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Abstract

Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated
pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of
detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to
investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an
approach most commonly applied in automotive and process industries, whereby individual objects correspond to
functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic
metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation.
SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and
identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the
ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of
glucose, lipids and ketone bodies) where changes in flux distribution drive the healthy liver towards hepatic steatosis, the
primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as
novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with
complex hepatic metabolic disorders.
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Introduction

Mathematical modelling provides an intuitive tool to investigate

complex diseases that display multiple causal mechanisms and a

complex pathobiology. In particular, liver-associated pathologies

that have a high prevalence in Europe and other Western

populations face poor prognosis, and the lack of adequate

molecular understanding and management [1]. Hence, novel

interdisciplinary strategies to comprehend the pathogenesis are

required to quicken the pace of identifying suitable treatment

regimens and monitor disease progression.

Mathematical models describing hepatic metabolic pathways

have been constructed, including models of cholesterol synthesis

[2,3], glucose and lipid metabolism [4,5] etc. HepatoNet1 that was

constructed as a part of the Virtual Liver Network is a

comprehensive reconstruction of a human hepatocyte [6,7] which

was further extended by a recent genome-scale metabolic model,

iHepatocytes2322 describing the lipid metabolic pathways in

detail [8]. While these extensive hepatocyte-specific models have

immense potential to investigate liver functions, they may be less

informative to study the aetiology of complex diseases, where

deregulations occur in multiple tissues. An additional drawback of

current metabolic models is the difficulty in simultaneously

integrating metabolic pathways with both gene expression and

signalling networks [9]. Thus, the robustness and genotype-

phenotype correlation in these models is notably compromised.

Moreover, a general hurdle for large computational models is

parameter estimation since kinetic constants derived from in vitro
experiments are at present poorly documented, display variability

and are frequently incompatible with molecular behaviour in vivo
[10].

Taking into consideration the currently prevalent drawbacks,

we describe the SteatoNet, the first multi-pathway and multi-tissue

model including key hepatic metabolic pathways, their interaction

with extra-hepatic tissues and hierarchical feedback regulation at

the gene expression and signal transduction levels. The kinetic

parameters of the network are computed for a specified

normalised steady state by utilizing user-defined values for the

reversibility of reactions, the distribution of fluxes at pathway

branches, and the metabolic influx into the network. Thus, the

challenging task of accurately selecting kinetic parameters for large

metabolic networks is bypassed. The estimated parameters are

semi-quantitative and provide insights into the global system

behaviour rather than accurate estimations of model variables.

In order to illustrate the utility of SteatoNet in investigating

liver-associated pathologies, we describe a model analysis to
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identify candidate mediators involved in the initiation of non-

alcoholic fatty liver disease (NAFLD). NAFLD, the hepatic

manifestation of the metabolic syndrome, is the most common

chronic liver disease in western populations with a prevalence of

25–30% [11]. The complexity and poor understanding of the

NAFLD spectrum is emphasised by the small number of associated

genetic variants identified by genome wide association studies [12].

Numerous metabolic pathways are involved in NAFLD patho-

genesis (cell development, inflammation, fibrosis, endoplasmic

reticulum stress, lipid and glucose metabolism, etc.), in addition to

environmental factors and aberrant xenobiotic metabolism [13].

Thus, its multifactorial nature suggests that NAFLD is better

described as a ‘‘network’’ disease instead of the currently accepted

‘‘two’’ or ‘‘three hit’’ disease hypothesis [14,15]. SteatoNet analysis

undertakes an engineering solution to provide evidence for the

systemic multi-tissue characteristic of NAFLD initiation and

highlights the utility of multi-tissue models that include regulatory

aspects to investigate complex diseases.

Results

A systems biology library of objects corresponding to biological

entities was utilised to compile the SteatoNet (Steatosis Network)

in a systematic workflow (Fig. 1) to form a closed multi-pathway

metabolic network (Fig. 2). The dynamics of each reaction in the

SteatoNet (Fig. 3) is described by a set of differential algebraic

equations (DAEs). The novelty in the approach utilized to

generate SteatoNet is the definition of model parameters as a

mathematical formalism based on reaction reversibility r, the

distribution of the metabolic influx f into alternative pathways, the

total influx QI and the ratio between bound and free enzyme, w.

This methodology transforms classical Michaelis-Menten kinetic

parameters into a notation that differentiates static (r, f) and kinetic

parameters (w, QI). The model notation used in SteatoNet reduces

the number of model parameters that must be derived from data

or prior knowledge. In the presented model, 1046 or 25% of the

total model parameters that describe the network must be

manually set, the rest are calculated from the steady-state relations.

Table 1 summarizes the model structure statistics.

The SteatoNet comprises 194 reactions with 159 metabolites,

224 enzymes and 31 regulatory proteins. It includes the glucose,

fatty acid, cholesterol and amino acid metabolic pathways, the

inter-tissue transport of metabolites between the liver and extra-

hepatic tissues and regulation at the transcriptional and post-

translational levels by transcription factors, hormones, cytokines,

adipokines and other regulatory factors. The hepatic compartment

accounts for 70% of the SteatoNet model (104 metabolites, 184

proteins), the adipose compartment for 15% (24 metabolites, 40

proteins), other extra-hepatic tissues for 9% (14 metabolites, 24

proteins) and components in the blood and macrophage for the

remaining 6% (17 metabolites, 7 proteins).

SteatoNet validation
To validate the SteatoNet, we simulated metabolic conditions

that have been well studied, including the response to fasting, the

absence of stearoyl-CoA desaturase (SCD), a crucial lipogenic

enzyme, overexpression of adiponectin, an insulin-sensitising anti-

inflammatory cytokine released by the adipose and hepatic

steatosis triggered by a high-fat diet, which can be subsided on

treatment with a peroxisome proliferator-activated receptor alpha

(PPARa) agonist. The fold-change in variable values in each

simulation is with respect to their normalized value of 1.0 at the

initial steady state. Hence, at steady state the observed changes are

the net result of model perturbation. In the case of inconsistencies

between experimental observations and model simulations, a series

of simulations was implemented to identify the network compo-

nents that display erroneous behaviour. Additional expert-based

literature searches were performed to identify regulations that

have been established experimentally but were absent in the

network.

Fasting. Fasted state is characterised by low glucose and

insulin levels and increased glucagon in the blood. Glucagon

activates glycogen phosphorylase for the breakdown of stored

glycogen to glucose and inhibits glycogen synthase. It upregulates

gluconeogenesis by increasing the expression of phosphoenolpyr-

uvate carboxykinase (PEPCK) and downregulates fatty acid

synthesis by deactivating acetyl CoA carboxylase (ACC1). Fasting

induces peroxisome proliferator-activated receptor alpha

(PPARa), a nuclear receptor that regulates mitochondrial and

peroxisomal fatty acid oxidation [16]. Additionally, fatty acid

release from adipose tissue stores and oxidation are regulated by

fatty acid-induced adipose factor (FIAF), which is upregulated

during fasting [17].

To simulate fasting, the glucose influx into the network was

reduced by 10-fold compared to the initial steady state. As

illustrated in Fig. 4a and Table 2, the reduced glucose influx

results in downregulation of serum insulin and glucose, hepatic

glycogen stores, lipogenic enzymes (ACC1 and fatty acid synthase),

sterol-regulatory element binding protein 1c (SREBP1c) and

increased levels of serum glucagon, serum fatty acids, gluconeo-

genic enzyme PEPCK, the b-oxidation enzyme, carnitine acyl

transferase-1 (CPT-1) and urea cycle enzymes. This corresponds

accurately to the expected changes in the fasted state.

