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Abstract

How social groups and organisms decide between alternative feeding sites or shelters has been extensively studied both
experimentally and theoretically. One key result is the existence of a symmetry-breaking bifurcation at a critical system size,
where there is a switch from evenly distributed exploitation of all options to a focussed exploitation of just one. Here we
present a decision-making model in which symmetry-breaking is followed by a symmetry restoring bifurcation, whereby
very large systems return to an even distribution of exploitation amongst options. The model assumes local positive
feedback, coupled with a negative feedback regulating the flow toward the feeding sites. We show that the model is
consistent with three different strains of the slime mold Physarum polycephalum, choosing between two feeding sites. We
argue that this combination of feedbacks could allow collective foraging organisms to react flexibly in a dynamic
environment.
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Introduction

Many social or gregarious living organisms are effective

decision-makers, in the sense that they are able to select the best

of several available options [1–9]. Extensive experimental work

and mathematical modelling suggest that a basic feature under-

lying this phenomenon is a symmetry-breaking bifurcation. That

is, there is a transition from a ‘‘homogeneous’’ exploitation of the

resources (all options are equally exploited) to an ‘‘inhomoge-

neous’’ mode where a focus on a particular option is occurring

after a certain critical value of a parameter, typically the number

of individuals [3,10–13]. A key factor in the emergence of such

patterns of exploitation is the amplification of an initial asymmetry

arising through a fluctuation. For example in social insects, an

individual discovering a food source will produce a signal that will

be followed and reinforced by recruited individuals [14]. If the

number of individuals is large enough, a slight initial imbalance of

the fraction of individuals visiting one or the other source will

entrain the majority of foragers to focus on a particular food

source resulting in a collective decision. Such collective decision-

making has been seen in predator avoidance [15], shelter selection

[16] and has even been interpreted in terms of rationality [17,18].

The idea of a symmetry-breaking depending on the number of

individuals have also inspired other fields of research focusing on

human behaviour [19–21] or economics [22,23]. In all these

examples, symmetry is broken when a critical number of

individuals is exceeded.

While symmetry breaking is important, we also know that

symmetry can be restored when the system size (e.g. number of

individuals) becomes very large. For example, direct contacts

resulting from crowding in foraging ants lead to the exploitation of

two routes to food, despite the fact that only one route is chosen

when there is no crowding [24]. More intricate situations can arise

in, for example, ant species using two pheromones [25] or in social

caterpillars Malacosoma disstria displaying behavioural polymor-

phism [26,27]. Here exploitation patterns are shown to arise in

which past a first symmetry-breaking transition there is coexistence

of inhomogeneous and homogeneous modes the latter becoming

even the rule under certain conditions. The interplay between

symmetry breaking and symmetry restoring is also a basic issue in

statistical and condensed matter physics [28,29] and in high

energy physics [30] when more than two phases of matter can

coexist.

In this paper, we analyse decision-making at the cellular level,

on the paradigmatic case of the true slime mold Physarum
polycephalum. We show that non-trivial decision patterns,

including a symmetry restoring bifurcation may arise depending

on the mass of the slime mold.

P. polycephalum is a unicellular, multinucleate protist. Its

vegetative phase is a multi-nucleate plasmodium. It is during this

stage that the organism searches for food. Depending on the

strains of the organism considered, the plasmodium sets out

pseudopodia in all directions for a certain distance and then builds

one or few extended search fronts (Fig. 1) during exploration. The

plasmodium is able to sense various stimuli from a distance and

move toward them via chemotaxis [31]. When the plasmodium

comes into contact with a food source, it completely surrounds it

and resumes exploration while remaining in physical contact with
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the initial food source. The plasmodium can grow to cover large

area (up to 900 cm2), and is capable of moving at relative high

speed (up to 5 cm/hr) [32] and of building efficient transportation

networks [33]. In most of these studies reported in the literature, a

single strain was used to reveal the decision-making patterns of P.
polycephalum. In this paper we develop a model based on [34] and

[35], along with experiments carried out on three strains of the

true slime mould P. polycephalum to test our predictions and

reveal the differences between these three strains in decision-

making outcome.

The model describes how commitment to two identical options

evolves in time. We let X1 and X2 be the number of units within

the system committed to options 1 and 2, respectively. We further

assume a pool of uncommitted units of size N{X1{X2 where M

is the system size. We express the build up of commitment to the

options with respect to time as

dX1

dt
~w(N{X1{X2)f (X1,X2){nX1

dX2

dt
~w(N{X1{X2)f (X2,X1){nX2 ð1Þ

Here w is the rate per individual unit time to choose between

one of the options, f (X1,X2) accounts for the feedbacks present in

the decision-making and n is the rate at which commitment

decays.

