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Abstract

Although bone has a unique restorative capacity, i.e., it has the potential to heal scarlessly, the conditions for spontaneous
bone healing are not always present, leading to a delayed union or a non-union. In this work, we use an integrative in vivo -
in silico approach to investigate the occurrence of non-unions, as well as to design possible treatment strategies thereof.
The gap size of the domain geometry of a previously published mathematical model was enlarged in order to study the
complex interplay of blood vessel formation, oxygen supply, growth factors and cell proliferation on the final healing
outcome in large bone defects. The multiscale oxygen model was not only able to capture the essential aspects of in vivo
non-unions, it also assisted in understanding the underlying mechanisms of action, i.e., the delayed vascularization of the
central callus region resulted in harsh hypoxic conditions, cell death and finally disrupted bone healing. Inspired by the
importance of a timely vascularization, as well as by the limited biological potential of the fracture hematoma, the influence
of the host environment on the bone healing process in critical size defects was explored further. Moreover, dependent on
the host environment, several treatment strategies were designed and tested for effectiveness. A qualitative
correspondence between the predicted outcomes of certain treatment strategies and experimental observations was
obtained, clearly illustrating the model’s potential. In conclusion, the results of this study demonstrate that due to the
complex non-linear dynamics of blood vessel formation, oxygen supply, growth factor production and cell proliferation and
the interactions thereof with the host environment, an integrative in silico-in vivo approach is a crucial tool to further
unravel the occurrence and treatments of challenging critical sized bone defects.
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Introduction

Although bone has a unique restorative capacity, i.e. it has the

potential to heal scarlessly, the conditions for spontaneous bone

healing are not always present, leading to a delayed union or a

non-union. The orthopedic literature does not specify a universally

accepted definition of a fracture non-union [1,2]. The eventual

bony union after an atypical long period of healing, in comparison

to the normal healing period, is called a delayed union. The

absence of healing during at least three to six months defines a

fracture non-union in humans. Fracture non-unions (hypertrophic,

atrophic or oligotrophic) are classified based on their radiographic

and histological appearance [1,3].

Hypertrophic non-unions are characterized by an abnormal

vascularity and abundant callus formation. They are typically

caused by excessive motion at the fracture site, which prevents

bony bridging although the essential biological factors are present

[1]. Atrophic non-unions, however, are the result of inadequate

biological conditions and typically appear on radiographs as

blunted bony ends. They show little callus formation around the

fracture gap, filled with mostly fibrous tissue and little or no

evidence of mineral deposition [1]. Oligotrophic non-unions have

some radiographic and biological characteristics of both hyper-

trophic and atrophic non-unions, i.e. they possess the required

biological activity but show little or no callus formation [4].

Excess motion, a large interfragmentary gap [5], open fracture

[5–7], the particular bone [8], location of the trauma within the

bone [8], loss of blood supply [9], severe periosteal and soft-tissue

trauma [6,7] are some of the mechanical and biological risk factors

for the development of a non-union. Preexisting patient risk factors

such as old age [10], cachexia and malnutrition [11], immune

compromise [12], genetic disorders (e.g. type 1 neurofibromatosis),

osteoporosis [13], anticoagulants [14], anti-inflammatory agents

[15], etc. may also affect the fracture healing outcome but are not

the primary causes [16]. Besides an extensive amount of experi-

mental research, several computational models have also been

developed to further unravel the occurrence of fracture non-unions.

For comprehensive reviews on mathematical models of fracture
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healing, we refer the reader to Geris et al. [17], Isaksson et al. [18]

and Pivonka et al. [19]. Despite the large amount of (often

phenomenological) information existing in the literature, additional

in vivo, in vitro and in silico research is still required to address the

key mechanisms that lead to fracture non-unions, determine the

factors predictive of fracture complications and establish the optimal

therapeutic strategies for each type of fracture non-union.