Stearoyl CoA knockout. Stearoyl CoA desaturase (SCD) is a

rate-limiting delta-9 desaturase enzyme involved in de novo
lipogenesis and lipid metabolism [18]. It catalyses the conversion

of saturated fatty acids, in particular oleate (18:1) and palmitoleate

(16:1), into monounsaturated fatty acids, which serve as the key

building blocks of triglycerides, cholesterol esters and membrane

phospholipids. The SCD-1 isoform is predominantly expressed in

Author Summary

In this article we present SteatoNet, the most comprehen-
sive computational network of hepatic metabolism and
the interaction of the liver with extra-hepatic tissues.
Generation of the SteatoNet involved the application of
engineering strategies to resolve prevalent drawbacks in
biological modelling and thus effectively understand basic
biology. SteatoNet does not require detailed kinetic
parameters, behaves representatively of biological obser-
vations and portrays systemic interactions. SteatoNet is
simple and flexible, which is an important advantage over
current computational models of complex metabolic
disorders associated with the liver. To demonstrate the
utility of SteatoNet as a hypotheses-generation tool, we
studied candidate mechanisms of hepatic fat accumula-
tion, the key characteristic of non-alcoholic fatty liver
disease (NAFLD), a common but poorly understood
metabolic disorder influenced by genetic and lifestyle
factors. Our data describe NAFLD as a network disease,
with deregulated pathways such as inter-tissue transport
of glucose, lipid and ketone bodies, cholesterol metabo-
lism and ‘‘stiff’’ focal points in the fat tissue. These results
indicate the involvement of systemic metabolic deregula-
tions in the transformation of healthy to fatty liver in
NAFLD. The SteatoNet highlights the utility of engineering
approaches in systems biology to aid in solving complex
biological questions.

SteatoNet: A Regulated Model to Study Complex Hepatic Pathologies
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the liver and its expression is tightly regulated. SCD2/2 mice fed

a high fat diet display protection against diet-induced obesity and

increased insulin sensitivity due to an upregulation of fatty acid

oxidation and downregulation of lipogenesis [19]. Although a

lipogenic (high-carbohydrate) diet increases the expression of

genes involved in de novo lipogenesis, SCD2/2 mice fed a

lipogenic diet still display low levels of triglycerides, indicating the

crucial role of SCD-1 in regulating triglyceride synthesis [20].

SCD-1 activity is also increased in NAFLD patients [21].

To simulate the SCD knockout condition, the rate of SCD

enzyme degradation was increased by 1000-fold, resulting in SCD

enzyme concentration approaching 0 (Fig. 4b). A lipogenic diet

was simulated by increasing the glucose influx by 10-fold. The

high-fat diet was simulated by increasing the influx of triglycerides

(5-fold) and cholesterol (4-fold), and decreasing the glucose influx

by 2.5-fold (fold-changes approximated from the composition of

laboratory high fat diet and regular chow diet for mice). Fig. 4b

and Table 2 illustrate the effects of SCD absence on a lipogenic

diet until time = 105 units and on a high-fat diet between time 105

and 26105 units. Simulations of the response of triglyceride

concentration, fatty acid oxidation and lipogenesis enzymes

indicate a decrease in hepatic triglyceride accumulation and

increase in CPT-1 and ketone bodies on both diets. While the

lipogenic enzyme glycerol-3-phosphate acyltransferase (GPAT)

and its transcriptional regulator SREBP-1c were upregulated by

the lipogenic diet, their concentrations decreased on a high-fat

diet, in concordance with experimental observations in rodent

models. The spike in triglyceride concentration observed at

time = 16105 units results from the switch between the lipogenic

diet (high glucose) to the high-fat diet. Introduction of high fat diet

causes a hepatic overload of fatty acids and triglyceride derived

from the dietary source, however in the absence of SCD as

simulated in Fig. 4b, this overload is short-lived as there is minimal

de novo synthesis of triglycerides. Hence, excess lipids are either

oxidized or distributed to maintain triglyceride homeostasis.

Adiponectin overexpression. Adiponectin is an adipose-

secreted cytokine that correlates negatively with insulin resistance,

plasma triglycerides and low-density lipoprotein (LDL) – choles-

terol, hepatic fat content and progression to NASH in NAFLD

patients [22,23]. The beneficial impact of adiponectin on

metabolism and insulin resistance is enforced by the ceramidase

activity of the AdipoR1 and AdipoR2 receptors [24]. A 30%

decrease in plasma fatty acids, upregulation in ketone bodies and

fatty acid oxidation in the adipose tissue, and decreased expression

of lipogenic genes was observed on fasting in adiponectin-

overexpressing transgenic mice [25]. Under conditions of

hyperleptinemia and adiponectin overexpression, white adipose

cells display high levels of fat oxidation due to upregulation of

oxidation genes such as peroxisome proliferator-activated receptor

a, peroxisome proliferator-activated receptor-c coactivator 1a,

and uncoupling proteins [26]. Whilst adiponectin has insulin-

sensitizing, anti-inflammatory and antilipogenic effects, tumour

necrosis factor alpha (TNF-a) is thought to be a suppressor of

adiponectin. Adiponectin-null mice display high levels of TNF-a
mRNA and protein and diet-induced insulin resistance, thus

explaining the phenomenon of increased TNF-a in obese

populations [27].

To simulate the overexpression of adiponectin under fasting

conditions, the rate of adiponectin degradation was decreased by

10-fold, resulting in increased levels of adiponectin, and the

Fig. 1. Summary of SteatoNet modelling workflow.
doi:10.1371/journal.pcbi.1003993.g001

SteatoNet: A Regulated Model to Study Complex Hepatic Pathologies
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glucose influx was reduced by 10-fold. In concordance with

experimental observations, increased adiponectin concentration

results in downregulation of serum fatty acids, hepatic triglyceride,

TNF-a, ceramide, hepatic lipogenic genes SREBP1c, GPAT and

SCD1 and increased expression of adipose CPT-1, indicating an

upregulation of b-oxidation in adipocytes (Fig. 4c and Table 2).

Fig. 2. SteatoNet metabolic network. The key metabolic pathways and their regulation by hormones, adipokines and transcriptional and post-
translational regulatory factors are represented in the hepatic, adipose, macrophage, peripheral tissue and pancreatic compartments with inter-tissue
connectivity via the blood. The SteatoNet consists of 194 reactions with 159 metabolites, 224 enzymes and 31 non-enzymatic regulatory proteins.
doi:10.1371/journal.pcbi.1003993.g002

Fig. 3. Dynamics of enzymatic reaction according to the
Michaelis-Menten kinetic formalism. S, E, C and P denote the
concentrations of the Substrate, Enzyme, substrate-enzyme Complex
and Product respectively, kC and kP denote the rate constants of
complex formation and product formation respectively, kCR and kPR the
reverse reaction rate constants of complex dissociation into the enzyme
and substrate and product reversibility to complex, respectively. QI

corresponds to the substrate influx, QO to the product efflux, QEI to the
influx of enzyme, QEO to the degradation of enzyme and f denotes the
distribution of the total metabolic substrate flux into alternative
pathways.
doi:10.1371/journal.pcbi.1003993.g003

Table 1. Model structure statistics.