A number of authors [1,13,24] have analysed a similar model –

particularly in the context of foraging in ants – under the

hypothesis that rate of decision-making is constant, i.e.

w(N{X1{X2) is replaced by a constant W. This hypothesis is

reasonable in the limit where the initial system size is large and the

number of units committed to the options remains small.

However, in many natural systems the initial mass is significantly

depleted as time goes on. This is certainly the case in our current

experiment on foraging by P. polycephalum where a substantial

part of the initial mass ends up covering one or both the food

sources. The system we study here can thus be viewed as having a

‘‘passive’’ negative feedback of X1, X2, whereby depletion of units

reduces the rate of recruitment.

We turn next to the positive feedback functions f (X1,X2).
Several possible forms have been proposed for these (see [35] and

[36] for recent reviews). One of the dominant ideas has been that

an individual bases its decision on previous decisions made by

others, i.e., on the numbers of units having already committed the

different options. For example, [13] use

f X1,X2ð Þ~ (kzX1)2

(X1zk)2z(X2zk)2
ð2aÞ

while, [37] argue, on the basis of Bayesian estimation, that the

form

f X1,X2ð Þ~ 1

1zsX2{X1
ð2bÞ

gives a form of optimal decision-making, s being a sensitivity

parameter.

Both the above forms assume that information about commit-

ment to both of the options is available to the decision-making

units. An alternative view is the quorum model [34]. Here one

assumes that the probability of accepting an option is simply an

increasing function of the number of units that have already

Fig. 1. Exploration patterns of the three different strains tested. (a) Australian, (b) American and (c) Japanese.
doi:10.1371/journal.pcbi.1003960.g001

Author Summary

Collective decision making is ubiquitous in group-living
organisms allowing them to select between several
competing resources. It is a self-organized process
involving positive feedback mechanisms, whereby the
preference for a particular option is reinforced if the option
has already been accepted by a part of the group’s
constituting units. The generally accepted paradigm of
collective decision-making is a transition from an exploi-
tation mode where all options are on equal footing, to one
in which groups of sufficiently large size are led to focus on
a particular option, a phenomenon referred to as symme-
try-breaking bifurcation. In the present work we report
results based on mathematical modeling in parallel with
experiments carried out on the unicellular plasmoidal
organism Physarum polycephalum showing that, contrary
to the classical paradigm, symmetry is eventually restored
for individuals of sufficiently large size (here the plasmo-
dium mass). This possibility, arising from the combination
of positive feedbacks and a regulation of the flow by the
fraction of system’s mass already committed to the
options, allows the organism to react flexibly. We argue
that, beyond the case of P. polycephalum, this paradigm
should apply to many systems possessing the aforemen-
tioned feedback and regulatory mechanisms.

Symmetry Restoring in Collective Decision-Making
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accepted this particular option independent of the number of units

choosing the other option. In this paper we model this

phenomenon using

f (X1,X2)~f (X1)~
X 2

1

k2zX 2
1

ð2cÞ

This form follows [34], albeit without an additional spontaneous

probability of adopting an option. A similar form has also been

derived by [36] within a Bayesian framework. They found that

f (X1,X2)~f (X1)~
1

1zsX1
ð2dÞ

provided a good match to decisions made by zebrafish. As it turns

out the use of either (2c) or (2d) is not essential in what follows.

Both these functions have the same sigmoidal form, which

produces the sequence of bifurcations we now describe.

In the case of P. polycephalum feedback is in the form of the

growth of tubes as a result of protoplasmic flow. There is evidence

that there is an upper limit of tube thickness in real organisms [38].

The parameter k then stands for the threshold beyond which this

feedback becomes effective or, alternatively the threshold flow for

tube construction. Nakagaki et al. [39] consider the sigmoidal

function of the form f (X )~X 3=(X 3z1) to account for these

effects but, again, the results reported below are not affected

qualitatively by the choice of exponents greater than 2.

