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Abstract

Inter-individual variation in regulatory circuits controlling gene expression is a powerful source of functional information.
The study of associations among genetic variants and gene expression provides important insights about cell circuitry but
cannot specify whether and when potential variants dynamically alter their genetic effect during the course of response.
Here we develop a computational procedure that captures temporal changes in genetic effects, and apply it to analyze
transcription during inhibition of the TOR signaling pathway in segregating yeast cells. We found a high-order coordination
of gene modules: sets of genes co-associated with the same genetic variant and sharing a common temporal genetic effect
pattern. The temporal genetic effects of some modules represented a single state-transitioning pattern; for example, at 10–
30 minutes following stimulation, genetic effects in the phosphate utilization module attained a characteristic transition to
a new steady state. In contrast, another module showed an impulse pattern of genetic effects; for example, in the poor
nitrogen sources utilization module, a spike up of a genetic effect at 10–20 minutes following stimulation reflected inter-
individual variation in the timing (rather than magnitude) of response. Our analysis suggests that the same mechanism
typically leads to both inter-individual variation and the temporal genetic effect pattern in a module. Our methodology
provides a quantitative genetic approach to studying the molecular mechanisms that shape dynamic changes in
transcriptional responses.
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Introduction

Inherited variation in gene expression is likely to have a major

effect on cellular and disease phenotypes, and may allow the

underlying DNA polymorphisms (genetic variants) to be identified

[1]. The genetic effect of a particular variant on a certain RNA is

the quantitative change in gene expression that is associated with

changing the variant’s genotype (allele). Two recent studies have

demonstrated that genetic effects on longitudinal gene expression

data might be either stable – where the genetic effect is similar at

all time points (a non-dynamic effect pattern; Fig. 1A) – or flexible,

changing the magnitude of effect during time points (a dynamic
effect pattern; Fig. 1B,C) [2,3].

Dynamic effect patterns may be described in terms of the shape

of changes in genetic effects over time. A linear-like genetic effect
pattern (Fig. 1B) reflects a gradual change in the magnitude of

genetic effects, whereas in a non-linear genetic effect pattern
(Fig. 1C), the level of genetic effect is sustained in some time

periods and spikes up or down in others (Fig. 1C). In most studies,

transcription responses across individuals have been monitored

only in two time points (before and after stimulation) and therefore

the dynamics of changes in genetic effects over time could not be

characterized [4–9].

Understanding non-linear genetic effects can, in principle, allow

the timing of influence of certain regulatory mechanisms to be

revealed. For example, a single state-transitioning in genetic effects

may uncover the timing of alteration in a regulatory mechanism

interacting with a genetic variant (e.g., transition to a new steady

state at t3, Fig. 1C, left). Such a mechanism can be revealed even

when additional mechanisms are acting in parallel (e.g., up-

regulation during the entire time course; Fig. 1C, left). The

linear genetic effect pattern, in contrast, lacks sharp alterations and

therefore does not specify finely-timed information about regula-

tory mechanisms (Fig. 1B).

This study is focused on mapping temporal patterns of non-

linear genetic effects and using this information to address major

questions about dynamic transcription responses. Which dynamic

genetic effect patterns are prevalent in global gene responses? Are

there any general principles - either functional or mechanistic -

shared among genes carrying the same temporal genetic effect

patterns? Can we derive insights about the mechanisms underlying

such dynamic genetic effect patterns?

Here we developed DyVER (Dynamic Variant Effect on

Response), a statistical framework to predict genetic variants and

study their dynamic changes in genetic effect sizes. DyVER was

mainly designed to achieve an accurate detection of non-linear
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genetic effects (Fig. 1C) during time points. The methodology is

based on the notion of a two-state digital model that pinpoints the

particular time point at which a rapid change in genetic effects

occurs; it is therefore suitable for revealing the timing of state

transitions in genetic effects. DyVER takes as input synchronous

data in several time points and across a population, and is tailored

for recombinant inbred strains that are commonly utilized in

genetic studies [2,10–14].

DyVER differs from extant genetic approaches in several

aspects. First, some existing methods construct a full model of the

response curve across individuals. Their number of parameters is

therefore increasing with the number of time points (e.g., [15]).

DyVER, in contrast, is primarily designed for the specific task of

identifying the time points of alterations in effect sizes. This partial

modeling allows the use of only a small number of parameters

regardless the number of time points and the shape of the

temporal pattern. Secondly, DyVER is focused on modeling the

dynamics in genetic effects while eliminating the confounding gene

expression variables. This is unlike extant approaches, which

commonly fit both gene expression and genetic effects to a certain

function over time [11,15–20]. Finally, if desired, DyVER can

exploit the order in the input time course data, unlike several

approaches that are based on unordered correlated traits (e.g.,

multivariate methods [21,22] or dimension reduction methods

[23]). Notably, DyVER is a practical translation of differential

expression approaches (with or without time-series data [24–26])

for the case of statistical genetic studies.

Here we report on the use of DyVER to investigate temporal

gene responses at six time points after stimulation with the TOR

inhibitor rapamycin and across genotyped yeast segregants [27].

The results depict a complex map of non-linear changes in genetic

effects. We identify a causal variant that affects the timing of spike

up in transcript levels. Importantly, our findings suggest a

previously unknown high-order temporal coordination of genetic

effects: modules of genes influenced by a common dynamic genetic

variant not only participated in the same biological pathway, but

also shared orchestrated dynamics of genetic effects. Based on this

modularity, we hypothesize that in some cases dynamic effect

patterns are a property of the regulatory mechanism within which

a genetic variant resides (rather than a property of the target

responding transcript). We demonstrate that using this notion it is

possible to enhance the identification of underlying causal genes

based on their characteristic temporal effect pattern. Our results

indicate the utility of studying dynamic genetic effects acting on

global gene transcription.

Results

DyVER: A method for inferring dynamic, non-linear
genetic effects

We devised a new method, DyVER, to identify genetic variants

that underlie the expression of genes and their particular dynamic

effect patterns. DyVER takes as input the measured transcription

response of a gene over several consecutive time points following

stimulation and across a cohort, as well as a set of potential genetic

variants and their genotyping (Fig. 2A). Given a candidate genetic

variant with two alternative alleles, DyVER proceeds in three steps

(Methods): (1) It first calculates the observed effect of the variant,

namely the difference in gene response between strains carrying

the two distinct alleles (Fig. 2B). The observed genetic effects are

used as data in the subsequent steps. (2) To identify non-linear

dynamic shapes of genetic effects, DyVER assumes a ‘digital’

regulatory model that distinguishes two possible states of genetic

effects: first, a strong effect of genetic variant on the gene response

(denoted the high-effect state); and second, a lower (such as zero)

effect, or possibly an opposite effect (denoted the low-effect state).

Several previous methods have employed a two-state model,

although not in a dynamic or a genetic effect context [28]. Based

on a maximum likelihood approach, DyVER seeks a genetic

variant and a sequence of states that best describe the dynamic

changes in the size of the genetic effect. For example, if a gene is

affected mainly by a variant v during a late time interval, DyVER

successfully infers the correct effect pattern lowRlowRhighRhigh

for the correct variant v as it attains the highest likelihood score

(Fig. 2B and C, right panel). For incorrect variants, the

likelihood scores are typically lower (Fig. 2B and C, left panel).
DyVER’s predicted sequence of states is referred to as the temporal
two-state model. Finally, (3) DyVER calculates the statistical

significance of association for each genetic variant based on a

likelihood ratio score that takes as input the inferred temporal two-

state model (Fig. 2D). We refer to this score as the DyVER score.

Notably, although DyVER requires synchronous observations in

particular time points, it is still possible to apply DyVER on partial

observations in each of the time points (Methods).