Variables and equations 9270

States and differential equations 908

Parameters 5334

bio-chemical pathway description 4142

arbitrary set (independent) 1795

flux distribution* 116

reaction reversibility 195

free-bound enzyme ratio 195

gene expression control 1289

stoichiometric (independent) 1301

set at initialization (dependent) 1046

simulation purpose** 1192

*- data from Vo et al, 2006,
**-parameters included in the model to simulate perturbations of the system.
doi:10.1371/journal.pcbi.1003993.t001

SteatoNet: A Regulated Model to Study Complex Hepatic Pathologies
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The simulation did not indicate any changes in serum ketone body

concentration.

Targeting peroxisome proliferator-activated receptor

alpha. Fenofibrates, PPARa agonists, have been investigated

in-depth for their beneficial effects on various features of the

metabolic syndrome. Treatment with a specific PPARa agonist,

Wy 14,634, in various mouse models with metabolic deregulations

such as lipoatrophic diabetes [28], spontaneous fatty liver in the

absence of obesity or T2D [29], NAFLD [30] and NASH [31]

resulted in improved dyslipidaemia, insulin resistance and hepatic

steatosis.

Fig. 5 panels a–c and Table 2 illustrate the SteatoNet simula-

tion of different variables in a background of hepatic steatosis

induced by a high-fat diet (from time = 0 units) and subsequent

treatment with a PPARa agonist (from time = 36105 units).

Simulation of a high fat diet by upregulating the triglyceride and

cholesterol influx by 5-fold and 4-fold respectively, and downreg-

ulating the glucose influx by 2.5-fold results in hepatic triglycerides

accumulation by 1.5-fold (Fig. 5a) and upregulation of plasma

fatty acids (Fig. 5a), VLDL (Fig. 5b), hepatic cholesterol (Fig. 5b)

and LDL (Fig. 5c). Under these conditions, treatment with

fenofibrates i.e. PPARa activation (Fig. 5b, starting from

time = 36105 units) diminishes hepatic triglyceride accumulation

(Fig. 5a), upregulates fatty acid oxidation illustrated by CPT-1

(Fig. 5b), lowers plasma fatty acids (Fig. 5a) and VLDL (Fig. 5b) in

addition to decreasing hepatic cholesterol (Fig. 5b) and LDL-

cholesterol (Fig. 5c) with no effects on plasma HDL (Fig. 5a).

These simulation results are in accordance with biological

observations on treatment with PPARa agonists. The transient

spike in hepatic triglyceride concentration in Fig. 5a results from

the rapid influx of lipids when simulating a high fat diet; however,

the net increase in triglyceride concentration after reaching the

steady state is 1.5-fold.

In conclusion, model validation simulations are representative

of biological observations and thus, the SteatoNet can be utilised

as an in silico tool to assess liver-associated deregulations.
Identification of deregulations associated with NAFLD by

flux distribution sensitivity analysis. To demonstrate the

effectiveness of SteatoNet in investigating disorders related to

hepatic metabolism, the model was subjected to sensitivity analysis

to highlight candidate mechanisms that trigger hepatic accumu-

lation of triglycerides, a key characteristic of NAFLD.

Considering the interconnected nature of metabolic networks,

metabolic flux through a pathway and its distribution among sub-

branches is a crucial parameter. Its value may depend upon flux

entering the network, enzyme activity or concentration, and

genetic variations. Extrapolating from the ‘network disease’

hypothesis for NAFLD, we determined the relevance of flux

distributions at various SteatoNet pathway branches in triggering

hepatic triglyceride accumulation under a high calorie diet

(increased glucose and triglyceride influx).

The branch-points were classified according to their concen-

tration control coefficients with respect to hepatic triglycerides as

‘high’ (CTG
f .1), ‘moderate’ (0.1#CTG

f #0.99) or ‘low’ (CTG
f ,0.1)

impact. A high CTG
f value (high impact) of a branch indicates that

the metabolic flux distribution at this point in the network

significantly influences the concentration of hepatic triglycerides.

Additionally, several branch-points displayed low tolerance to flux

changes i.e. incurred instability beyond a limited range of

metabolic influx and were sub-classified as low tolerance branch-

points. Table 3 lists branch-points that have a high impact on

hepatic triglyceride concentration but low tolerance. We also

determined the sensitivity of regulatory factors to alterations in flux

distributions. Fig. 6 illustrates high impact branch-points that

significantly influence hepatic triglyceride concentration, and their

associated regulatory factors.

The sensitivity analysis indicated that a range of values of f
ensure correspondence to biological observations instead of a

unique value in the majority of branch-points. This is in

agreement with the underlying biology where a number of

physiological steady states are possible. However, for a minority of

branch points (Fig. 6, Fig. 7 and Table 3), the flux distribution

parameter impacts model behavior significantly. For these cases,

the value of f affects the variable values quantitatively only (degree

of fold-change) but not qualitatively i.e. no branch-points were

Fig. 4. Validation of SteatoNet. a) Simulation of fasting condition, b)
Simulation of stearoyl CoA desaturase (SCD) knockout. The lipogenic
diet was simulated until time 16105 and the high fat diet was simulated
between time 16105 and 26105. c) Simulation of adiponectin
overexpression. Serum fatty acids (FAB), phosphoenolpyruvate carbox-
ykinase (PEPCK), acetyl CoA carboxylase 1 (ACC1), fatty acid synthase
(FAS), sterol regulatory element-binding protein-1c (SREBP-1c), carnitine
palmitoyltrasnferase-1 (CPT1), glycerol-3-phophate acyltransferase
(GPAT), hepatic triglycerides (TG), tumour necrosis factor alpha (TNFA),
adipose carnitine palmitoyltransferase 1 (CPT1A).
doi:10.1371/journal.pcbi.1003993.g004
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identified where a change in f altered the direction of fold-change

in variable values. Interpretations from the SteatoNet are

qualitative in nature; hence, the set/assumed values of f do not

affect the conclusions drawn from the model simulations.

However, in real biological systems, the values of f at the

highlighted branch-points significantly impact the concentration of

biological entities whereby even subtle fold-changes may result in

phenotypic changes. The mentioned concentration control coef-

ficients are estimates calculated from SteatoNet variables and have

been presented to illustrate the relative degree of variation

resulting from changes in flux distribution. Branch-points that

significantly impact hepatic triglyceride concentration and their

regulators are discussed in detail in the following section.

High impact branches (CTG
f .1). A majority of the branch-

points that significantly impact hepatic triglyceride concentration

occur in the inter-tissue transport of lipid, glucose and ketone

bodies (Fig. 6) as discussed below, highlighting the crucial role of

metabolite transport and redistribution in maintaining lipid

homeostasis. Moreover, the relation between triglyceride concen-

tration and flux alternations does not appear to be simply linear

but is dynamic in nature, as indicated by the non-linear variations

of CTG
f absolute values within the tested flux range (Fig. 7).

Fig. 6 highlights the enrichment of lipid metabolism amongst

the pathways with a high impact on hepatic triglyceride

concentration. These include activation and desaturation of

adipose fatty acids; lipolysis in the adipocyte and transport of

fatty acids between the blood, adipocyte and peripheral tissues;

contribution of the diet (via chylomicrons) and very-low density

lipoprotein (VLDL) breakdown to serum fatty acids; and transport

of serum cholesterol to the liver (reverse cholesterol transport via
high-density lipoprotein), adipose and other extra-hepatic tissues

(Fig. 7a–7e).

An increased flux of adipose-derived fatty acids contributes to

hepatic steatosis in NAFLD patients [32]. This observation is

confirmed in our study whereby the negative CTG
f of the

desaturation and activation of adipose fatty acids (Fig. 7a and

7b) indicates a negative correlation between adipose-specific

lipogenesis/lipid storage and hepatic triglyceride concentration.

