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Abstract

Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such
data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we
describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring
differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level
metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information.
The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared
across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework,
the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a
mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly
connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to
discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for
interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use
simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a
metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory
subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut
epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because
this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities
might arise from opportunist growth of bacteria that can circumvent the host’s nutrient-based mechanism for bacterial
partner selection.
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Introduction

Microorganisms comprise up to one-third of the Earths’

biomass, and those living on a human can outnumber their cells

by a factor of ten [1]. These microbes are believed to form

metabolically integrated communities [2] playing a critical role at

many levels, from globally significant nutrient cycling [3] to

influencing human physiology [4,5]. Because much of this

diversity cannot be cultured in the laboratory, these systems

remain largely unstudied [6,7]. Recent advances in sequencing

technology allow access to these communities through sequencing

of DNA as it exists in the natural environment (metagenomics) [8].

Several ambitious projects are dedicated to filling the large gap in

knowledge through massive sampling, sequencing and analysis of

microbiome data. Among their goals is to determine the extent to

which different microbiomes share core functions, and to identify

associations between changes in microbiomes and changes in

complex systems ranging from climate (e.g., the Earth Microbiome

Project [9]) to human physiology (e.g., the Human Microbiome

Project [10]). Considerable effort has been directed to developing

analytical tools for these data [11]. Notably absent, however, is a

model-based framework for analysing metabolic interactions

according to the enzyme abundance information within micro-

biomes.

High-throughput shotgun sequencing yields enormous numbers

of environmental DNA sequences, some being homologous to

genes known to encode an enzyme and thus assignable to a
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metabolic function. Development of dedicated analytical methods

for these data lags behind the capacity to generate it. The more

popular strategies, although yielding promising results, highlight the

analytical challenges. First, functional differences among micro-

biomes often stem from differing abundances of shared metabolic

functions rather than presence-absence polymorphisms [12].

Second, one-by-one analysis of enzyme abundance, a very common

approach, neglects the non-independence relations among reactions

functioning as a network [13] and thus hinders discovery of

metabolic functional units and their interactions. Third, each

independent analysis of enzyme abundance has restricted power by

limiting the analysis to a small part of the data. Although several

methods have been developed for analysing the community-wide

patterns of metabolic interactions [14–17], none employ a formal

stochastic model for networks. Jiao et al. [18] developed a novel

probabilistic approach to profiling community metabolic function

that focuses on metabolic reactions rather than individual genes.

Jiao et al. [18] demonstrate that focusing on reactions provides a

better representation of the collective metabolic behaviour of

microbial communities, and avoids the problem of relying on

arbitrary boundaries of annotated pathways. Their method,

however, does not utilize enzymes abundances, nor does it formally

model multiple microbiome samples as alternative realizations of

the constraints that arise from an underlying network structure.

Here, we introduce a Bayesian modelling approach for inferring

differential usage of metabolic networks among microbial commu-

nities. We approach the problem by considering metabolic structure

and function as arising from overlapping metabolic phenotypes

referred to as ‘‘metabosystems’’. A metabosystem is further

characterized by a mixture of overlapping metabolic ‘‘subnetworks’’

(e.g., sets of reactions related by function). In order to discover

metabosystems and subnetworks, and group microbial communities

according to differential usage of the metabosystems and subnet-

works, we propose BiomeNet, a novel mixed-membership statistical

model for metabolic network data. The model takes the reaction

abundance data for each metagenome sample as its input.

Reactions and their abundances are derived from the abundance

of enzyme-encoding gene sequences found within shotgun metage-

nomic datasets. Suitable datasets are now readily available from

public resources such as MGRAST [19] and MetaHIT [20]. Our

approach to the analysis of enzyme abundance information is

unique in that (i) it works directly with the network data, (ii)

reactions within a microbiome are not independent, (iii) contribu-

tions of reactions to a subnetwork do not rely on human annotation

(e.g., a subnetwork might be comprised of parts of different KEGG

pathways), (iv) differential usage of subnetworks is modelled through

metabosystem composition, and (v) samples with the same

typological labels (e.g., individuals having a certain disease) need

not be identical; rather, the full community metabolism of a sample

can exist as a mixture of different metabosystems.

BiomeNet is fundamentally different from other unsupervised

methods including Principal Component Analysis (PCA) and its

variants. BiomeNet takes advantage of dependencies between

reactions encoded by metabolic networks without any data

transformation and reduction. Moreover, BiomeNet is specifically

designed to provide explanatory capabilities. Differentiating

metabosystems discovered by BiomeNet can be explained by their

differential usage of metabolic subnetworks, which in turn are

interpretable as a small set of strongly connected metabolic

reactions. Because interpreting principal components discovered

by PCA is not trivial [21], BiomeNet provides a valuable addition to

methods such as PCA that are widely used to analyse metagenomic

variation. Metabolic networks can also be used to study the relative

change in the production or consumption of specific metabolites

[22]. Our model, however, is intended to provide a framework for

explaining metabolic divergence across microbiome samples as a

function of tightly connected subnetworks having different abun-

dances. Like Jiao et al. [18] we prefer to work with reactions rather

than individual enzymes. By modelling reaction abundances, we

permit promiscuous enzymes (which can catalyse several different

reactions) to contribute to the signal for differential usage of

subnetworks among different microbiome samples.

We validate our inference algorithm via simulation and apply it

to datasets from two studies of functional divergence among gut

microbiomes [13,20]. Gut microbiomes have an intimate physi-

ological interaction with their host, playing an important role in

absorption of nutrients, modulation of the immune system and

protection against invasion by antagonistic microbes [4,5]. We

focus our analyses on differences between mammals with different

dietary niche-types [13], and between healthy and inflammatory

bowel disease (IBD)-afflicted humans [20]. In each dataset, we

identify ‘‘core’’ subnetworks; these are abundant within each

microbiome sample and are not discriminatory. We also resolve

discriminatory subnetworks; these are differentially abundant in

one or more of the metabosystems. We illustrate how BiomeNet

allows us to estimate and represent a sample as a mixture of

different types of metabolically-integrated communities. Lastly, we

show how the discriminatory subnetworks uncovered by our

model provide insight into the biological basis of divergence

between different microbiome samples.

Methods

Motivation and overview of the analytical framework
BiomeNet is a hierarchical mixed-membership model, where

metabolic reactions are mixed to form subnetworks, subnetworks

are mixed to form metabosystems, and environmental samples are

treated as potential mixtures of metabosystems. We explicitly

model metabolism as a hierarchy because biochemical networks

are widely considered to be organized in this way. For example,

the KEGG pathways database arranges biochemical reactions into

sub-pathways (consecutive reaction steps within curated path-

ways), which are arranged into ‘‘pathway modules’’ that are

Author Summary

Metagenomic studies of microbial communities yield
enormous numbers of gene sequences that have a known
enzymatic function, and thus have potential to contribute
to community-level metabolic activities. Ecologically diver-
gent microbial communities are presumed to differ in
metabolic repertoire and function, but detecting such
differences is challenging because the required analytical
methodology is complex. Here, we present a novel
Bayesian model suitable for this task. Our model,
BiomeNet, does not assume that microbiome samples of
a certain type are the same; rather, a sample is modeled as
a unique mixture of complex metabolic systems referred to
as ‘‘metabosystems’’. The metabosystems are composed of
mixtures of subnetworks, where subnetworks are mixtures
of reactions related by function. Application of BiomeNet
to human gut metagenomes revealed a metabosystem
with greater prevalence among IBD patients. We inferred
that this metabosystem is likely to be closely associated
with the human gut epithelium, resistant to dietary
interventions, and interfere with human uptake of an
important antioxidant, possibly contributing to gut inflam-
mation associated with IBD.
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intended to represent functional units [23]. Alternatively, analyses

of metabolic interactions from a purely topological perspective also

support the view of hierarchical modularity [24–26]. We differ,

however, in desiring a probabilistic framework for discriminating

the structural components of a full biochemical network. Our

mixed-membership approach permits the components of one level

(e.g., reactions) to contribute to other structures to different

degrees (e.g., to different subnetworks, metabosystems and

samples). Aside from avoiding the need to place arbitrary

boundaries on the components of a biochemical network, this

framework reflects how community-wide metabolic activities of a

microbiome arise from mixtures of organisms having different

metabolic repertoires [12,14], and how microbiome samples are

often comprised of mixtures of different communities (e.g., stool

samples are comprised of mixtures of the epithelium and luminal

niche communities [27]).