Overall, step 1 allows DyVER to focus on dynamics in genetic

effects regardless of the magnitude of transcription response,

whereas the discrete modeling in step 2 allows detecting any

sequence of spikes up or down in genetic effects. The two-state

model from step 2 enhances the performance of the DyVER score

(step 3) by allowing a separate parameterization for each of the

states. Specifically, to infer an optimal temporal two-state model,

DyVER uses a two-state hidden Markov process where the

observed effects are treated as the outcome of a sequence of

hidden high-effect and low-effect states (step 2; Fig. 2C). The

corresponding likelihood function consists of two components: (i)

the probability of observed effects given a certain temporal two-

state model; and (ii) the probability of a temporal two-state model,
which may use a penalty factor to prioritize two-state models with

a lower number of transitions between states, assuming depen-

dencies among consecutive time points. In the absence of penalty,

Author Summary

Genetic variation is postulated to play a major role in
transcriptional responses to stimulation. Such process
involves two inter-related dynamic processes: first, the
time-dependent changes in gene expression, and second,
the time-dependent changes in genetic effects. Although
the dynamics of gene expression has been extensively
investigated, the dynamics of genetic effects yet remain
poorly understood. Here we develop DyVER, a method
that combines genotyping with time-series gene expres-
sion data to uncover the timing of transitions in the
magnitude of genetic effects. We examine gene expression
in yeast segregants during rapamycin response, finding
several distinct ways of change in the magnitude of
genetic effects over time. These include impulse-like and
sustained transitions in genetic effects, acting both in cis
and trans. Our findings suggest that associations of genes
with the same genetic variant often occur via the same
timing of state transition in genetic effects. Furthermore,
the results uncover a previously unknown variant whose
impulse-like temporal genetic effect suggests a novel
molecular function for determining the timing rather than
the magnitude of response. Our results show that steady-
state association studies miss important genetic informa-
tion, and demonstrate the power of DyVER to render a
comprehensive map of dynamic changes in genetic
effects.

Dynamic Genetic Effects Acting on Gene Expression
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the order of time points is irrelevant and therefore the predicted

two-state model can be viewed as a partition of an unordered

group of time points into two sub-groups. The DyVER score

exploits this partition for a different parameterization of the

(unordered) time points in each of the two states. The addition of

the penalty factor makes it possible to avoid an overfitted two-state

model that is then given as input to the next step, hence further

improving the DyVER score’s performance.

DyVER accurately identifies dynamic genetic effects over
time

We compared DyVER’s performance to that of five alternative

methods. In the first method, the most naı̈ve approach, an

ANOVA test is applied at each time point independently and the

predicted genetic variant is the one with the most significant

(minimal) ANOVA P value score. The second method builds on

dimension reduction using principal component analysis (PCA):

Given T time points for each strain as input, it first reduces the T-

dimensionality of the data into a single dimension by projecting

each strain onto the first principal component. Next, it applies an

ANOVA test on this one-dimensional data [23]. The third

method models dynamics in gene expression as well as dynamics

in genetic effect sizes [15]. For comparison, in the fourth method,

a linear time term is included as a covariate in the ANOVA test

to model dynamic changes in gene expression (without direct

modeling of dynamics in genetic effects). Finally, we compared

DyVER to a random prediction of association relationships. We

called these approaches ‘naı̈ve’, ‘PCA’, ‘detailed dynamics’,

‘expression dynamics’ and ‘random’, respectively. In both

DyVER and all compared methods, for each simulated gene,

the resulting P values were Bonferroni-corrected for the testing of

multiple genetic variants. The quality of predicted variants were

evaluated using the accuracy metric, defined as the tradeoff

between the sensitivity and specificity of revealing genetic variants

across different significance cutoffs. The accuracy metric ranges

between 0 and 1 for poor and excellent performance, respectively

(Methods).

To characterize DyVER’s ability to reveal dynamic genetic

variants and distinguish their effect patterns, we generated

synthetic collections of genes that are associated with genetic

variants over time. A single synthetic ‘collection’ consisted of 500

genes, 300 of them associated with a genetic variant over time,

with two characteristic parameters: (i) the number of time points,

and (ii) the effect size (in all cases we used 50 strains and 100

genetic variants). In a complete synthetic ‘dataset’ we generated 72

collections for various numbers of time points and effect size

values. Overall, four synthetic datasets were generated in this

study, each consisting of a different key class of dynamic effect

patterns (see Methods): a linear-like pattern (Fig. 1B), a single

state-transitioning based on a sigmoid function (Fig. 1C, left),
and impulse and multiple-pulse (complex) patterns based on the

product of two sigmoid functions (Fig. 1C, middle and right,
respectively) [24]. In the following, we first analyze the perfor-

mance of the DyVER’s predicted associations (based on the

DyVER score) in the absence of penalty and then present the

contribution of the penalty factor.

Figure 1. Temporal genetic effect patterns. Schematic view of gene expression patterns (top) and the relevant temporal genetic effects for
these genes (bottom). The cartoons demonstrate a non-dynamic genetic effect pattern (A), a dynamic, linear genetic effect pattern (B), and a dynamic,
non-linear genetic effect pattern (C). Top: shown are gene expression levels (y-axis) during a response to stimulation (x-axis). Each curve represents
measurements in a different homozygous animal strain (segregants), where brown or black indicates whether the genotype of the associated genetic
variant is aa or �aa�aa, respectively, in each strain. Bottom: shown are genetic effects (that is, the change in gene expression between the aa -carrying and
�aa�aa -carrying strains, y-axis) during a response to stimulation (x-axis). (C) Examples of non-linear genetic effect patterns, which are the focus of this
study, including (left to right) a single state-transitioning pattern, which may be followed by a sustained new level of genetic effect, a single-pulse
(impulse) pattern, and a multiple-pulse (complex) genetic effect pattern.
doi:10.1371/journal.pcbi.1003984.g001

Dynamic Genetic Effects Acting on Gene Expression
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DyVER showed good accuracy in all non-linear dynamic effect

patterns (0.5 penalty; Fig. 3). Fig. 3A presents the accuracy

metric for synthetic datasets of varying numbers of time points.

Accuracy values are averaged across the eight collections of

distinct effect size. In all non-linear dynamic effect patterns,

DyVER displayed the best accuracy in all tested time points

ranging between 3 and 27, with improved accuracy for a larger

number of time points. Importantly, although DyVER was not

designed for linear-like effect patterns, it still attains the second-

best performance for this case. The ‘expression dynamics’

approach yielded the most accurate predictions for the linear

case, but attained poor results in the non-linear case. The tradeoff

between sensitivity and specificity in the accuracy measure across

the different methods is further demonstrated in Figure S1A and

B. Results were similar for varying effect sizes (Fig. 3B and
Figure S1C and S1D) and for an additional synthetic dataset that

is based on prototypical effects in C. elegans (Methods; Figure

S2). Furthermore, although DyVER’s accuracy is reduced in the

case of missing data, it is still notably high in comparison to

alternative methods (Figure S3). Taken together, our results

indicated that DyVER performs well on a broad range of genetic

effect patterns.

We next aimed to characterize DyVER’s applicability to short-

term steady state of high genetic effects. To tackle this goal we

compared two synthetic impulse datasets, both consisting of 27

time points across various effect sizes. For all genes, the short-

impulse dataset consisted of a high-effect steady state of short

duration (five time points), whereas the long-impulse dataset

consisted of a high-effect steady state of long duration (fifteen time

points). Figure S4A records the performance of DyVER

compared to the five alternative methods on the short-impulse

and the long-impulse datasets, and clearly shows that DyVER

outperformed the alternative procedures when genetic influences

were acting in short impulses, even with low-effect sizes.

Figure 2. The DyVER algorithm. A methodology for reconstructing genetic associations and their temporal genetic effect patterns from gene
expression and genotyping data. (A) A cartoon example of input data, including the expression of a single gene over time for strains s1–s4 (top panel;
shown as in Fig. 1A), and a typical genotyping of (homozygous) strains carrying either the aa (brown) or �aa�aa (black) genotype in each genomic
position (bottom panel). Correct and incorrect variants (v, u, respectively) are highlighted. (B) Shown are observed effect matrices for each time point
from t1 to t4 (red, high-effect size; white, low-effect size). DyVER calculates the observed effects between each pair of strains carrying distinct alleles
(strains carrying aa or �aa�aa in columns and rows, respectively), using a variant u (left) or v (right). (C) Searching for the temporal two-state model that
best fits the data. Shown are four cases, for two possible variants u, v, and two possible two-state models. The two states are ‘H’ (light blue) and ‘L’
(white) indicating high and low genetic effect, respectively. DyVER’s fit of observed effects (high or low) in two Gaussians and the respective
likelihood scores are presented in each case. For each variant, DyVER uses an HMM-based dynamic programming to identify its best-likelihood effect
pattern. (D) A Manhattan plot of DyVER scores. Shown are likelihood ratio scores, called DyVER scores (y-axis), quantifying each variant (x-axis) with its
selected temporal two-state model (from C). A dashed line indicates the significance threshold, generated using a permutation test.
doi:10.1371/journal.pcbi.1003984.g002

Dynamic Genetic Effects Acting on Gene Expression

PLOS Computational Biology | www.ploscompbiol.org 4 December 2014 | Volume 10 | Issue 12 | e1003984



The performance of both DyVER and the alternative methods

declined when applied on a short impulse compared to a long

impulse of genetic effects, but notably, the performance reduction

was lowest with DyVER (Figure S4B). For example, for high-

effect sizes (0.625), the sensitivity of DyVER is 0.7 and 1 with short

and long impulses, respectively. The sensitivity of PCA, in

contrast, is respectively 0.47 and 1 with short and long impulses

for the same effect size. Thus, even when genetic variants acted

during short time intervals, DyVER still performed relatively well.

