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Abstract

Inter-individual variation in regulatory circuits controlling gene expression is a powerful source of functional information.
The study of associations among genetic variants and gene expression provides important insights about cell circuitry but
cannot specify whether and when potential variants dynamically alter their genetic effect during the course of response.
Here we develop a computational procedure that captures temporal changes in genetic effects, and apply it to analyze
transcription during inhibition of the TOR signaling pathway in segregating yeast cells. We found a high-order coordination
of gene modules: sets of genes co-associated with the same genetic variant and sharing a common temporal genetic effect
pattern. The temporal genetic effects of some modules represented a single state-transitioning pattern; for example, at 10-
30 minutes following stimulation, genetic effects in the phosphate utilization module attained a characteristic transition to
a new steady state. In contrast, another module showed an impulse pattern of genetic effects; for example, in the poor
nitrogen sources utilization module, a spike up of a genetic effect at 10-20 minutes following stimulation reflected inter-
individual variation in the timing (rather than magnitude) of response. Our analysis suggests that the same mechanism
typically leads to both inter-individual variation and the temporal genetic effect pattern in a module. Our methodology
provides a quantitative genetic approach to studying the molecular mechanisms that shape dynamic changes in
transcriptional responses.
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Introduction

Inherited variation in gene expression is likely to have a major
effect on cellular and disease phenotypes, and may allow the
underlying DNA polymorphisms (genetic variants) to be identified
[1]. The genetic effect of a particular variant on a certain RNA is
the quantitative change in gene expression that is associated with
changing the variant’s genotype (allele). Two recent studies have
demonstrated that genetic effects on longitudinal gene expression
data might be either stable — where the genetic effect is similar at
all time points (a non-dynamic effect pattern; Fig. 1A) — or flexible,
changing the magnitude of effect during time points (@ dynamic
effect pattern; Fig. 1B,C) [2,3].

Dynamic effect patterns may be described in terms of the shape
of changes in genetic effects over time. A linear-like genetic effect
pattern (Fig. 1B) reflects a gradual change in the magnitude of
genetic effects, whereas in a non-linear genetic effect pattern
(Fig. 1C), the level of genetic effect is sustained in some time
periods and spikes up or down in others (Fig. 1C). In most studies,
transcription responses across individuals have been monitored
only in two time points (before and after stimulation) and therefore
the dynamics of changes in genetic effects over time could not be
characterized [4-9].
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Understanding non-linear genetic effects can, in principle, allow
the timing of influence of certain regulatory mechanisms to be
revealed. For example, a single state-transitioning in genetic effects
may uncover the timing of alteration in a regulatory mechanism
interacting with a genetic variant (e.g., transition to a new steady
state at t;, Fig. 1C, left). Such a mechanism can be revealed even
when additional mechanisms are acting in parallel (e.g., up-
regulation during the entire time course; Fig. 1C, left). The
linear genetic effect pattern, in contrast, lacks sharp alterations and
therefore does not specify finely-timed information about regula-
tory mechanisms (Fig. 1B).

This study is focused on mapping temporal patterns of non-
linear genetic effects and using this information to address major
questions about dynamic transcription responses. Which dynamic
genetic effect patterns are prevalent in global gene responses? Are
there any general principles - either functional or mechanistic -
shared among genes carrying the same temporal genetic effect
patterns? Cian we derive insights about the mechanisms underlying
such dynamic genetic effect patterns?

Here we developed DyVER (Dynamic Variant Effect on
Response), a statistical framework to predict genetic variants and
study their dynamic changes in genetic effect sizes. DyVER was
mainly designed to achieve an accurate detection of non-linear
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Author Summary

Genetic variation is postulated to play a major role in
transcriptional responses to stimulation. Such process
involves two inter-related dynamic processes: first, the
time-dependent changes in gene expression, and second,
the time-dependent changes in genetic effects. Although
the dynamics of gene expression has been extensively
investigated, the dynamics of genetic effects yet remain
poorly understood. Here we develop DyVER, a method
that combines genotyping with time-series gene expres-
sion data to uncover the timing of transitions in the
magnitude of genetic effects. We examine gene expression
in yeast segregants during rapamycin response, finding
several distinct ways of change in the magnitude of
genetic effects over time. These include impulse-like and
sustained transitions in genetic effects, acting both in cis
and trans. Our findings suggest that associations of genes
with the same genetic variant often occur via the same
timing of state transition in genetic effects. Furthermore,
the results uncover a previously unknown variant whose
impulse-like temporal genetic effect suggests a novel
molecular function for determining the timing rather than
the magnitude of response. Our results show that steady-
state association studies miss important genetic informa-
tion, and demonstrate the power of DyVER to render a
comprehensive map of dynamic changes in genetic
effects.

genetic effects (Fig. 1C) during time points. The methodology is
based on the notion of a two-state digital model that pinpoints the
particular time point at which a rapid change in genetic effects
occurs; it is therefore suitable for revealing the timing of state
transitions in genetic effects. DyVER takes as input synchronous
data in several time points and across a population, and is tailored
for recombinant inbred strains that are commonly utilized in
genetic studies [2,10-14].

DyVER differs from extant genetic approaches in several
aspects. First, some existing methods construct a full model of the
response curve across individuals. Their number of parameters is
therefore increasing with the number of time points (e.g., [15]).
DyVER, in contrast, is primarily designed for the specific task of
identifying the time points of alterations in effect sizes. This partial
modeling allows the use of only a small number of parameters
regardless the number of time points and the shape of the
temporal pattern. Secondly, DyVER is focused on modeling the
dynamics in genetic effects while eliminating the confounding gene
expression variables. This is unlike extant approaches, which
commonly fit both gene expression and genetic effects to a certain
function over time [11,15-20]. Finally, if desired, DyVER can
exploit the order in the input time course data, unlike several
approaches that are based on unordered correlated traits (e.g.,
multivariate methods [21,22] or dimension reduction methods
[23]). Notably, DyVER 1is a practical translation of differential
expression approaches (with or without time-series data [24-26])
for the case of statistical genetic studies.

Here we report on the use of DyVER to investigate temporal
gene responses at six time points after stimulation with the TOR
inhibitor rapamycin and across genotyped yeast segregants [27].
The results depict a complex map of non-linear changes in genetic
effects. We identify a causal variant that affects the timing of spike
up in transcript levels. Importantly, our findings suggest a
previously unknown high-order temporal coordination of genetic
effects: modules of genes influenced by a common dynamic genetic
variant not only participated in the same biological pathway, but
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also shared orchestrated dynamics of genetic effects. Based on this
modularity, we hypothesize that in some cases dynamic effect
patterns are a property of the regulatory mechanism within which
a genetic variant resides (rather than a property of the target
responding transcript). We demonstrate that using this notion it is
possible to enhance the identification of underlying causal genes
based on their characteristic temporal effect pattern. Our results
indicate the utility of studying dynamic genetic effects acting on
global gene transcription.

Results

DyVER: A method for inferring dynamic, non-linear
genetic effects

We devised a new method, DyVER, to identify genetic variants
that underlie the expression of genes and their particular dynamic
effect patterns. DyVER takes as input the measured transcription
response of a gene over several consecutive time points following
stimulation and across a cohort, as well as a set of potential genetic
variants and their genotyping (Fig. 2A). Given a candidate genetic
variant with two alternative alleles, DyVER proceeds in three steps
(Methods): (1) It first calculates the observed effect of the variant,
namely the difference in gene response between strains carrying
the two distinct alleles (Fig. 2B). The observed genetic effects are
used as data in the subsequent steps. (2) To identify non-linear
dynamic shapes of genetic effects, DyVER assumes a ‘digital’
regulatory model that distinguishes two possible states of genetic
effects: first, a strong effect of genetic variant on the gene response
(denoted the high-effect state); and second, a lower (such as zero)
effect, or possibly an opposite effect (denoted the low-effect state).
Several previous methods have employed a two-state model,
although not in a dynamic or a genetic effect context [28]. Based
on a maximum likelihood approach, DyVER seeks a genetic
variant and a sequence of states that best describe the dynamic
changes in the size of the genetic effect. For example, if a gene is
affected mainly by a variant v during a late time interval, DyVER
successfully infers the correct effect pattern low—low—high—high
for the correct variant v as it attains the highest likelihood score
(Fig. 2B and C, right panel). For incorrect variants, the
likelihood scores are typically lower (Fig. 2B and C, left panel).
DyVER’s predicted sequence of states is referred to as the temporal
two-state model. Finally, (3) DyVER calculates the statistical
significance of association for each genetic variant based on a
likelihood ratio score that takes as input the inferred temporal two-
state model (Fig. 2D). We refer to this score as the DyVER score.
Notably, although DyVER requires synchronous observations in
particular time points, it is still possible to apply DyVER on partial
observations in each of the time points (Methods).