Within BiomeNet, each enzymatic reaction is decomposed into

substrate-product pairs (Figure 1a). Dependence among pairs is

modeled through shared membership in a subnetwork comprised

of substrates and products related by reactions. Because com-

pounds can serve as both substrate and product, reaction pairs

within a subnetwork are non-independent (Figure 1b), they are

only independent once conditioned on their subnetwork assign-

ment. Subnetworks are not rigidly defined in the model. Each

reaction could have some membership to any of the subnetworks.

However, for model identifiability and interpretability, we want

subnetworks to be defined by a relatively few major reactions, with

all other reactions having a negligible membership. Therefore, we

model membership in subnetworks as sparse probability vectors.

This also permits subnetworks to partially overlap, with some

reactions participating in several subnetworks with different

degrees.

Metabosystems are modeled as a mixture of L subnetworks each

contributing to different degrees. We model their composition with

a mixture variable Q. For example, if we assume that we have 10

subnetworks (L = 10), we can look at metabosystem k and see it has

mixing probabilities for each subnetwork Qk = (%0.001, %0.001,

0.2, %0.001, %0.001, 0.1, %0.001, %0.001, 0.7, %0.001). We can

see from this example that metabosystem k is mainly comprised of

20% subnetwork 3, 10% subnetwork 6 and 70% subnetwork 9.

Finally, each microbiome sample is modeled as a mixture of

metabosystems. These metabosystems can be thought of as

different facets of community-level metabolic activities. Consider-

ing the case of gut microbiome samples from diseased and healthy

individuals, it is unlikely that the community metabolism of all

diseased individuals will be exactly the same. Individuals with a

more severe case of the disease might have a larger contribution

from a ‘‘dysbiotic metabosystem’’ to their microbiome. Thus, we

do not assume that samples are necessarily comprised of just one

metabosystem. We denote the metabosystem mixture for a sample

as h. For example, if we have 3 metabosystems (K = 3), and a

microbiome sample has a metabosystem mixture of h = (0.2,

%0.001, 0.8), then h indicates that this sample consists of 20%

metabosystem 1 and 80% metabosystem 3.

Our model is completely unsupervised; the membership of

reactions to subnetworks, the contribution of subnetworks to

metabosystems, and the mixture of metabosystems within a sample

are learned from the data. Collapsed Gibbs sampling [28,29] is

used to infer the posterior distributions of the metabosystem and

subnetwork assignments.

A hierarchical mixed-membership model for BiomeNet
Suppose we have a total of N microbiome samples in the data,

and those data are comprised of a total of In reactions in the nth

microbiome sample, and a total of Jni substrate-product pairs in the

ith reaction of the nth sample. Because we expect that a microbiome

sample could be a mixture of partially overlapping assemblages of

microbes with varying types of ecological interaction, we model

each sample as a mixture of K metabosystems, where K is assumed

to be known and fixed in advance. The relative contribution of each

metabosystem to the microbiome associated with the nth sample is

modeled through latent variable hn, a probability vector of K values

summing to one. Thus, we have

Zni Dhn*Multi hnð Þ independent for i~1 . . . In

Where, Zni denotes the metabosystem assignment for the ith

reaction in the nth sample. The h variables will be inferred from

the data. We assume an independent and identical (iid) sparse

symmetric Dirichlet prior on hn.

hn*Dirichlet ahð Þ for n~1 . . . N

Figure 1. Enzymatic reactions are decomposed into substrate-product pairs that link reactions within metabolic subnetworks. (a)
An enzymatic reaction is broken down into pairwise relations between its substrates and products. These reactions are more complex than pairwise
edges studied in most types of network analysis. Here, reactions are ‘‘hyper-edges’’, meaning that the relations are between two sets of nodes instead
of a pair of nodes. For an undirected reaction, one can consider both directions when breaking the reaction into substrate-product pairs. (b) A
subnetwork is composed of a set of reactions. In the model, different subnetworks can potentially share reactions and therefore have overlapping
regions.
doi:10.1371/journal.pcbi.1003918.g001
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A symmetric Dirichlet is appropriate because we have no prior

preference for any of the metabosystems. The probability function

of this sparse symmetric Dirichlet distribution is given by

f hn1
, . . . hnK

; ahð Þ~C ahKð Þ
C ahð ÞK

P
K

i~1
hah{1

ni

where ah is a positive parameter. The mean of hni
is given by 1/K,

for i = 1,…, K, and the variance of hni
is given by

K{1ð Þ
�

K2zK3ah

� �
. Thus the variance is larger when ah is

closer to 0, in which case, the probability that a randomly drawn

point from this distribution is a sparse vector is larger. The sparsity

introduced by a prior can be viewed as equivalent to the penalty

added to the likelihood in the penalized likelihood method [30],

which here solves the model identifiability issues, reduces the

model variance and also improves the model interpretability.

Next, we assume each metabosystem is comprised of a fixed

number (L) of metabolic subnetworks. Therefore, metabosystems

differ with respect to their mixture probabilities of the different

subnetworks. The contribution of each subnetwork to the kth

metabosystem, Qk, is modeled by a vector of L mixing probabilities

that sum to one. For K metabosystems, there will be K probability

vectors of L mixing probabilities. Thus element Qkl in K 6 L
matrix Q represents the relative contribution of subnetwork l in

metabosystem k. Let Yni denote the subnetwork assignment for the

ith reaction in the nth sample. Then we model Yni as:

Yni DZni,Q*Multi QZni

� �
independent for i~1 . . . In

As above, we assume an iid sparse symmetric Dirichlet prior on

rows of Q.

Qk*Dirichlet aQ

� �
for k~1 . . . K

The choice of prior is motivated by the idea that each

metabosystem should be mostly a mixture of relatively few

subnetworks. For a given metabosystem, subnetworks contributing

significantly more to this metabosystem in comparison to the other

metabosystems will differentiate this metabosystem from the others

and are considered ‘‘discriminatory’’ subnetworks.

Finally, we assume each subnetwork is comprised of a mixture

of reactions. This implies that subnetworks differ according to their

particular mixture of reactions. One of the goals of the model is to

find connected subnetworks of reactions carrying out a function or

a set of functions. Therefore, reactions contributing to a

subnetwork cannot be considered independent.

Reactions within a subnetwork are linked through their shared

chemical compounds. We model subnetworks as a subset of

compounds that are converted to another subset of compounds. It

is reasonable to assume that the substrate and product sets cannot

be arbitrary sets of compounds. Therefore, we assume that

compounds are grouped together and make up substrate groups

and product groups. Each subnetwork has its own substrate group

(S) and product group (R). The compounds in the substrate group

associated with a subnetwork are used as substrates in reactions

that belong to that subnetwork. The product group associated with

a subnetwork consists of products that are produced by at least one

of the reactions in the subnetwork. Note that a compound can

belong to both the substrate and the product group. Such a

compound will be involved in the intermediary reactions of the

subnetwork. In general, membership of a compound to a substrate

or product group is considered to be a ‘‘soft’’ (i.e., probabilistic)

membership.

For L subnetworks, we have L substrate and L product groups

modeled as probability vectors over all compounds. For subnet-

work l, we denote the substrate group as dl and the product group

as cl, each a vector of C probability values summing to one, where

C is the number of compounds. With L subnetworks, there are two

L 6C matrices d and c, one for substrates and one for products

respectively. The value in row l and column c of matrix d
represents the relative contribution of compound c in the substrate

group of subnetwork l. A similar definition applies for product

groups in matrix c.

We assume iid sparse symmetric Dirichlet priors for the rows of

both matrices. We expect to have a relatively small number of

compounds in each subnetwork and therefore, a Dirichlet prior

with a small a value serves as a proper candidate.

dl ~Dirichlet adð Þ
cl ~Dirichlet ac

� � for l~1 . . . L

We induce the dependencies between substrates and products by

conditioning on their subnetwork membership. Specifically, the

substrate-product pairs are considered conditionally independent

given the subnetwork membership of the corresponding reaction.

Each reaction i in sample n is broken down into Jni substrate-

product pairs (Figure 1), with each pair denoted as Snij R Rnij.

Conditioning on the membership of its reaction in the lth

subnetwork, the probability of each substrate and product is:

Snij DYni ~Multi dlð Þ
Rnij DYni ~lti clð Þ

independent for

independent for

j~1 . . . Jni

j~1 . . . Jni

The substrate-product pairs in a reaction are linked through the

subnetwork assigned to the reaction.

BiomeNet is a generative model, and a full description of how to

generate a network from it is provided in Text S1. A plate diagram

of the model is provided in Figure 2.