This was unlike the alternative methods, whose performances were

drastically reduced even for relatively high-effect sizes.

DyVER predicts a temporal two-state model, which may

provide insights concerning the timing of changes in genetic effects

(Fig. 2C). To evaluate the quality of this prediction, we compared

the ‘ground truth’ (simulated) models against the inferred two-state

models. We chose to work with the established error rate statistics,

defined as the number of erroneous two-state models expressed as

a fraction of the total number of significant correctly predicted

variants. We called this metric a two-state pattern error rate (in

short, error rate), and calculated it both for the case of stringent

(exact) matching or flexible (non-exact) matching between the true

and inferred models (Methods). In both cases, we found that

DyVER performs well in predicting two-state models, where the

flexible case outperforms the stringent case, as expected. For

example, using single state-transitioning patterns with nine time

points, effect size 0.75, significance cutoff 0.001 and the absence of

penalty (probability of transition 0.5), the stringent and flexible

error rates are 0.41 and 0.33, respectively (Figure S5). The error

rate increased with decreasing penalty (e.g., for transition

probabilities of 0.01 (high penalty) and 0.5 (no penalty), stringent

error rates are 0.32 and 0.41, respectively). As expected, error

rates rose when a higher statistical significance cutoff (0.05) was

used, whereas the gap between the error rates for different

significance cutoffs remained relatively constant when the penalty

increased. Results obtained for other effect sizes were similar.

Collectively, our results indicated that DyVER outperforms

extant methods even in the absence of penalty and the presence of

missing data (Fig. 3, Figures S1–S4), and that these perfor-

mance can be even enhanced by the addition of a penalty

component (Figure S5). These results hold when the complexity

of dynamic effect patterns is relatively low, as in the case of genetic

effects in biological data (e.g., Figure S6).

A catalogue of non-linear genetic effect patterns in yeast
response to rapamycin

We applied DyVER in an unbiased manner (without penalty) to

the available dataset of 95 yeast segregants that were stimulated by

rapamycin and profiled at six time points (Methods) [27].

DyVER predicted 351 associations to 145 distinct variants (false

discovery rate [FDR] 6%). Of these 351 associations, 145 had

highly significant dynamic associations (15% FDR, Table S1,

Methods) and 105 of them showed non-linear genetic effect

patterns (Fig. 4). In agreement with previous findings [2,11], our

results suggest that non-linear associations are prevalent: of the

eight previously known causal genes, six were found to have an

association with at least one target gene exhibiting a non-linear

genetic effect pattern (Table S2). Correlations among genetic

effects of consecutive time points were much larger than

correlations between non-consecutive time points [P value ,

10215 (Wilcoxon test)], justifying our ‘memoryless’ Markov

assumption that the next time point is mainly dependent on the

current time point (Figure S7). The 105 genes carrying non-

linear effect patterns were partitioned into groups based on their

Figure 3. Comparative performance analysis on synthetic data. Shown is the accuracy measure (scatter plots, left) and an example
(histograms, right) across compared methods and different synthetic data parameters. Left: The accuracy measure (y-axis) using different patterns of
genetic effects (impulse, single state-transitioning (sustained), linear, and complex sub-panels). Results are shown over genes that were measured in
different numbers of time points (measures were averaged over effect sizes; x-axis, A), or over genes of different effect sizes (averaged over time
points; x-axis B). Plots depict six alternative mapping methods (color coded). Right: Examples of performance (y-axis) using the four different dynamic
effect patterns (color coded) across various methods (x-axis) for nine time points (A) or for genetic effect size 0.5 (B). The plots indicate that for non-
linear genetic effect patterns, DyVER has an advantage over existing methods.
doi:10.1371/journal.pcbi.1003984.g003

Dynamic Genetic Effects Acting on Gene Expression
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predicted two-state pattern (Table S1); seven two-state pattern

groups (C1–C7) were created, each including at least two genes

(Fig. 4A and B).

The partition revealed three prototypical non-linear genetic

effect patterns (Fig. 4A), including (i) a single upward spike

followed by a sustained high level of genetic effect (70 genes in C1–

C4). These different groups were characterized by distinct timing

of a state-transitioning, including an abrupt change in early time

points (0–10 min, C1), as well as an intermediate-early (0–20 min,

C2) and intermediate-late (20–30 min, C3) single state-transition-

ing. For example, SFA1 and ESF1 (in groups C1, C2)

demonstrate a sustained genetic effect with a state transition at

0–10 and 0–20 minutes after rapamycin stimulation, respectively

(Fig. 4B). In the case of the four genes exhibiting a late state-

transitioning (at 30–50 min, C4), a sustained new level of genetic

effects might occur at later time points that were not measured in

the current dataset [27]. (ii) A single downward spike of genetic

effect (C5–C6, 22 genes). In group C5, we observe an abrupt

downward spike in 10–20 minutes followed by a sustained low

level of genetic effect (for example, PHM6, Fig. 4B). Group C6

represents a delayed gradual single state-transitioning during 20–

50 minutes. (iii) An impulse of high genetic effect at 10–

30 minutes after treatment (9 genes in C7, e.g., UGA4, Fig. 4B).

Overall, the single state-transitioning patterns were over-repre-

sented, whereas complex patterns of genetic effects were rare

(1 gene, YER053C-A) and were under-represented [cis: P value

Figure 4. A catalogue of dynamic, non-linear genetic effects in gene response following rapamycin treatment in yeast. (A) Genetic
effect profiles (left) and gene expression profiles (right) at six time points following rapamycin treatment (columns) for all genes identified by DyVER.
Genetic effect values are the average increase (red) or decrease (purple) in effect size relative to non-stimulated cells (log-scaled). Gene expression
values are the average increase (blue) or decrease (green) in gene expression relative to non-stimulated cells (log-scaled). Cis-associated genes are
marked in gray (left color bar). Genes are partitioned into seven groups (C1–C7) based on their temporal two-state model (two state cartoons, shown
as Fig. 2c, right; four singleton genes are omitted). (B) Four temporal two-state model groups C1, C2, C5, C7 (top to bottom). Left and middle panels:
representative genes in each group. Left: gene expression of a representative gene (y-axis, log-scaled) across time points (x-axis). Each curve
represents a different segregant, color coded by the best genetic variant found using DyVER (BY/black, RM/brown). Middle: genetic effect profiles of
the representative gene, averaged across strains (log-scaled, y-axis) at each time point (x-axis). Right: shown are mean genetic effects (relative to non-
stimulated cells, log-scaled; y-axis) and standard deviation (error bars) across time points (x-axis) for a certain group of genes.
doi:10.1371/journal.pcbi.1003984.g004
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,10219, trans: P value ,10250 (t-test), (Figure S6A)]. Our

findings of rare complex patterns in yeast parallel similar

observations in the mouse (Methods, Figure S6B); Yet, the

particular shape of effect patterns may differ between biological

systems (Figure S8).

High-order coordination suggests that dynamic effect
patterns are an emergent property of genetic variants

We next explored the pleiotropic trans-acting variants that arise

from this analysis. Using DyVER’s predictions we organized the

genes into six co-association modules, each containing a group of

(at least two) genes with the same trans-associated variant (Fig. 5A
and B). Functional enrichment strongly related all six modules

with specific biochemical pathways. For example, the entire

module no. 3 consists of genes that play a role in uptake of

phosphate (Pi) from extracellular sources and its accumulation in

vacuoles (5 of 5 genes; Fig. 5A and B, Figure S9A). The

module’s validated causal gene is PHO84, a high-affinity

phosphate transporter that carries a missense mutation in one of

the parental strains (Figure S9B ) [29,30]. The nine genes in

module no. 5 carry two distinct functionalities and are therefore

treated as two distinct sub-modules, no. 5-I and no. 5-II (three

daughter cell-specific genes and six poor nitrogen source

degradation genes, respectively, Fig. 5A).