Moreover, SteatoNet indicates that hepatic uptake of fatty acids

from the blood moderately impacts triglyceride concentration and

displays low tolerance (S1 Table), suggesting that only a limited

range of fatty acid influx into the hepatocyte is tolerated for a

healthy state.

Cholesterol accumulation-related lipotoxicity and oxidative

stress, along with increased expression of genes involved in

cholesterol synthesis, is a hallmark of obese insulin-resistant

NAFLD and non-alcoholic steatohepatitis (NASH) rodent models

and patients [33,34]. In accordance with these observations,

SteatoNet indicates that perturbations in reverse cholesterol

transport and in cholesterol distribution between adipose and

Table 2. Summary of SteatoNet validation conditions.

VALIDATION CONDITION
BIOLOGICAL OBSERVATIONS IN CONCORDANCE WITH STEATONET
SIMULATIONS

Fasting Downregulation of serum insulin and glucose

Downregulation of hepatic glycogen stores

Downregulation of lipogenic enzymes (ACC1 and FAS) and SREBP1c

Upregulation of serum glucagon

Upregulation of serum fatty acids

Upregulation of gluconeogenic enzyme PEPCK

Upregulation of the b-oxidation enzyme CPT-1.

Stearoyl CoA Desaturase knockout on a lipogenic diet (until time = 105 units)
and on a high-fat diet (time 105 to 26105 units).

Downregulation of hepatic triglyceride accumulation on both diets

Upregulation in CPT-1 and ketone bodies on both diets

Upregulation of lipogenic enzyme GPAT and its transcriptional regulator SREBP-1c
on lipogenic diet

Downregulation of GPAT and SREBP-1c on a high-fat diet

Adiponectin Overexpression under fasting conditions Downregulation of serum fatty acids

Downregulation of hepatic triglyceride

Downregulation of TNF-a

Downregulation of ceramide,

Downregulation of hepatic lipogenic genes SREBP1c, GPAT and SCD1

Upregulation of adipose b-oxidation

PPAR-alpha agonism to improve hepatic steatosis Downregulation of hepatic triglyceride

Upregulation of fatty acid oxidation,

Downregulation of plasma fatty acids

Downregulation of plasma VLDL

Downregulation of hepatic cholesterol

Downregulation of LDL cholesterol

ACC1- Acetyl CoA Carboxylase 1, CPT-1- carnitine acyl transferase-1, FAS- Fatty acid synthase, GPAT- glycerol-3-phosphate acyltransferase, PEPCK- Phosphoenol
pyruvate carboxykinase, SCD-1- Stearoyl CoA Desaturase 1, SREBP-1c- sterol-regulatory element binding protein 1c, TNF-a- Tumour necrosis factor alpha.
doi:10.1371/journal.pcbi.1003993.t002

SteatoNet: A Regulated Model to Study Complex Hepatic Pathologies
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other extra-hepatic tissues critically influence hepatic steatosis

(Fig. 6, Fig. 7d–7e). The CTG
f of extra-hepatic LDL distribution

displays a positive correlation with hepatic triglyceride concentra-

tion (Fig. 7e), whereby moderate LDL fluxes to extra-hepatic

tissues do not significantly affect triglyceride concentration.

However, at a higher LDL flux, the hepatic triglyceride

concentration increases exponentially. LDL-cholesterol transport

to the liver is important for triglyceride-rich VLDL secretion [35].

Thus, a fine balance in cholesterol concentration is important to

sustain VLDL secretion, whilst preventing steatosis or lipotoxicity.

Hence, the role of cholesterol in NAFLD pathogenesis may

commence at the early stage of steatosis, besides the commonly

accepted notion of cholesterol-triggered lipotoxicity that prompts

progression to NASH.

The exchange of glucose between the serum and liver, transport

of glucose to the adipose tissue and contribution of dietary glucose

to serum glucose level, display a significant influence on hepatic

triglyceride concentration (Fig. 6, Fig. 7f–7h). SteatoNet indicates

a negative correlation between hepatic triglyceride concentration

and early glycolysis (Fig. 7f). This can be explained by the

decreased activation of lipogenic factors ChREBP and SREBP-1c

by glucose [36] and insulin [37] as a result of glucose catabolism.

For the high calorie conditions tested here, glucose flux towards

lipogenesis is limited due to extensive availability of fatty acids as

substrates and hence, does not directly influence hepatic steatosis.

The synthesis and transport of acetoacetate and b-hydroxybu-

tyrate (BHB) display a significant negative impact on hepatic

triglyceride accumulation (Fig. 6, 7i–7k). A genetic screen in

zebrafish highlighted a mutation in solute carrier family 16a,

member 6a (Slc16a6a), a transporter of BHB, in diverting it as a

substrate for lipogenesis, which resulted in hepatic triglyceride

accumulation [38]. Serum levels of ketone bodies also indicate the

extent of hepatic mitochondrial b-oxidation [39]. Thus, the

synthesis and extra-hepatic transport of ketone bodies is an

indicator of hepatic triglyceride concentrations, as confirmed by

the SteatoNet sensitivity analysis.

High impact branches with low tolerance. Four pathway

branches in the SteatoNet in particular display a significant

Fig. 5. Peroxisome proliferator-activated receptor alpha (PPARa) activation in high fat diet- induced steatosis. Panels a–c illustrate the
simulation of different variables in a background of hepatic steatosis induced by a high-fat diet (increased triglyceride and cholesterol influx, from
time = 0) and subsequent treatment with a PPARa agonist (from time = 36105). a) Simulation of hepatic triglyceride (TGL), plasma high-density
lipoprotein (HDLB) and serum fatty acids (FAB); b) Simulation of hepatic cholesterol (CholesterolL), plasma very low-density lipoprotein (VLDL),
carnitine palmitoyltransferase 1 (CPT1) and active proliferator-activated receptor alpha (aPPARa); c) Simulation of low-density lipoprotein (LDLB).
doi:10.1371/journal.pcbi.1003993.g005

Table 3. Pathway branch-points with high CTG
f and low flux range tolerance.

PATHWAY BRANCH FLUX RANGE SENSITIVITY COEFFICIENTS

FA (+Gly-3-P) to LPA Upto 10% of total flux into fatty acids 2.098

TGA storage in LDA 20–30% of total flux into adipocyte triglycerides 1.224

TGA to DAGA 50–60% of total flux into adipose triglycerides 2.781

F16BPA to DHAPA 20–40% of total flux into F16BPA 1.12 to 8.81

DAG- Diacylglycerol, DHAP- Dihydroxyacetone Phosphate, F16BP- Fructose 1,6-Bisphosphate, FA- Fatty acids, Gly-3-P- Glycerol-3-phosphate, LD- Lipid droplets, LPA-
Lysophosphatidic acid, TG- Triglycerides, A- adipose compartment.
doi:10.1371/journal.pcbi.1003993.t003
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influence on hepatic triglyceride concentration but low tolerance

to variations in flux distribution (Table 3). Beyond a narrow

permitted range of flux distribution values, the model incurred

instability and was unable to reach a new steady state. Such high

impact branches with low tolerance are specifically enriched in

triglyceride metabolism, indicated by red boxes in Fig. 6,

including formation of hepatic lysophosphatidic acid (LPA), the

first step in triglyceride synthesis; adipose triglyceride storage in

lipid droplets and breakdown into diacylglycerol (DAG); and

adipose-specific synthesis of dihydroxyacetone phosphate

(DHAP), a precursor for glycerol-3-phosphate involved in de
novo lipogenesis (Fig. 6). These focal points in the network may