Model inference
The complete likelihood of the data given the hyper-parameters

of the prior distributions is:

P Z,Y ,R,S,h,Q,d,cDah,aQ,ad,ac

� �
~

P
N

n~1
P

In

i~1
P Zni Dhnð ÞP Yni DhZni

� �

P
N

n~1
P

In

i~1
P
Jni

j~1
P Snij DdYni

� �
P Rnij DcYni

� �

P
N

n~1
P hnDahð ÞP

K

k~1
P QkDaQ

� �P
L

l~1
P dl Dadð ÞP cl Dadð Þ½ �

where Z, Y, h, Q, d, and c are latent variables in our model. Z and

Y collectively represent the metabosystem and subnetwork

assignments for all reactions in all samples. Finally, S R R
represent the set of all substrate-product pairs observed in our

dataset for all reactions in all samples. To infer the model

Bayesian Inference of Microbial Metabolic Networks
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framework, we need to sample from the posterior distribution of

latent variables given the data:

P Z,Y ,h,Q,d,cDR,S,ah,aq,ad,ac

� �

This is a high dimensional distribution having conditional

distributions that can be sampled relatively easily. Therefore, we

use collapsed Gibbs sampling [29] by integrating out the other

latent variables h, Q, d, c and sample from the posterior distributions

of the metabosystem (Z) and subnetwork (Y) assignments for each

reaction conditional on the assignments of all other reactions.

More specifically, each iteration of Gibbs sampling will provide

one sampling point from the joint posterior distribution P Z,Y DS,Rð Þ.
We use the following conditional probability to sample the

subnetwork and metabosystem assignment of one reaction in a

microbiome sample given we know the subnetwork and metabosys-

tem assignments of all other reactions in every microbiome sample:

P Zni,Yni DS,R,Z{ni,Y{nið Þ~ð ð ð ð
P S,R,Z,Y ,h,Q,d,cð ÞdhdQdddc

ð ð ð ð
P S,R,Z{ni,Y{ni,h,Q,d,cð ÞdhdQdddc

~

ð
P ZDhð ÞP hDahð Þdh

ð
P Z{ni Dhð ÞP hDahð Þdh

|

ð
P Y DZ,Qð ÞP QDaQ

� �
dQ

ð
P Y{ni DZ{ni,Qð ÞP QDaQ

� �
dQ

|

ð
P SDY ,dð ÞP dDadð Þdd

ð
P SDY{ni,dð ÞP dDadð Þdd

|

ð
P RDY ,cð ÞP cDac

� �
dc

ð
P RDY{ni,cð ÞP cDac

� �
dc

where Z-ni and Y-ni denote the metabosystem and subnetwork

assignment for all reactions in all samples except only reaction i in

sample n. The individual terms in the above equation can be

analytically derived (Text S2). Each iteration of Gibbs sampling cycles

through all reactions in all microbiome samples. Thus it will not only

provide one sampling point from the joint posterior distribution

P Z,Y DS,Rð Þ, it also provides a sampling point from all marginal

distributions P Zni,Yni DS,Rð Þ.
We can infer the posterior distributions of h and Q based on the

sampling results for the posterior distribution of Z and Y. From

each iteration of the Gibbs sampling, we get one sampling point of

P ZDS,Rð Þ, which permits estimation of the h value; i.e. for the nth

microbiome sample, the estimate of hn will be the relative

frequencies among all reactions of this microbiome that were

assigned to different metabosystems. This estimated hn is

approximately a sampling point from the posterior distribution

P hnDS,Rð Þ. If we take many iteration of the Gibbs sampling results,

and estimate hn from each iteration, this will provide a sampling

distribution for the posterior distribution of hn.

For Qk, the estimate will be relative frequencies of subnetwork

assignments among all the reactions that are assigned to the kth

metabosystem, where the frequency is taken across all microbiome

samples. Similarly, each iteration of Gibbs sampling provides one

approximate sampling point from the posterior distribution of Qk.

From the above, the posterior mean of hn and Qk can be directly

calculated as the mean of the estimated hn and Qk from many

iterations of Gibbs sampling.

BiomeNet’s MCMC sampler is implemented in R and C++.

Source codes are available from http://sourceforge.net/projects/

biomenet/. For both datasets analyzed below, the first 100 samples

were considered ‘‘burn-in’’ and were discarded. Following the

burn-in, 500 samples were retained, with a lag of 20 iterations of

the MCMC between samples.

Figure 2. Plate diagram for the BiomeNet model. h is the probability distribution of possible metabosystems in a sample. Z represents
metabosystems and Y represents subnetworks. Q is the prior distribution of subnetworks in metabosystems. d is the prior distribution of substrate
compounds in subnetworks. c is the prior distribution of product compounds in subnetworks. a is the concentration parameter of the Dirichlet
distribution. K is the number of metabosystems. L is the number of subnetworks. C is the number of compounds. To indicate relationships, n indexes
a sample, i indexes a reaction, and j indexes substrate-product pairs. This model specifies a generative process; coupling between substrate-product
pairs is enforced by conditioning their generation on a single subnetwork membership.
doi:10.1371/journal.pcbi.1003918.g002
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Choice of K, L and hyper-parameters
The purpose of BiomeNet is to learn the structure of the data. It

is an unsupervised learning method. As with most other

unsupervised learning methods, the validity of the inference is

mainly judged through the scientific background of the problem

and the interpretability of the results [31]. Here, K, is the preset

number of ‘‘prototypical’’ structures (metabosystems for reaction

data) within the model. Thus, each microbiome sample is

interpreted as a mixture of such structures. In unsupervised

applications such as those presented in this paper, trying several

different K values to find the value that shows separation of classes

is often considered a natural way to choose K. Although this tactic

requires some degree of heuristic judgment, typically it is difficult

to avoid at least some heuristics in the context of unsupervised

learning methods [31].

Ideally, inference under BiomeNet should be largely robust to

the choice of L as long as L is not too small. If L is larger than

needed, there will be redundant subnetworks in BiomeNet, but

they will carry very little weight for any of the metabosystems, and

their reactions will have only a trivial impact on the reaction

composition of each metabosystem. Alternatively, the informative

subnetworks should make consistent contributions to each

metabosystem, and their reactions should be highly influential

on the reaction composition of each metabosystem. Thus,

BiomeNet should be able to infer a consistent reaction profile

for each of the K metabosystems, as long as the L value is not too

small. This can be visually verified by using a heat map that

portrays differences in reaction composition among metabosys-

tems. The details for computing the reaction composition of a

metabosystem, and for comparing the composition of different

metabosystems are given in Text S3. In addition to assessing the

robustness of reaction composition to the L value, the approach

can be used to identify a minimum value for L.

In our analyses of real data, we chose a value of K according to

biological criteria. This approach avoids the computational

burden associated with assessing many values of both K and L.

However, we can use the same heat map described above to check

for divergence among the K metabosystems. If there is no signal

for divergent metabosystems (e.g., all the samples have similar, or

the same, reaction composition), differences between metabosys-

tems will be similar to those observed for the same metabosystem

over different values of L. If at least some of the metabosystems are

divergent, differences in reaction composition will be large as

compared to those within the same metabosystem. In this way, we

can assess the chosen value of K. Further details are given in Text

S3.

The hyper-parameters of our model are the concentration

parameters of the symmetric Dirichlet distributions (i.e., ah, aQ, ad,

and ac). The values of ah and aQ control the extent by which

subnetworks and metabosystems are mixed, while ad and ac

control the size of the subnetworks. If very small values are chosen

for ad and ac, then a relatively larger value of L should be chosen.

Because we want (i) only a few subnetworks to contribute

significantly to each metabosystem, and (ii) each subnetwork to

consist of relatively few reactions, we chose a value for the

concentration parameters close to zero (0.01). Users can control

the extent of mixing for their data by resetting the concentration

parameter values.

Results

Simulation and validation of the inference procedure
It is straightforward to simulate data from the model (Text S1).

To simulate data, the generative process is repeated for the desired

number of microbiome samples. We simulated datasets of different

size, with number of samples varying from 40 to 100 by

increments of 20. Each sample is associated with a metabolic

network generated by the above process. The number of nodes

(chemical compounds) for each network varied between 100, 500,

and 1000. The number of reactions in each network was assumed

to follow a Poisson distribution with mean 1000. The number of

substrate-product pairs for each reaction was drawn from a

Poisson distribution with mean 2 (plus one to avoid zero). The

mixing distribution of metabosystems for samples was drawn from

a symmetric Dirichlet distribution with a parameter equal to 0.05,

0.10, and 0.20. We simulated datasets with 3 and 5 metabosys-

tems. The subnetwork mixture for each metabosystem was drawn

from a symmetric Dirichlet distribution with a parameter equal to

0.05, 0.10, and 0.20. This allowed metabosystems to have

overlapping subnetworks to different degrees (Text S1). The

number of subnetworks varied between 10, 20 and 50.

