
Education

Computational Thinking in Life Science Education
Amir Rubinstein*, Benny Chor

School of Computer Science, Tel-Aviv University, Tel Aviv, Israel

Abstract: We join the increasing
call to take computational educa-
tion of life science students a step
further, beyond teaching mere
programming and employing exist-
ing software tools. We describe a
new course, focusing on enriching
the curriculum of life science stu-
dents with abstract, algorithmic,
and logical thinking, and exposing
them to the computational ‘‘cul-
ture.’’ The design, structure, and
content of our course are influ-
enced by recent efforts in this area,
collaborations with life scientists,
and our own instructional experi-
ence. Specifically, we suggest that
an effective course of this nature
should: (1) devote time to explicitly
reflect upon computational think-
ing processes, resisting the temp-
tation to drift to purely practical
instruction, (2) focus on discrete
notions, rather than on continuous
ones, and (3) have basic program-
ming as a prerequisite, so students
need not be preoccupied with
elementary programming issues.
We strongly recommend that the
mere use of existing bioinformatics
tools and packages should not
replace hands-on programming.
Yet, we suggest that programming
will mostly serve as a means to
practice computational thinking
processes. This paper deals with
the challenges and considerations
of such computational education
for life science students. It also
describes a concrete implementa-
tion of the course and encourages
its use by others.

Background

The ‘‘cultural gap’’ between biological

and computational sciences has become

increasingly evident in recent years. Life

sciences are going through a dramatic

biotechnological revolution, producing

huge amounts of data, which is often

placed in public databases. The analysis of

these data requires nontrivial computa-

tional ideas. Life sciences curricula, how-

ever, have hardly been altered to reflect

this revolution [1–3]. Some universities

require life science students to take an

introductory programming course, while

others require a course on bioinformatics

tools. These courses tend to focus on

practical programming skills or on techni-

cal handling of bioinformatics tools. Often,

not enough emphasis is put on developing

abstract and algorithmic thinking skills in

such courses. More advanced computa-

tional courses are either inapplicable

without appropriate background or nar-

row down to very specific topics.

This gap presumably starts at the class-

room, but it lingers later on. Biology in

many institutes and labs is still primarily a

descriptive science with little computational

approaches being used on a daily basis.

Computational approaches in this context

are not the mere use of tools, but the

integration of computational thinking and

algorithms to experiments design; to data

generation, integration, and analyses; and

to modeling. It is often the case that because

of the lack of computational background

and relevant training, bench biologists

employ computational methods as ‘‘black

boxes’’ without a deep understanding of the

computational concepts, underlying as-

sumptions, and the limitations of such

models. The practice of employing compu-

tational methods in biology is usually done

in one of two flavors: a somewhat ‘‘auto-

matic’’ use of existing bioinformatics tools

by biologists or the application of algorithms

to biological data by computer scientists and

mathematicians. Both modes may result in

a misinterpretation of results and in erro-

neous conclusion making [4]. Biologists are

rarely directly involved in the development

of mathematical and computational models.

This is mostly due to the complexity of such

models and the gaps between the biological

and computational cultures.

The majority of biological laboratories

would greatly benefit from using compu-

tational tools on a daily basis and,

consequently, from the presence of an

‘‘in-house’’ expert with a solid computa-

tional understanding. Indeed, the need to

provide life science students with a wider,

deeper computational education, beyond

just hands-on skills, is being widely recog-

nized [1–7]. However, only a few concrete

initiatives have so far been implemented.

A notable one is the ‘‘integrated science’’

introductory curriculum [1], breaking

down traditional disciplinary barriers,

developed in Princeton University by

David Botstein and William Bialek. An-

other initiative, at Harvey Mudd College,

is the ‘‘"CS5 green’’ course [8,9]: an

introductory computer science (CS) course

‘‘designed to give the foundations of

computer science in the context of solving

real and important problems in the

biological sciences.’’ An international con-

ference dedicated to bioinformatics edu-

cation, RECOMB-BE, was founded in

2009. General CS education conferences

(SIGCSE, iTiCSE) also provide venues for

discussions and reports on this topic

[7,10]. The education article type of

PLOS Computational Biology is a notable

resource for practical tutorials and opin-

ions. Online courses, such as Rosalind
(http://rosalind.info/problems/locations),

have started to appear, aiming to attract

biologists who want to develop program-

ming skills at their own pace. Several

books about computational methods,

aimed at biologists, have been published

recently [11,12]. These important initia-

tives promote the incorporation of

quantitative computational skills in biolo-

gy. Still, their influence on life science

Citation: Rubinstein A, Chor B (2014) Computational Thinking in Life Science Education. PLoS Comput
Biol 10(11): e1003897. doi:10.1371/journal.pcbi.1003897