Next we examined whether module genes show characteristic

temporal effect patterns. On analyzing the modules we found that

modules nos. 1, 3, 4, 5-I and 5-II relate to a specific prototypic

temporal genetic effect pattern, whereas the remaining two

modules (nos. 2 and 6) are more general and show several distinct

patterns (Fig. 5A). For example, module no. 1 contains 34 genes,

32 of which have an upward spike (a single state transition) of

genetic effect at 10–30 minutes after rapamycin stimulation [FDR

0.01 (hyper-geometric test)]. As another example, module no. 3

contains five genes, all showing a downward spike of genetic effects

at 10–30 minutes after stimulation. Specifically the downward

spike occurs either 20–30 minutes after stimulation [4 genes, FDR

0.01 (hyper-geometric test)] or 10–20 minutes after stimulation (1

gene, Fig. 5A–C, Figure S9C). Overall, we found four modules

with over-represented patterns of single state-transitioning at

specific time points (nos. 1, 3, 4 and 5-I) and one sub-module of an

impulse effect pattern (no. 5-II). The observed coordination of

temporal genetic effects does not necessarily reflect a coordination

of transcription responses (Figure S10). In previous reports,

baseline expression levels were used to identify eight genetic

variants underlying similar modules (Table S2), but the coordi-

nated temporal genetic effects and the timing of upward or

downward spikes of genetic effects were not characterized.

A plausible explanation for the ‘shared variant, shared temporal

genetic effect pattern’ hypothesis is that the same molecular

mechanism underlies both inter-individual variation and the

dynamics of genetic effects. In such cases, the dynamic pattern

of effect is an attribute of the underlying regulatory mechanism

(rather than of the target genes), probably owing to temporal

changes in the influence or activity of the regulatory mechanism.

This hypothesis is further supported by the consistency in the

timing of state transitions in module genes and their underlying

(known) causal genes (Figs. 5D versus 5E): The trans-associated

causal gene of module no. 1 (IRA2) attains a sustained-like pattern

of gene expression that resembles the temporal genetic effect

pattern of its target genes (Fig. 5D and E, left). The cis-
associated causal genes in modules nos. 3 and 4 (PHO84 and

GPA1) exhibit drastic changes in their transcription response at

the same time point at which there is a (downward or upward)

spike in the genetic effect of their target genes (20–30 and 30–

40 min; Fig. 5D and E, middle and right, respectively).

A novel pleiotropic variant acting on the timing of
initiation of transcriptional response

The poor nitrogen source degradation system (module no. 5-II)

demonstrates the ability of our method to reveal novel associations

acting on the timing of response and affecting an entire cellular

pathway (Figs. 5, 6). During growth on relatively poor nitrogen

sources (allantoate, allantoin, and GABA), yeast cells activate

premeases responsible for uptake of nitrogen sources and further

increase the expression of enzymes that participate in degradation

of poor nitrogen sources for the generation of ammonia. Exposure

to the TOR inhibitor rapamycin also leads to the same nitrogen-

regulated response [31]. Module no. 5-II consists of six of the

twelve genes in the allantoin, allantoate and GABA degradation

pathways, with all six genes having a significant impulse effect

pattern (DAL1, 2, 4, 7, 80 and UGA4; Fig. 6A–C). An additional

gene in these pathways, DAL5, is weakly associated using the same

impulse pattern at the same genomic position (Fig. 6A–C).

The impulse pattern reflects a difference in the timing of

initiation of response among the strains carrying the RM and BY

alleles in Chr2: 533–562 kb. For example, strains carrying the BY

allele showed early up-regulation of DAL80 in response to

rapamycin, which was already detected at 10 minutes after

stimulation. The RM-carrying strains, in contrast, showed a clear

delay in response to rapamycin, but all strains reached a similar

expression level by 30 minutes after stimulation (Fig. 6D). The

underlying genetic variant acting on the timing rather than on the

magnitude of response has not been previously documented. In

the genomic interval (Chr2: 533–562 kb), two genes (RPB5,
CNS1) have temporal transcription profiles that match the

expected early impulse of high genetic effect, the promoter of

five genes (RPB5, CNS1, ADH5, RTC2, YBR144C) is bound by

nitrogen-related transcription factors [32], and four genes (RPB5,
CNS1, ADH5, RTC2) were previously reported in nitrogen-

related cellular processes (Figure S11). These criteria therefore

suggest that RPB5 or CNS1 are two leading candidates in module

5-II.

Discussion

In this work we present the DyVER computational algorithm

for identifying genetic variants that lead to dynamic changes in

genetic effects. DyVER was tailored to identify abrupt changes in

the levels of genetic effects, which may provide valuable

information about the timing of alterations in the particular

regulatory mechanisms interacting with the underlying genetic

variant. In comparison with other approaches, DyVER attained

the most accurate identification of non-linear genetic effect

patterns, even in the absence of penalty (Fig. 3, Figures S1–
S4), likely due to (i) a focus on genetic effects rather than on

modeling the original phenotype values, and (ii) the prior

knowledge about the separation of the time points into two

distinct groups that differ in their observed effects (encoded in the

temporal two-state model), thus allowing a different parameteri-

zation for each of these groups.

DyVER is using an HMM-based model for revealing genetic

variants acting on time-series gene expression data. HMM

modeling has been applied in various contexts, but not for the

case of direct identification of underlying genetic variants. For

example, HMM has been utilized for the identification of CNVs or

haplotypes [33,34]. Alternatively, an existing method was mainly

focused on revealing differential expression between conditions
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Figure 5. Co-associated genes typically share a similar pattern of genetic effects over time. (A) Six gene modules (column 1), constructed
on the basis of a shared trans-associated genetic variant (a genomic interval; column 2), are listed together with their known causal gene, if available
(column 3; {-cis-associated causal gene, references are in parentheses) and the number of associated genes in a module (column 4). Significant
enrichments in biological processes are detailed in column 5. Significant enrichments of temporal two-state patterns in each module are presented
together with the description of these enriched patterns (columns 6 and 7, respectively). (B2E) Gene expression and genetic effects in modules nos.
1 (left), 3 (middle) and 4 (right). Gene expression (B) and genetic effect (C) of representative genes, as well as genetic effects of an entire module (D);
plots are shown as in Fig. 4B. (E) Average gene expression (y-axis) at six time points (x-axis) for the known causal gene of each module. For cis-
associated causal genes (modules nos. 3 and 4), brown and black indicate strains carrying the RM and BY alleles, respectively. The plots demonstrate
the good match between the timing of abrupt changes in causal genes (E) and the timing of alterations in the observed genetic effects of their
associated target genes (D).
doi:10.1371/journal.pcbi.1003984.g005
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using an HMM approach [26]. DyVER extends this method by

providing a statistical genetics P value score and by allowing a

number of parameters that is not increasing with the number of

strains.

Our method opens multiple directions for future investigations.

First, it is important to extend DyVER for the case of outbred

heterozygous population, including human. In the current study,

DyVER was designed for the case of a inbred (homozygous) strains

that are common in genetic studies (e.g., in yeast, nematode, fly,

mouse and rat) due to several major advantages: first, inbred strain

enable controlled stimulations, and second, they avoid major

challenges that are common in human genetics, including

haplotype analysis, rare variants and uncontrolled variables.

Future extensions may generalize the method for the heterozygous

case, possibly by calculating genetic effects between each pair of

genotypes (rather than between the only two possible genotypes as

in the homozygous case), requiring to add additional one or two

Gaussians within each of the model states. Second, the usage of a

our probabilistic model leads to several limitations: the number of

states should be specified in advance; we only capture correlations

between sequential time points but cannot capture higher-order

correlations among time points; and we generally assume that the

probability of a time point is independent of the probabilities of its

neighboring time points. Future improvements that handle more

than two states and a more sophisticated probabilistic graphical

model [35] may therefore enhance DyVER’s performance. Third,

DyVER relies on at least a few synchronized strains in each of the

time points. Although DyVER allows missing data and possibly

different strains in different time points (Figure S3), it still cannot

be applied on non-synchronous data (as in [11]). Data imputation

methods can potentially enhance the DyVER analysis beyond this

synchronization requirement.

Building on the DyVER approach, we analyzed temporal gene

expression patterns following rapamycin treatment in yeast

segregants. Our analysis identified 105 genes exhibiting significant

non-linear genetic effects over time, 56 of them are well-

established associations (in modules 1,2,3,4,5-I and 6), and the

remaining genes are new candidates for future experimental

investigations (e.g., Fig. 4B). For example, our study suggests a

novel genetic variant residing in chr2: 533–562 kb as the

underlying regulator of the timing of upward spikes in gene

expression after rapamycin treatment. Reassuringly, this regulator

acts primarily on genes that play a role in poor nitrogen source

degradation (6 of 6 genes, module 5-II, Fig. 6).