We fitted BiomeNet using our preferred value for the

concentration parameters of the Dirichlet priors of the model

(0.01). We compared the estimated mixture weights for metabo-

systems in each sample with the corresponding weights used for

simulation. For each simulation, the inference algorithm was able

to recover mixture weights that were very close to the actual

metabosystem and subnetwork composition despite fixing value of

the concentration parameters at 0.01 (Text S1). Although

discrepancies were larger when the misspecification of the

concentration parameter was larger, the closeness of the inferred

mixture weight indicates robustness of the inference algorithm to

the choice of hyper-parameter value within the range examined

(0.05 through 0.2).

Gut communities associated with different mammalian
dietary niches are metabolically divergent

Carnivorous, omnivorous and herbivorous mammals are well

known for diverse digestive physiologies. Metagenome sequencing

of fecal samples from 33 mammal species revealed that 16S

communities and metagenomes within the mammalian gut differ

according to dietary niche of the host [13]. Based on one-by-one

testing of metagenomic sequences, Muegge et al. [13] detected

differences in the relative abundance of 495 enzymes between the

communities of herbivores and carnivores. However, this

approach, in addition to aforementioned issues with one-by-one

analyses, provides no information about differences in metabolic

subnetworks without post hoc mapping to human-annotated

databases. Although applying PCoA reveals separation between

carnivore and herbivore gut microbiome (Text S4), PCoA is not

equipped with a means to interpret the nature of these differences.

We applied BiomeNet to this data, to (i) verify that observed

differences in gut communities of carnivores and herbivores

indeed reflects differences in community metabolic function, and

(ii) gain insights into the differences in metabolic functions of those

communities.

We obtained metagenomic data for 38 samples of mammals

[13] as deposited in MGRAST [19] (MGRAST project #116,

with the subsystem hierarchical classification). Each sample

comprises a separate gut microbiome sample. We extracted gene

sequences with an Enzyme Commission (EC) number and

recorded their abundance within each sample. The EC number

designates the chemical reactions catalyzed by the encoded

enzyme, and the reactions were then converted into substrate-

product pairs. The fully processed data, formatted for input to

BiomeNet, are available with the source code at http://

sourceforge.net/projects/biomenet/. This dataset yielded 2,824

unique reactions between 2713 compounds. Reaction abundances
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for samples, as input into BiomeNet, range from 12,626 to

174,103 (see Text S5 for further detail about how these reaction

abundances are obtained from raw reads). We applied BiomeNet

to these data assuming that samples could be mixtures of as many

as three metabosystems (K = 3). The number of metabosystems

was initially chosen to match the number of categories for dietary

niche (carnivore, herbivore & omnivore). However, because the

model does not assign a diet status to a particular metabosystem,

they are simply designated as metabosystems 1, 2 and 3, and the

uniqueness of their reaction composition was assessed for these

data.

Using BiomeNet with L = 100 subnetworks, we obtained an

estimate of the contribution of different metabosystems to each gut

community sample. As seen in the simplex plot within Figure 3,

carnivore gut communities (magenta dots) tend to have a high

membership to metabosystem 1 whereas herbivore gut commu-

nities (green dots) tend to have a low membership (h1,15%).

Interestingly, omnivores did not form a separate cluster; some

omnivore communities (black dots) had mixtures more similar to

carnivores and others more similar to herbivores (Figure 3). This

highlights the benefits of an unsupervised analysis, as compared to

an a priori (and possibly incorrect) assignment of one metabosys-

tem as unique to omnivores.

We investigated the sensitivity of these results to changes in the

number of subnetworks (i.e., L = 50, 100, 150 & 200). Even though

the labeling of a metabosystem is arbitrary, they can be

distinguished if they have a characteristic composition of reactions.

For these data, the metabosystems identified by BiomeNet had

different reaction compositions that were largely robust to L. This

is illustrated by the heat map in Figure 4, which shows the Jensen-

Shannon divergence (JSD) [32] between metabosystems according

to their reaction composition (see Text S3 for additional details).

Within the heat map, divergence matrices along the diagonal

represent comparisons within the same metabosystems, and the

off-diagonal matrices are for comparisons between metabosystems.

Very low JSD (dark blue) along the diagonal matrices in Figure 4

indicates highly similar reaction composition within each of three

metabosystem. Higher JSD (pink to red) within both of the off-

diagonal divergence matrices that involve metabosystem 1 indicate

that there is very strong signal for its uniqueness. JSD scores in the

remaining divergence matrix suggest that metabosystems 2 and 3

are also divergent from each other, but not as much as they are

from metabosystem 1. When L = 50, JSD is consistently lower in

the diagonal matrices as compared to L.50. Also when L = 50,

some comparisons between metabosystems 2 and 3 have JSD

scores similar to those observed for comparison within the same

metabosystem. Taken together, the results indicate that these

metabosystems have characteristic reaction compositions, with

stable mixture weights in each sample when K = 3 and L$100.

Consequently, it was easy to coordinate metabosystems across the

different analyses (Text S6 and Figures 1 and 2 in Text S6). Thus,

all results are hereafter derived from a model with K = 3 and

L = 100, and the mixture probabilities of reactions in all

subnetworks are provided in Data File S1 for K = 3 and L = 100.

Note that we are able to separate carnivores and herbivores under

a model having K = 2, but employ K = 3 because there is evidence

for samples being a mixture of at least 3 reaction profiles

(Figure 4).

Next we used the model to investigate the differences between

carnivore and herbivore microbiomes by identifying those

subnetworks most diagnostic of metabosystem 1. Recall that

metabosystem 1 tended to make a high contribution to carnivore

gut communities and low contribution to herbivore gut commu-

nities. Rather than attempt to summarize the contribution of all

100 subnetworks to each metabosystem, we show the composition

of their ‘‘principal subnetworks’’ via the composition ribbon plots

along each side of the simplex (Figure 3). The principal

subnetworks are defined as those with a membership.2/L to at

least one metabosystem (Text S3), and there were 19 principal

subnetworks for this dataset. The information is repeated in each

ribbon in Figure 3, however using color and increasing the width

of the frequency bar emphasizes the contribution of the

subnetworks to the selected metabosystem. The grey bars in each

ribbon give the relative contribution of subnetworks to the non-

selected metabosystems. Among the principal subnetworks, 10 had

probability differences large enough to be discriminatory for the

metabosystems (Text S3 and S7). Among those 10, subnetwork 49

was highly discriminatory for metabosystem 1 (metabosystem 1 is

emphasized in the ribbon along the bottom of the simplex in

Figure 3). The ribbon shows how subnetwork 49 makes a large

contribution to metabosystem 1 (having a large green bar), but

very little contribution to the other two (very small grey bars

adjacent to the large green bar). Other discriminatory subnetworks

can be seen within the composition ribbon; e.g., subnetwork 11

makes a larger contribution to metabotye 2 than to metabosystem

1, and subnetwork 17 makes a larger contribution to metabosys-

tem 3 than to metabosystem 1. Although subnetwork 49 is highly

discriminatory, it should not be viewed as a presence-absence

polymorphism; each sample is a mixture of metabosystems, with

herbivores characterized as having a low, but not zero, contribu-

tion of subnetwork 49 to their samples.

Subnetwork 49 stands out because it contributes to metabosys-

tem 1 nearly as much as all other subnetworks combined

(Figures 3 & 5 and Text S7). The KEGG reaction numbers,

reactant numbers and pathways, as well as mixing probabilities,

are given for the principal reactions in Table S1. This subnetwork

is dominated by a particular metabolic function: reactions related

to importation of extracellular saccharides (N-acetylmuramic acid,

N-acetylglucosamine, fucose, glucose and mannose). This suggests

that community metabolic function within the carnivore gut might

be impacted by their low carbohydrate diet. In particular, the

carnivore community appears to be exploiting alternative carbo-

hydrate sources, such as of the cell walls of the gut bacteria

themselves, whose outer membranes are composed of alternating

molecules of N-acetylmuramic acid and N-acetylglucosamine

[33,34]. Presumably, the dead bacteria in the large intestine

comprise a good source of these two compounds. Another nutrient

source is the fucosylated mucins secreted by the host’s large

intestine [35,36]. Indeed, experimental studies demonstrate that

fucose can serve as an important carbon source for at least some

species within the mammalian gut, especially under nutrient

deprivation [e.g., 37]. Taken together, our results support the

recent finding of Koropatkin and co-authors [27] that a high

protein diet, such as that found in carnivores, could select for

species exploiting the alternative nutrient source represented by

mucus glycans. Whatever the source, the carnivore community

appears to be exploiting input nutrients that are less important to

the gut community of herbivores.