Summarising, model (1) for two equal food sources can be

written as

dX1

dt
~w(M{X1{X2)

X 2
1

k2zX 2
1

{nX1

dX2

dt
~w(M{X1{X2)

X 2
2

k2zX 2
2

{nX2 ð3Þ

It captures two essential properties of a class of decision-making

systems of which Physarum polycephalum constitutes a prototyp-

ical example. First, decisions are local in the sense that each of the

two positive feedback functions f Xið Þ depends only on the fraction

of system’s mass attracted to the particular option i. In particular,

in P. polycephalum tubes are being built to food sources on the

basis of only local information. Second, for any given value of

initial mass M the portion of the system not yet committed to the

options is decreasing as X1, X2 are increasing.

In order to investigate the role of randomness in the model and

to fit it to data, we also implemented a Monte Carlo version of this

model. See Materials and Methods for details.

Results

Fig. 2 shows the bifurcation diagram of the steady-state

solutions of eqs. (3), i.e., how the steady-sate level of commitment

to an option changes for initial system sizes. Three bifurcation

points can be identified. Before the first bifurcation there is one

stable steady state corresponding to no decision (trivial steady

state). After the first bifurcation point (see Material and Methods,

eq. (6)) the system has three stable states, one corresponding to no

decision and the other two corresponding to the exclusive

exploitation of one or the other of the two options (semi-trivial

steady state). In terms of the behavior of Physarum polycephalum,

the trivial steady state describes a situation where the plasmodium

did not find food or never moved from the starting point. The

semi-trivial steady state describes the situation where the

plasmodium exploits just one option.

For larger initial mass values a second bifurcation occurs and

unstable homogeneous solutions appear. In terms of the decision-

making of Physarum polycephalum the instability of these

symmetric solutions means that the plasmodium does not have

enough mass to exploit two options at the same time and thus

moves to just one. After a critical value M� (see Materials and

Methods, eq. (10)), corresponding to a third bifurcation, the upper

branch of the homogeneous solutions becomes stable. This

corresponds to the plasmodium equally exploiting both food

sources. We label the bifurcation at M� a symmetry restoring

bifurcation, since a stable, nontrivial symmetric solution appears at

this point.

This stabilisation coincides with the appearance of two non-

homogeneous (asymmetric) unstable solutions, characteristic of a

subcritical pitchfork bifurcation. Here we have tristability such

that, depending on initial conditions, the plasmodium will exploit

either none of the options, one of the two or both. The asymptotic

analysis of these solutions for Mwwk shows that the distance

between the inhomogeneous solutions and the stable upper branch

of the semi-trivial steady state decreases as M increases. This

means that for large mass these two solutions are approximately

equal. As a result, the stable upper branch of the semi-trivial

solution(see Material and Methods, eq. (5)) can never be reached

in the sense that the set of initial conditions in its attraction basin

decreases in size with M. The biological conclusion is that a

plasmodium of very large mass nearly always spreads between two

options rather than moving to one.

We now study the role of the threshold and flux parameters k
and w. Fig. 3 depicts critical values of parameter k as function of

parameter w for the fixed mass M~2. The three lines correspond

to the three types of bifurcations identified above. The bold solid

line corresponds to the condition of the first bifurcation to occur

and thus, to the existence of semi trivial solutions (see eq.(6) in

Materials and Methods). The solid line corresponds to the

condition of the second bifurcation to occur and to existence of

a non-trivial unstable homogeneous solution (see eq. (8) in

Material and Methods) Finally, if parameters k and w are chosen

under the dashed line in Fig. 3 the existence of all types solutions

and all bifurcation points is secured.

We next turn to the experimental results. Fig. 4a,b,c shows the

probability to move to a food source as a function of the size of

plasmodium. For very small size, there is a non-negligible

probability to select none of the food sources. Plasmodia of small

masses exploit more often only one source, while larger ones

exploit both food sources at the same time. For example, the

smallest Japanese plasmodia (�~0:8 cm) exploit only one food in

95% of the cases while for the largest size (�~4 cm), this frequency

decreases to 54% (see Fig. 4a). Similar results are observed for the

other strains (see Fig. 4b, c). We notice however that there are

some quantitative differences of exploitation patterns between

strains: The largest Australian plasmodia (�~4 cm) exploit two

food sources in 75% of the cases, a value which is larger than for

the two other strains. Decision making by Physarum polycephalum
depends thus on the size of the plasmodium as well as on the

different exploration patterns of the strains.

The experimental results are qualitatively consistent with the

model predictions. Indeed, for small values of the parameter M,

there is no option chosen. For larger M, there is coexistence

between a state where one option is chosen and a state where no

Symmetry Restoring in Collective Decision-Making
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option is selected. Finally, for still larger M, there is coexistence

between three states corresponding to the selection of one option,

to the simultaneous selection of two options and no selection at all.