The application of DyVER in yeast provided several novel

insights that were mainly attained due to the unique capability of

DyVER to classify associations based on their optimized temporal

effect patterns. First, we use the temporal effect pattern to

Figure 6. A genetic variant acting on the timing of response of the poor nitrogen-source degradation pathway (module no. 5-II). (A)
The genomic interval underlying module no. 5-II residing in Chr2: 533–562 kb. Shown are DyVER scores (y-axis) across the genomic positions in
chromosome 2 (x-axis) for seven associated genes (color coded; the module includes only those six genes that cross the FDR 6% threshold). Positions
of two potential causal variants, RPB5 and CNS1, are marked below. (B) Genetic effects, relative to non-stimulated genetic effects (y-axis, log-scaled)
for different associated genes from A (color coded) at six time points (x-axis). The plot depicts the short impulse of high genetic effect in all
associated genes. (C) Module genes, in the context of the poor nitrogen-source degradation pathway. Enzymes are shown as color-coded rectangles
(bold-pink/module genes, pink/associated genes, white/non-associated genes). The pathways show the uptake of poor nitrogen sources (allantoate,
allantoin, and GABA) and their degradation into ammonium. (D) A representative gene. Expression profiles (left) and genetic effects (right, y-axis) of
DAL80, a gene in module no 5-II, during response to rapamycin (x-axis). Shown as in Fig. 4B but using a marker near the RPB5 gene (marked in A).
doi:10.1371/journal.pcbi.1003984.g006
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automatically organize the genes into clusters based on their

predicted patterns (Fig. 4A and Figure S12). This organization

is substantially different from previous studies [2,11] that have

grouped time-series associations only manually. Based on this

clustering, we found that abrupt single state-transitioning and

impulse patterns occur in certain prototypical time points. In

particular, DyVER identified an upward spike of genetic effect at

0–10, 0–20, 20–30 and 30–50 minutes (22, 34, 10 and 4 genes,

groups C1, C2, C3 and C4, respectively); a downward spike

followed by a new sustained low level of genetic effect (6 and 16

genes at 10–20 and 20–50 minutes, groups C5 and C6,

respectively), and a single pulse of high genetic effects (9 genes,

group C7, Fig. 4).

Second, many studies have shown that groups of co-associated

genes also share similar functionalities. Interestingly, our results

indicate that such co-associated genes typically share not only a

similar functionality, but also a similar predicted pattern of

temporal genetic effect (Fig. 5). One plausible explanation is that

a causal regulator typically alters its functionality during its

response to stimulation; therefore, a genetic variant interacting

with such a regulator is likely to affect its target only during those

time intervals in which the regulator is functional. Based on this

rationale, the temporal effect patterns in target genes may uncover

the temporal dynamics of their causal regulatory mechanisms.

Thus, DyVER’s characterization of temporal effect patterns,

which are probably a property of the causal regulatory mecha-

nisms, may provide a starting point for improved identification of

causal genes. For example, it might be possible to pinpoint a causal

gene in a genomic interval based on its predicted dynamics over

time (as demonstrated in Fig. 5D and E and Figure S11C).

Furthermore, it may be possible to discriminate between two

genetic variants differing in their dynamic over time, even when

these variants are co-localized at a nearby genomic position (as in

module nos. 5-I and 5-II, Fig. 5A).

Taken together, our results highlight the utility of studying

temporal genetic effect patterns to discover and characterize

dynamic causal regulators. The next step is to extend and apply

our approach to map genetic effects in transcriptome of a wide

range of mammalian cell types.

Materials and Methods

The DyVER algorithm
Input data. For simplicity of presentation, we assume

synchronous data across all time points and strains. We will show

later, however, that this requirement can be relaxed. DyVER takes

as input the expression of a gene across n strains and T time

points. The gene’s profile at time point t is denoted

Rt~frt1
,:::,rtn

g, where rti
is the (log-transformed) expression level

in the i-th strain and t-th time point (i~1,:::,n; t~1,:::,T ). The

input also consists of K genetic variants vk(k~1,:::,K) that are

genotyped across the population. For homozygous recombinant

inbred strains, the genotyping of each strain in each genetic

variant vk is either aa or �aa�aa. For convenience of description, a

variant vk partitions the strains into two groups, Ak and �AAk,

consisting of na and n�aa strains carrying its aa and �aa�aa genotypes,

respectively.

Calculating the observed effects. Typically, the expression

of a gene is affected mainly by stimulation and is further

modulated by a genetic variant. To successfully detect the minute

effects of genetic variants, it is necessary to remove the

confounding effects of the stimulation. Hence, our first step is to

calculate the differences between expression values of strains

carrying different alleles. We term these differences the ‘observed

effects’, and we use this collection of observed effects in the rest of

the method. For example, when a genetic variant acts, its observed

effect values are usually high (e.g., time points t3 and t4 in variant

v, Fig. 2A and B); much lower effect values are observed in the

absence of influence (e.g., time points t1 and t2 in variant v,

Fig. 2A and B) or when a wrong genetic variant is tested (e.g.,

variant u, Fig. 2B).

More precisely, given a time point t, the putative effect of a

variant vk on two strains i,j carrying its a and �aa alleles is:

dt
i,j~rti

{rtj

Where i[Ak and ij[�AAk. Overall, the collection iD
effect
k consists of

na|n�aa observed effects of variant vk at any time point t:

D
effect
k ~fDeffect

k,1 ,:::,Deffect
k,T g,

D
effect
k,t ~fdt

i,j Di[AK ,j[�AAkg: ð1Þ

Since DyVER assumes that the variance of the genetic effects is

not changing over time, variance stabilization methods should be

applied before or after calculating the observed effects. In this

study we first normalized the log-transformed expression level in

each time point so that the variance in each time point and each

allele is fixed (but the mean values remain unchanged). The

observed effects were calculated only after this transformation.

Formalizing the likelihood of the data. Our digital model

assumes that at each time point a genetic variant may attain one of

two states: either the high-effect state (‘H’), reflecting the observed

presence of a high genetic effect, or the low-effect state (‘L’),

reflecting either small effect, an opposite effect, or the absence of

effect. We denote by st the state of a variant at the t-th time point

(t~1,:::,T). A particular sequence of states (also referred to as a

candidate temporal two-state model) is S~s1,s2,:::,sT where state st

takes one of two values, H or L. We model the dependencies

among time points as a first-order Markov chain, assuming

Pr (stDs0,:::st{1)~ Pr (stDst{1). We use a fixed probability of

transition, called penalty:

Pr (st~H Dst{1~L)~ Pr (st~LDst{1~H)~a: ð2Þ

The lower the a, the higher the penalty, whereas no penalty is

applied when a~0:5.

The overall probability of a temporal two-state model Pr (S) is

calculated across the time points, starting at the first time point

with the initial state probability Pr (s1) as follows:

Pr (S)~ Pr (s1): P
t~2,:::,T

Pr (stDst{1): ð3Þ

Assuming aƒ0:5, this formalization reflects the desired

dependencies among time points: the higher the number of state

transitions, the lower the probability of a temporal two-state

model.

Assuming that the temporal two-state model of a variant vk is

S~s1,s2,:::,sT (where st is in either the H or the L state), the

probability of measuring such observed effect values is
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Pr (D
effect
k DS,h~fmH ,sH ,mL,sLg)~

P
t~1,:::,T

P
dt
i,j

:st~H
N(dt

i,j DmH ,sH ): P
dt
i,j

:st~L
N(dt

i,j DmL,sL)

2
4

3
5,
ð4Þ

referred to as the probability of observed effects. In both states H
and L the effect is modeled with mean Gaussian noise of m with a

standard deviation s. Each of the states, however, may attain

distinct parameter values: mH ,sH are used for the H state and

mL,sL for the L state. Notably, the parameters for all time points in

the same state are shared, opening the way to a large number of

time points without increasing the number of model parameters.

Collectively, given a temporal two-state model S, model

parameters h~fmH ,sH ,mL,sLg and a variant vk, the likelihood
function for a candidate gene is:

leffect(vk,S,h)~ Pr (S):Pr (D
effect
k DS,h), ð5Þ

where Pr (S) and Pr (D
effect
k DS,h) are calculated as in equations 3

and 4, respectively.