IBD is associated with a metabosystem having greater
capacity to exploit host-associated glycans and interfere
with the host capacity to manage oxidative stress

We illustrate the value of our approach to human micro-

biomics by applying it to a sample of adults who are classified

either as healthy or as having IBD. The dataset consists of

N = 124 adult human gut microbiome samples compiled and

sequenced by Qin and co-authors [20]. They found that IBD

patients (Crohn’s and ulcerative colitis) could be differentiated
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from healthy individuals according to differences in the abun-

dance of microbial species, providing further support for the

notion that gut community can have a profound effect on human

gut function and dysfunction. Here, our analytical objectives were

to (i) determine if the species-level differentiation between these

healthy and IBD samples represents community-level divergence

in the prevalence of metabolic networks, and (ii) gain insights into

the metabolic basis of the differences between those gut

environments. We processed the data to obtain EC assignments

and reaction abundances (Text S5). Reactions were converted

into substrate-product pairs and analyzed using BiomeNet. The

processed data, formatted for input to BiomeNet are available

with the source code at: http://sourceforge.net/projects/

biomenet/. Reaction abundances, as input into BiomeNet,

ranged from 5,091 to 374,945 counts per sample (see Text S5

for further detail about how reaction counts are obtained from

raw reads). We initially evaluated K = 3 metabosystems based on

categories for health status (healthy, Crohn’s disease & ulcerative

colitis). Recall that the model will not assign a health status to a

particular metabosystem.

Again, we used JSD scores to measure divergence between

metabosystems according to their reaction composition, and we

visualized the divergence patterns by using a heat map (Figure 6).

As with the mammal dataset above, the diagonal matrices (within

metabosystem comparisons) are characterized by low JSD scores

and the off-diagonal matrices (between metabosystem compari-

sons) are characterized by higher JSD scores. This confirms that

characteristic reaction compositions can be identified when K = 3.

Again, the three metabosystems are not equally divergent; while

metabosystems 2 and 3 are divergent from each other, they are

even more divergent from metabosystem 1. We also evaluated a

model having K = 2 metabosystems, and found that no separation

of samples was possible. Because each metabosystem has a

characteristic reaction composition, it was easy to coordinate

metabosystems across the different analyses when K = 3 (Text S6

and Figures 1and 2 in Text S6). Although L = 50 appears adequate

Figure 3. Inferred metabolic composition of carnivore, omnivore and herbivore gut-microbiomes. Mammalian microbiome samples are
mapped to three metabosystems and plotted on a simplex (de Finetti diagram). Each point within the simplex represents a sample having a unique
set of proportions for the 3 metabosystems. The proportions for each sample sum to one. Lower left, lower right and top corners of the simplex plot
indicate 100% membership to metabosystems 1, 2 and 3 respectively. Carnivore (magenta) and herbivore (green) samples are plotted in the large
simplex, and omnivore (black) samples are plotted in the small simplex. Each metabosystem is represented in terms of 19 principal subnetworks by
using a ‘‘composition ribbon’’ along the sides of the large simplex. Metabosystem 1 and its principal subnetworks are plotted along the horizontal
side of the large plot. The colored bars represent the membership of the subnetworks to this metabosystem. The other two sets of grey bars
represent the membership of the same subnetworks in the other two metabosystems for comparison. Bold labels indicate the discriminatory
subnetworks. One subnetwork, 49, was highly discriminatory for metabosystem 1. It is easy to see from the composition ribbon that subnetwork 49 is
substantially more abundant in metabosystem 1 compared to the other two metabosystems. The criteria for selecting principal subnetworks and
discriminatory subnetworks are provided in Text S3. Composition ribbon plots for all 100 subnetworks can be found in Text S7.
doi:10.1371/journal.pcbi.1003918.g003

Bayesian Inference of Microbial Metabolic Networks

PLOS Computational Biology | www.ploscompbiol.org 8 November 2014 | Volume 10 | Issue 11 | e1003918

http://sourceforge.net/projects/biomenet/
http://sourceforge.net/projects/biomenet/


for these data (Figure 6), for consistency we present the results

derived from a model with L = 100 (and we provide the mixture

probabilities of reactions in those subnetworks in Data File S1).

Figure 7 presents the contribution of different metabosystems to

each sample. Note that there are 41 obese individuals (body mass

index.30) among the samples plotted in Figure 7, but we found

no evidence for obesity-related metabolic systems. Neither could

we separate the Crohn’s and ulcerative colitis patients by using

these data; however, only 4 of the 25 IBD samples were from

Crohn’s patients. Given that inferences must be made according to

3,433 reactions spread among 100 subnetworks, those 4 samples

may have contained insufficient signal to characterize the Crohn’s

patients. Expanded sampling of Crohn’s patients could be more

informative. However, we did discover that the gut samples of IBD

patients (red points) had a generally larger contribution from

metabosystem 2, as compared to the healthy individuals (green

points) who have a consistently low contribution (h2,20%). We

found that 15 of the 22 principal subnetworks (mixture weight.2/

L) in these data make a large contribution to the divergence

among metabosystems. Three of those 15 subnetworks (38, 64,

and 73) are diagnostic of metabosystem 2 due to their very large

relative contribution to that metabosystem (Figures 7 & 8 and

Text S8). Reactions within those subnetworks are involved in

amino sugar metabolism, ascorbate metabolism, fructose and

mannose metabolism, aminobenzoate degradation, glycolysis and

gluconeogenesis, as well as additional pathways (Tables S2, S3 &

S4). Those subnetworks do not correspond to full KEGG

pathways, or even contiguous subsets of those pathways. However,

inspection of Figure 8 reveals that their reactions are indeed

connected. Interestingly, reactions belonging to the non-discrim-

inatory, or ‘‘core’’, subnetworks do tend to comprise contiguous

subsets of the main KEGG pathways (Text S9).

As the contribution of metabosystem 2 is elevated in IBD

patients, we assessed the functional implications of their principal

reactions (mixing probabilities.2/R) within subnetworks 38, 64

and 73. Subnetworks 38, 64 and 73 were comprised of 29, 19 and

18 principal reactions, respectively. Within each subnetwork, the

principal reactions had a cumulative probability density.0.99

(Data File S1). The KEGG reaction numbers, reactant numbers

and pathways, as well as mixing probabilities, are given for the

principal reactions in Tables S2 to S4. Subnetworks 38, 64 and 73

contained reactions that are relevant to the phenotype of IBD.

One way to validate the IBD associated signal is to seek

concordance with results obtained from independent data.

Although there are no other metagenome datasets that are

suitable for a similar investigation under BiomeNet, two different

taxonomic studies [38,39] attempted ‘‘indirect inference’’ of

metabolic capacity in different sets of IBD samples. Those studies

mapped 16S reads to the genomes of reference species, applied an

algorithm to predict metagenome composition, and then used the

metabolic capacity of the predict metagenomes to make inferences

about the IBD phenotype. For certain metabolic systems, we

Figure 4. Divergence of reaction composition within and between the three metabosystems inferred from the gut microbiomes of
carnivores, omnivores and herbivores. Divergence between metabosystems is measured at the level of their reaction composition by using the
Jensen-Shannon divergence (JSD), and presented as a heat map. Further details about computing the reaction composition of a metabosystem are
given in Text S3. The JSD score is used here to provide a symmetric measure of the difference between the composition of all 2,824 reactions in these
data. The heat map is comprised of six divergence matrices, one for each of the possible pairwise comparisons between the metabosystems. Because
the metabosystems had characteristic reaction compositions, it was easy to coordinate metabosystems across different analyses (Text S6). The three
matrices along the diagonal represent comparisons within the same metabosystem for different numbers of subnetworks in the model (L = 50, 100,
150, 200 and 250); the dominance of blue (low JSD) in those matrices indicates that reaction composition is robust to the L value. This result also
validates the coordination of those metabosystems into 3 different groups. The three off-diagonal matrices represent comparisons between
metabosystems for different numbers of subnetworks (L); larger JSD scores here indicate greater divergence between metabosystems.
doi:10.1371/journal.pcbi.1003918.g004
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observed a remarkable degree of concordance with thier findings.

We found an enrichment of genes involved in the phosphotrans-

ferase (PTS) system (within subnetwork 38), and Morgan et al. [38]

inferred that this system was more abundant in their IBD samples.

We found an enrichment of genes associated with the ability to

deal with oxidative stress (within subnetwork 64), and Morgan et

al. [38] inferred a major shift in oxidative stress pathways with

IBD. We found an enrichment of genes involved in the

aminobenzoate degradation (within subnetwork 73), and Gevers

et al. [39] inferred an association between this pathway and their

IBD samples. The similarity of the IBD-related signal in these

different datasets represents an important cross-validation for all

the studies. At the individual reaction level, our results do differ

somewhat from theirs; however this is expected, at least in part,

because community metabolic function can only be indirectly

assessed via 16S. Below we discuss in detail the key reactions that

we have identified and, where possible, we derived hypotheses

having explicitly testable predictions.