In this work we propose an integrative in vivo - in silico
approach to investigate the occurrence of oligotrophic and

atrophic non-unions as well as to design possible treatment

strategies thereof. The gap size of the domain geometry of a

previously published mathematical model has been enlarged in

order to study the complex interplay of blood vessel formation,

oxygen supply, growth factors and cell proliferation on the final

healing outcome in large bone defects. The simulation results are

corroborated by comparison with dedicated experimental data.

Next, the mathematical model is used to explain the underlying

mechanisms that lead to the experimental observations as well as

design different treatment strategies. Finally, the potential of the

combined in silico - in vivo approach is demonstrated by applying

it to the case of BMP-treated fracture healing.

Materials and Methods

Ethics statement
All animal experiments were conducted according to the

regulations and with approval of the Animal Ethics Committee of

the KU Leuven.

Animals and operative procedure
C57BL/6 mice were purchased from the R. Janvier Breeding

Center (France). A segmental defect was created in the right tibia

of 14 week-old male mice as described elsewhere [20]. Briefly,

animals were anaesthetized with a ketamine-xylazine mixture

(100 mg/kg ketamine and 15 mg/kg xylazine) and the right lower

leg was shaved. A custom-made external fixator, based on the

Ilizarov external fixation device, was fixed to the tibia using 27 G

steel needles. Subsequently, the tibia was exposed and a 4.5–5 mm

mid-diaphyseal segment was excised with a 6.5 mm diamond saw

disk (Codema n.v., Kortrijk, Belgium). A demineralized CopiOs

scaffold (2.562.565 mm3; Zimmer b.v.b.a., Wemmel, Belgium)

seeded with 16106 mouse periosteal cells (passage 4) was

implanted, the skin was sutured and animals received postoper-

ative analgesia (buprenorphine, 60 mg/kg body weight). The

demineralized CopiOs- scaffold was used to minimize the soft

tissue collapse within the critical size defect. After 3, 14 or 56 days

animals were sacrificed, the tibia was excised and samples were

analyzed by mCT and then processed for histology.

Isolation and culture of murine periosteum-derived cells
Murine periosteum-derived cells (mPDC) were isolated from the

long bones of 8 week-old male mice as previously described [21]. In

short, the femurs and tibias isolated from 8 week old male C57BL/

6J mice were dissected and digested with collagenase-dispase after

protecting the epiphyses with low melting point agarose. After a

filtration and washing step, the cells were plated at 16104 cells per

square centimeter and replated when reaching 80–90% confluency.

After isolation, cells were pooled per 2–3 mice and cultured in a

humidified incubator at 37uC with 5% CO2 in a-minimal essential

medium (a-MEM) supplemented with 2 mM glutaMAX-I, 1%

penicillin/streptomycin (100 units/ml and 100 mg/ml respectively)

and 10% fetal bovine serum (all from Gibco, Life Technologies,

Gent, Belgium). When reaching 80–90% confluency, cells were

trypsinized and reseeded at 7500 cells/cm2.

Transduction of mPDC
To deliver BMP2 at the defect site, mPDCs were transduced

72 hours prior to implantation with an adenoviral vector encoding

human BMP2 (a generous gift from Dr. Frank Luyten, KU

Leuven, Belgium) at a multiplicity of infection of 50.

Radiographic and mCT analyses
Bone formation in large bone defects was followed by

radiographic images at different time points after surgery using

the Skyscan 1076 high resolution in vivo micro-computed

tomography (mCT) scanner (Bruker-mCT, Kontich, Belgium).

For bone quantification, samples retrieved at day 56 were scanned

using the high resolution SkyScan 1172 mCT system (Bruker-mCT)

at a pixel size of 10 mm with 50 kV tube voltage and 0.5 mm

aluminum filter. Projection data was reconstructed using the

NRecon software and quantification of mineralized tissue was

performed using the CTAn software (both from Bruker-mCT).