play a key role in initiating NAFLD by destabilizing lipid

homeostasis at even slightly increased metabolic flux. With the

enrichment of low tolerance branches in the adipocytes (three out

of four), SteatoNet confirms the role of adipose triglyceride

storage/hydrolysis on hepatic lipid accumulation, which has been

proven in several studies [40–42]. Although the production of

adipose-specific DHAP from fructose-1,6-bisphosphate displays

tolerance to a broader range of flux alterations (within 20%

compared to 10% in the other three high impact branches,

Table 3), there is a steep increase in the CTG
f (from 1.12 to 8.81)

at the upper limit of the tolerated flux range. This observation

highlights the significantly increasing impact of adipose glucose

metabolism on hepatic lipid accumulation. The low tolerance in

the hepatic fatty acids distribution to form LPA is crucial due to

its direct role in de novo lipogenesis. LPA is the substrate for the

lysophosphatidic acid acyltransferase reaction catalysed by

adiponutrin/PNPLA3 [43]. A polymorphism rs738409 C/G,

encoding the gain-of-function PNPLA3 I148M variant consis-

tently correlates to NAFLD in various populations [44–46]. The

low tolerance of fatty acid distribution for LPA formation may act

as a mechanism to ensure limited availability of substrate for

triglyceride synthesis. A breach of this limited flux range may

Fig. 6. Hepatic triglyceride sensitivity network. The represented pathways highlight high impact branches that significantly influence hepatic
triglyceride concentration. The branch-points in the red boxes indicate high impact branches with low tolerance to flux alterations. Pathway
regulators (blue text) that are influenced by alterations in flux distribution are labelled at the corresponding high impact branch-points. AdipoR-
Adiponectin Receptor, AMPK- Adenosine Monophosphate- activated Kinase, BHB- beta-Hydroxybutyrate, ChREBP- Carbohydrate Response Element
Binding Protein, CM- Chylomicron, DAG- Diacylglycerol, DHAP- Dihydroxyacetone phosphate, FA- Fatty Acid pool, F6P- Fructose-6-phosphate, F16BP-
Fructose-1,6-bisphosphate, FXR- Farnesoid6Receptor, G3P- Glycerol-3-Phosphate, G6P- Glucose-6-Phosphate, HDL- High Density Lipoprotein, HMG
CoA- 3-Hydroxy 3-Methylglutaryl CoA, LD- Lipid Droplet, LDL- Low Density Lipoprotein, LPA- Lysophosphatidic Acid, LXR- Liver6Receptor, MAG-
Monoacylglycerol, PGC1A- Peroxisome Proliferator- Activated Receptor Gamma Coactivator 1 alpha, PPARA/G- Peroxisome Proliferator- Activated
Receptor Alpha/Gamma, SFA CoA- Saturated Fatty Acyl CoA, SREBP- Sterol Regulatory Element Binding Protein, TG- Triglyceride, TLR4- Toll-like
Receptor 4, TNFA- Tumour Necrosis Factor Alpha, USFA CoA- Unsaturated Fatty Acyl CoA, VLDL- Very-Low Density Lipoprotein.
doi:10.1371/journal.pcbi.1003993.g006
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trigger hepatic triglyceride accumulation, especially in the

presence of the PNPLA3 I148M polymorphism.

Regulators of high impact branches. Pathway branches

that significantly influence hepatic triglyceride concentration were

further investigated to identify regulatory factors that are also

affected by flux alterations and hence, may indirectly but

synergistically impact hepatic steatosis. Hence, we calculated the

concentration control coefficients of these branches with respect to

regulatory proteins in the SteatoNet. Fig. 6 illustrates the

regulatory factors with high sensitivity to the respective pathway

branch-points. The role of cholesterol metabolism in NAFLD

pathogenesis is further emphasised by the network-wide sensitivity

of FXR, a regulator of bile acid synthesis and excretion; LXR, a

sterol-sensor; and SREBP2, a key regulator of cholesterol

synthesis. The direct effect of these cholesterol metabolism-related

transcription factors on hepatic triglyceride accumulation, the

primary stage of NAFLD, under conditions of a high calorie diet

further emphasizes the role of cholesterol in the early steatosis

stage of NAFLD. FXR is recognised as a potential target for

NAFLD treatment [47]. NAFLD patients display low FXR levels

along with increased expression of LXR and SREBP1c, thus

contributing to increased hepatic triglyceride synthesis [48].

Fig. 7. CTG
f of branch-points in SteatoNet. Range of CTG

f of a) activation of saturated (SFA) and unsaturated (USFA) fatty acids in adipose, b)
desaturation of SFA to USFA in adipose, c) breakdown of chylomicron into chylomicron remnants, d) reverse cholesterol transport, e) LDL distribution
to adipose and peripheral tissues, f) fructose-6-phosphate synthesis from glucose-6-phosphate, g) glucose transport to adipose, h) hepatic release of
glucose into blood, i) b-hydroxybutyrate (BHB) synthesis from 3-hydroxy 3-methylglutaryl coenzyme A (HMG CoA), j) acetoacetate transport to blood,
and k) uptake of ketone bodies (KB) by adipose.
doi:10.1371/journal.pcbi.1003993.g007
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Interestingly, SteatoNet indicates that transcription factors that

are not directly involved in the regulation of a particular pathway

can still be sensitive to flux distributions within the pathway e.g.

the sensitivity of FXR and SREBP2 to branch-points in early

hepatic glucose metabolism (Fig. 6). This can be explained by the

interconnected nature of metabolic networks, as metabolites

generated by one pathway are utilised as substrates by another

pathway. Thus, the inter-dependency of pathways may simulta-

neously be controlled by a balance in various transcription factors.

Discussion

As suggested by Lanpher et al [49], most complex diseases can

be described as less severe cases of Mendelian inborn errors of

metabolism (IEM) in which several pathways are subtly affected.

The cumulative effect of genomic variations and environmental/

dietary factors results in altered metabolic flux distributions and a

broad spectrum of disease phenotypes. Thus, utilising a holistic

approach to study disease-related networks can provide a clearer

portrait of the systemic deregulations in complex diseases. It can

also guide drug development strategies towards systems medicine

and multi-targeting approaches.

In this article we present SteatoNet, a closed multi-compart-

mental metabolic network, which serves as an in silico platform to

systematically investigate hepatic metabolic phenomena and

associated deregulations. Validation of SteatoNet and identifica-

tion of deregulated flux disturbances that have been proven

experimentally in NAFLD patients or in animal models highlights

the ability of SteatoNet to describe biological behaviour by steady-

state analysis in the absence of experimentally determined kinetic

parameters.

The problem of parameter estimation in complex models is a

major limiting factor for accurate reconstructions of biological

pathways. Models thus often involve multiple assumptions. Our

approach bypasses this hurdle and underlines the importance of

expansiveness and structural accuracy for representation of

biological systems. This methodology is sufficient for qualitative

modelling whereby the model is utilized to study particular

biological phenomena and hypothesize/identify network-wide

changes in response to particular disturbances. Although the

method may not provide precise absolute values of the variables, it

overcomes a major problem in biological modelling by bypassing

the need to fix enzymatic parameters for an enormous number of

enzymes in such large-scale multi-tissue models. The application of

modelling techniques from machinery, based on object libraries

and closed circuits, proves to be appropriate and efficient. The

physiological state of an organism is a result of complex system-

wide interactions and hence, analysing individual pathways in

isolation leads to loss of information and inaccurate interpreta-

tions. Analysing the broad scheme of the ‘candidate’ disease

network and then channelling efforts towards specific molecular

interactions is a fundamental primary step in systems pathobiol-

ogy.