Overall, step 1 allows DyVER to focus on dynamics in genetic
effects regardless of the magnitude of transcription response,
whereas the discrete modeling in step 2 allows detecting any
sequence of spikes up or down in genetic effects. The two-state
model from step 2 enhances the performance of the DyVER score
(step 3) by allowing a separate parameterization for each of the
states. Specifically, to infer an optimal temporal two-state model,
DyVER uses a two-state hidden Markov process where the
observed effects are treated as the outcome of a sequence of
hidden high-effect and low-effect states (step 2; Fig. 2C). The
corresponding likelihood function consists of two components: (i)
the probability of observed effects given a certain temporal two-
state model; and (i) the probability of a temporal two-state model,
which may use a penalty factor to prioritize two-state models with
a lower number of transitions between states, assuming depen-
dencies among consecutive time points. In the absence of penalty,
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Figure 1. Temporal genetic effect patterns. Schematic view of gene expression patterns (top) and the relevant temporal genetic effects for
these genes (bottom). The cartoons demonstrate a non-dynamic genetic effect pattern (A), a dynamic, linear genetic effect pattern (B), and a dynamic,
non-linear genetic effect pattern (C). Top: shown are gene expression levels (y-axis) during a response to stimulation (x-axis). Each curve represents
measurements in a different homozygous animal strain (segregants), where brown or black indicates whether the genotype of the associated genetic
variant is aa or aa, respectively, in each strain. Bottom: shown are genetic effects (that is, the change in gene expression between the aa -carrying and
aa -carrying strains, y-axis) during a response to stimulation (x-axis). (C) Examples of non-linear genetic effect patterns, which are the focus of this
study, including (left to right) a single state-transitioning pattern, which may be followed by a sustained new level of genetic effect, a single-pulse

(impulse) pattern, and a multiple-pulse (complex) genetic effect pattern.

doi:10.1371/journal.pcbi.1003984.g001

the order of time points is irrelevant and therefore the predicted
two-state model can be viewed as a partition of an unordered
group of time points into two sub-groups. The DyVER score
exploits this partition for a different parameterization of the
(unordered) time points in each of the two states. The addition of
the penalty factor makes it possible to avoid an overfitted two-state
model that is then given as input to the next step, hence further
improving the DyVER score’s performance.

DyVER accurately identifies dynamic genetic effects over
time

We compared DyVER’s performance to that of five alternative
methods. In the first method, the most naive approach, an
ANOVA test is applied at each time point independently and the
predicted genetic variant is the one with the most significant
(minimal) ANOVA P value score. The second method builds on
dimension reduction using principal component analysis (PCA):
Given T time points for each strain as input, it first reduces the 7-
dimensionality of the data into a single dimension by projecting
each strain onto the first principal component. Next, it applies an
ANOVA test on this one-dimensional data [23]. The third
method models dynamics in gene expression as well as dynamics
in genetic effect sizes [15]. For comparison, in the fourth method,
a linear time term is included as a covariate in the ANOVA test
to model dynamic changes in gene expression (without direct
modeling of dynamics in genetic effects). Finally, we compared
DyVER to a random prediction of association relationships. We
called these approaches ‘maive’, ‘PCA’, ‘detailed dynamics’,
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‘expression dynamics’ and ‘random’, respectively. In both
DyVER and all compared methods, for each simulated gene,
the resulting P values were Bonferroni-corrected for the testing of
multiple genetic variants. The quality of predicted variants were
evaluated using the accuracy metric, defined as the tradeoff
between the sensitivity and specificity of revealing genetic variants
across different significance cutoffs. The accuracy metric ranges
between 0 and 1 for poor and excellent performance, respectively
(Methods).

To characterize DyVER’s ability to reveal dynamic genetic
variants and distinguish their effect patterns, we generated
synthetic collections of genes that are associated with genetic
variants over time. A single synthetic ‘collection’ consisted of 500
genes, 300 of them associated with a genetic variant over time,
with two characteristic parameters: (i) the number of time points,
and (ii) the effect size (in all cases we used 50 strains and 100
genetic variants). In a complete synthetic ‘dataset’ we generated 72
collections for various numbers of time points and effect size
values. Overall, four synthetic datasets were generated in this
study, each consisting of a different key class of dynamic effect
patterns (sce Methods): a linear-like pattern (Fig. 1B), a single
state-transitioning based on a sigmoid function (Fig. 1C, left),
and impulse and multiple-pulse (complex) patterns based on the
product of two sigmoid functions (Fig. 1C, middle and right,
respectively) [24]. In the following, we first analyze the perfor-
mance of the DyVER’s predicted associations (based on the
DyVER score) in the absence of penalty and then present the
contribution of the penalty factor.
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Figure 2. The DyVER algorithm. A methodology for reconstructing genetic associations and their temporal genetic effect patterns from gene
expression and genotyping data. (A) A cartoon example of input data, including the expression of a single gene over time for strains s;—s, (top panel;
shown as in Fig. 1A), and a typical genotyping of (homozygous) strains carrying either the aa (brown) or aa (black) genotype in each genomic
position (bottom panel). Correct and incorrect variants (v, u, respectively) are highlighted. (B) Shown are observed effect matrices for each time point
from t; to t, (red, high-effect size; white, low-effect size). DyVER calculates the observed effects between each pair of strains carrying distinct alleles
(strains carrying aa or @a in columns and rows, respectively), using a variant u (left) or v (right). (C) Searching for the temporal two-state model that
best fits the data. Shown are four cases, for two possible variants u, v, and two possible two-state models. The two states are ‘H’ (light blue) and ‘L’
(white) indicating high and low genetic effect, respectively. DyVER’s fit of observed effects (high or low) in two Gaussians and the respective
likelihood scores are presented in each case. For each variant, DyVER uses an HMM-based dynamic programming to identify its best-likelihood effect
pattern. (D) A Manhattan plot of DyVER scores. Shown are likelihood ratio scores, called DyVER scores (y-axis), quantifying each variant (x-axis) with its
selected temporal two-state model (from C). A dashed line indicates the significance threshold, generated using a permutation test.

doi:10.1371/journal.pcbi.1003984.g002

DyVER showed good accuracy in all non-linear dynamic effect
patterns (0.5 penalty; Fig. 3). Fig. 3A presents the accuracy
metric for synthetic datasets of varying numbers of time points.
Accuracy values are averaged across the eight collections of
distinct effect size. In all non-linear dynamic effect patterns,
DyVER displayed the best accuracy in all tested time points
ranging between 3 and 27, with improved accuracy for a larger
number of time points. Importantly, although DyVER was not
designed for linear-like effect patterns, it still attains the second-
best performance for this case. The ‘expression dynamics’
approach yielded the most accurate predictions for the linear
case, but attained poor results in the non-linear case. The tradeoff
between sensitivity and specificity in the accuracy measure across
the different methods is further demonstrated in Figure S1A and
B. Results were similar for varying effect sizes (Fig. 3B and
Figure S1C and S1D) and for an additional synthetic dataset that
is based on prototypical effects in C. elegans (Methods; Figure

PLOS Computational Biology | www.ploscompbiol.org

$2). Furthermore, although DyVER’s accuracy is reduced in the
case of missing data, it is still notably high in comparison to
alternative methods (Figure 83). Taken together, our results
indicated that DyVER performs well on a broad range of genetic
effect patterns.