Histology and immunohistochemistry
Isolated bones were fixed in 2% paraformaldehyde overnight and

decalcified in EDTA for 14 days at 4uC prior to dehydration,

embedded in paraffin and sectioned at 4 mm. Histochemical staining

with hematoxylin and eosin (H&E) and immunohistochemical staining

for mouse CD31 is routinely performed in our lab and has been

described previously [21]. Images were taken on a Zeiss Axioplan 2

light microscope using the Zeiss AxioVision software.

Statistical analysis
Data are presented as means 6 standard error of the means.

Data were analyzed by one-way ANOVA using the NCSS

statistical software. Differences were considered statistically

significant at p,0.05.

Mathematical model
The multiscale computational framework for the mathematical

modelling of bone fracture healing and its relation to angiogenesis

Author Summary

In 5–10% of fracture patients, the bone fractures do not
heal in the normal healing period (delayed healing) or do
not heal at all (non-union). In order to investigate the
causes of impaired healing and design potential treatment
strategies, we have used a combined experimental and
computational approach. More specifically, large bone
defects were analyzed in mouse models and simulated by
a previously published computational model. After show-
ing that the predictions of the computational model
match the observations of the experimental model, we
have used the computational model to investigate the
underlying mechanisms of action. In particular, the results
indicated that the new blood vessels do not reach the
central fracture zone in time due to the large defect size,
which leads to insufficient oxygen delivery, increased cell
death and disrupted bone healing. The healing, however,
could be rescued by adequate blood vessel ingrowth from
the overlying soft tissues. Moreover, potential treatment
strategies were designed based on the influence of these
soft tissues. In conclusion, this study demonstrates the
potential of a combined experimental and computational
approach to contribute to the understanding of patho-
logical processes like the impaired bone regeneration in
large bone defects and design future treatments thereof.

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects
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was established earlier and has been described in detail in [22].

The framework consists of (1) a tissue level describing the various

key processes of bone fracture healing with 10 continuous

variables, (2) a cellular level representing the developing vascula-

ture with discrete endothelial cells and (3) an intracellular level that

defines the internal dynamics of the Dll4-Notch signaling pathway

in every endothelial cell (Figure 1). The model accounts for the

various key processes that occur during the soft and hard callus

phase of bone fracture healing (see [22] for a more detailed

description). While the model described in [22] already partially

accounted for the role of oxygen, we have recently extended the

model to capture the various effects of oxygen on cellular processes

in a much more complete and refined way [23]. A brief

description of the oxygen model is found below and more details

are given in Supporting Text S1.

After the initial inflammation phase (which is not included in the

current mathematical model), the fracture callus is filled with a

cocktail of granulation matrix, stem cells and growth factors. In

regions where oxygen is abundantly available (i.e. close to the

cortex in the case of normal fracture healing), the mesenchymal

stem cells will directly differentiate into osteoblasts and form bone

through the intramembranous pathway. In regions where the

oxygen tension is lower (i.e. the central fracture callus in the case of

normal fracture healing), the mesenchymal stem cells will

differentiate to chondrocytes that will form a cartilage template

to mechanically stabilize the fracture. This is followed by

endochondral ossification during which blood vessels and osteo-

blasts are attracted to the central fracture callus, resulting in

degradation of the cartilage template and bone formation. Finally,

the newly formed bone is remodeled (not included in the current

mathematical model).