A dominant and unique feature of SteatoNet is integration of

the metabolic network with regulation at the gene expression and

signal transduction levels, which contributes to its robustness and

effective concurrence with biological behaviour. In spite of its

limited quantitative predictive value resulting from bypassing

kinetic parameters and integrating multiple types of complex

information (signalling, gene expression, metabolic reactions),

SteatoNet provides an effectively regulated system-wide virtual

space for generating scientifically sound hypotheses. The omission

of details in the model may have an important impact on the

small-scale cell metabolism but is completely masked at a network-

wide scale. The SteatoNet is thus the first integrated model of

human metabolism that represents the multiple layers of metabolic

regulation.

Experimental evidence has indicated the systemic nature of

NAFLD pathogenesis, involving the role of the adipose tissue [50],

skeletal muscles [51] intestine [52] and the heart [53], however,

directed efforts to study NAFLD as a systemic condition were

lacking. iHepatocytes2322, a comprehensive genome-wide net-

work reconstruction of hepatocyte metabolism was utilised to

analyse transcriptomic data from NASH patients and identify

diagnostic biomarkers [8]. While this study identified the role of

pathways such as serine metabolism in NASH, the model is

inadequate to capture systemic metabolic changes in the organism,

which is especially critical in the initial steatosis stage of NAFLD as

observed from our study.

Sensitivity analysis of the SteatoNet was aimed to identify small

changes in pathway fluxes that significantly influence hepatic

triglyceride concentration. Such focal points in the network have a

significant effect on NAFLD onset, as small disturbances in the

metabolic network can result in large effects on triglyceride

concentration. To-date, a limited number of polymorphisms have

been associated with NAFLD populations indicating the absence

of dominant genetic aberrations that are causal of this disorder.

Taking into consideration the complexity of NAFLD, it can be

expected that the disease is initiated as a result of multiple subtle

changes in the metabolic homeostasis ultimately resulting in

hepatic steatosis.

We provide evidence that NAFLD is not solely the hepatic

manifestation of the metabolic syndrome but arises as a result of

network-wide perturbations in flux distributions at the organism-

level, ultimately resulting in hepatic steatosis. The critical

dependence of hepatic triglyceride concentration on inter-tissue

transport reactions highlights the multi-compartmental nature of

NAFLD and thus, disruption in the homeostatic balance of lipid

distribution is at least partially causal of the disease state. The

accumulation of hepatic triglycerides may initially be triggered due

to a deregulation in pathway branch-points that are ‘‘intolerant’’

to flux alterations. The enrichment of these focal points in the

adipose compartment for maintaining a balance in triglyceride

synthesis, storage and hydrolysis, may indicate the initial role of

adipose malfunction in triggering hepatic steatosis. The ‘‘threshold

effect’’ displayed by these branch-points may be specific to

individuals and may potentially explain the variability in NAFLD

pathogenesis. This trigger may elicit functional changes in

regulatory factors, such as FXR, which in turn activate a cascade

of alterations in the rest of the network. In addition to confirming

hepatic triglyceride sensitivity to previously identified deregula-

tions in NAFLD, the SteatoNet identified novel candidate

mechanisms, such as cholesterol transport, ketone body metabo-

lism and regulatory functions of FXR, LXR and SREBP-2, that

require experimental focus in the future. However, potential

mechanisms that result in altered flux distributions remain an open

question. Regulation of metabolic flux is a complex phenomenon

that cannot be pinpointed to a single mechanism, as metabolic

pathways are intricately connected and involve multiple enzyme

isoforms with different substrates that are regulated by numerous

factors at the transcriptional and translational level. Moreover, the

inconsistency between the high prevalence of NAFLD and the

small number of genetic variants identified in association with the

disease indicates a critical role of environmental and dietary

factors. The ability of SteatoNet to simulate the effect of the diet

on metabolic homeostasis is a vital feature to investigate complex

disorders and provides an advantage over currently available

models. Dietary factors cause diverse changes in the organisms’
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metabolic status by triggering the activation or inhibition of

regulators, such as hormones, cytokines and nuclear receptors

[54]. SteatoNet analysis, which was conducted on a high-glucose

and high-triglyceride intake background, highlighted the shift in

the metabolic steady state on excessive dietary lipid or carbohy-

drate intake towards overproduction of the resulting metabolite

substrates, which eventually causes enzyme saturation and a shift

of metabolic flux into alternative pathways. Thus, individuals with

genetic variations or inborn errors in metabolism affecting the

activity or concentration of multiple enzymes or regulatory factors

may be predisposed to hepatic steatosis as a result of inherent

deregulations in flux distributions, with further adverse effects in

the absence of suitable dietary measures.

In summary, we highlight the novelty of SteatoNet as a highly

regulated multi-tissue platform, with the flexibility to systematically

investigate genetic and dietary effects influencing hepatic meta-

bolic homeostasis, in the absence of constrained kinetic parame-

ters. SteatoNet computationally suggests that a single ‘hit’ is not

sufficient to trigger hepatic steatosis. The concerted and cumula-

tive action of various focal points in a systemic network are

responsible to elicit significant phenotypic changes. SteatoNet thus

promotes the application of basic engineering modelling strategies

to solve complex biological questions in a simple and efficient

manner.

Methods

Model generation
An object-oriented modelling and simulation programme based

on the Modelica language, Dymola (Version 7.4, Dassault

Systems, Lund, Sweden) [55], was utilised for the construction of

SteatoNet in a systematic workflow summarised in Fig. 1. Dymola

is best known in engineering industries but less in systems biology

applications. An advantage of object-oriented modelling is the

reusability of general equations and model object classes with a

user-friendly graphical interface. We chose Dymola for the

modelling purpose due to its ability to define user-specific model

objects and libraries, handle large, dynamic, multi-domain models

and generate simulations rapidly. A systems biology library of

objects was generated based on differential algebraic equations

(DAEs) corresponding to biological pathway entities, as described

here and previously [3]. The basic objects of the library include

enzymes, metabolites, non-enzymatic regulatory proteins,

mRNAs, genes, flux sources and positive and negative regulatory

objects for gene expression and protein activity (S1 Figure).

SteatoNet was generated by compilation of these objects by linking

them with connectors, thus forming a closed multi-pathway

network (Fig. 2). The pathways in SteatoNet are based on their

curation in Kyoto Encyclopaedia of Genes and Genomes (KEGG,

http://www.genome.jp/kegg/) and the Reactome (www.

reactome.org) databases. Regulation at the transcriptional and

post-translational levels has also been incorporated following

expert-based manual inspection of the literature. The literature

was manually scanned (.500 articles) to select studies that identify

and confirm regulatory interactions in various metabolic pathways

prior to the incorporation of regulation in the SteatoNet. Putative

interactions that have not been confirmed were not included in the

model. The inclusion of nuclear receptors in the SteatoNet was

based on their confirmed role in the glucose, lipid and amino acid

metabolic pathways portrayed in the SteatoNet. The included

nuclear receptors were verified for their regulatory role and

ligands by extensive manual search of the literature and databases

such as NURSA (Nuclear Receptor Signalling Atlas). Hence, only

receptors with known expression, endogenous ligands and specific

targets in either the liver/adipose/muscle tissues were included in

the SteatoNet. Regulatory interactions that were unintentionally

omitted were identified during the model validation procedure and

incorporated in the model. Thus, the incorporation of the

regulatory layer in the model was done in an iterative manner

to ensure correspondence with biological behaviour.