We next aimed to characterize DyVER’s applicability to short-
term steady state of high genetic effects. To tackle this goal we
compared two synthetic impulse datasets, both consisting of 27
time points across various effect sizes. For all genes, the short-
mmpulse dataset consisted of a high-effect steady state of short
duration (five time points), whereas the long-impulse dataset
consisted of a high-effect steady state of long duration (fifteen time
points). Figure S4A records the performance of DyVER
compared to the five alternative methods on the short-impulse
and the long-impulse datasets, and clearly shows that DyVER
outperformed the alternative procedures when genetic influences
were acting in short impulses, even with low-effect sizes.
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doi:10.1371/journal.pcbi.1003984.g003

The performance of both DyVER and the alternative methods
declined when applied on a short impulse compared to a long
impulse of genetic effects, but notably, the performance reduction
was lowest with DyVER (Figure S$4B). For example, for high-
effect sizes (0.625), the sensitivity of DyVER 1s 0.7 and 1 with short
and long impulses, respectively. The sensitivity of PCA, in
contrast, is respectively 0.47 and 1 with short and long impulses
for the same effect size. Thus, even when genetic variants acted
during short time intervals, DyVER still performed relatively well.
This was unlike the alternative methods, whose performances were
drastically reduced even for relatively high-effect sizes.

DyVER predicts a temporal two-state model, which may
provide insights concerning the timing of changes in genetic effects
(Fig. 2C). To evaluate the quality of this prediction, we compared
the ‘ground truth’ (simulated) models against the inferred two-state
models. We chose to work with the established error rate statistics,
defined as the number of erroneous two-state models expressed as
a fraction of the total number of significant correctly predicted
variants. We called this metric a two-state pattern error rate (in
short, error rate), and calculated it both for the case of stringent
(exact) matching or flexible (non-exact) matching between the true
and inferred models (Methods). In both cases, we found that
DyVER performs well in predicting two-state models, where the
flexible case outperforms the stringent case, as expected. For
example, using single state-transitioning patterns with nine time
points, effect size 0.75, significance cutoft 0.001 and the absence of
penalty (probability of transition 0.5), the stringent and flexible
error rates are 0.41 and 0.33, respectively (Figure 85). The error
rate increased with decreasing penalty (e.g., for transition
probabilities of 0.01 (high penalty) and 0.5 (no penalty), stringent
error rates are 0.32 and 0.41, respectively). As expected, error
rates rose when a higher statistical significance cutoft (0.05) was
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used, whereas the gap between the error rates for different
significance cutoffs remained relatively constant when the penalty
increased. Results obtained for other effect sizes were similar.

Collectively, our results indicated that DyVER outperforms
extant methods even in the absence of penalty and the presence of
missing data (Fig. 3, Figures S1-S4), and that these perfor-
mance can be even enhanced by the addition of a penalty
component (Figure 85). These results hold when the complexity
of dynamic effect patterns is relatively low, as in the case of genetic
effects in biological data (¢.g., Figure S6).

A catalogue of non-linear genetic effect patterns in yeast

response to rapamycin

We applied DyVER in an unbiased manner (without penalty) to
the available dataset of 95 yeast segregants that were stimulated by
rapamycin and profiled at six time points (Methods) [27].
DyVER predicted 351 associations to 145 distinct variants (false
discovery rate [FDR] 6%). Of these 351 associations, 145 had
highly significant dynamic associations (15% FDR, Table S1,
Methods) and 105 of them showed non-linear genetic effect
patterns (Fig. 4). In agreement with previous findings [2,11], our
results suggest that non-linear associations are prevalent: of the
eight previously known causal genes, six were found to have an
association with at least one target gene exhibiting a non-linear
genetic effect pattern (Table $2). Correlations among genetic
effects of consecutive time points were much larger than
correlations between non-consecutive time points [P value <
107" (Wilcoxon test)], justifying our ‘memoryless’ Markov
assumption that the next time point is mainly dependent on the
current time point (Figure S87). The 105 genes carrying non-
linear effect patterns were partitioned into groups based on their

December 2014 | Volume 10 | Issue 12 | 1003984
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doi:10.1371/journal.pcbi.1003984.g004

predicted two-state pattern (Table S1); seven two-state pattern
groups (C1-C7) were created, each including at least two genes
(Fig. 4A and B).

The partition revealed three prototypical non-linear genetic
effect patterns (Fig. 4A), including (i) a single upward spike
followed by a sustained high level of genetic effect (70 genes in C1—
C4). These different groups were characterized by distinct timing
of a state-transitioning, including an abrupt change in early time
points (0-10 min, C1), as well as an intermediate-early (0-20 min,
C2) and intermediate-late (20-30 min, C3) single state-transition-
ing. For example, SFAI and ESFI (in groups Cl, C2)
demonstrate a sustained genetic effect with a state transition at
0-10 and 0-20 minutes after rapamycin stimulation, respectively
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(Fig. 4B). In the case of the four genes exhibiting a late state-
transitioning (at 30-50 min, C4), a sustained new level of genetic
effects might occur at later time points that were not measured in
the current dataset [27]. (ii) A single downward spike of genetic
effect (C5-C6, 22 genes). In group C5, we observe an abrupt
downward spike in 10-20 minutes followed by a sustained low
level of genetic effect (for example, PHM6, Fig. 4B). Group C6
represents a delayed gradual single state-transitioning during 20—
50 minutes. (iii) An impulse of high genetic effect at 10—
30 minutes after treatment (9 genes in C7, e.g., UGA4, Fig. 4B).
Overall, the single state-transitioning patterns were over-repre-
sented, whereas complex patterns of genetic effects were rare
(1 gene, YER053C-A) and were under-represented [cis: P value
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<107", trans: P value <107 (f-test), (Figure S6A)]. Our
findings of rare complex patterns in yeast parallel similar
observations in the mouse (Methods, Figure S6B); Yet, the
particular shape of effect patterns may differ between biological
systems (Figure S8).

High-order coordination suggests that dynamic effect
patterns are an emergent property of genetic variants

We next explored the pleiotropic trans-acting variants that arise
from this analysis. Using DyVER’s predictions we organized the
genes into six co-association modules, each containing a group of
(at least two) genes with the same frans-associated variant (Fig. 5A
and B). Functional enrichment strongly related all six modules
with specific biochemical pathways. For example, the entire
module no. 3 consists of genes that play a role in uptake of
phosphate (P;) from extracellular sources and its accumulation in
vacuoles (5 of 5 genes; Fig. 5A and B, Figure S9A). The
module’s validated causal gene is PHOS84, a high-affinity
phosphate transporter that carries a missense mutation in one of
the parental strains (Figure S9B ) [29,30]. The nine genes in
module no. 5 carry two distinct functionalities and are therefore
treated as two distinct sub-modules, no. 5-I and no. 5-II (three
daughter cell-specific genes and six poor nitrogen source
degradation genes, respectively, Fig. 5A).

Next we examined whether module genes show characteristic
temporal effect patterns. On analyzing the modules we found that
modules nos. 1, 3, 4, 5-I and 5-II relate to a specific prototypic
temporal genetic effect pattern, whereas the remaining two
modules (nos. 2 and 6) are more general and show several distinct
patterns (Fig. 5A). For example, module no. 1 contains 34 genes,
32 of which have an upward spike (a single state transition) of
genetic effect at 10-30 minutes after rapamycin stimulation [FDR
0.01 (hyper-geometric test)]. As another example, module no. 3
contains five genes, all showing a downward spike of genetic effects
at 10-30 minutes after stimulation. Specifically the downward
spike occurs either 20-30 minutes after stimulation [4 genes, FDR
0.01 (hyper-geometric test)] or 10-20 minutes after stimulation (1
gene, Fig. 5A-C, Figure S9C). Overall, we found four modules
with over-represented patterns of single state-transitioning at
specific time points (nos. 1, 3, 4 and 5-I) and one sub-module of an
impulse effect pattern (no. 5-II). The observed coordination of
temporal genetic effects does not necessarily reflect a coordination
of transcription responses (Figure S10). In previous reports,
baseline expression levels were used to identify eight genetic
variants underlying similar modules (Table 82), but the coordi-
nated temporal genetic effects and the timing of upward or
downward spikes of genetic effects were not characterized.