In terms of Physarum polycephalum, an organism with a small

mass exploits one or no options, while a large mass endows it with

the possibility to select simultaneously two options, one option or

none.

In order to compare the predictions of the model to the

experimental outcome, we identified the best fit model in terms of

the parameters w and k for each strain. For each mass M used in

the experiment we performed a Monte Carlo simulation of the

model (Materials and Methods) for different parameter combina-

tions. We run the Monte Carlo simulation 1000 times for each pair

of w ranging with the step 0.1 from 0.5 to 3.5 and k ranging from

0.5 to 2, and identified the best fit parameters (see eq. (12) in

Materials and Methods for details of model fitting).

The best-fit parameters identified for each strain of plasmodium

are given in Table 1, along with the goodness of fit parameter (see

Model fitting in Materials and Methods section). The fitting

parameter a can be roughly interpreted as the proportion of data

explained by our Monte Carlo simulation model. It varies for each

strain between 0.84 and 0.92, indicating that the simulation model

accounts for the large majority of observed variation, supporting

the validity of the inferred values of w and k.

Fig. 4d,e,f shows the probability of selecting an option as a

function of the mass, resulting from an average of 1000 realisations

for every value of the mass considered and from the best fit

parameters shown in Table 1. This is to be compared with the

experimental probabilities (Fig. 4a,b,c). The model captures

adequately the different patterns of exploitation for the masses

and the strains considered in the experiment.

Fig. 5 shows the bifurcation diagrams corresponding to the best-

fit parameters for each of the three strains. We now identify the

positions of the symmetry-restoring bifurcation point beyond

which a simultaneous exploitation of the two options becomes

possible. We notice that the critical value of the mass M� is

different for the three strains, the Japanese one occurring at

M�~3:12 (cf. Fig. 5a) while the Australian and American ones

occur at smaller values (M�~1:92 and M�~2:56 respectively,

Fig. 5b,c).

These differences can be explained in biological terms and the

exploration patterns of the slime mold (Fig. 1). The exploratory

pattern of the Japanese strain is directional, forming thick tubes

during its displacement. A larger mass is then needed to be able to

exploit two options. In contrast, the Australian strain explores its

environment more uniformly by forming thin tubes. A smaller

mass is then needed to be able to exploit two options. As for the

American strain, its exploration pattern combines both Japanese

and Australian ones and an intermediate value of the mass is then

needed.

These exploration pattern differences are taken into account by

the differences between two parameters that we used in our model.

Fig. 2. Bifurcation diagram corresponding to the steady state solutions of equation (3) with respect to the parameter M. Full and
dashed lines correspond to stable and unstable solutions respectively. The black circle shows the first bifurcation, the white circle corresponds to the
second bifurcation and the black square labels the third bifurcation. Parameter values are w~1, k~1 and n~0:1.
doi:10.1371/journal.pcbi.1003960.g002
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w can be viewed as the speed of displacement of the plasmodium

while k reflects a threshold beyond which a tube can be built, and

therefore is related to the way the different strains are moving: a

small value of k means that a tube is more easily constructed, even

with a low mass. The function f (Xi) in eq. (4a) saturates therefore

more quickly and favours the homogeneous solution. On the

contrary, a large value of this parameter implies that a large mass

will be needed to build a tube and that f (Xi) saturates more

slowly, favouring the semi-trivial inhomogeneous solution (6).

Discussion

We have presented a generic mathematical model for how

different patterns of exploitation of two identical resources depend

on the size of the system. The model takes into account two

important features. Firstly, owing to the finite size of the system,

the number of uncommitted units is limited by that already

committed to the feeding sites. Secondly, the amplification process

is local in that no direct comparison is made between the two

options. The combination between local positive feedback and

regulation of the traffic revealed a symmetry restoring bifurcation

beyond which the system was able to select simultaneously two

options, one of two options, or none of them. Past this bifurcation

point, for increasingly larger initial system sizes, this tristability was

still present but the symmetric solutions had an increasing basin of

attraction. This was due to the existence of nearby unstable

inhomogeneous states masking the other stable states.

Most of the studies investigating decision-making patterns in

Physarum polycephalum were conducted using a single strain (the

Australian strain obtained from Southern Biological Supplies: [40–

42]; the Japanese strain: [43]). In order to test the model, we

conducted experiments on three strains of Physarum polycepha-
lum, each of them having different pattern of exploration. In our

experimental set-up we took single individuals of different masses

and let them choose between two identical food sources on a Petri

dish. The different types of exploitation patterns obtained were

similar to those predicted by the model, with the model capturing

around 90% of the data.