Editor: Joanne A. Fox, University of British Columbia, Canada

Published: November 20, 2014

Copyright: � 2014 Rubinstein, Chor. This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Funding: This study was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics
at Tel-Aviv University. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: amirr@tau.ac.il

PLOS Computational Biology | www.ploscompbiol.org 1 November 2014 | Volume 10 | Issue 11 | e1003897

http://rosalind.info/problems/locations
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003897&domain=pdf

undergraduate curricula has been some-

what limited so far.

We join the above-mentioned efforts.

We urge such an educational revolution in

life sciences and propose a novel, stand-

alone, concrete educational building

block: a non-introductory course, that

aims to expose students to the computa-

tional ‘‘culture’’ and focuses on developing

computational thinking skills [13], rather

than on the mere use of existing bioinfor-

matics tools or programming. The course

introduces a diverse range of computa-

tional concepts and ideas and demon-

strates their applicability to life science.

We believe this course constitutes a novel,

genuine contribution in the area of

educational computational biology.

Incorporating Computational
Thinking in Life Sciences

The course we developed, titled ‘‘Com-

putational Approaches for Life Scientists’’

(http://ca4ls.wikidot.com), is targeted spe-

cifically for life science students, both

advanced undergraduate and graduate. It

is a non-introductory course—basic pro-

gramming is a pre-requisite (see more

details about this choice later). The

course’s primary goal is:

To develop students’ computational
thinking skills by exposing them to the
abstract, algorithmic, and logical
‘‘culture’’ of computer science, and
familiarizing them with fundamental
computational ideas and concepts.

From the biological point of view, the

course consists of four main modules

(Figure 1), each corresponding to a differ-

ent biological domain. We believe it is

more accessible to life science students

when the course is structured, at high

level, in a biologically dominated manner.

Each module spans two to four computa-

tional topics (one per week) (Figure 1).

The focus of our course is the develop-

ment of abstract and computational think-

ing. The design of each module includes

four main instructional themes in a

‘‘pipeline’’ structure:

(1) Presenting the motivating biological

problem and relevant biological back-

ground. Given students’ biological

background, this part is typically

rather brief

(2) Formulating the problem in compu-

tational terms, familiarizing appropri-

ate concepts and notions

(3) Dealing with programming issues

needed to implement the new ideas

(4) Reflecting on the whole process,

bringing to light the fundamental

computational thinking skills prac-

ticed

The supplementary Text S1 presents a

detailed example of a ‘‘path’’ through three

topics in the pipeline structure. This

example is aimed at understanding the

principles behind sequence assembly. Fig-

ure S1 depicts this process. We remark that

here, as well as in other topics in the course,

this is a spiral learning process. Students are

‘‘walked through’’ this pipeline more than

once, and experience several variants (of

increasing complexities) on the computa-

tional and biological problems.

Table 1 maps some fundamental com-

putational concepts and thinking processes,

and demonstrates topics from our course

harnessed to acquire them. We believe that

the fourth stage of the suggested instruc-

tional pipeline is highly important. Directly

naming these concepts, ideas, and process-

es, discussing them, and reflecting upon

them in the context of the new topic will

raise students’ awareness to them, such that

they will be more likely to practice them

again in the future.

The design of the course was guided by

several additional considerations, which

we detail below.

Choice of topics
The course topics span several algorithmic

and logical concepts that lie at the heart of

CS. These concepts are demonstrated in

relevant biological contexts. Two main

criteria are considered in the choice of topics:

(1) how relevant the topic is for research and

practice in life sciences and (2) to what extent

the topic can be harnessed to expose students

to the computational ‘‘culture’’ and to

practice relevant thinking skills. We tackle a

wide spectrum of biological and computa-

tional issues, appealing to a fairly broad

audience among life science students.

Programming
Even though this is not a programming

course, students are required to solve

‘‘real-life’’ biological problems using code.