A plausible explanation for the ‘shared variant, shared temporal
genetic effect pattern’ hypothesis is that the same molecular
mechanism underlies both inter-individual variation and the
dynamics of genetic effects. In such cases, the dynamic pattern
of effect is an attribute of the underlying regulatory mechanism
(rather than of the target genes), probably owing to temporal
changes in the influence or activity of the regulatory mechanism.
This hypothesis is further supported by the consistency in the
timing of state transitions in module genes and their underlying
(known) causal genes (Figs. 5D versus 3E): The {rans-associated
causal gene of module no. 1 (/RA2) attains a sustained-like pattern
of gene expression that resembles the temporal genetic effect
pattern of its target genes (Fig. 5D and E, left). The cis-
associated causal genes in modules nos. 3 and 4 (PHOS84 and
GPAI) exhibit drastic changes in their transcription response at
the same time point at which there is a (downward or upward)
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spike in the genetic effect of their target genes (20-30 and 30—
40 min; Fig. 5D and E, middle and right, respectively).

A novel pleiotropic variant acting on the timing of
initiation of transcriptional response

The poor nitrogen source degradation system (module no. 5-II)
demonstrates the ability of our method to reveal novel associations
acting on the timing of response and affecting an entire cellular
pathway (Figs. 5, 6). During growth on relatively poor nitrogen
sources (allantoate, allantoin, and GABA), yeast cells activate
premeases responsible for uptake of nitrogen sources and further
increase the expression of enzymes that participate in degradation
of poor nitrogen sources for the generation of ammonia. Exposure
to the TOR inhibitor rapamycin also leads to the same nitrogen-
regulated response [31]. Module no. 5-II consists of six of the
twelve genes in the allantoin, allantoate and GABA degradation
pathways, with all six genes having a significant impulse effect
pattern (DALI, 2, 4, 7, 80 and UGA4; Fig. 6A—-C). An additional
gene in these pathways, DAL5, is weakly associated using the same
impulse pattern at the same genomic position (Fig. 6A-C).

The impulse pattern reflects a difference in the timing of
initiation of response among the strains carrying the RM and BY
alleles in Chr2: 533-562 kb. For example, strains carrying the BY
allele showed early up-regulation of DALSO in response to
rapamycin, which was already detected at 10 minutes after
stimulation. The RM-carrying strains, in contrast, showed a clear
delay in response to rapamycin, but all strains reached a similar
expression level by 30 minutes after stimulation (Fig. 6D). The
underlying genetic variant acting on the timing rather than on the
magnitude of response has not been previously documented. In
the genomic interval (Chr2: 533-562 kb), two genes (RPB5,
CNS1I) have temporal transcription profiles that match the
expected early impulse of high genetic effect, the promoter of
five genes (RPB5, CNS1, ADH5, RTC2, YBR144C) is bound by
nitrogen-related transcription factors [32], and four genes (RPB5,
CNS1, ADH5, RTC2) were previously reported in nitrogen-
related cellular processes (Figure S11). These criteria therefore
suggest that RPB5 or CNS1 are two leading candidates in module
5-11.

Discussion

In this work we present the DyVER computational algorithm
for identifying genetic variants that lead to dynamic changes in
genetic effects. DyVER was tailored to identify abrupt changes in
the levels of genetic effects, which may provide valuable
information about the timing of alterations in the particular
regulatory mechanisms interacting with the underlying genetic
variant. In comparison with other approaches, DyVER attained
the most accurate identification of non-linear genetic effect
patterns, even in the absence of penalty (Fig. 3, Figures S1-
$4), likely due to (i) a focus on genetic effects rather than on
modeling the original phenotype values, and (i) the prior
knowledge about the separation of the time points into two
distinct groups that differ in their observed effects (encoded in the
temporal two-state model), thus allowing a different parameteri-
zation for each of these groups.

DyVER is using an HMM-based model for revealing genetic
variants acting on time-series gene expression data. HMM
modeling has been applied in various contexts, but not for the
case of direct identification of underlying genetic variants. For
example, HMM has been utilized for the identification of CNVs or
haplotypes [33,34]. Alternatively, an existing method was mainly
focused on revealing differential expression between conditions
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Figure 5. Co-associated genes typically share a similar pattern of genetic effects over time. (A) Six gene modules (column 1), constructed
on the basis of a shared trans-associated genetic variant (a genomic interval; column 2), are listed together with their known causal gene, if available
(column 3; T-cis-associated causal gene, references are in parentheses) and the number of associated genes in a module (column 4). Significant
enrichments in biological processes are detailed in column 5. Significant enrichments of temporal two-state patterns in each module are presented
together with the description of these enriched patterns (columns 6 and 7, respectively). (B—E) Gene expression and genetic effects in modules nos.
1 (left), 3 (middle) and 4 (right). Gene expression (B) and genetic effect (C) of representative genes, as well as genetic effects of an entire module (D);
plots are shown as in Fig. 4B. (E) Average gene expression (y-axis) at six time points (x-axis) for the known causal gene of each module. For cis-
associated causal genes (modules nos. 3 and 4), brown and black indicate strains carrying the RM and BY alleles, respectively. The plots demonstrate
the good match between the timing of abrupt changes in causal genes (E) and the timing of alterations in the observed genetic effects of their
associated target genes (D).

doi:10.1371/journal.pcbi.1003984.9005
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Figure 6. A genetic variant acting on the timing of response of the poor nitrogen-source degradation pathway (module no. 5-lI). (A)
The genomic interval underlying module no. 5-I residing in Chr2: 533-562 kb. Shown are DyVER scores (y-axis) across the genomic positions in
chromosome 2 (x-axis) for seven associated genes (color coded; the module includes only those six genes that cross the FDR 6% threshold). Positions
of two potential causal variants, RPB5 and CNS1, are marked below. (B) Genetic effects, relative to non-stimulated genetic effects (y-axis, log-scaled)
for different associated genes from A (color coded) at six time points (x-axis). The plot depicts the short impulse of high genetic effect in all
associated genes. (C) Module genes, in the context of the poor nitrogen-source degradation pathway. Enzymes are shown as color-coded rectangles
(bold-pink/module genes, pink/associated genes, white/non-associated genes). The pathways show the uptake of poor nitrogen sources (allantoate,
allantoin, and GABA) and their degradation into ammonium. (D) A representative gene. Expression profiles (left) and genetic effects (right, y-axis) of
DALB80, a gene in module no 5-II, during response to rapamycin (x-axis). Shown as in Fig. 4B but using a marker near the RPB5 gene (marked in A).

doi:10.1371/journal.pcbi.1003984.9006

using an HMM approach [26]. DyVER extends this method by
providing a statistical genetics P value score and by allowing a
number of parameters that is not increasing with the number of
strains.

Our method opens multiple directions for future investigations.
First, it is important to extend DyVER for the case of outbred
heterozygous population, including human. In the current study,
DyVER was designed for the case of a inbred (homozygous) strains
that are common in genetic studies (e.g., in yeast, nematode, fly,
mouse and rat) due to several major advantages: first, inbred strain
enable controlled stimulations, and second, they avoid major
challenges that are common in human genetics, including
haplotype analysis, rare variants and uncontrolled variables.
Future extensions may generalize the method for the heterozygous
case, possibly by calculating genetic effects between each pair of
genotypes (rather than between the only two possible genotypes as
in the homozygous case), requiring to add additional one or two
Gaussians within each of the model states. Second, the usage of a
our probabilistic model leads to several limitations: the number of
states should be specified in advance; we only capture correlations
between sequential time points but cannot capture higher-order
correlations among time points; and we generally assume that the
probability of a time point is independent of the probabilities of its
neighboring time points. Future improvements that handle more
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than two states and a more sophisticated probabilistic graphical
model [35] may therefore enhance DyVER’s performance. Third,
DyVER relies on at least a few synchronized strains in each of the
time points. Although DyVER allows missing data and possibly
different strains in different time points (Figure 83), it still cannot
be applied on non-synchronous data (as in [11]). Data imputation
methods can potentially enhance the DyVER analysis beyond this
synchronization requirement.

