of mutations should at least be twice as high as the

average genotyping error rate. While these estimates are based on

simulations under simplified conditions, they indicate that with

current sample sizes and genotyping error rates, even rare driver

mutations can be detected if their occurrences are constraint.

Both the CNA and SNV data analyzed here contained a small

number of samples with very high numbers of CNAs and SNVs,

respectively. This phenomenon is usually referred to as a mutator

phenotype. The models used for simulating data in the simulation

study do not capture this phenomenon and therefore only

represent samples without a mutator phenotype. However, the

influence of the samples with the mutator phenotype on the

mutation timing method is minor, because the sigmoidal curve fits

were weighted by the number of samples exhibiting a specific

number of mutations.

Most driver–passenger discrimination approaches [6–8] assume

either constant per-gene or per-base background evolutionary

rates and predict as drivers those genes that exhibit significantly

higher mutation frequencies in mid to large scale studies.

However, these approaches ignore that different evolutionary

rates could also be correlated with, for example, epigenomic

context [39] and might not be due to a cancer-driving character of

the affected gene. Our mutation timing method is invariant to

different evolutionary rates, because the slopes we use for ranking

reflect only how fast the mutation probability rises to its marginal

mutation probability and not how large this marginal mutation

probability is. Furthermore, epistatic interactions between cancer

driving genes can cause low mutation frequencies and complicate

the identification of those drivers. Our mutation timing-based

cancer driver ranking approach identifies constrained candidate

drivers in a computationally efficient manner. This approach will

help in analyzing the upcoming data from large tumor sequencing

studies which will be available in the near future.

Methods

We have analyzed the waiting times of somatic cancer-related

events in the presence and absence of order constraints using

conjunctive Bayesian network models. Based on the differences we

found, we have developed a method for ranking genes according

to their likelihood of being contrained and hence being potential

drivers. The waiting time analysis and the ranking method are

described in detail in the S1 Text.

For validation, we used three different mutation networks,

denoted as network A, network B, and network C to simulate
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datasets (Fig. 3). We sampled from a continuous-time Conjunctive

Bayesian network [15], in which mutations are constrained by the

occurrence of their predecessors in the network. Network A was

designed such that the marginal probabilities of observing the

mutations are between 0.1 and 0.8. For network B, we aimed at

lower mutation probabilities and set the mutation rate parameters

such that all marginal mutation probabilities were between 0.05

and 0.5. Network B had already been used for a simulation study

in [35] in order to evaluate an inference method. Network C

represents a linear dependency structure with marginal mutation

probabilities between 0.05 and 0.8. The sampling time parameter

(ls), which is used to stop the time-dependent mutation

accumulation process, was set to 1 for all simulation setups.

We added data from 90, 89, and 90 independent nodes,

respectively, such that each network consisted of a total of 100

mutations. The mutation rate parameters for the independent

nodes, denoted as lI , were sampled from a log-uniform

distribution as follows: For fixed lmin and lmax, we sampled

l*Unif(log(lmin), log(lmax)) and set lI~exp(l). We subsequent-

ly compromised the datasets by flipping every mutation indicator

with a probability of e[f0, 0.01, 0.05, 0.1}.

We fitted sigmoid functions weighted by a kernel density

estimator of the empirical sample distribution and ranked the

features according to the slope of the fitted sigmoidal curves

(Figs. 6, S4 and S6, grey lines). Most of the samples had an

intermediate number of mutations and therefore contributed

considerably to estimating the slope parameter, S. The inflection

point was forced to be between 1 and the maximum number of

mutations observed in the samples. The sigmoid functions were

fitted by weighted least-square using the nls function from the stats

package of the statistics software R [40].

In order to compute ROC curves and area under the ROC

curve (AUC) values, the cutoff value for the classification was

increased continuously. This procedure was repeated 100 times in

order to obtain an estimate of the variability. In each iteration, the

mutation rate parameters of the independent nodes, lI , were

redrawn, the underlying network and its parameters remained

constant. The lmin and lmax values were set to 0.06 and 6 for

network A, 0.05 and 1.25 for network B and 0.015 and 1.5 for

network C.

In order to generate random networks we used the following

procedure: (1) Start with a set of (ten) unconnected nodes denoted

as D. (2) Select a random unconnected node a from D. (3) Select a

second random (connected or unconnected) node b from D (4)

Decide if a becomes the parent or child node of b with probability

0.5. (5) Repeat from (2) until all nodes from D have a least one

connection. This procedure ensures that all networks are valid

posets, i.e, directed acyclic graphs. Six of the ten nodes had the

mutation rate parameter set to 2, the rest to 1. The values of lmin

and lmax were set to 0.06 and 6 for the random networks.

For the significance analysis of the mutation timing curves, we

developed a weighted permutation-based test. The null hypothesis

assumes that the probability of having a mutation in a certain gene

in a certain sample depends only on the marginal frequency of the

mutation of this gene and on the number of mutated genes in this

sample. For every gene, a specific null hypothesis is constructed.