We introduce the programming language

Python at the beginning of the course

(about two weeks, six hours). It then serves

as a vehicle to deliver course topics. While

teaching Python, we focus on its practical

use, rather than on language syntax and

specifications (the latter are more likely to

be emphasized in an introductory pro-

gramming course). Our experience shows

that when learning includes concrete,

hands-on practice, computational thinking

skills are better acquired and underlying

concepts are better understood.

Emphasis on discrete notions
One important choice in the course’s

design was to exclusively concentrate on

discrete approaches such as finite graphs,

strings, digital images (represented as a

matrix of discrete elements—pixels), finite

state automata, etc. These are highly

underrepresented in life science curricula,

in which continuous notions, such as

derivatives, integrals, and differential

equations, are taught more widely [12,14].

Level of formalism
We choose a level of formalism that

matches students’ background. Obviously

we do not use the same level of formalism

as in ‘‘pure’’ CS courses. Nonetheless, we

do insist on taking students out of their

‘‘cognitive comfort zone’’ in the sense that

we expect them to handle abstract notions

and to formalize their statements and

algorithms in a rigorous and logical

manner. Still, we leave ample time for

classroom discussion and for developing

intuition and try not to drift into a too-

formal or technical instruction.

Learning Outcomes and
Evaluation

Upon successful completion of the

course, we expect students to:

N Be familiar with several fundamental

concepts and notions in CS, and their

applicability to life sciences. Figure 1

lists these computational concepts, and

Table 1 describes additional notions

related to computational thinking skills

N Be able to identify problems whose

manual solution is not feasible, yet they

are amenable to a computational solution

N Feel comfortable to communicate with

computational biologists/bioinformati-

cians

N Be able to implement basic solutions to

simple biological problems they en-

counter, and to effectively communi-

cate with more experienced program-

mers for more complex problems

The course was taught for the first two

times in 2013 and 2014 at the Technion,

Israel Institute of Technology, Faculty of

Biology. In the first round of the course, it

was taken for credit by five graduate level

and three undergraduate level students. In

the second round, it was taken by eight

graduate level and nine undergraduate

level students. All had elementary pro-

PLOS Computational Biology | www.ploscompbiol.org 2 November 2014 | Volume 10 | Issue 11 | e1003897

http://ca4ls.wikidot.com

gramming background in either C, Ma-

tlab, or Pascal (a programming course is

mandatory for all Technion undergradu-

ate students). Participants were required to

submit five home assignments, each in-

cluding programming tasks and theoretical

questions. In the first round, a take-home

exam was given at the end, which was

replaced in the second round by a final

research project: students chose topics that

they found interesting among the course

subjects, extended them in some manner,

and applied them to real biological data.

Additional details regarding the projects,

and specific project examples, appear in

the supplementary Text S2. At the end of

the semester, students were either inter-

viewed by the lecturer or asked to fill

a survey for feedback. These feedbacks

are summarized in the supplementary

Text S3.

To examine the effect of the course on

how students view computer science, they

were asked to define this discipline before

and after the course. Prior to the course,

students related the field mostly to the

computer as a machine and to software and

tools. At the end of the course, however,

they tended to relate CS to broader and

more abstract terms, such as problem

solving and modeling (see Figure 2). We

believe this shift in the view of the

discipline, especially considering the prior

exposure of our students to programming,

strengthens the rationale for such a course.

Discussion

Obviously, there is more than a single

way to expose life sciences students to

computational thinking. Yet, based on our

experience, and on numerous discussions

with life scientists and bioinformaticians,

we feel that a single one-semester course,

which does not assume a basic program-

ming course as a prerequisite, is likely to

miss the goal of teaching computational

thinking and computational concepts to

life science students. If basic programming

is taught from scratch, not enough time

will be left for the higher level computa-

tional concepts and their relations to

biology, so the depth of coverage of

computational thinking will be smaller.

Alternatively, the use of packages could

dominate the hands-on experience,

‘‘masking’’ the computational ideas. On

the other hand, having such a basic

programming prerequisite, as in our

course, enables us to take the students a

step further, beyond programming and

tool handling. This facilitates exploring

abstract computational notions, experi-

menting ‘‘first hand’’ with coding them,

and applying the code to concrete biolog-

ical tasks. We believe that these days, a

basic programming course is a crucial

component of every science curricula.