Building on the DyVER approach, we analyzed temporal gene
expression patterns following rapamycin treatment in yeast
segregants. Our analysis identified 105 genes exhibiting significant
non-linear genetic effects over time, 56 of them are well-
established associations (in modules 1,2,3,4,5-1 and 6), and the
remaining genes are new candidates for future experimental
investigations (e.g., Fig. 4B). For example, our study suggests a
novel genetic variant residing in chr2: 533-562 kb as the
underlying regulator of the timing of upward spikes in gene
expression after rapamycin treatment. Reassuringly, this regulator
acts primarily on genes that play a role in poor nitrogen source
degradation (6 of 6 genes, module 5-II, Fig. 6).

The application of DyVER in yeast provided several novel
insights that were mainly attained due to the unique capability of
DyVER to classify associations based on their optimized temporal
effect patterns. First, we use the temporal effect pattern to
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automatically organize the genes into clusters based on their
predicted patterns (Fig. 4A and Figure S$12). This organization
is substantially different from previous studies [2,11] that have
grouped time-series associations only manually. Based on this
clustering, we found that abrupt single state-transitioning and
impulse patterns occur in certain prototypical time points. In
particular, DyVER identified an upward spike of genetic effect at
0-10, 0-20, 20-30 and 30-50 minutes (22, 34, 10 and 4 genes,
groups Cl, C2, C3 and C4, respectively); a downward spike
followed by a new sustained low level of genetic effect (6 and 16
genes at 10-20 and 20-50 minutes, groups C5 and C6,
respectively), and a single pulse of high genetic effects (9 genes,
group C7, Fig. 4).

Second, many studies have shown that groups of co-associated
genes also share similar functionalities. Interestingly, our results
indicate that such co-associated genes typically share not only a
similar functionality, but also a similar predicted pattern of
temporal genetic effect (Fig. 5). One plausible explanation is that
a causal regulator typically alters its functionality during its
response to stimulation; therefore, a genetic variant interacting
with such a regulator is likely to affect its target only during those
time intervals in which the regulator is functional. Based on this
rationale, the temporal effect patterns in target genes may uncover
the temporal dynamics of their causal regulatory mechanisms.
Thus, DyVER’s characterization of temporal effect patterns,
which are probably a property of the causal regulatory mecha-
nisms, may provide a starting point for improved identification of
causal genes. For example, it might be possible to pinpoint a causal
gene in a genomic interval based on its predicted dynamics over
time (as demonstrated in Fig. 5D and E and Figure S11C).
Furthermore, it may be possible to discriminate between two
genetic variants differing in their dynamic over time, even when
these variants are co-localized at a nearby genomic position (as in
module nos. 5-I and 5-1II, Fig. 5A).

Taken together, our results highlight the utility of studying
temporal genetic effect patterns to discover and characterize
dynamic causal regulators. The next step is to extend and apply
our approach to map genetic effects in transcriptome of a wide
range of mammalian cell types.

Materials and Methods
The DyVER algorithm

Input data. For simplicity of presentation, we assume
synchronous data across all time points and strains. We will show
later, however, that this requirement can be relaxed. DyVER takes
as input the expression of a gene across n strains and 7" time
points. The gene’s profile at time point ¢ is denoted
Ry ={rs,....rs, }, where 1y, is the (log-transformed) expression level
in the i-th strain and {-th time point (i=1,...,n;t=1,...,T). The
input also consists of K genetic variants vi(k=1,...,K) that are
genotyped across the population. For homozygous recombinant
inbred strains, the genotyping of each strain in each genetic
variant vy is either aa or aa. For convenience of description, a
variant Vi partitions the strains into two groups, Ay and Ay,
consisting of 1, and ng strains carrying its aa and aa genotypes,
respectively.

Calculating the observed effects. Typically, the expression
of a gene is affected mainly by stimulation and is further
modulated by a genetic variant. To successfully detect the minute
effects of genetic variants, it is necessary to remove the
confounding effects of the stimulation. Hence, our first step is to
calculate the differences between expression values of strains
carrying different alleles. We term these differences the ‘observed
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effects’, and we use this collection of observed effects in the rest of
the method. For example, when a genetic variant acts, its observed
effect values are usually high (e.g., time points {3 and {, in variant
v, Fig. 2A and B); much lower effect values are observed in the
absence of influence (e.g., time points ¢; and { in variant v,
Fig. 2A and B) or when a wrong genetic variant is tested (e.g.,
variant u, Fig. 2B).

More precisely, given a time point ¢, the putative effect of a
variant v on two strains 4,j carrying its a and a alleles is:

r_ —
di;=ry, Iy

Where i€eAj and ije;lk. Overall, the collection iDfo ! consists of
ng X ng observed effects of variant v, at any time point :

Defﬁ:ct

effect effect
Dk _{Dk,l s kT I

Dl ={d] lieAk jeAy}. W

Since DyVER assumes that the variance of the genetic effects is
not changing over time, variance stabilization methods should be
applied before or after calculating the observed effects. In this
study we first normalized the log-transformed expression level in
each time point so that the variance in each time point and each
allele is fixed (but the mean values remain unchanged). The
observed effects were calculated only after this transformation.

Formalizing the likelihood of the data. Our digital model
assumes that at each time point a genetic variant may attain one of
two states: either the high-effect state (‘H"), reflecting the observed
presence of a high genetic effect, or the low-effect state (‘L)
reflecting either small effect, an opposite effect, or the absence of
effect. We denote by s, the state of a variant at the {-th time point
(t=1,...,T). A particular sequence of states (also referred to as a
candidate temporal two-state model) is S =s1,52,...,57 where state s;
takes one of two values, H or L. We model the dependencies
among time points as a first-order Markov chain, assuming
Pr (s/s0,...8.—1)= Pr(s/|s;—1). We use a fixed probability of
transition, called penalty:

Pr(s;=H|s,_1=L)=Pr(s,=Ll|s,_=H)=uo. (2)

The lower the o, the higher the penalty, whereas no penalty is
applied when o=0.5.

The overall probability of a temporal two-state model Pr (S) is
calculated across the time points, starting at the first time point
with the initial state probability Pr (s1) as follows:

Pr($)="Pr(s): I Prisds). 3)

Assuming «<0.5, this formalization reflects the desired
dependencies among time points: the higher the number of state
transitions, the lower the probability of a temporal two-state
model.

Assuming that the temporal two-state model of a variant vy is
S =51,82,...,57 (where s, is in either the H or the L state), the
probability of measuring such observed effect values is
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referred to as the probability of observed effects. In both states H
and L the effect is modeled with mean Gaussian noise of p with a
standard deviation ¢. Each of the states, however, may attain
distinct parameter values: py,0n are used for the H state and
Hy,or for the L state. Notably, the parameters for all time points in
the same state are shared, opening the way to a large number of
time points without increasing the number of model parameters.

Collectively, given a temporal two-state model §, model
parameters 0={py,0m,14;,00} and a variant v, the likelihood
function for a candidate gene is:

lepect(vi.8,0) = Pr (S)- Pr(DY*“'|S.0), (5)
where Pr(S) and Pr (szf “!8,0) are calculated as in equations 3
and 4, respectively.

Learning the temporal two-state model using a likelihood
function. For each candidate variant vi, DyVER searches for
the temporal two-state model S} and model parameters 6} that
maximize the likelihood function:

(S;.00)= argsrzlax Lefpect (Vi S, 0). (6)

Notably, the model can be viewed as a two-state Hidden
Markov Model (HMM) [36] consisting of a sequence of high-effect
and low-effect states that are hidden, where the observed effects at
each time point are sampled from a Gaussian probability
distribution. We can therefore use existing HMM methods for
the maximization process. In particular, we use the Baum-Welch
algorithm [37], which utilizes expectation maximization steps
applied on an HMM model to iteratively improve the hidden
sequence of states (temporal two-state model) and the parameters
of the model from the hidden states. In all cases, our initialization
is a pattern of low-effect states using distinct average values in each
gaussian; we evaluated that in 93% of the cases, a single
optimization with such a single initialization equals the maximal
likelihood that could be attained by testing 1000 random
initializations. After the optimization process and without loss of
generality, the state whose absolute p value is higher (lower) is
referred to as the H (L) state. Notably, since both uy and p; are
not restricted to any particular value, the model may capture
various dynamic changes in effect size, including inversions.