Learning the temporal two-state model using a likelihood

function. For each candidate variant vk, DyVER searches for

the temporal two-state model S�k and model parameters h�k that

maximize the likelihood function:

(S�k,h�k)~ arg max
S,h

leffect(vk,S,h): ð6Þ

Notably, the model can be viewed as a two-state Hidden

Markov Model (HMM) [36] consisting of a sequence of high-effect

and low-effect states that are hidden, where the observed effects at

each time point are sampled from a Gaussian probability

distribution. We can therefore use existing HMM methods for

the maximization process. In particular, we use the Baum-Welch

algorithm [37], which utilizes expectation maximization steps

applied on an HMM model to iteratively improve the hidden

sequence of states (temporal two-state model) and the parameters

of the model from the hidden states. In all cases, our initialization

is a pattern of low-effect states using distinct average values in each

gaussian; we evaluated that in 93% of the cases, a single

optimization with such a single initialization equals the maximal

likelihood that could be attained by testing 1000 random

initializations. After the optimization process and without loss of

generality, the state whose absolute m value is higher (lower) is

referred to as the H (L) state. Notably, since both mH and mL are

not restricted to any particular value, the model may capture

various dynamic changes in effect size, including inversions.

Statistical evaluation. Naı̈vely, the maximal likelihood score

leffect(vk,S�k,h�k) can be used to search across all candidate genetic

variants that may associate with a gene. However, such a score

cannot help us make a judgment about the statistical significance

of such a hypothesis. Here we want to know whether the observed

effects of a candidate variant vk, assuming its temporal two-state

model S�k, can be attributed to chance. In particular, to share

parameters of observed effects across all time points in each of the

states (according to S�k), the test is applied directly on observed

effects (rather than on the original expression levels whose

parameters cannot be shared based on S�k). We distinguish two

populations of differences between expression values of distinct

strains: first, the population of observed effects D
effect
k , consisting of

differences among strains carrying distinct alleles (as defined in

equation 1); and second, a background population D
bg
k , consisting

of differences among strains carrying the same allele:

D
bg
k ~fDbg

k,1,:::,Dbg
k,Tg,

D
bg
k,t~fd

t
i,j Di,j[AKg|fdt

i,j Di,j[�AAkg: ð7Þ

The null hypothesis H0assumes that a variant vk has no effect;

thus, a single model can represent both samples D
effect
k and D

bg
k .

The alternative hypothesis H1 is that the variant has a dynamic

effect on gene response, and thus that D
effect
k and D

bg
k should not

be modeled together. The test statistic is the ratio:

lk~
max

h
Pr (D

effect
k DS�k,h):max

h
Pr (D

bg
k DS�k,h)

max
h

Pr (D
effect
k |D

bg
k DS�k,h)

, ð8Þ

where Pr (D
effect
k ), Pr (D

bg
k ), and Pr (D

effect
k |D

bg
k ) are calculated as

in equation 4 but for different datasets. We call the test statistic lk

the DyVER score. The significance level of the score is evaluated

by repeatedly permuting the labels of strains. We calculate an

empirical P value, defined as the proportion of permutation tests

for which the DyVER score is larger than the observed (non-

permutated) score. Figure S13 indicates that the DyVER score P
value is indeed well-calibrated using a Q-Q plot analysis. Reported

predicted association(s) are those with significant DyVER scores.

Notably, in standard genetic methods, the null model’s input

dataset is similar for different variants. For example, the null

model of a regression analysis utilizes the same data values but

with variant-specific predictors; the null model of an ANOVA test

is variant-independent. In the same sense, the null model of the

DyVER score is based on D
effect
k |D

bg
k that is calculated based on

all possible pairs of strains regardless the variant under study.

Alternative scores – focusing solely on D
effect
k and omitting the D

bg
k

component (e.g., Figure S14) – have not been used throughout

this study since they are prone to attaining D
effect
k datasets with an

entirely different set of strains pairs for different variants.

In a post-processing step, it is also possible to evaluate the

dynamic nature of DyVER’s predicted associations. To this end,

the dynamic association score may test the significance of the

difference between the observed effects of the high-effect and the

low-effect states (a t-test P value score). The partition into high-

effect and low-effect states is determined by the predicted temporal

two-state model (S�k from eq. 6). Predicted dynamic associations are

those predicted associations for which there is a significant

dynamic association score. Whereas the DyVER score is a

statistical genetics score that identifies an underlying genetic

variant, the dynamic association score evaluates temporal changes

for this variant.

Since the calculation of observed effect and likelihood measures

are calculated in each time point independently of its neighbors

(eqs. 1–6), and since our scoring scheme relies only on these

measures, thus the input data in each time point may consists of a

different population of strains with a different population size. In

particular, as long as the input data consists of multiple

synchronous strains in each time point, DyVER allows missing

data without a requirement for data imputation. DyVER’s

executable and source code, including an option for an additional
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imputation based on flanking time points of the same strain, can

be downloaded from csgi.tau.ac.il/dyver.

Synthetic data
To generate synthetic data we first generated 50 strains carrying

100 genetic variants, sampling one of the two alleles with equal

probabilities. A single synthetic collection consists of 500 genes, of

which 300 are associated with a certain variant over T time points.

Overall, for a single dataset we generated 72 collections,

constructed for all combinations of eight possible ‘effect sizes’

(defined below, ranging between 0.125 and 1) and nine different

numbers of time points (ranging between 3 and 27). In all cases,

the low-effect state represents the absence of effect (mL~0) and the

high-effect state represents the presence of an effect (mHw0),

where mL{mH is the effect size. f (t) is the simulated observed

effect, which is generated by sampling et from a Gaussian

distribution et*N(0,0:5). A dataset was constructed for each class

of temporal effect patterns. For a single state transition effect

pattern (here, sustained) we used a sigmoid function:

f (t)~mLz
mH{mL

(1zq:e{b(t{a))v{1
zet

Where a[f1,T{1g, q = v = 0.5 and b~7. For an impulse effect

pattern we used the product of two sigmoid function with five

parameters h~(h0,h1,h2,t1,t2,b) [24], where h0~h2~mL,h1~mH ,

t2{t1 is the length of the impulse effect (here, b~7):

f (t)~

1

h1

: h0z(h1{h0):
1

1ze{b(t{t1)

� �
: h2z(h1{h2):

1

1zeb(t{t2)

� �
zet:

To generate the complex pattern for T time points we

concatenated two impulse patterns, each for T/2 time points.

For the dataset of linear effect patterns, observed effects are

sampled from a linear function:

f (t)~mLz
mH{mL

T
:tzet:

For the purpose of comparing predicted to gold-standard

temporal two-state models (Figure S5) we generated a different

collection of synthetic sustained dataset as follows: we first

generated the temporal two-state model by sampling from the

corresponding distribution (from equation 3) with a~0:1. The

observed effects were then generated by sampling from the

corresponding Gaussian distribution N(mH ,sH ), N(mL,sL), where

mH and mH are the mean of the high- and low-effect state, and

s2
L~s2

H~0:5. To generate an input with a percentage of k%
missing data, in each time point, we omitted the information for

k% randomly selected strains (thus, each time point consists of a

different list of strains).

An additional synthetic dataset was created similarly to the

above datasets, but using previously published functions in C.
elegans [11]. For each of the 300 associated genes in this synthetic

dataset, we first randomly chose a function out of the 18 functions

that were published in C. elegans; the observed effects were then

sampled from this selected function.

The compared methods were implemented as follows. In the

‘naı̈ve’ method we assumed a simple fixed effect model on each

time point independently, yij~bizeij , where yij is the observed

expression level for strain j carrying genotype i; bi is fixed effect of

genotype i and eij*N(0,s2). The most significant (minimal)

ANOVA P value score is taken as the resulting P value. In the

‘PCA’ method, we project the T-dimensionality of each strain into

the first principal component and then applies an ANOVA test

assuming a fixed effect model yij~bizeij where yij is the first

principal component for strain j carrying genotype i; bi is the fixed

effect of genotype i and eij*N(0,s2) (the first principle component

was chosen since it performs better than the consecutive

components, see Figure S15). For the ‘expression dynamics’

method, we used the model yt
ij~bizbi

:tzeijt where yt
ij is the

observed expression level in time point t for strain j carrying

genotype i, bi and bi are two fixed effects for genotype i and

eijt*N(0,s2). The formulation was implemented using the lme4 R

package. In all cases above, an F-test was used to test the model.

For the more sophisticated ‘detailed dynamics’ method, we use the

longGWAS R package that is part of its original publication [15].

Performance analysis using synthetic data
For each synthetic dataset, DyVER was applied to predict a

genetic variant using the DyVER score (P values were Bonferroni-

corrected for multiple variants). To quantify the ability to correctly

predict such genetic variants, we define the accuracy measure.