This leads to the recommendation that

basic programming should be taught

separately, prior to a computational

thinking course. Such a prerequisite will

allow the students to digest programming

issues well before, so they need not be

preoccupied with technical issues while

Figure 1. Biological modules of the course and related computational topics.
doi:10.1371/journal.pcbi.1003897.g001

PLOS Computational Biology | www.ploscompbiol.org 3 November 2014 | Volume 10 | Issue 11 | e1003897

Table 1. Examples for computational concepts and thinking processes discussed in various topics, and emphasized in the ‘‘reflection’’
stage of the pipeline.

Computational concepts
and thinking processes Topics/examples in which they are employed in the course

Abstraction [15–17] Computer representation of biological entities (e.g., graphs for networks, strings for DNA/proteins,
matrices of pixels for images)

Distinction between abstract data types and their implementation (e.g., a graph can be represented
as an adjacency matrix or as a neighbors list)

Generalization From the ‘‘bridges of Konigsberg’’ to conditions for the existence of an Eulerian path in a graph

From Boolean to discrete models

From the ‘‘Game of Life’’ to cellular automata

Modular design, decomposition Image noise reduction and edge detection apply different local morphological operators on image pixels (mean,
median, dilation, erosion), thus all are implemented as concrete invocations of a general local operator function

Simulation of the ’’Game of Life’’ separates GUI, logic (local transition rules) and data control (the ‘‘engine’’ of the simulation)

Reduction [18] Reducing variants of shortest paths to the shortest path from a single source

Reducing Hamiltonian path to travelling salesperson, arguing NP-completeness of the former

Pre-processing Building the suffix tree of a string for later substring matching ‘‘Compiling’’ a regular expression (in Python) for pattern
matching

Data structures Graph

Stack, used for finding Eulerian paths in a graph

Priority queue, used for finding shortest paths in a graphs with Dijkstra’s algorithm

Hash table, used as a dictionary, and for the longest common substring problem

Trie, used as a dictionary for strings

Suffix tree, used for various string problems

Computational models Deterministic finite automata (DFA)

Using DFA for pattern matching

Greedy algorithms Dijkstra’s algorithm

Regular expressions’ evaluation in a greedy manner in Python’s re package

Computational complexity; P,
NP and NPC

Traveling salesperson and the de novo assembly problem: demonstrating NP-completeness

Eulerian versus Hamiltonian paths for sequencing by hybridization

Graph isomorphism

Discrete notions and models Graphs

Cellular automata

Discrete ‘‘state graphs’’ for the simulation of regulation networks

doi:10.1371/journal.pcbi.1003897.t001

Figure 2. Students’ views of the important facets of CS before and after the course. Numbers indicate how many students among the
responders included the notion in their definition for the discipline.
doi:10.1371/journal.pcbi.1003897.g002

PLOS Computational Biology | www.ploscompbiol.org 4 November 2014 | Volume 10 | Issue 11 | e1003897

taking a computational thinking course.

Furthermore, we feel that the understand-

ing of computational thinking and the

‘‘language’’ of CS are hard to obtain

independently. While a student ‘‘speak-

ing’’ this language can easily educate

him/herself in the use of bioinformatics

tools, the other direction is far less

amenable to self-study. Teachers engaged

with computational education for biolo-

gists are sometimes tempted to make their

course as practical as they can (and many

students feel more comfortable staying

away from abstract topics). While practi-

cal skills are, of course, important and

motivating, we believe that time and

educational effort must be spent on

abstract notions and thinking processes:

naming, discussing, and reflecting upon

them.

Most of these conclusions are sup-

ported by the surveys and interviews

conducted among course students dur-

ing the two semesters it was taught.

Clearly, a more in-depth evaluation of

the course, based on a larger number of

participants, is called for. This is

planned to take place in future offerings

of the course.

In our view, an essential part of any

course aiming to teach computational

thinking to life scientists is the interaction

in class, with an able instructor who is

knowledgeable in both computer and life

sciences. Class interactions in the form of

discussions, guided solutions to problems,

naming of thinking processes, and exposure

of students to alternative (including incor-

rect) approaches are at the heart of the

learning process in this course. Our four-step

pipeline instruction model prevents spend-

ing too much time on technical aspects since

part of the time is explicitly dedicated to

reflection and discussion in class.