Statistical evaluation. Naively, the maximal likelihood score
Lefrect(Vic,Si,05) can be used to search across all candidate genetic
variants that may associate with a gene. However, such a score
cannot help us make a judgment about the statistical significance
of such a hypothesis. Here we want to know whether the observed
effects of a candidate variant v, assuming its temporal two-state
model S}, can be attributed to chance. In particular, to share
parameters of observed effects across all time points in each of the
states (according to S}), the test is applied directly on observed
effects (rather than on the original expression levels whose
parameters cannot be shared based on Sj). We distinguish two
populations of differences between expression values of distinct
D;{ffu,r

strains: first, the population of observed effects , consisting of
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differences among strains carrying distinct alleles (as defined in

equation 1); and second, a background population D,}:g , consisting
of differences among strains carrying the same allele:

bg _  nbe bg
Dy _{Dk,l"“’Dk,T >

D ={d! lijeAx }U{d. |ijedr}. (7)

The null hypothesis Hpassumes that a variant v¢ has no effect;
thus, a single model can represent both samples D]iff “! and D},:g .
The alternative hypothesis Hj is that the variant has a dynamic
effect on gene response, and thus that Dzjﬂ “ and ng should not
be modeled together. The test statistic is the ratio:

max Pr (DT |S7.,0)- max Pr (D%|S7.0)
Jy =

. 8
max Pr (sz'fm UDZg|S/’§,9) ®)

where Pr (szf “h, Pr (Dig ), and Pr (szf mUDig ) are calculated as
in equation 4 but for different datasets. We call the test statistic 4;
the DyVER score. The significance level of the score is evaluated
by repeatedly permuting the labels of strains. We calculate an
empirical P value, defined as the proportion of permutation tests
for which the DyVER score is larger than the observed (non-
permutated) score. Figure $13 indicates that the DyVER score P
value is indeed well-calibrated using a Q-Q) plot analysis. Reported
predicted association(s) are those with significant DyVER scores.

Notably, in standard genetic methods, the null model’s input
dataset is similar for different variants. For example, the null
model of a regression analysis utilizes the same data values but
with variant-specific predictors; the null model of an ANOVA test
is variant-independent. In the same sense, the null model of the
DyVER score is based on Diff mUng that is calculated based on
all possible pairs of strains regardless the variant under study.
Alternative scores — focusing solely on szf ! and omitting the ng
component (e.g., Figure S14) — have not been used throughout
this study since they are prone to attaining Diﬂm datasets with an
entirely different set of strains pairs for different variants.

In a post-processing step, it is also possible to evaluate the
dynamic nature of DyVER’s predicted associations. To this end,
the dynamic association score may test the significance of the
difference between the observed effects of the high-effect and the
low-effect states (a ¢-test P value score). The partition into high-
effect and low-effect states is determined by the predicted temporal
two-state model (S} from eq. 6). Predicted dynamic associations are
those predicted associations for which there is a significant
dynamic association score. Whereas the DyVER score is a
statistical genetics score that identifies an underlying genetic
variant, the dynamic association score evaluates temporal changes
for this variant.

Since the calculation of observed effect and likelihood measures
are calculated in each time point independently of its neighbors
(egs. 1-6), and since our scoring scheme relies only on these
measures, thus the input data in each time point may consists of a
different population of strains with a different population size. In
particular, as long as the input data consists of multiple
synchronous strains in each time point, DyVER allows missing
data without a requirement for data imputation. DyVER’s
executable and source code, including an option for an additional
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imputation based on flanking time points of the same strain, can
be downloaded from csgi.tau.ac.il/dyver.

Synthetic data

To generate synthetic data we first generated 50 strains carrying
100 genetic variants, sampling one of the two alleles with equal
probabilities. A single synthetic collection consists of 500 genes, of
which 300 are associated with a certain variant over T time points.
Opverall, for a single dataset we generated 72 collections,
constructed for all combinations of eight possible ‘effect sizes’
(defined below, ranging between 0.125 and 1) and nine different
numbers of time points (ranging between 3 and 27). In all cases,
the low-effect state represents the absence of effect (u; =0) and the
high-effect state represents the presence of an effect (uy >0),
where p; —pyy is the effect size. f(¢) is the simulated observed
effect, which is generated by sampling ¢ from a Gaussian
distribution & ~ N(0,0.5). A dataset was constructed for each class
of temporal effect patterns. For a single state transition effect
pattern (here, sustained) we used a sigmoid function:

K —Hr

JO=p+ ————m ey
(1I+ge=Hi=)

Where 0e{1,7—1},q=v=0.5 and f=7. For an impulse effect
pattern we used the product of two sigmoid function with five
parameters 0 = (ho,hy,ho,t1,t2,5) [24], where ho =hy = p; ,hy = uy,
tp — 1) is the length of the impulse effect (here, f=7):

f=

1
E'(hO'F(hl

1 1
o e e )

To generate the complex pattern for T time points we
concatenated two impulse patterns, each for T/2 time points.
For the dataset of linear effect patterns, observed effects are
sampled from a linear function:

Hg — K

SO=p+ T

‘I+é&.

For the purpose of comparing predicted to gold-standard
temporal two-state models (Figure S5) we generated a different
collection of synthetic sustained dataset as follows: we first
generated the temporal two-state model by sampling from the
corresponding distribution (from equation 3) with a=0.1. The
observed effects were then generated by sampling from the
corresponding Gaussian distribution N(uy,05), N(ti,01), where
gy and py are the mean of the high- and low-effect state, and
02 =0%,=0.5. To generate an input with a percentage of k%
missing data, in each time point, we omitted the information for
k% randomly selected strains (thus, each time point consists of a
different list of strains).

An additional synthetic dataset was created similarly to the
above datasets, but using previously published functions in C.
elegans [11]. For each of the 300 associated genes in this synthetic
dataset, we first randomly chose a function out of the 18 functions
that were published in C. elegans; the observed effects were then
sampled from this selected function.

The compared methods were implemented as follows. In the
‘naive’ method we assumed a simple fixed effect model on each
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time point independently, y; = f8;+&;, where yj; is the observed
expression level for strain j carrying genotype #; f; is fixed effect of
genotype i and &;~N(0,6%). The most significant (minimal)
ANOVA P value score is taken as the resulting P value. In the
‘PCA’ method, we project the T-dimensionality of each strain into
the first principal component and then applies an ANOVA test
assuming a fixed effect model y;=f;+¢; where y; is the first
principal component for strain j carrying genotype i; fi; is the fixed
effect of genotype ¢ and g; ~ N (0,6?) (the first principle component
was chosen since it performs better than the consecutive
components, see Figure S15). For the ‘expression dynamics’
method, we used the model yf-j=ﬂi+b,~'t+s,-j, where yf-j is the
observed expression level in time point ¢ for strain j carrying
genotype i, f5; and b; are two fixed effects for genotype ¢ and
& ~ N(0,6%). The formulation was implemented using the lme4 R
package. In all cases above, an F-test was used to test the model.
For the more sophisticated ‘detailed dynamics’ method, we use the
longGWAS R package that is part of its original publication [15].