Symmetry-restoring is a generic phenomenon resulting from the

coexistence of positive and negative (regulatory) feedbacks. In

addition to the case considered in this work, it is also encountered

in social insect foraging [24,25]. Beyond the case of decision-

making in biological organisms, symmetry restoring is known to be

also present in physical sciences, including phase transitions [29]

and pattern formation in reaction-diffusion systems [44].

Our study highlights an important difference between local and

global information in decision making. In slime mould, flow is a

function of the thickness of the tube between the organism and a

specific food source [38,39]. As a result, tube growth is a local

process in the sense that tubes oriented along different directions

Fig. 3. Conditions for existence of the bifurcation points displayed in Fig. 2. Parameter k as a function of w for fixed mass M~2, other
parameter as in Fig. 2. Bold solid, solid and dashed lines correspond to the condition for existence of the first, second and third bifurcation,
respectively.
doi:10.1371/journal.pcbi.1003960.g003
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Fig. 4. Probability to choose options with respect to the mass of plasmodium. The grey colour corresponds to the probability to move to
the one option, the light grey shows the probability to move to two options at the same time and the black colour corresponds to probability to
exploit zero option. Experiment outcomes a) Japanese strain, b) Australia strain and c) American strain. Model outcomes d) Japanese strain w~2:5,
k~1:5, e) Australian strain w~1:5, k~0:9 and f) American strain w~1:5, k~1:2, other parameter as in Fig. 2.
doi:10.1371/journal.pcbi.1003960.g004
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are not inhibiting growth. In many experiments on ant and fish

decision-making there is a predetermined decision point, at for

example a Y-shaped branch [3,15], where animals compare the

two options directly. This choice point provides global informa-

tion. It would be interesting to investigate situations in ants and

other social organisms in a natural environment where groups are

still offered two options (two food sources) but there is no pre-

determined choice point. A setup of this kind for ants could consist

of colonies of variable sizes connected to an open arena containing

Table 1. Best-fit parameters obtained from eq. (12).

strains w k a

Japan 2.5 1.5 0.9239

Australian 1.5 0.9 0.8448

American 1.5 1.2 0.9149

doi:10.1371/journal.pcbi.1003960.t001

Fig. 5. Bifurcation diagrams corresponding to the steady state solutions of equation (3) with respect to the parameter M
corresponding to the three different strains. Full and dashed lines correspond to stable and unstable solutions respectively. Parameter values
are a) Japan w~2:5, k~1:5, b) Australian w~1:5, k~0:9 and c) American w~1:5, k~1:2, other parameter as in Fig. 2.
doi:10.1371/journal.pcbi.1003960.g005
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two identical food sources placed equidistant to the nest. The

traffic that will eventually be established will still privilege paths

leading to the food sources, but the information held by individuals

will be purely local. In these conditions, we predict that beyond a

critical size of the colony, individuals will display the three

exploitation patterns seen in this paper. In particular, we predict a

symmetry restoration at large colony sizes. Notice that symmetry

restoring should be possible even in a maze type experiment

provided that returns to the main branch of the maze can occur. A

full analysis of this problem would require to incorporate in the

description the navigation strategies employed. This is beyond the

scope of the present work.

The coexistence of multiple steady states in our model is

expected to enhance flexibility. In nature, food sources are not

constantly available and colonies focussing on one source can take

a long time to switch to another [45]. However, in the region of

coexistence between many solutions, a colony may quickly switch

to another option [35]. Previously this was shown to be the case in

the presence of crowding [24] or in the presence of more than two

options [18]. We suggest that this may also happen in an open

environment in the presence of only two options and a regulation

of traffic of the kind considered in this paper.

Materials and Methods

We studied the model presented in the Introduction in two

ways, as a system of coupled differential equations as defined by

eqs. (3) and via a Monte Carlo simulation.

Steady states and stability
We start by studying steady-state (time-independent) solutions of

the system (3). Setting time derivatives to zero and denoting by x1

and x2 the steady state solutions we arrive at the following system

of algebraic equations

w(M{x1{x2)
x2

1

k2zx2
1

{nx1~0

w(M{x1{x2)
x2

2

k2zx2
2

{nx2~0 ð4Þ

By solving this system we can determine how the decision to

choose one, two or zero options depends on the total mass M. We

notice that eqs. (3)–(4) secure positivity of x1, x2 as well as the

property x1zx2ƒM whatever the values of w, k and n might be,

provided that these conditions are satisfied initially. Indeed, as

x1zx2 approaches M starting from smaller values the first

(positive) term in the rhs of eq. (4) will become increasingly small

and the second (negative) term will dominate. As a result the time

derivatives in eq. (3) will be negative and x1, x2 and their sum will

be led to lesser values.