We strongly believe that we have an

important message to deliver. We propose a

way to take life scientists’ computational

education a step further. Even small steps in

this direction are likely to have substantial

consequences in life or medical science

practices and research in the long run. Such

initiatives can greatly contribute to narrow-

ing the gaps between life sciences and

bioinformatics/computational biology and

motivate other scientists and science educa-

tion experts to be involved in similar efforts.

Supporting Information

Figure S1 A ‘‘path’’ through three topics

in the pipeline structure.

(TIF)

Figure S2 (A) A microscope slide

containing Bacilli anthracis cells and

spores (image taken from [2]). (B)

Endospores identified (white spots in

the original image). (C) Vegetative cells

identified (dark spots in the original

image).

(TIF)

Figure S3 Students’ attitudes towards

home assignments difficulty and effective-

ness.

(TIF)

Text S1 A path through three topics in

the pipeline structure of the course.

(DOCX)

Text S2 Examples for end of course

projects.

(DOCX)

Text S3 Feedback from course students.

(DOCX)

Acknowledgments

We thank Metsada Pasmanik-Chor for her

constructive criticism on an earlier version of

this manuscript.

References

1. Bialek W, Botstein D (2004) Introductory science

and mathematics education for 21st-century
biologists. Science Signaling 303: 788.

2. Pevzner P, Shamir R (2009) Computing has
changed biology—biology education must catch

up. Science 325: 541.

3. Pevzner P (2004) Educating biologists in the 21st
century: bioinformatics scientists versus bioinfor-

matics technicians. Bioinformatics 20(14): 2159–
61.

4. May RM (2004) Uses and abuses of mathematics
in biology. Science 303: 790–793.

5. Committee on Undergraduate Biology Education

to Prepare Research Scientists for the 21st
Century, Board on Life Sciences, Division of

Earth and Life Sciences, National Research
Council (2003) BIO 2010: Transforming Under-

graduate Education for Future Research Biolo-

gists. Washington, DC: National Academies
Press.

6. Gross LJ (2004) Points of view: the interface of
mathematics and biology interdisciplinarity and

the undergraduate biology curriculum: finding a

balance. Cell Biology Education 3: 85–87.
7. Qin H (2009) Teaching computational thinking

through bioinformatics to biology students. In:
ACM SIGCSE Bulletin, volume 41, pp. 188–191.

8. Dodds Z, Libeskind-Hadas R, Bush E (2010)

When cs 1 is biology 1: crossdisciplinary collabo-
ration as cs context. In: Proceedings of the fifteenth

annual conference on Innovation and technology
in computer science education, pp. 219–223.

9. Libeskind-Hadas R, Bush E (2013) A first course
in computing with applications to biology. Brief

Bioinform.

10. Settle A, Goldberg DS, Barr V (2013) Beyond
computer science: computational thinking across

disciplines. In: Proceedings of the 18th ACM
conference on Innovation and technology in

computer science education, pp. 311–312.

11. Pevzner P, Shamir R (2011) Bioinformatics for
biologists. Cambridge University Press.

12. Robeva R, Hodge TL (2013) Mathematical
Concepts and Methods in Modern Biology: Using

Modern Discrete Models. London: Academic

Press.

13. Wing JM (2006) Computational thinking. Com-

munications of the ACM 49: 33–35.

14. Robeva R, Laubenbacher R (2009) Mathematical

biology education: beyond calculus. Science

325(5940): 542–3.

15. Kramer J (2007) Is abstraction the key to

computing? Communications of the ACM 50:

36–42.

16. Kramer J, Hazzan O (2006) The role of

abstraction in software engineering. In: Proceed-

ings of the 28th international conference on

Software engineering, pp. 1017–1018.

17. Muller O, Rubinstein A (2011) Work in progress:

courses dedicated to the development of logical

and algorithmic thinking. In: Frontiers in Educa-

tion Conference (FIE), 2011, pp. F3G–1.

18. Armoni M, Gal-Ezer J, Hazzan O (2006)

Reductive thinking in computer science. Com-

puter Science Education 16: 281–301.

PLOS Computational Biology | www.ploscompbiol.org 5 November 2014 | Volume 10 | Issue 11 | e1003897