Performance analysis using synthetic data

For each synthetic dataset, DyVER was applied to predict a
genetic variant using the DyVER score (P values were Bonferroni-
corrected for multiple variants). To quantify the ability to correctly
predict such genetic variants, we define the accuracy measure.
Genes are split into two groups: one contains genes that are
associated with a genetic variant, and the other contains the
remaining, non-associated genes. A mapping method may provide
a negative prediction (i.e., a non-significant P value for all
candidate variants), or alternatively, a positive prediction of either
the correct variant or an incorrect variant. We define true positives
as assoclated genes whose correct genetic variant is predicted with
a significant P value. True negatives are non-associated genes that
were not significantly associated with any variant. False negatives
are associated genes that were not significantly associated with any
variant. Finally, false positives are defined as erroneous significant
predictions as a result of two possible scenarios, either a non-
assoclated gene that is wrongly predicted to be associated with a
certain variant, or alternatively, an associated gene whose
predicted variant is incorrect. We adopt the standard formulations
for sensitivity (number of true positives out of the total number of
positives) and specificity (number of true negatives out of the total
number of negatives).

Similarly to a standard ‘Receiver Operating Characteristic’
(ROC) analysis, we can plot the sensitivity against the 1-speificity
across different P values, providing an overall view of the
performance of the method: the higher the curve, the better the
accuracy (defined as the area under the curve). Notably, using a
standard sensitivity definition, sensitivity should increase with
higher P value thresholds. In contrast, using our definition of
sensitivity, it is dependent on the particular predicted variant.
Thus, even with a very high P value threshold and many affected
genes, the sensitivity of a random algorithm might remain close to
zero. The accuracy therefore ranges between 0 (for a random
prediction) and 1 (for a perfect prediction).

Finally, to quantify the ability of DyVER to correctly predict the
temporal two-state model, we define the two-state pattern error
rate (shortened to error rate) as the number of wrongly predicted
temporal two-state models expressed as a proportion of the total
number of (significant) correctly identified variants. We test two
different rules for matching between the simulated and predicted
model. In the stringent case, we require a fully correct two-state
model, and in the flexible case, we require correct transitions
between states but allow incorrect timing of transition.

December 2014 | Volume 10 | Issue 12 | 1003984



Yeast and mouse dataset

We applied DyVER to genotyping data and gene expression
data that were monitored during six time points following
exposure to rapamycin in 95 yeast segregants and their two
parental yeast strains: BY4716 (BY) and RM11-1a (RM) [27].
DyVER was applied to the log expression of 2700 genes with the
highest difference between the BY and RM parental strains. To
ensure that the biological results are unbiased, DyVER was
applied with penalty 0.5. Multiple testing was controlled as follows:
DyVER score P values were first Bonferroni-corrected for multiple
variants; the corrected DyVER score P values were then
controlled for multiple testing of genes (FDR 6%). We then
further filtered the genes based on the dynamic association score
(FDR 15%). In total out of 2700 genes, we obtained 351 (13%)
predicted associations (based on the corrected DyVER score P
value) and 145 (5.3%) predicted dynamic associations (based on
the dynamic association score). Next, we further removed 40 genes
carrying linear-like patterns, based on strong correlation with a
linear model (r>0.95) and more than 5% change in genetic effect
in any two consecutive time points (Table S1). The partition into
groups was generated automatically according to DyVER’s
predicated two-state model (Figure S12).

In addition, we applied DyVER to genotyping data and log
gene expression data of 403 genes that were monitored using a
meso-scaled technology during three time points following
exposure to lipopolysaccaride in 45 mouse BXD strains [2]. Of
the 403 genes, 14 genes (3.4%) were identified as significant
dynamic associations (FDR 10%; Figure S6B).

Supporting Information

Figure S1 Comparative performance analysis on syn-
thetic data. Scatter plots for various performance measures (y-
axis) of six alternative mapping methods (color coded) over genes
that were measured in different numbers of time points (for genetic
effect size 0.5; x-axis, A,B), or over genes of different effect sizes
(for 9 time points; x-axis G,D). Shown are different patterns of
genetic effects (left to right: impulse, single state-transitioning
(sustained), linear, and complex sub-panels). In A,C, shown is the
accuracy measure, whereas in B,D, presented are the sensitivity
and specificity measures (in solid and dashed lines, respectively;
assuming P value 0.1), exemplified for DyVER against the PCA
method (chosen since its accuracy is the best among the compared
methods). Plots A,C indicate that for the non-linear genetic effect
patterns, DyVER has an advantage in accuracy over existing
approaches. The sensitivity and specificity tradeoft that leads to
this accuracy advantage are demonstrated in B and D.

(EPS)

Figure S2 Comparative performance analysis on nem-
atode-based synthetic data. Shown is accuracy (y-axis) for
several compared approaches (color coded) using different patterns
of genetic effects that were built based on the effect curves from
Francesconi et al. (2014) (Methods). Results are shown over
synthetic genes that were measured at six time points and of
different genetic effect sizes (x-axis). The plot demonstrates that
DyVER has an advantage over the compared approaches in a
biological relevant synthetic data.

(EPS)

Figure S3 DyVER’s performance analysis using incom-
plete data. The plot depicts the accuracy measures (y-axis) for
the DyVER method across various percentages of missing data
(0% [complete data], 20%, 40% and 60%, Methods) and for the
compared methods in the case of complete data (x-axis). The
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results are shown for single state-transitioning (sustained) pattern of
genetic effects, over genes that were measured at nine time points
and genetic effect size 0.5. The complete data consists of the same
50 strains in each time points, where in the missing data input,
each time point consists of a different (in some cases overlapping)
list of strains (e.g., 30 selected strains in the 60% dataset). The plot
indicates the high accuracy of DyVER, even in the case of missing
data.

(EPS)

Figure S4 Comparison of performance in a short-
impulse and long-impulse synthetic data. (A) Performance
measures (y-axis) for different effect sizes (x-axis). The results
presented are for all genes consisting of 27 time points with either
short impulses (five time points, dashed lines) or long impulses
(fifteen time points, solid lines). The plot depicts six alternative
mapping methods (color coded). (B) The fraction of performance
reduction for short impulses data compared to long impulses data
(y-axis) for different effect sizes (x-axis). Results are shown for both
accuracy (left) and sensitivity (right) measures, and are omitted
when the accuracy or sensitivity in long-impulse data is low (<0.35
and <0.14, respectively). The plots indicate that fraction of
performance reduction is much lower in the case of the DyVER
algorithm than in the alternative methods, providing evidence for
the good performance of DyVER in the case of short duration
genetic effects.

(EPS)

Figure S5 Effect pattern error rates. Two-state pattern
error rates using a stringent (A) or a flexible (B) matching (y-axis)
for a model penalty ranging between 0.01 (high penalty) and 0.5
(no penalty; x-axis). Performances were evaluated for a single state-
transitioning effect pattern dataset of nine time points. Results are
shown for effect size 0.75 and using both stringent (red dashed line)
and relaxed (red solid line) cutoft P values, as well as using random
predictions (gray dashed line). As expected, in all cases, the higher
the penalty, the lower the error rate.

(EPS)

Figure S6 Non-linear genetic effect patterns. Percentages
of dynamically-associated genes predicted by DyVER (y-axis)
across different non-linear genetic effect patterns (x-axis). Results
are presented for analysis of real data (blue dots) and reshuffled
data (box plots for 1000 repeats). Presented are results in yeast
response to rapamycin (A, cis/top, {rans/bottom), and in three-
time-point data in mice strains (B, Methods). Notably, although
the percentages are similar in yeast and mouse, their total number
of genes drastically differ and therefore the actual number of
identified genes is different (mouse — a total of 403 genes that were
measured using the meso-scale nanostring nCounter technology;
yeast — a total of 2700 top-ranking genes that were measured using
the large-scale microarray technology).