This null hypothesis keeps the marginal mutation frequency of the

gene constant, i.e., the number of samples, in which it is mutated,

is kept constant. Under the null hypothesis, the probability of

observing a set of tumors harboring a specific mutation follows a

conditional multinomial distribution with parameters proportional

to the total number of mutated genes in the tumor samples and the

observed number of times the gene was mutated. In each tumor,

each gene can be mutated at most once, i.e., the null distribution is

the multinomial conditioned on pairwise mutually exclusive events

(tumors). After constructing the null distribution of the mutated

genes, we fit a sigmoidal curve analogous to the other genes and

record the slope. The whole procedure is repeated 1000 times.

The fraction of times the slope of the randomized column was

smaller than the slope of gene i is the p-value of gene i.
The R code for mutation timing-based gene ranking as well as

the CNV and SNV cancer data analyzed here are available at

http://www.cbg.ethz.ch/software/mutationtiming.

Supporting Information

S1 Fig Examples of simulated datasets for all three
networks. Sigmoidal fits (red lines) and simulated mutation

profiles for one iteration for network A, network B, and network C

used in the simulation study. Top two rows from network A,

middle two rows for network B, and bottom two rows from

network C. Error rate (e) was set to 0.01 and N~500 samples

were drawn and used for fitting the sigmoidal curve. Mutation rate

parameters for the independent nodes (passengers) were drawn

from a log-uniform distribution with lmin and lmax set to 0.06 and

6 for network A, to 0.05 and 1.25 for network B, and to 0.015 and

1.5 for network C. Mutation frequencies labeled ‘‘random

passengers’’ are examples from a total of 90, 89, and 90

independent nodes.

(EPS)

S2 Fig Performance of mutation timing and frequency-
based ranking in simulation studies for a total of 1000
nodes. AUC values for various simulation settings with 990, 989,

and 990 independent nodes for network A, B, and C, respectively.

The AUCs shown were collected from 100 simulations, for each

setting. The AUCs for the mutation timing-based ranking and the

mutation frequency-based ranking are always shown next to each

other, with the left box (white) describing the performance of

mutation timing-based ranking. In the top row, sample size was

varied. In the middle row, the error rate was varied, and in the

bottom row, the variation of the independent nodes was varied.

(EPS)

S3 Fig Distribution of copy number statuses for ovarian
cancer. Shown are histograms of the CNA status of each top 10

ovarian cancer CNA-affected gene (top two rows) and the CNA

status of each of the 5 lowest ranked CNA-affected genes (bottom

row). The CNA status is coded as follows: -2, homozygous

deletion; -1, heterozygous deletion; 0, normal copy number; 1,

gain; 2, amplification (as called by GISTIC2 [17]).

(EPS)

S4 Fig Top 10 (top two rows) and bottom 5 (bottom row)
breast cancer copy number altered genes according to
mutation timing ranking. The mutation probability

Pm(k)~Pr(Xm~1Dtƒk{1) is plotted against k, the cumulative

number of CNAs. The sigmoidal approximation fm(k) is shown in

red. The grey line represents the kernel density estimate of the

number of samples with k mutations in the study. The scale of this

density is shown in grey on the right side axis of the plots.

(EPS)

S5 Fig Distribution of copy number statuses for breast
cancer. Shown are histograms of the CNA status of each top 10

breast cancer CNA-affected gene (top two rows) and the CNA

status of each of the 5 lowest ranked CNA-affected genes (bottom

row). The CNA status is coded as follows: -2, homozygous

deletion; -1, heterozygous deletion; 0, normal copy number; 1,

gain; 2, amplification (as called by GISTIC2 [17]).

(EPS)
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S6 Fig Top 30 mutation timing-ranked breast cancer
SNV-affected genes (top four rows) and fits of 5 lowest
ranked SNV-affected genes (bottom row). The top-29 genes

have the same rank, because the fitted slope parameters, S, are all

equal to the upper limit of the allowed range of S. The sigmoid

functions are shown in red. The sample density which is used for

weighting the fit is shown in grey.

(EPS)

S7 Fig Top 30 mutation timing-ranked colorectal
cancer SNV-affected genes (top four rows) and fits of 5
lowest ranked SNV-affected genes (bottom row). The top-

11 genes have the same rank, because the fitted slope parameters,

S, are all equal to the upper limit of the allowed range of S. The

sigmoid functions are shown in red. The sample density which is

used for weighting the fit is shown in grey.

(EPS)

S1 Table Top CNAs in ovarian cancer. Top 100 ovarian

cancer copy number altered genes according to mutation timing

ranking.

(CSV)

S2 Table Top CNAs in breast cancer. Top 100 breast

cancer copy number altered genes according to mutation timing

ranking.

(CSV)

S3 Table Top SNVs in breast cancer. Breast SNV-affected

genes ranked according to mutation timing and their p-values and

q-values.

(CSV)

S4 Table Top SNVs in colorectal cancer. Colorectal SNV-

affected genes ranked according to mutation timing and their p-

values and q-values.

(CSV)

S5 Table Drivers in breast cancer SNV genes. Driver

ranks in breast cancer SNV-affected genes according to mutation

timing ranking.

(CSV)

S1 Text Accumulation dynamics of mutations based on
Conjunctive Bayesian networks are studied analytically
and the approximation by the mutation timing method
is motivated.

(PDF)
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