By evaluating the Jacobian at the steady states we can also

determine their stability. In the general case, the Jacobian is

A {w
x2

1

k2zx2
1

{w
x2

2

k2zx2
2

B

0
BBB@

1
CCCA

where

A~
w((k2zx2

1)(2M{3x1{2x2)x1{2x3
1(M{x1{x2))

(k2zx2
1)2

{n

and

B~
w((k2zx2

2)(2M{3x2{2x1)x2{2x3
2(M{x2{x1))

(k2zx2
2)2

{n

Thus the characteristic equation determining the eigenvalues of

the Jacobian has the form

l2{l(AzB)zAB{w2 x2
1x2

2

(k2zx2
1)(k2zx2

2)
~0

The steady states are stable as long as the real parts of the two

(possibly complex) eigenvalues are negative. Equations (3) admit

four types of steady states. We now discuss the existence and

stability of each of these in turn.

The trivial solution x1~0 and x2~0. This solution is

always stable with corresponding double negative eigenvalue

l~{n.

The semi-trivial solutions x1=0 and x2~0. To find these

solutions we let x2~0 in equations (3) then by simplifying we get

wMx1{(wzn)x2
1{nk2~0

This gives

x1~
wM+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2M2{4nk2(wzn)

q

2(wzn)
ð5Þ

Among the solutions of the system (3) only real, positive

solutions are acceptable. For the semi-trivial solution (5) to be real

and positive we thus need

M§

k

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n(wzn)

p
ð6Þ

The equality sign gives the critical mass at which a limit point

bifurcation occurs, see Fig. 2. Substituting the values of x1, x2 in

the characteristic equation one finds that the semi-trivial solution

corresponding to the upper branch of x1 is always stable and the

lower branch is always unstable.

For large Mwwk the upper branch is

x1&
M

1zn=w

while the lower branch tends to 0 as M??.

The non-trivial homogeneous solutions x1~x2=0. To

find the solutions we set x1~x2 in the first equation of the system

(3). By simplifying we get
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(
n

w
z2)x2

1{Mx1z
nk2

w
~0

so that

x1~
wM+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2M2{4nk2(2wzn)

q

2(n=wz2)
ð7Þ

These solutions are real and positive if

M§

k

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n(2wzn)

p
ð8Þ

The equality sign gives the critical mass at which a second limit

point bifurcation occurs, see Fig. 2. Substituting x1, x2 in the

characteristic equation one sees that these states are unstable for

small values of M. But as M is increased well beyond k, it turns

out that the solution becomes stable and tends for large M to

x1&
Mw

2zn=w

while the lower branch is unstable and tends to 0 as M??.

The fully non-trivial and non-homogeneous solutions

x1=x2. To find these solutions we have to express x1 from

one equation of the system (3) in terms of x2 and substitute. The

calculation reveals 6 solutions, but 4 of these are already described

above. The remaining two solutions are

x1~M{
Mw+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2M2{4k2(nzw)2

q

2(nzw)

{

2n(nzw)(k2z(
Mw+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2M2{4k2(nzw)2

q

2(nzw)
)2)

w(Mw+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2M2{4k2(nzw)2

q
)

ð9Þ

These solutions are real and positive as long as

M�
§

k

w
2(wzn) ð10Þ

The equality sign gives the critical mass at which solutions (9)

are merging with the homogeneous branch (7). While these

solutions are always unstable beyond the critical mass M�, the

unstable upper branch of solution (7) becomes stable.

The third bifurcation occurring at M� is thus a pitchfork type

bifurcation. Notice that for Mwwk the upper branch of fully

non-trivial solution behaves

x1&
M

1zn=w

while the lower branch of x1 tends to 0 as M??. This is the same

asymptotic result as for the semi-trivial solution (6).

Summarising, the model admits the following physically

acceptable steady-state solutions: the trivial solution x1~0 and

x2~0 corresponds to the absence of a decision, the semi-trivial

solutions x1=0 and x2~0 (or x2=0 x1~0) correspond to an

exclusive exploitation of one option, the non-trivial homogeneous

solutions x1~x2=0 correspond to symmetric exploration of both

options and the fully non-trivial and non-homogeneous solutions

x1=x2 when x1wx2 or x1vx2 correspond to asymmetric

exploitation.