PTS reactions for various sugars (D-mannitiol, D-fructose, D-

mannose) are abundant in subnetwork 38, and hence metabosys-

tem 2. Reactions responsible for transport of N-acetylglucosamine

and fucose are potentially meaningful because they suggest that

metabosystem 2 is more dependent on glycans derived from host-

associated substances, like mucin and shed epithelial cells, as a

source of energy. Although these transporters do not point directly

at the cause of gut inflammation associated with IBD, it does

suggest that establishment of community metabosystem 2 could

explain the resistance of IBD to moderate dietary intervention

because the endogenous glycans provide a persistent source of

nutrients for the community. Interestingly, extreme intervention

whereby an exclusive liquid diet is administered up to 12 weeks

(called EEN treatment) can sometimes induce remission of IBD in

pediatric cases [40]. Taxonomic surveys confirm that EEN alters

gut bacterial composition in those cases [41,42], supporting the

hypothesis that IBD may be associated with a dysfunctional

community [43]. The hypothesis that IBD is associated with a

community having the capacity of subnetwork 38 could be tested if

future clinical investigation of EEN were to include sampling of

the gut microbiome. The first prediction is that subnetwork 38

should be prevalent in the IBD samples prior to EEN treatment.

Second, if remission is associated with displacing a dysfunctional

community, then we predict that subnetwork 38 (and, more

broadly, metabosystem 2) should exhibit a significant decline in

those cases that responded to EEN.

Subnetwork 64 contains reactions associated with ascorbate

metabolism. Two reactions that convert ascorbate to dehydro-

gulonate-6P have high relative-abundance in IBD patients

suggesting the potential for reduced ascorbate levels within the

gut due to microbiome metabolic activity. Remarkably, direct

measurement reveals reduced ascorbate levels in IBD patients

[44]. Since ascorbate absorption in the gut depends, in part, on a

localized concentration gradient, its decomposition by gut bacteria

could interfere with the human cells capacity to absorb it. This

represents a critical link between metabosystem 2 and IBD. The

chronic intestinal pathophysiology of IBD patients is related to the

increased production of reactive oxygen and nitrogen species,

leading to oxidative stress within the intestinal mucosa [45–47].

IBD patients have reduced antioxidants levels within the intestinal

mucosa [48], and the severity of the disease is correlated with

antioxidant levels and oxidative stress markers [48]. Ascorbate is

an antioxidant that is reduced within the inflamed tissues of IBD

patients [44], and the association of metabosystem 2 with IBD

suggest that this metabolic phenotype could be interfering with the

human cells capacity to absorb ascorbate.

Figure 5. Discriminatory subnetworks for the carnivore associated metabosystem. The histogram in (a) gives the relative membership
score of subnetworks in metabosystem 1 relative to metabosystems 2 and 3. Membership scores are for metabosystem 1 because it makes a high
contribution to carnivore gut communities and a low contribution to herbivore gut communities. The membership score for a subnetwork in a
selected metabosystem is based on the ratio of the probability of membership in this metabosystem to its largest probability membership in the
other two metabosystems. The score is the absolute value of the logarithm of this ratio. Only the ‘‘principal’’ subnetworks are plotted for carnivores
and herbivores. Principal subnetworks for this dataset are defined as subnetworks with a membership.2/L to at least one metabosystem. A plot of all
100 subnetworks is provided in Text S7. Note that relative membership scores are computed solely for the purpose of visual assessment of
metabosystem composition; the individual value of this score should not be attributed any additional meaning. (b) Discriminatory subnetwork 49 is
depicted as a network. This network illustrates a high degree of connectivity. Reactions are shown as square nodes and compounds are plotted as
circular nodes. Links originating or ending in so-called currency compounds are represented with dashed lines.
doi:10.1371/journal.pcbi.1003918.g005
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Subnetwork 73 is enriched in genes involved in the modification

and transport of sugars and the metabolism of benzoate

(compound C00180 in Table S4). The direct relationship of

subnetwork 73 to the IBD phenotype is unclear. However, the

reactions involving benzoate suggest that the microbiota in IBD

patients might differ from healthy individuals in how they

influence the metabolic processing of dietary aromatic com-

pounds. Metabolism of such compounds typically occurs within

the gut through several intermediates to benzoate, which can be

subsequently converted to hippurate [49]. Williams et al. [50]

found that urinary hippurate excretion was significantly reduced in

IBD cohorts, and that it was not due to any intrinsic metabolic

deficiencies, nor to diet. Indeed, this hippurate deficiency is so

reliable that it is now considered an important criterion for

diagnosing IBD via urinary metabolic profiling [51]. The critical

role of the microbiota in the metabolism of dietary aromatic

compounds is supported by experimentation on mice and rats.

Germ free animals do not excrete hippurate, but it comes to

dominate 2–3 weeks after exposure to environmental microbes

[52]. Conversely, treatment with antibiotics eliminates the

production of hippurate in mice and rats [53]. It is interesting

that the enzyme hippurate hydrolase is also enriched in

subnetwork 73. Given a possible connection to IBD, the reactions

of subnetwork 73 are good candidates for further study.

Bacteria inhabiting the luminal side of the mucosa are thought

to play key role in human intestinal health and disease [e.g., 27;

54; 55]. Although colonic mucus is an effective barrier against

infection of the epithelium, bacteria do colonize and persist

within the outer mucosal layer, and explicitly utilize it as an

energy source [27,43]. The colon is characterized by invagina-

tions within the epithelium (called enfolding crypts) that are laden

with mucosal gel [56]. Recent work combining culture-indepen-

dent qPCR and laser capture microdissection confirmed that the

mucos gel within the crypts represent an exploitable niche in both

healthy and diseased hosts [57]. Further, 16S-based comparison

of mucosal biopsies and faecal samples indicate that their

community composition is different [58]. As this is such a close

association, the varied effects of the mucosal bacteria are believed

to be elicited via the by-products of their metabolism [results

from experimental models reviewed in 43]. Interestingly,

individual bacteria do not appear to possess the enzymes

necessary to cleave all mucin linkages; thus, the ability to

colonize and persist within the mucosal gel appears to require

community metabolic activities [43]. The capacity of community

metabosystem 2 to exploit host-derived glycans suggests a close

association with the host mucosa. If this notion is correct, then

the ascorbate metabolic phenotype of this community could

impact on the state of human health. Unfortunately working with

stool samples limits our ability to attribute results to the colonic

mucosal community, as such samples are comprised of a mixture

of luminal and colonic mucosal communities [27,58]. However,

our results do lead to a testable hypothesis; if community

metabosystems 2 is associated with the mucosal gel, then there

should be a higher prevalence of metabosystem 2 in mucosal

Figure 6. Divergence of reaction composition within and between the three metabosystems inferred from the gut-microbiomes of
healthy humans and IBD patients. Divergence between metabosystems is measured at the level of their reaction composition by using the
Jensen-Shannon divergence (JSD), and presented as a heat map. Further details about computing the reaction composition of a metabosystem are
given in Text S3. The JSD score is used here to provide a symmetric measure of the difference between the composition of all 3,433 reactions in these
data. The heat map is comprised of six divergence matrices, one for each of the possible pairwise comparisons between the metabosystems. The
three matrices along the diagonal represent comparisons within the same metabosystem for different numbers of subnetworks in the model (L = 50,
100, 150 and 200); the dominance of blue (low JSD) in those matrices indicates that reaction composition is robust. The three off-diagonal matrices
represent comparisons between metabosystems for different numbers of subnetworks (L); larger JSD scores here indicate greater divergence
between metabosystems.
doi:10.1371/journal.pcbi.1003918.g006
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biopsy samples, as compared to stool samples, taken from the

same individual having IBD.