The pathways included are glycolysis, gluconeogenesis, citric

acid cycle, pentose phosphate pathway, de novo lipogenesis, b-

oxidation, lipolysis, amino acid metabolism, ketone body synthesis

and the transport of metabolites between the liver, adipose tissue,

pancreas, other extra-hepatic tissues and macrophages via the

blood. The external nutrient sources (influx of glucose, fats/

triglycerides, cholesterol and essential amino acids) have been

incorporated into the SteatoNet. These influxes represent the

dietary intake and intestinal absorption of metabolites into the

portal vein or secretion into the intestinal lymph (in the case of

chylomicrons), which supply nutrients to the liver. The enzyme

levels are governed by gene expression objects, which are

regulated by transcription factors, such as PPARa, PPARc,

SREBP-1c, SREBP2, LXR, FXR, glucocorticoid receptor and

PPARc coactivators 1 alpha (PGC1A). The regulatory action of

the hormones insulin and glucagon, the adipokines leptin and

adiponectin and the cytokine TNFa has also been incorporated.

The metabolites, enzymes and non-enzymatic regulatory proteins

included in SteatoNet and the pathways they are associated with,

are listed in S3, S4, S5 Tables S6 and S7 Tables provide detailed

lists on the transcriptional and post-translational regulators of

metabolism included in the model, their targets and the type of

regulatory function elicited by them.

An open-access version of the SteatoNet along with the systems

biology library has been included in the supplementary materials

(S1 and S2 Datasets). These files can be accessed by the

OpenModelica Connection Editor (OMEdit) software [56], which

can be downloaded for free online (https://openmodelica.org/

openmodelicaworld/tools). S1 Text provides instructions to access

the model in OMEdit.

Assignment of metabolic flux distributions
The distribution of fluxes at pathway branch points is defined by

additional model equations that set the initial ratio of flux

distribution from the parent pathway into each branch. Thus, the

distribution of the metabolic flux, f, in each of the pathway

branches is an additional independent parameter that must be

specified in the model. Vo et al [57] generated a comprehensive

flux network based on isotopomer tracer analysis in HepG2 cells.

The estimated reaction fluxes from this study were utilised to

approximate f at various SteatoNet branching points. The flux

distribution proportion was calculated by summing the total flux at

the branch-point and determining the proportion entering each

branch as a fraction of the total flux. The choice of tracers in [57]

and utilization of cell lines prevented identification of flux

distributions in the lipid metabolism pathway, the transport of

metabolites and distributions among tissues. Thus, at branch

points with uncertainty in the value of f, an arbitrary value was

assigned that resulted in stable model simulations. For several low

tolerance branch-points, the value of f was not completely

arbitrary as these focal points can tolerate only a low range of

flux distributions.

The flux estimates from the Vo et al study were utilized to

approximate f at branch-points within SteatoNet in order to gauge

a physiological value for parameter assignment, while taking into

consideration that in vitro isotopomer studies are subject to large

variances due to differing cell culture conditions, sampling, pre-

analytical processing, etc. [58]. It must be highlighted that due to
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the qualitative nature of the model and the normalization of model

parameters, the assignment of values to the parameter f is critical

in terms of model identification rather than quantitative repro-

duction of hepatic function. Hence, the assignment of arbitrary

flux distribution values is feasible, provided that the model

generates stable simulations and can simulate biological phenom-

ena for validation purposes. In addition, immortal cell lines such as

HepG2 display alterations in dynamics compared to primary cells

and do not realistically depict organism-level flux distributions

[59]. Consequently, the approximation of network flux distribu-

tions provides a reference stable steady state for comparison with

model responses on perturbation, instead of precise quantitative

estimations.

Dynamic modelling and steady state analysis
The modelling method based on DAEs and analysis in steady-

state utilised to build the model have been described previously

[3]. The reaction dynamics (Fig. 3) is described by four equations

in an extension to the Michaelis-Menten model of enzyme kinetics:

dS

dt
~wI (1{f ){kC

:E:SzkCR
:C ð1Þ

dC

dt
~kC

:E:SzkPR
:E:P{kP

:C{kCR
:C ð2Þ

dP

dt
~kP

:C{wO{kPR
:E:P ð3Þ

dE

dt
~wEIzkP

:CzkCR
:C{kC

:E:S{kPR
:E:P{wEO ð4Þ

S, E, C and P denote the concentrations of the substrate, enzyme,

enzyme-substrate (ES) complex and product, respectively. Con-

stants kC, kP, kCR and kPR represent the rate constants of complex

formation, product formation, ES complex dissociation into the

enzyme and substrate and product reversion to the enzyme-

product (EP) complex. QI, QO, QEI and QEO correspond to the

substrate influx, the product efflux, the enzyme influx and the

enzyme degradation flux. f denotes the proportion of the total

substrate influx into alternative pathways.

Concentrations of S, E, C and P at steady-state are represented

by SSS, ESS, CSS and PSS. These variables can be converted into

dimensionless quantities by normalising them with their steady-

state counterparts. Thus,

SN~
S

SSS

,EN~
E

ESS

,PN~
P

PSS

ð5Þ

The variables have been deliberately normalized to non-dimen-

sional variables with the goal to observe relative changes of the

variables. The normalization only affects the variable values while

the systems dynamics remained unchanged. Extending the

derivations described by Belič et al [3], an additional steady-state

ratio is described to define the relative concentration of bound and

free enzyme:

w~
CSS

ESS

ð6Þ

The normalised value of the complex is determined in terms of the

free enzyme concentration at steady state rather than the steady-

state complex concentration. Thus,

CN~
C

ESS

~
w:C

CSS

ð7Þ

Similar to derivations in [3], the steady state normalised values SN,

EN and PN are equal to 1 and according to the relation described

above, CN = w. The rate constants are now described with

incorporation of w:

kPN~
wI (1{f )

w(1{r)
ð8Þ

kCRN~
r:wI (1{f )

w(1{r)
ð9Þ

kCN~
wI (1{f )

(1{r)
ð10Þ

kPRN~
r:wI (1{f )

1{r
ð11Þ

All model variables can be uniquely calculated with the knowledge

of the reversibility of the reaction r, the distribution of the influx f
into alternative pathways, the total influx QI and the ratio between

the bound and free enzyme, w. To derive the relations of the

variables at the new steady-state, S�N , E�N , C�N , P�N and f* at which

the system settles in an event of disturbance, we substitute these

variables into the steady-state form of equations 1 and 2:

0~w�I (1{f �){kCN
:E�N

:S�NzkCRN
:C�N ð12Þ

0~kCN
:E�N

:S�NzkPRN
:E�N

:P�N{kPN
:C�N{kCRN

:C�N ð13Þ

This allows solving for the new steady-state concentration of the

enzyme, substrate and product:

S�N~r2:P�Nz
(1{f �)(1{r2)

(1{f )E�N
ð14Þ

E�N~
(1{f �)(1{r2)

(1{f )(S�N{r2:P�N )
ð15Þ

P�N~
1

r2
S�N{

(1{f �)(1{r2)

(1{f )E�N

� �
ð16Þ

Equations 14–16 illustrate that apart from the classical interde-

pendence between substrate, product and enzyme concentration,

as stated by the Michaelis-Menten relations, the relative concen-

trations in the new steady-state depend also on the distribution of

the influx into alternative pathway branches, but they do not

directly depend on the absolute value of the total metabolic flux.