Monte Carlo simulation
In order to incorporate the fluctuations inherent to the

experiments, we developed a Monte Carlo approach by simulating

directly the equations (3). We describe the main principles of our

Monte-Carlo simulation implementation in the following steps:

Initial condition. We assume that the number of the units

within the system committed to option 1 and 2, X1 and X2 initially

are not zero. These values are generated from the uniform

distribution on interval ½0:1,N=2�, where N takes values of

diameter values 4cm, 3.2 cm, 2.6 cm, 2.3 cm, 2 cm, 1.8 cm,

1.7 cm, 1.3 cm, 1 cm and 0.8 cm. Thus for different size of

plasmodia initial values are generated from respective interval.

Decision process. The coupling in the choice between two

options in our model (3) is weak because we use the choice

functions which are independent to each other. The sum of

coupled choice functions should be equal 1 thus they can be used

as a probability to choose options. In our case first we have to

define expressions:

p1~w(M{X1{X2)
X 2

1

k2zX 2
1

and p2~nX1

p3~w(M{X1{X2)
X 2

1

k2zX 2
1

and p4~nX1

then we construct probabilities to move to the options in the

following way:

P1~
p1

p1zp2zp3zp4

P2~
p1zp2

p1zp2zp3zp4

P3~
p1zp2zp3

p1zp2zp3zp4

P4~1 ð11Þ

The decision concerns the movement of the mass to the options.

To this end, a random number r is sampled from a uniform

distribution between 0 and 1:

N if rvP1, a small mass unit (taken here to be 5{4) is added

to X1 (while X2 remains unchanged)

N if P1ƒrvP2, a small mass unit is removed from X1 (while

X2 remains unchanged)

Symmetry Restoring in Collective Decision-Making

PLOS Computational Biology | www.ploscompbiol.org 9 December 2014 | Volume 10 | Issue 12 | e1003960



N if P2ƒrvP3, a small mass unit is added to X2 (while X1

remains unchanged)

N if P3ƒrv1, a small mass unit is removed from X2 (while

X1 remains unchanged)

Time evolution. The probabilities represented by (11) are

updated at each simulation step according to the actual mass

movement to the particular option. The process is repeated for a

number of steps (70 000) sufficient to reach the stationary state,

where all presented mass M will move to the options, in another

words when expression (M{X1{X2) will be equal zero.

The simulations run for 1000 realisations and we calculate the

average mass value on the options. If most (at least 60%) of the

mass is found to have moved to a particular option, we conclude

that one option has been selected. If the mass is found to have

spread equally between the options, we conclude that two options

have been selected. Finally, if most of the mass has not moved, we

conclude that no option has been selected.

Experiment
In the light of the model results, we conducted a series of

experiments to determine how the mass of Physarum polycephalum
plasmodium influences the foraging decision process when the

individual is confronted with two identical food sources.

Physarum polycephalum is a unicellular, true slime mold,

typically yellow in colour, and inhabits shady, cool, moist areas

such as decaying leaves and logs. It belongs to the supergroup

Amoebozoa. The main vegetative phase of P. polycephalum is the

multi-nucleate plasmodium (the active, streaming form) that

consists of networks of protoplasmic veins and pseudopods. It is

during this stage that the organism searches for food. In the wild,

the plasmodium eats bacteria and dead organic matter and in the

laboratory they are fed oat flakes.

We cultivated Physarum polycephalum on a 10% oat medium in

a Petri dish (diameter: 145 mm). The rolled oat were grained and

set in 1% agar solution for presentation to Physarum polycepha-
lum. To compare the foraging solution predicted by the model

with those of P. Polycephalum, we measured the foraging solutions

produced by three different strains: Australian strain (Southern

Biological Supplies, Victoria), American strain (Carolina Biolog-

ical Supplies) and from Japanese strain (Strain HU192 x HU200)

that exhibit different exploration patterns. The Japanese strain is

fast, forming only a few thick tubes to explore the substrate

covering a long distance but a small surface. The Australian strain

spreads in all direction by forming multiple thin tubes, covering a

large surface but a small distance. The American strain combines

both exploration patterns. It forms both thick and thin tubes (see

Fig. 1 for a snapshot of the three different exploration patterns by

these three strains).