Because members of the gut bacterial community provide real

benefits to the host (digestion and metabolism, resistance of

pathogen colonization, immune maturation [4,5,59]), selection of

beneficial species by the host (partner selection) is often assumed to

be an important part of the host-microbiome interaction. Recent

work modeling microbial bioconversion [60] illustrated how host

secretion of nutrients at the epithelium-microbiota interface (in

addition to antimicrobial factors) could act as a powerful

mechanism for partner selectivity [60]. The models also reveal

that in the absence of nutrient-based partner selection, the

slower growing strains will be lost, along with any beneficial

effects they might provide to the host [60]. Interestingly,

mucosal glycans secreted by the host are known to impact the

attachment and growth of bacteria within the gut [61]. Thus the

increased prevalence of community metabosystem 2 in IBD

samples could be due to the growth of opportunistic bacteria on

the epithelium that can utilize, or even circumvent, the host’s

nutrient-based mechanisms for partner selection. Intriguing

work in a mouse model support the notion that IBD might be

related to failure of an alternative mechanism of partner

selection [62]. Garret et al. [62] showed that mice defective in

T-bet (a transcription factor that regulates immune system cells)

Figure 7. Inferred metabolic composition of the gut-microbiomes of healthy humans and IBD patients. Human microbiome samples are
mapped to 3 metabosystems and plotted on a simplex (de Finetti diagram). Each point in the simplex is a different human sample. The
metabosystem proportions for each sample sum to one. Lower left, lower right and top corners of the simplex plot indicate 100% membership to
metabosystems 1, 2 and 3 respectively. Samples with IBD are represented as red dots and healthy samples are in green. Each metabosystem is
represented in terms of 22 principal subnetworks by using a composition ribbon plotted along each side of the plot. Metabosystem 1 and its
principal subnetworks are plotted along the horizontal side of the simplex plot. The colored bars represent the membership of the subnetworks
corresponding to the selected metabosystem (e.g., metabosystem 1 is selected in the horizontal ribbon plot). The other two sets of grey bars
represent the membership of the same subnetworks in the other two metabosystems for comparison. Bold labels indicate the discriminatory
subnetworks. For example, subnetwork 25 is substantially more abundant in metabosystem 1 compared to the other two metabosystems. The
criteria for selecting principal subnetworks and discriminatory subnetworks are provided in Text S3. The composition plot for all 100 subnetworks can
be found as Text S8.
doi:10.1371/journal.pcbi.1003918.g007
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will spontaneously develop ulcerative colitis. The disease state in

these mice is due to a community, rather than a single

transmissible agent. Although this community does not arise

spontaneously in wild type mice, the colitis phenotype is

inducible in wild type mice via the ‘‘transmission’’ of the

community [62]. T-bet represents another potential mechanism

of partner selection. The challenge will be to understand how

partner selection might be weakened within the human gut, and

if this can lead to the establishment of communities with

metabolic interactions like those of metabosystem 2.

Discussion

We presented BiomeNet, a Bayesian mixture model that uses

metagenome data to learn the structural features of microbial

community metabolism. The model learns how reactions combine

to form subnetworks, and how those subnetworks combine to form

metabosystems. Although there are several issues that deserve

further consideration and development (discussed below), our

analyses with the current implementation were informative. For

example, we found that samples of IBD patients have a high

prevalence of a community metabosystem that we hypothesize is

resistant to moderate dietary intervention, is closely associated

with the human gut epithelium, and reduces the availability of an

important antioxidant. Our finding that reactions within the most

discriminatory subnetworks, although being highly connected, do

not map to contiguous subsets of the main KEGG pathways

illustrates the importance of learning the structures of the networks

from the data.

A wide variety of problems in computational biology have been

addressed by using probabilistic graphical models [63], including

the problem of modeling pairwise relational data derived from a

network [e.g., 64-66]. The mixed membership stochastic block

model (MMSB) [65] is perhaps the most similar to BiomeNet, as it

is a generative model for groups (such as communities) within a

network. Under the MMSB model, the block structure is

employed to model connectivity at the group level, and the mixed

membership structure allows nodes to belong to multiple groups.

BiomeNet is fundamentally different from MMSB in two ways.

First, the MMSB model assumes that a network exists as a single

entity, and the task is to model just a single realization of the

network. BiomeNet treats the observed relational data as

constrained by some underlying network structure, and the

relational data represent many different realizations of the network

Figure 8. Discriminatory subnetworks for IBD patients. This histogram gives the relative membership score of subnetworks in metabosystem
2, which is found in higher proportion in IBD patients, compared to the other two metabosystems. The membership score for a subnetwork in a
selected metabosystem is based on the ratio of its membership probability in this metabosystem to its largest membership probability in the other
two metabosystems. The score is the absolute value of the logarithm of this ratio. Scores are plotted for principal subnetworks. Principal subnetworks
for this dataset are defined as subnetworks with a membership greater than 2/L to at least one metabosystem. A similar plot for all subnetworks is
provided as Text S8. Note that relative membership scores are computed solely for the purpose of visual assessment of metabosystem composition;
the individual value of this score should not be attributed any additional meaning. It is easy to see that subnetworks 38, 64 and 73 are discriminatory
for metabosystem 2. The discriminatory subnetworks also are depicted as networks. These networks illustrate a high degree of connectivity.
Reactions are shown as square nodes and compounds are plotted as circular nodes. Links originating or ending in so-called currency compounds are
represented with dashed lines.
doi:10.1371/journal.pcbi.1003918.g008
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constraints over samples. Thus we model the realization of links

constrained within a network structure, whereas MMSB models the

existence of links (or the weights on links) between nodes of one

‘‘snapshot’’ of a network. Second, MMSB and similar models are

used to group nodes based on their links with other nodes in the

network. BiomeNet is used to decompose a network into

overlapping subnetworks. Because our pairwise relations are

derived from known transformations between substrates and

products, the subnetworks in BiomeNet have a direct functional

interpretation. In addition to these conceptual differences, Biome-

Net is structurally different from MMSB. We have a nested

hierarchy of groupings whereas the MMSB model has only one level

of grouping. The hierarchical structure of BiomeNet permits

sharing of subnetworks across multiple networks, and this allows

for a natural way of grouping multiple networks. The MMSB model

only allows grouping of nodes within a single network. BiomeNet is

also better suited for networks containing hyper-edges because it

preserves some of the interdependencies by conditioning pairs of

edges on the subnetwork assignments; the other approaches [64–66]

break hyper-edges into independent pairwise relations.

To validate the BiomeNet inference algorithm, we simulated

hierarchical network data over many different combinations for

the number of compounds, reactions, subnetworks and metabo-

systems. Reliable estimates of the mixing probabilities under this

design, even when there was a large discrepancy between the fixed

value of the concentration parameter and the true value for the

generating process, confirmed the reliability of the algorithm. We

note, however, that there are other steps involved in the processing

of real metagenomic samples that are not included in our

generative process (e.g., scaling counts, mapping reads to EC

numbers, etc.). Decisions must be made during the processing of

any metagenomic dataset, and these could impact downstream

analysis of community level metabolic capacity. Clearly, further

simulation-based research is needed to investigate the sensitivity of

various analytical methods (including BiomeNet) to the upstream

details of data collection and processing. Such a comprehensive

investigation is beyond the scope of this study.

A common criticism of Bayesian methods relates to the need to

specify a prior probability distribution for every unknown param-

eter in the model, even when prior knowledge about the parameter

is vague or incomplete. In BiomeNet the prior distributions are

controlled by concentration parameters of the Dirichlet distribution.

We were not concerned with constructing a so-called ‘‘objective’’

Bayesian method [67], where unbiased knowledge of the biological

process is used to correctly describe the uncertainties in the model

parameter (or, where lacking such information a non-informative

prior is employed), nor did we desire a prior that was necessarily

complete in its ability to describe our personal degree of belief about

alternative values for the parameters of BiomeNet. Rather, we

followed Gelman and Shalizi [30] by viewing the prior as serving

several functions, and premier among these was setting the

concentration parameters to promote our desire for certain

properties (reduced variance and improved identifiably). Specifical-

ly, we set the concentration parameters close to zero, which

encourages BiomeNet to predominantly characterize metabosys-

tems by a relatively few major subnetworks, and subnetworks by a

relatively few major reactions. This aids the interpretability of

results. An alternative approach would be to place second-stage

priors (hyper-priors) on the concentration parameters of the

Dirichlet distribution, thereby allowing for uncertainties in the

concentration parameters by automatically including them in the

posterior distribution [68]. This is an interesting area for future

development of BiomeNet, as it would allow estimation of the

priors, through the hyper-priors, from the data.

We chose to use the terms ‘‘subnetwork’’ and ‘‘metabosystem’’,

rather than ‘‘pathway’’ and ‘‘community’’, so as to clearly

delineate our model-derived structures from those entities having

more biology-centred definitions (e.g., a human-curated metabolic

pathway or an ecological community). Indeed, microorganisms

within a microbiome sample are expected to show metabolic

interactions that range from negligible to obligate. We followed

Boon et al. [69] in reserving the term ‘‘community’’ for those sets

of microorganisms having a high degree of ecological interaction.

Thus the metabosystems that are detected by using BiomeNet can

be considered the starting points for detecting metabolically

integrated communities. The notion of metabolic integration at

the community level would entail experimental validation [69].