(EPS)

Figure 87 High correlations among genetic effects of
consecutive time points. (A) Presented is a correlation matrix
of genetic effects between every pair of time points (red — high,
blue - low). The matrix indicates that correlation among
consecutive time points is higher than correlation among non-
consecutive time points. (B) The distribution of mismatches
between genetic effects of consecutive time points (t; versus tii;
red) and between genetic effects of non-consecutive time points (t;
versus tiyo; black). Depicted are three plot representing the fraction
(y axis) of mismatch values (x axis) across all 105 non-linear
dynamic associations (Table S1); top, middle and bottom panels
represent t; =10, 20 and 30 minutes after rapamycin treatment,
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respectively. To calculate mismatch between genetic effects of two
candidate time points, we first calculated a regression model
relating genetic effects at a certain time point t; (dependent
variables) to genetic effects in the following time points tiy; or tio
(independent variables). Mismatch values are defined as the
residuals of this regression. The plots indicate that mismatches
between consecutive time points are lower than mismatches
between non-consecutive time points (Wilcoxon P values <<
107" in all cases). (C) A heat map of the relations between genetic
effects at 10 minutes (y axis), genetic effects at 20 minutes (x axis),
and genetic effect at 30 minutes after rapamycin treatment (color
coding; blue — low genetic effect; red — high genetic effect). Each
cell represents a 2D bin consisting of all genes with genetic effects
in a defined range at time points 10 and 20 minutes after
treatment. 2D bins are colored based on their average genetic
effect at 30 minutes after treatment (empty 2D bins are colored
white). The heat map demonstrates that genetic effect at
30 minutes after treatment is linked to genetic effect in its nearby
time point (20 min) but not to an earlier time point (10 min),
consistently with DyVER’s ‘memoryless’ Markov model.

(EPS)

Figure S8 Non-mutually exclusive classes of temporal
effect patterns in yeast and nematode. Comparison
between the fraction of genes (y-axis) that were classified into five
non-mutually exclusive classes (x-axis) of the yeast dataset (Yeung
et al., 2011; black) and the C. elegance dataset (Francesconi et al.
(2014); white). Classification categories are as in Francesconi et al.
(2014).

(EPS)

Figure S9 Phosphate (Pi) acquisition and storage mod-
ule no 3. (A) Module no. 3 genes (pink) in the context of the
phosphate acquisition and storage pathway (adapted from Ref.
29). The pathway shows the extracellular conversion of phosphate
monoester into phosphate, phosphate transport into the cyto-
plasm, and deposition of phosphate into storage vacuoles. (B) The
genomic interval underlying module no. 3, residing in Chrl3:
28 kb. Shown are DyVER scores (y-axis) across the genomic
positions in chromosome 13 (x-axis) for the genes in module no. 3
(color coded). The position of the known causal variants in
PHOS84 is marked below; all remaining genes are {rans-associated.
Genetic effects of the module and a representative gene are
depicted in Fig. 53B-E. (C) Genetic effects, relative to non-
stimulated genetic effects (y-axis, log scaled) for different trans-
associated genes from B (color coded) at six time points (x-axis).

(EPS)

Figure S10 Genetic effects and transcription responses
of co-associated genes in module no. 4. (A) Genetic effects,
relative to non-stimulated genetic effects (y-axis, log scaled) for the
co-associated genes in module no. 4 (color coded) at six time
points (x-axis). (B) Averaged transcription response, relative to
non-stimulated transcription response (y-axis, log scaled) for
module no. 4 genes (color coded) at six time points (x-axis).
Notably, the module genes share a similar genetic effect pattern
(A), even though they do not share a similar transcription response
pattern (B).

(EPS)

Figure S11 Identifying the genes likely underlying the
nitrogen-regulated module no. 5 - II. (A) Potential causal
genes underlying the nitrogen-regulated module no. 5-II (column
1), genetic linkage interval at chromosome 2 (column 2). Amino
acid differences between the RM and BY strains are reported in
column 3. The table presents three selection criteria: First, by
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reporting genes whose temporal transcription profiles fit the
expected impulse effect pattern (column 4, detailed in B,C).
Second, by reporting those genes that are significantly bound by
nitrogen-related transcription factors (column 5, detailed in D).
Finally, by reporting functionally-related genes (that is, genes
known to be involved in nitrogen or amino acid pathways, column
6). Shown are all genes selected by at least one criterion. Notably,
RPB5 and CNSI were selected by all three criteria (marked in
Fig. 6A). (B) Averaged temporal gene expression profiles (blue
color scale) of the genes in the linkage interval of module no. 5-11
(rows) following rapamycin stimulation (columns). Genes showing
a specific high expression level at ten minutes following stimulation
are marked in arrows and listed in A (RPB5, CNSI). Plot (C)
demonstrates the agreement between the averaged transcription
response of RPB5 and CNS1 (solid lines) and the averaged relative
genetic effect pattern in module no. 5-II (dashed line, y-axis)
during time points (x-axis). (D) Shown is a —log P value of
transcription factor binding data (from Ref. 32, y-axis) for the
genes in the linkage interval of module no. 5-II (white, x-axis). The
two transcription factors, DALSO (top) and GCN4 (bottom) are
known as key regulators of the nitrogen and amino acid pathways.
A threshold corresponding to the level of binding in known
nitrogen-related genes (black) is indicated in dashed horizontal
line. Genes with a similar or higher binding —log P value are listed
mn A

(EPS)

Figure S12 DyVER’s predicted two-state model for
dynamic genes in yeast following rapamycin treatment.
Shown is a table of cluster identifiers (column 1) and their number
of genes (column 2). The partition was generated automatically
according to DyVER’s predicated two-state model. The model for
each cluster is shown either as a sequence of "L’ and "H’ states
(column 3) or in a cartoon visualization (column 4; ‘H’ - light blue,
‘L’ — white). The pattern in columns 3 and 4 is shown for
increasing time points from left to right. For example, the
LLLHHH pattern indicates a high genetic effect only at 30—
50 minutes after rapamycin treatment.

(EPS)

Figure S13 Q-Q plots for the DyVER’s score. (A) An
example of two QQ-plots of representative genes. The plots show
no inflation and deflation of the expected minus log P values (x-
axis) versus the observed minus log P values of the DyVER score
(y-axis). Genomic control (GC) values were defined as the median
of the observed minus log P value divided by the median of the
minus log expected P value. (B) An overall distribution (box-plot)
of GC values across all genes in the dataset. As expected, the
distribution of genomic control values is centered in genomic
control =1. Plots A and B were generated using a synthetic
dataset of 500 genes that were measured at nine time points using
single state-transitioning (sustained) pattern with genetic effect size
=0.5.

(EPS)

Figure S14 Three possible formulations of the DyVER’s
likelihood ratio test. (A) A table presenting the three
formulations (rows); including the name of the approach (column
1), its likelihood ratio formulation and parameters (column 2) and
the degrees of freedom that should be used for a -
approximation of P values (column 3). In all cases, the null
hypothesis is an absence of an effect and the alternative hypothesis
is the presence of an effect. The formulation of the DyVER score
1s specified in line no. 1. The additional formulations I and II (in
]c;ﬁ"ect

lines 2 and 3, respectively) are focused only on the D dataset:
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Assuming the presence of an effect, the full two-state model is used
as in the DyVER score. Assuming the absence of an effect, the
mean value of both the high-effect and low-effect states is set to
zero; formulation I assumes a different variance for the low-effect
and high-effect states, whereas formulation II assumes an equal
variance. (B,C) Comparative performance analysis on synthetic
data. Scatter plots for the accuracy measure (y-axis) of different
methods (color coded), including (i) the five existing approaches
(implemented as detailed in Methods) and (i1) three formulations
of the DyVER’s likelihood ratio tests as specified in A (P values for
all three methods were derived using a permutation test). Results
are shown over synthetic genes with a single state-transitioning
(sustained) pattern of genetic effects; the genes were measured in
different numbers of time points (x-axis, B) or different effect sizes
(x-axis, G), as presented in Fig. 3. The plots clearly show that all
three formulations of the DyVER’s likelihood ratio test provide
similar performance.

(EPS)

Figure S15 Performance analysis of the PCA approach
on synthetic data. Scatter plots for the accuracy measure (y-
axis) of three possible PCA-based methods over synthetic genes
with a single state-transitioning (sustained) pattern of genetic
effects; the genes were measured in different numbers of time
points (x-axis) for genetic effect size 0.5. Different line types
indicate the results for PC1, PC2 and PC3, respectively. The plot
demonstrates that the accuracy attained by the first component is
the best among the consecutive components.

(EPS)

Table S1 DyVER'’s predicted associated genes in yeast
following rapamycin treatment. Shown are 145 gene
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