In each trial one single plasmodium was confronted with two

identical food sources. The food consisted in a 10% oatmeal-agar

mixture similar to the one used for rearing the plasmodia. The

foraging arena were made by filling 90-mm diameter Petri dishes

with plain 1% agar. Once the agar set, we punched two circular

holes (diameter: 1.7 cm, 2.5 cm away from each other) into the

agar and filled them with food. Then we punched a third circular

hole placed 2.5 cm away from each source which we filled with a

plasmodium. The diameter of that last hole varied depending on

plasmodium size.

We tested 10 plasmodium sizes (by extension, 10 plasmodium

masses) corresponding to the following diameters: 4 cm, 3.2 cm,

2.6 cm, 2.3 cm, 2 cm, 1.8 cm, 1.7 cm, 1.3 cm, 1 cm and 0.8 cm.

The distance between the border of the plasmodium and the food

was kept at a fixed value equal to 2 cm, whatever the diameter

tested.

We replicate each experiment 65 times for each plasmodium

size and each strain (1950 experiments in total: 65 replicates | 3

strains | 10 plasmodium sized). All the experiments were

conducted in the dark at 25oC temperature and 70% humidity.

Experiments were run for 48 hours and pictures were taken every

5 min with a digital camera canon 60D.

Throughout the experiment the plasmodium explores its

environment by deploying a network of protoplasmic tubes until

a food source is discovered, whereupon a link between the food

source and its initial position is built. We consider that a given

source is chosen if the plasmodium moves toward it through the

link and fully covers it. If on the other hand the plasmodium does

not completely cover the food source and moves to the other one

at the same time to eventually cover it in part, we consider that

both sources are chosen. We recall that both experiment and

theory concern the steady state behaviour. Transients are likely to

be of interest as well, but are not addressed here. Finally, if after

exploring the environment the plasmodium did not succeed in

finding any food source during the time of experiment we consider

that no choice has been made.

Summarising, we differentiated three distinct foraging patterns

– the plasmodium exploits both food sources simultaneously, a

single source and none of them – and calculated the proportion of

replicates that ended up in these three states.

Model fitting
We expect that our Monte Carlo simulation will capture a large

proportion, but not all of the details of the real process. For

example, for certain parameter values and masses our model

predicts that the plasmodium will always move to exactly one

option. In the data however, there is always some non-vanishing

probability of a slime mould encountering two food sources.

Acknowledging that our simulation model will not fully describe

the many effects that could cause variation in the slime moulds

behaviour, we must adapt our model fitting to allow for this in

order to make our eventual fitted estimates of the simulation

parameters robust. We thus modify our model fitting to account

for variation that is not explained by the simulations, by fitting a

mixture model comprising the simulation predictions, and a

uniform distribution that represents all of the variation that is not

accounted for in the simulation model. We thus introduce a new

parameter, a, that controls the mixing proportion of the simulation

predictions, and therefore represents the proportion of the

experimental variation explained by the simulation model [46].

Mathematically, to do the fitting, we let fw,k,M (i) be the

proportion of times the simulation with mass M and parameters w
and k chooses i[f0,1,2g food options. We denote by gM (i) the

experimental proportion of times a plasmodium of mass M chose

i[f0,1,2g food sources. Let h(i) be this uniform distribution over

the options, such that h(i)~1=3 V i[f0,1,2g. Introducing a as the

proportion of variation explained by our simulation and therefore

the mixing ration of fw,k,M (i), we have a prediction for the

distribution of gM (i):

gM (i)*afw,k,M (i)z(1{a)h(i) ð12Þ

where we infer w,k and a for each strain by finding the values that

minimises the x2 error term between this prediction and the

experimental results. Identifying the best-fit values of the

parameters is done by an exhaustive search over all combinations

of w[f1,3:5g, k[f0:9,1:8g and a[f0,1g with steps of 0:5, 0:3 and
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0.01 respectively. While the inferred parameters w and k are the

best estimates for the internal processes of the slime mould

described above, the inferred value of a indicates what proportion

of the experimental variation can be attributed to the processes

specified in the simulation model, rather than to all other factors

accounted for by the uniform distribution. It is therefore

encouraging that the inferred values of a in our study are typically

on the order of 0.9 (see Table 1). As seen, the large values of a
inferred indicate that our simulation predictions are a substantial

improvement upon a null hypothesis that the slime mould chooses

randomly between the three options.

Supporting Information

S1 Text The file contains the raw data of the experi-
ments described in the Materials and Methods section.
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