Genes are split into two groups: one contains genes that are

associated with a genetic variant, and the other contains the

remaining, non-associated genes. A mapping method may provide

a negative prediction (i.e., a non-significant P value for all

candidate variants), or alternatively, a positive prediction of either

the correct variant or an incorrect variant. We define true positives

as associated genes whose correct genetic variant is predicted with

a significant P value. True negatives are non-associated genes that

were not significantly associated with any variant. False negatives

are associated genes that were not significantly associated with any

variant. Finally, false positives are defined as erroneous significant

predictions as a result of two possible scenarios, either a non-

associated gene that is wrongly predicted to be associated with a

certain variant, or alternatively, an associated gene whose

predicted variant is incorrect. We adopt the standard formulations

for sensitivity (number of true positives out of the total number of

positives) and specificity (number of true negatives out of the total

number of negatives).

Similarly to a standard ‘Receiver Operating Characteristic’

(ROC) analysis, we can plot the sensitivity against the 1-speificity

across different P values, providing an overall view of the

performance of the method: the higher the curve, the better the

accuracy (defined as the area under the curve). Notably, using a

standard sensitivity definition, sensitivity should increase with

higher P value thresholds. In contrast, using our definition of

sensitivity, it is dependent on the particular predicted variant.

Thus, even with a very high P value threshold and many affected

genes, the sensitivity of a random algorithm might remain close to

zero. The accuracy therefore ranges between 0 (for a random

prediction) and 1 (for a perfect prediction).

Finally, to quantify the ability of DyVER to correctly predict the

temporal two-state model, we define the two-state pattern error
rate (shortened to error rate) as the number of wrongly predicted

temporal two-state models expressed as a proportion of the total

number of (significant) correctly identified variants. We test two

different rules for matching between the simulated and predicted

model. In the stringent case, we require a fully correct two-state

model, and in the flexible case, we require correct transitions

between states but allow incorrect timing of transition.

Dynamic Genetic Effects Acting on Gene Expression
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Yeast and mouse dataset
We applied DyVER to genotyping data and gene expression

data that were monitored during six time points following

exposure to rapamycin in 95 yeast segregants and their two

parental yeast strains: BY4716 (BY) and RM11-1a (RM) [27].

DyVER was applied to the log expression of 2700 genes with the

highest difference between the BY and RM parental strains. To

ensure that the biological results are unbiased, DyVER was

applied with penalty 0.5. Multiple testing was controlled as follows:

DyVER score P values were first Bonferroni-corrected for multiple

variants; the corrected DyVER score P values were then

controlled for multiple testing of genes (FDR 6%). We then

further filtered the genes based on the dynamic association score

(FDR 15%). In total out of 2700 genes, we obtained 351 (13%)

predicted associations (based on the corrected DyVER score P
value) and 145 (5.3%) predicted dynamic associations (based on

the dynamic association score). Next, we further removed 40 genes

carrying linear-like patterns, based on strong correlation with a

linear model (r.0.95) and more than 5% change in genetic effect

in any two consecutive time points (Table S1). The partition into

groups was generated automatically according to DyVER’s

predicated two-state model (Figure S12).

In addition, we applied DyVER to genotyping data and log

gene expression data of 403 genes that were monitored using a

meso-scaled technology during three time points following

exposure to lipopolysaccaride in 45 mouse BXD strains [2]. Of

the 403 genes, 14 genes (3.4%) were identified as significant

dynamic associations (FDR 10%; Figure S6B).

Supporting Information

Figure S1 Comparative performance analysis on syn-
thetic data. Scatter plots for various performance measures (y-

axis) of six alternative mapping methods (color coded) over genes

that were measured in different numbers of time points (for genetic

effect size 0.5; x-axis, A,B), or over genes of different effect sizes

(for 9 time points; x-axis C,D). Shown are different patterns of

genetic effects (left to right: impulse, single state-transitioning

(sustained), linear, and complex sub-panels). In A,C, shown is the

accuracy measure, whereas in B,D, presented are the sensitivity

and specificity measures (in solid and dashed lines, respectively;

assuming P value 0.1), exemplified for DyVER against the PCA

method (chosen since its accuracy is the best among the compared

methods). Plots A,C indicate that for the non-linear genetic effect

patterns, DyVER has an advantage in accuracy over existing

approaches. The sensitivity and specificity tradeoff that leads to

this accuracy advantage are demonstrated in B and D.

(EPS)

Figure S2 Comparative performance analysis on nem-
atode-based synthetic data. Shown is accuracy (y-axis) for

several compared approaches (color coded) using different patterns

of genetic effects that were built based on the effect curves from

Francesconi et al. (2014) (Methods). Results are shown over

synthetic genes that were measured at six time points and of

different genetic effect sizes (x-axis). The plot demonstrates that

DyVER has an advantage over the compared approaches in a

biological relevant synthetic data.

(EPS)

Figure S3 DyVER’s performance analysis using incom-
plete data. The plot depicts the accuracy measures (y-axis) for

the DyVER method across various percentages of missing data

(0% [complete data], 20%, 40% and 60%, Methods) and for the

compared methods in the case of complete data (x-axis). The

results are shown for single state-transitioning (sustained) pattern of

genetic effects, over genes that were measured at nine time points

and genetic effect size 0.5. The complete data consists of the same

50 strains in each time points, where in the missing data input,

each time point consists of a different (in some cases overlapping)

list of strains (e.g., 30 selected strains in the 60% dataset). The plot

indicates the high accuracy of DyVER, even in the case of missing

data.

(EPS)

Figure S4 Comparison of performance in a short-
impulse and long-impulse synthetic data. (A) Performance

measures (y-axis) for different effect sizes (x-axis). The results

presented are for all genes consisting of 27 time points with either

short impulses (five time points, dashed lines) or long impulses

(fifteen time points, solid lines). The plot depicts six alternative

mapping methods (color coded). (B) The fraction of performance

reduction for short impulses data compared to long impulses data

(y-axis) for different effect sizes (x-axis). Results are shown for both

accuracy (left) and sensitivity (right) measures, and are omitted

when the accuracy or sensitivity in long-impulse data is low (,0.35

and ,0.14, respectively). The plots indicate that fraction of

performance reduction is much lower in the case of the DyVER

algorithm than in the alternative methods, providing evidence for

the good performance of DyVER in the case of short duration

genetic effects.

(EPS)

Figure S5 Effect pattern error rates. Two-state pattern

error rates using a stringent (A) or a flexible (B) matching (y-axis)

for a model penalty ranging between 0.01 (high penalty) and 0.5

(no penalty; x-axis). Performances were evaluated for a single state-

transitioning effect pattern dataset of nine time points. Results are

shown for effect size 0.75 and using both stringent (red dashed line)

and relaxed (red solid line) cutoff P values, as well as using random

predictions (gray dashed line). As expected, in all cases, the higher

the penalty, the lower the error rate.

(EPS)

Figure S6 Non-linear genetic effect patterns. Percentages

of dynamically-associated genes predicted by DyVER (y-axis)

across different non-linear genetic effect patterns (x-axis). Results

are presented for analysis of real data (blue dots) and reshuffled

data (box plots for 1000 repeats). Presented are results in yeast

response to rapamycin (A, cis/top, trans/bottom), and in three-

time-point data in mice strains (B, Methods). Notably, although

the percentages are similar in yeast and mouse, their total number

of genes drastically differ and therefore the actual number of

identified genes is different (mouse – a total of 403 genes that were

measured using the meso-scale nanostring nCounter technology;

yeast – a total of 2700 top-ranking genes that were measured using

the large-scale microarray technology).

(EPS)

Figure S7 High correlations among genetic effects of
consecutive time points. (A) Presented is a correlation matrix

of genetic effects between every pair of time points (red – high,

blue - low). The matrix indicates that correlation among

consecutive time points is higher than correlation among non-

consecutive time points. (B) The distribution of mismatches

between genetic effects of consecutive time points (ti versus ti+1;

red) and between genetic effects of non-consecutive time points (ti
versus ti+2; black). Depicted are three plot representing the fraction

(y axis) of mismatch values (x axis) across all 105 non-linear

dynamic associations (Table S1); top, middle and bottom panels

represent ti = 10, 20 and 30 minutes after rapamycin treatment,
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respectively. To calculate mismatch between genetic effects of two

candidate time points, we first calculated a regression model

relating genetic effects at a certain time point ti (dependent

variables) to genetic effects in the following time points ti+1 or ti+2

(independent variables). Mismatch values are defined as the

residuals of this regression. The plots indicate that mismatches

between consecutive time points are lower than mismatches

between non-consecutive time points (Wilcoxon P values ,,

10215 in all cases). (C) A heat map of the relations between genetic

effects at 10 minutes (y axis), genetic effects at 20 minutes (x axis),

and genetic effect at 30 minutes after rapamycin treatment (color

coding; blue – low genetic effect; red – high genetic effect). Each

cell represents a 2D bin consisting of all genes with genetic effects

in a defined range at time points 10 and 20 minutes after

treatment. 2D bins are colored based on their average genetic

effect at 30 minutes after treatment (empty 2D bins are colored

white). The heat map demonstrates that genetic effect at

30 minutes after treatment is linked to genetic effect in its nearby

time point (20 min) but not to an earlier time point (10 min),

consistently with DyVER’s ‘memoryless’ Markov model.