Metabosystems could be directly tested for ecological stability by

experimentally disturbing a microbiota (e.g., via antibiotic

treatment) and assessing the extent to which that system returns

to the same pre-disturbance composition of subnetworks.

It is important to note that we are working with a microbiome’s

latent capacity to process metabolites, as inferred from its

metagenome. Thus the structures referred to as ‘‘metabosystems’’

reflect a latent aspect of metabolic phenotype. We modelled each

sample as a mixture of metabosystems because microbial

communities are thought to be composed of partially overlapping

assemblages of microbes with varying types of ecological

interaction [70,71]. By modelling a sample as a mixture of

metabolic structures, we must also adopt a ‘‘softened’’ (probabi-

listic) definition of metabolic phenotype. We believe this will

ultimately benefit our understanding of how the observed

variability in community function might relate to phenotypic

labels (e.g., ‘‘diseased’’ or ‘‘healthy’’). Our modelling approach is

therefore suited to investigating questions about how the level of

an individual’s health status might be determined by mixtures of

different metabolic phenotypes.

BiomeNet provides the capability to focus attention on the

fundamental structure of a complex metabolic network, which is

necessary if researchers want to improve their understating of

microbial community function. We note that this will also be the

case when seeking a better understanding of the taxonomic

composition of community structures. Along these lines, Arumu-

gam and coauthors [72] suggested that community structure

within the human gut can be adequately characterized in terms of

three distinct community types, called ‘‘enterotypes’’. However,

this suggestion has generated some controversy [73]. Other

researches suggested that human gut microbiome might be better

described by two distinct enterotypes [74], although the inferred

number depends to some degree on methodology [75]. More

importantly, there is no consensus on how to define an enterotype,

nor a consensus on what biological significance, if any, should be

attributed to the inferred number, because the underlying diversity

of the human gut seems to exist as a continuum of communities

[75–77]. The challenge, as we see it, is the need to formally model

community structures (or functions, as in the case of BiomeNet) as

entities having ‘‘soft boundaries’’ so that samples can be more

realistically characterized as mixtures of communities. There has

been only limited development of this approach for taxonomic

composition of communities [78–80]. The composition models

[78–80] are similar to BiomeNet in applying a Dirichlet prior to

the parameters of the multinomial. However, because their

objective is to model structure in terms of 16S based phylotypes,

they do not model community structure as an explicit network as is

done by BiomeNet. Furthermore, only one composition model is

hierarchical [80]. The hierarchical model [80] attempts to capture

the most realistic mixture of community structures; its goal is to

learn how phylotypes are mixed to form assemblages, how
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assemblages are mixed to form community samples, and how

community structure is related to phenotypes of interest. We

suggest that using a ‘‘soft’’ (probabilistic) definition of community

structure (whether taxonomic or function-based) rather than a

‘‘hard’’ (discrete) definition better serves the goal of microbiome

research to discover the different aspects of microbial communities

and link them to the relevant phenotypes.

BiomeNet is suitable to investigating the latent metabolic

structure of any microbial community. As long as abundance data

can be obtained for sequences with assigned metabolic function,

the model can be applied to samples from any environment (soil,

open ocean, biofilm reactors, etc.) and over any scale (distance,

time, etc.). BiomeNet can easily accommodate the abundance data

generated from high-throughput sequencing of RNA transcripts of

uncultivable microorganisms. Thus, it could be employed to

investigate the temporal dynamics of community metabolic

structure within serially-sampled metatranscriptomic data.

Supporting Information

Text S1 Network generation under the model, and
validation of the inference algorithm. An overview of the

generative process under BiomeNet and a detailed description of

how we used simulation to verify that our sampling algorithm can

recover the parameter values used to generate reactions for

simulated microbiome samples.

(PDF)

Text S2 Analytical solutions for the individual terms of
the posterior distribution of the latent variables. For

inference under BiomeNet we sample from the posterior

distribution of latent variables given the data. We use collapsed

Gibbs sampling by integrating out the latent variables h, Q, d, c
and sample from the posterior distributions of the metabosystem

(Z) and subnetwork (Y) assignments for each reaction conditional

on the assignments of all other reactions. This is a high

dimensional distribution, and the analytical solutions for the

individual terms are given in these notes.
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Text S3 Characterizing the reaction composition of a
metabosystem, and measuring compositional differenc-
es between metabosystems. A detailed description of the

method for characterizing the composition of a metabosystem at

the level of its metabolic reactions, the method for measuring

compositional differences between metabosystems, and the

method for assessing robustness of metabosystems to the L value.

The criteria for classifying principal subnetworks and discrimina-

tory subnetworks are also provided.
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Text S4 PCoA analysis of mammalian microbiome
samples. PCoA analysis of Enzyme Commission assignments

and KEGG Orthology assignments for the mammalian dataset

reveals a separation between carnivore and herbivore gut

microbiomes.
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Text S5 Source and processing of metagenomic data.
The source of the two gut metagenome datasets and a description

how those data were processed to obtain abundance values for

substrate-product pairs that were input into the model.

(PDF)

Text S6 Robustness of metabosystem composition to
number of subnetworks. Evaluation of alternative numbers of

subnetworks (L) in the model reveals that the reaction composition

of the metabosystems is relatively stable to the specified value of L.

(PDF)

Text S7 Subnetwork composition of mammalian meta-
bosystems. A presentation of the inferred contribution of 100

subnetworks to three metabosystems in the model, and the

identification of the most discriminatory subnetwork for metabo-

system 1.

(PDF)

Text S8 Subnetwork composition of the human IBD/
healthy metabosystems. A presentation of the inferred

contribution of 100 subnetworks to three metabosystems in the

model, and the identification of the most discriminatory

subnetworks for the metabosystem that was most associated with

IBD (metabosystem 2).

(PDF)

Text S9 Core subnetworks. Definition and identification of

core subnetworks under the BiomeNet modeling framework.

(PDF)

Table S1 Composition of subnetwork 49 inferred from
the mammalian dataset. The table gives the KEGG reaction

numbers, substrates and products for the principal reactions in

mammalian subnetwork 49. Because the model does not rigidly

define subnetworks, each reaction in the dataset will have an

estimated mixing probability. As the majority of reactions make

only a trivial contribution to this subnetwork (nearly zero), we

filtered out any reaction with a contribution less than 2/R, where

R is the count of unique reactions summed over all the samples in

a dataset. This resulted in a subset of 25 reactions having a

posterior density.0.99.

(PDF)

Table S2 Composition of subnetwork 38 inferred from
the human dataset. The table gives the KEGG reaction

numbers, substrates and products for the principal reactions in

human subnetwork 38. Because the model does not rigidly define

subnetworks, each reaction in the dataset will have an estimated

mixing probability. As the majority of reactions make only a trivial

contribution to this subnetwork (nearly zero), we filtered out any

reaction with a contribution less than 2/R, where R is the count of

unique reactions summed over all the samples in a dataset. This

resulted in a subset of 29 reactions having a posterior density.

0.99.

(PDF)

Table S3 Composition of subnetwork 64 inferred from
the human dataset. The table gives the KEGG reaction

numbers, substrates and products for the principal reactions in

human subnetwork 64. Because the model does not rigidly define

subnetworks, each reaction in the dataset will have an estimated

mixing probability. As the majority of reactions make only a trivial

contribution to this subnetwork (nearly zero), we filtered out any

reaction with a contribution less than 2/R, where R is the count of

unique reactions summed over all the samples in a dataset. This

resulted in a subset of 19 reactions having a posterior density.0.99.

(PDF)

Table S4 Composition of subnetwork 73 inferred from
the human dataset. The table gives the KEGG reaction

numbers, substrates and products for the principal reactions in

human subnetwork 73. Because the model does not rigidly define

subnetworks, each reaction in the dataset will have an estimated

mixing probability. As the majority of reactions make only a trivial

contribution to this subnetwork (nearly zero), we filtered out any
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reaction with a contribution less than 2/R, where R is the count of

unique reactions summed over all the samples in a dataset. This

resulted in a subset of 18 reactions having a posterior density.0.99.

(PDF)

Data File S1 Posterior mixing probabilities of the
principal reactions in all subnetworks (L = 100). Posterior

probabilities are given for both the mammalian and human

datasets. Because many reactions will have trivially small mixing

probabilities for many subnetworks (nearly zero), we filtered out any

reaction with a contribution less than 2/R, where R is the count of

unique reactions summed over all the samples within the given

dataset. The data are presented in a spreadsheet document, with the

mammalian dataset and the human IBD/healthy dataset provided

within separate sheets. Each sheet has 100 rows, one for each

subnetwork in the model. Each row provides the KEGG reaction

ID and mixing probabilities for a particular subnetwork. The data

in each row is sorted according to its mixing probabilities.

(XLSX)
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