The reversibility of a reaction, r, is an inherent property of the
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enzyme and the equilibrium constant between the species involved

in the reaction. r represents the initial ratio of the reverse and

forward metabolic flux, required to estimate the model parameters

at the initial steady state. The parameter r was fixed based on

literature searches for reactions with known reversibility ratios. For

reactions with known reversibility but lack of specific defined

ratios, r was fixed as 0.5 and for irreversible reactions r was fixed

as 0. When the network is disturbed, a new steady state is reached

where the reverse-forward flux ratio (when r.0 i.e. for reversible

reactions) depends on the entire network dynamic properties and

the type and magnitude of the disturbance. Most reactions in

higher organisms have low reversibility, thus r is small, however,

our simulation studies show that model performs well even for

values of r above 0.5. Although, the squared form of r diminishes

its influence on the concentration of the substrate, enzyme or

product, it accounts for the thermodynamic constraints related to

Gibb’s free energy in the reactions. The flux distribution, f*, in

metabolic pathways in the event of a disturbance adapts

depending on the newly attained values of substrate influx,

demand of downstream pathways and alterations in enzyme

concentration in the acquired steady state and also on the initial

network flux distribution. Thus, the value of f* is calculated from

the variable values at the new steady state attained after the

disturbance.

Gene expression regulation
In addition to the biological entities involved directly in

metabolic reactions, feedback regulation was also incorporated

into SteatoNet. mRNA transcription was modelled as a sigmoid

function with separate object classes specified for positive and

negative expression regulation. Negative expression control is

described by the following equation:

dQmRNA

dt
~

Qmax
:wO

Qmax{1zQC

{kd
:QmRNA ð17Þ

where QmRNA represents relative concentration of mRNA, Qmax is

the maximum relative mRNA expression, QO is the transcription

flux, QC represents the concentration of the regulatory molecule

and kd depicts the rate of mRNA degradation. Similarly, positive

expression control is described by the following equation:

dQmRNA

dt
~

Qmax
:wO

:QC(QCmax{1)

QCmax (Qmax{1)z(QCmax{Qmax)QC

{kd
:QmRNA

ð18Þ

where QCmax represents the maximum concentration of the

regulator that results in the maximum fold-change in mRNA

expression (Qmax). The generation of protein is described as a

linear relation between the relative concentration of mRNA and

protein/enzyme quantity (QP):

dQP

dt
~kt

:QmRNA{kd
:QP ð19Þ

where kt represents the rate constant of mRNA translation and kd

is the rate constant of protein degradation. The quantity of the

regulatory molecule (QC) is usually controlled by activation or

deactivation of the molecule by some metabolite quantity (QM),

which is described in a linear manner. The rate equation for

protein activation is:

dQCA

dt
~ka

:QCI
:QM{kd

:QCA ð20Þ

The rate equation for protein inactivation is:

dQCI

dt
~ki

:QCA
:QM{kd

:QCI ð21Þ

Where QCI and QCA represent the pool of inactive and active

protein, ki and ka are factors describing the activation or inhibition

of the protein and the kd term in equations 20 and 21 accounts for

the rate of protein degradation. Although the linear representation

of translation and post-translational protein regulation provides a

simplified depiction of the actual process, it sufficiently represents

biological regulatory mechanisms and is considerably more

informative compared to models without any feedback control.

Model validation
To determine if the SteatoNet correctly depicts biological

phenomena, simulations were compared to experimental data

from the literature. The model was translated by the Microsoft

visual studio 10.0 C compiler and simulations were generated by

the default multi-step dassl solver in Dymola with a tolerance set to

1e-009. Model simulation is a multi-step numerical procedure that

runs from time = 0 until arbitrary selected end time. In each step

every equation of the model is evaluated. First, the derivatives of

the model variables are calculated and next, the derivatives are

used to change the values of the variables. The size of the

simulation step is determined such that the derivatives of the

variables are not too large since this would affect the simulation

precision. In the case of the SteatoNet simulations, the dassl

algorithm [60] was used. The selection of end time is crucial to

observe the convergence to the new steady state and hence, must

be selected such that all the model variables settle at a continual

value, which is identified by observing the variables’ time profiles.

Taking into consideration the assumptions of the model, the

initial steady state concentration of all metabolites and enzymes is

1.0. On perturbation, the model variables are estimated based on

the input values of r, f, w and QI. The simulations depict relative

changes in the network components in response to triggers causing

a shift from the initial steady state. The large number of model

parameters in the SteatoNet presents an additional facet for model

validation. In order to obtain further credibility of the model

simulations, a parameter sensitivity analysis was performed to

observe the sensitivity of simulation results with respect to f, as

detailed in section 1.2.1. The effect of r has been previously tested

on smaller models showing a minimal effect on model variables

than f. w only affects the dynamics of transition from one steady-

state to another and hence, does not influence the variable values

at a particular steady-state. For the various substrate influxes in the

SteatoNet (normalized as 1 at the initial steady state), several

values of QI have been tested and these directly affect variable

values, as observed in the fasting (Fig. 4a) and high-fat diet

simulations (Fig. 5). Thus, the values of f and QI display the most

prominent effect on model variable values in response to a

disturbance.

Sensitivity analysis
The dependence of model behaviour on parameters can be

determined by sensitivity analysis, which is defined as the change

in the model property versus the change in a parameter value.

Metabolic control analysis (MCA) is an extension of local

sensitivity analysis to determine the extent of change in metabolic

flux or other systemic properties achieved by a fractional change in

enzyme activity. MCA is quantified by control coefficients, which

is termed as the flux control coefficient if the change in flux is

considered as the model variable, or as the concentration control
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coefficient if the change in concentration is considered as the

model variable. Relevant to this article and NAFLD-associated

triglyceride accumulation, we can define the concentration control

coefficient as the partial derivative of the change in triglyceride

metabolite concentration with respect to small changes in the

distribution of fluxes at various pathway branch-points. Thus, the

sensitivity/concentration control coefficient is calculated by:

CTG
f ~

d(ln TG)

d(ln f )
~

TG�{TG

f �{f
|

f

TG

where CTG
f is the concentration control coefficient of parameter f

with respect to hepatic triglyceride concentration. TG and TG*
are the corresponding triglyceride concentrations at flux distribu-

tion values of f and f*. The second term in the equation i.e. the

ratio between the initial flux distribution and triglyceride

concentration, is incorporated to obtain relative sensitivity

coefficients that are dimensionless. Graphically, the control

coefficient is the tangent to the curve describing the relation

between the metabolite concentration and model parameter

variation and thus is dependent on the steady state under

investigation. To determine the sensitivity of hepatic triglyceride

concentration to the metabolic flux distribution, the glucose and

triglyceride influx into the network was increased by 10-fold to

simulate disturbance of the system on a high calorie diet. The

distribution parameter for each branch point in the pathway

model was varied by an interval of 10%. The corresponding

changes in hepatic triglyceride synthesis were recorded and

concentration control coefficients were calculated using equation

22.
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58. Nöh K, Wiechert W (2011) The benefits of being transient: isotope-based

metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol 91:
1247–1265.

59. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative
proteomic phenotyping of cell lines and primary cells to assess preservation of

cell type-specific functions. Mol Cell Proteomics 8: 443–450.

60. Brenan K, Campbell S, Petzold L (1995) Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations: Society for Industrial and Applied

Mathematics. 263 p.

SteatoNet: A Regulated Model to Study Complex Hepatic Pathologies

PLOS Computational Biology | www.ploscompbiol.org 15 December 2014 | Volume 10 | Issue 12 | e1003993