(EPS)

Figure S8 Non-mutually exclusive classes of temporal
effect patterns in yeast and nematode. Comparison

between the fraction of genes (y-axis) that were classified into five

non-mutually exclusive classes (x-axis) of the yeast dataset (Yeung

et al., 2011; black) and the C. elegance dataset (Francesconi et al.

(2014); white). Classification categories are as in Francesconi et al.

(2014).

(EPS)

Figure S9 Phosphate (Pi) acquisition and storage mod-
ule no 3. (A) Module no. 3 genes (pink) in the context of the

phosphate acquisition and storage pathway (adapted from Ref.

29). The pathway shows the extracellular conversion of phosphate

monoester into phosphate, phosphate transport into the cyto-

plasm, and deposition of phosphate into storage vacuoles. (B) The

genomic interval underlying module no. 3, residing in Chr13:

28 kb. Shown are DyVER scores (y-axis) across the genomic

positions in chromosome 13 (x-axis) for the genes in module no. 3

(color coded). The position of the known causal variants in

PHO84 is marked below; all remaining genes are trans-associated.

Genetic effects of the module and a representative gene are

depicted in Fig. 5B–E. (C) Genetic effects, relative to non-

stimulated genetic effects (y-axis, log scaled) for different trans-
associated genes from B (color coded) at six time points (x-axis).

(EPS)

Figure S10 Genetic effects and transcription responses
of co-associated genes in module no. 4. (A) Genetic effects,

relative to non-stimulated genetic effects (y-axis, log scaled) for the

co-associated genes in module no. 4 (color coded) at six time

points (x-axis). (B) Averaged transcription response, relative to

non-stimulated transcription response (y-axis, log scaled) for

module no. 4 genes (color coded) at six time points (x-axis).

Notably, the module genes share a similar genetic effect pattern

(A), even though they do not share a similar transcription response

pattern (B).

(EPS)

Figure S11 Identifying the genes likely underlying the
nitrogen-regulated module no. 5 - II. (A) Potential causal

genes underlying the nitrogen-regulated module no. 5-II (column

1), genetic linkage interval at chromosome 2 (column 2). Amino

acid differences between the RM and BY strains are reported in

column 3. The table presents three selection criteria: First, by

reporting genes whose temporal transcription profiles fit the

expected impulse effect pattern (column 4, detailed in B,C).

Second, by reporting those genes that are significantly bound by

nitrogen-related transcription factors (column 5, detailed in D).

Finally, by reporting functionally-related genes (that is, genes

known to be involved in nitrogen or amino acid pathways, column

6). Shown are all genes selected by at least one criterion. Notably,

RPB5 and CNS1 were selected by all three criteria (marked in

Fig. 6A). (B) Averaged temporal gene expression profiles (blue

color scale) of the genes in the linkage interval of module no. 5-II

(rows) following rapamycin stimulation (columns). Genes showing

a specific high expression level at ten minutes following stimulation

are marked in arrows and listed in A (RPB5, CNS1). Plot (C)

demonstrates the agreement between the averaged transcription

response of RPB5 and CNS1 (solid lines) and the averaged relative

genetic effect pattern in module no. 5-II (dashed line, y-axis)

during time points (x-axis). (D) Shown is a –log P value of

transcription factor binding data (from Ref. 32, y-axis) for the

genes in the linkage interval of module no. 5-II (white, x-axis). The

two transcription factors, DAL80 (top) and GCN4 (bottom) are

known as key regulators of the nitrogen and amino acid pathways.

A threshold corresponding to the level of binding in known

nitrogen-related genes (black) is indicated in dashed horizontal

line. Genes with a similar or higher binding –log P value are listed

in A.

(EPS)

Figure S12 DyVER’s predicted two-state model for
dynamic genes in yeast following rapamycin treatment.
Shown is a table of cluster identifiers (column 1) and their number

of genes (column 2). The partition was generated automatically

according to DyVER’s predicated two-state model. The model for

each cluster is shown either as a sequence of ’L’ and ’H’ states

(column 3) or in a cartoon visualization (column 4; ‘H’ - light blue,

‘L’ – white). The pattern in columns 3 and 4 is shown for

increasing time points from left to right. For example, the

LLLHHH pattern indicates a high genetic effect only at 30–

50 minutes after rapamycin treatment.

(EPS)

Figure S13 Q-Q plots for the DyVER’s score. (A) An

example of two QQ-plots of representative genes. The plots show

no inflation and deflation of the expected minus log P values (x-
axis) versus the observed minus log P values of the DyVER score

(y-axis). Genomic control (GC) values were defined as the median

of the observed minus log P value divided by the median of the

minus log expected P value. (B) An overall distribution (box-plot)

of GC values across all genes in the dataset. As expected, the

distribution of genomic control values is centered in genomic

control = 1. Plots A and B were generated using a synthetic

dataset of 500 genes that were measured at nine time points using

single state-transitioning (sustained) pattern with genetic effect size

= 0.5.

(EPS)

Figure S14 Three possible formulations of the DyVER’s
likelihood ratio test. (A) A table presenting the three

formulations (rows); including the name of the approach (column

1), its likelihood ratio formulation and parameters (column 2) and

the degrees of freedom that should be used for a x22

approximation of P values (column 3). In all cases, the null

hypothesis is an absence of an effect and the alternative hypothesis

is the presence of an effect. The formulation of the DyVER score

is specified in line no. 1. The additional formulations I and II (in

lines 2 and 3, respectively) are focused only on the D
effect
k dataset:
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Assuming the presence of an effect, the full two-state model is used

as in the DyVER score. Assuming the absence of an effect, the

mean value of both the high-effect and low-effect states is set to

zero; formulation I assumes a different variance for the low-effect

and high-effect states, whereas formulation II assumes an equal

variance. (B,C) Comparative performance analysis on synthetic

data. Scatter plots for the accuracy measure (y-axis) of different

methods (color coded), including (i) the five existing approaches

(implemented as detailed in Methods) and (ii) three formulations

of the DyVER’s likelihood ratio tests as specified in A (P values for

all three methods were derived using a permutation test). Results

are shown over synthetic genes with a single state-transitioning

(sustained) pattern of genetic effects; the genes were measured in

different numbers of time points (x-axis, B) or different effect sizes

(x-axis, C), as presented in Fig. 3. The plots clearly show that all

three formulations of the DyVER’s likelihood ratio test provide

similar performance.

(EPS)

Figure S15 Performance analysis of the PCA approach
on synthetic data. Scatter plots for the accuracy measure (y-

axis) of three possible PCA-based methods over synthetic genes

with a single state-transitioning (sustained) pattern of genetic

effects; the genes were measured in different numbers of time

points (x-axis) for genetic effect size 0.5. Different line types

indicate the results for PC1, PC2 and PC3, respectively. The plot

demonstrates that the accuracy attained by the first component is

the best among the consecutive components.

(EPS)

Table S1 DyVER’s predicted associated genes in yeast
following rapamycin treatment. Shown are 145 gene

symbols (column 1), their genomic position (column 2), the

genomic position of their associated genetic variant (column 3) and

whether it is associated in cis or in trans (column 4). Column 5

provides information about the predicted two-state model of the

association (L - low-effect state, H - high effect state). The timeline

(0-50 minutes) is ordered from left to right. For example, the

LLLHHH pattern indicates a high genetic effect only at 30–

50 minutes after rapamycin treatment.

(DOC)

Table S2 A comparison between previously reported
genetic variants and DyVER’s predictions. The table

presents genomic position of all previously reported genetic

variants (column 1), their known causal gene (column 2) and the

particular condition in which the genetic variant was identified

(column 3). DyVER’s predictions are presented in columns 4–5:

Column 4 provides the non-linear genes significantly associated

with the variant (based on the DyVER score; cis associations are

highlighted in bold), whereas columns 5 indicates the correspond-

ing module number as listed in Fig. 5A. *non-significant DyVER

score. References for known causal genes: 1Smith and Kryglyak.

2008, 2Perlstein et al. 2007 3Brem et al. 2005, 4Yvert et al. 2003,
5Brem et al. 2002 and Gaisne et al. 1999.

(DOC)
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