At the tissue level, the fracture healing process is described by

calculating the spatiotemporal evolution of the density of

mesenchymal stem cells (cm), osteoblasts (cb), chondrocytes (cc),

fibroblasts (cf), bone (mb), cartilage (mc), fibrous matrix (mf),

osteochondrogenic growth factor (gbc), angiogenic growth factor

(gv) and oxygen (n) using 10 non-linear, coupled partial differential

equations of the taxis-diffusion-reaction type. At the cellular level,

the evolution of the discrete vasculature is determined by

sprouting, vascular growth and anastomosis and is modeled by a

lattice-free method. At the intracellular level, an agent-based

model is used to implement the rules that capture the intracellular

dynamics of the Dll4-Notch signaling pathway which determines

tip cell selection during sprouting angiogenesis. The oxygen model

Figure 1. Schematic representation of the multiscale oxygen model. m = mf+mc+mb represents the total tissue density. The intracellular
variables govern the endothelial cell (EC) behavior. At the tissue scale, cells can migrate (only MSCs and fibroblasts), proliferate (circular arrows),
differentiate (vertical arrows), produce growth factors and extracellular matrix. Blood vessels are a source of oxygen which influences proliferation,
differentiation and hypoxia-dependent angiogenic growth factor production. Variables influencing a tissue level process are indicated next to the
corresponding arrow.
doi:10.1371/journal.pcbi.1003888.g001

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects
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includes an accurate description of the oxygen dependency of a

number of cellular processes, namely osteogenic and chondrogenic

differentiation, cell proliferation, cell death, oxygen consumption

and the hypoxia-dependent production of an angiogenic growth

factor. The cellular consumption of oxygen was described using a

Michaelis-Menten kinetic law where the cell-specific maximal

oxygen consumption rate has the following relative cellular order:

chondrocytes,MSCs,osteoblasts,fibroblasts. The oxygen values

at which the considered cell-specific oxygen-dependent processes

occur at maximal rate or at which their rate changes are based on

a rigorous literature screening of the state-of-the-art experimental

knowledge (Figure 2). More specifically, the relative order of the

oxygen dependent processes was determined as accurately as

possible since it is crucial to the behavior of the oxygen model. The

complete description of the set of equations, the boundary and

initial conditions, the parameter values, implementation details as

well as some underlying assumptions and simplifications can be

found in Supporting Text S1 as well as in previous publications

[22,24,25].

The geometrical domain of the fracture callus, as well as the

boundary conditions and initial positions of the endothelial cells

(cv) are shown in Figure 3-B. Note that the periosteum near the

bone ends is considered to be well vascularized such that a

muscular contribution to the vasculature (i.e. the initial position of

the endothelial cells) is unnecessary. To simulate the bone

regeneration process in a large bone defect, the domain was

extended over a distance equal to half the gap size of a murine

critical sized defect (5 mm). The effect of the host environment on

the fracture healing process is explored with several combinations

of boundary conditions, however in the standard compromised

condition the influence of the host environment is neglected

thereby representing the worst-case scenario (Figure 3-B). It has

been shown experimentally that the amount of cells and growth

factors is significantly reduced in a large fracture gap [26,27].

Therefore, in order to simulate this effect, the initial conditions for

the MSCs and osteochondrogenic growth factors were decreased

tenfold to 2.103 cells/ml and 10 ng/ml respectively in the central

callus area (indicated with dots in Figure 3-B). The initial oxygen

tension (ninit) in the central callus area is equal to 3.7%. All other

model parameters as well as initial and boundary conditions were

left unchanged with respect to the normal healing case [23] and

can be found in Supporting Text S1 (Figure 3). Note that the

computational model does not simulate the presence of the

demineralized CopiOs scaffold, which was used to minimize the

soft tissue collapse within the critical size defect. Previous results

have however shown that the demineralized carrier structure does

not contribute nor enhance the bone formation process.

The results of the mathematical model are quantified in terms of

tissue fractions, specified for each part of the fracture callus (i.e.

endosteal, periosteal and intercortical). The tissue fractions are

calculated by the following procedure: first the spatial images are

binarized using tissue-specific thresholds (0 means that the tissue is

not present, 1 means that the tissue is present in a grid cell).

Subsequently, an equal weight is assigned to the different tissues,

i.e. if a grid cell contains three tissues, the area of that grid cell is

divided by three in the final calculations of the tissue (area)

fractions [23].

Results

In silico and in vivo non-union model
A qualitatively similar healing progression is predicted by the

simulation results as observed experimentally (Figures 4 and 5). At

early time points a periosteal reaction, characterized by a

thickening of the periosteal layer (Figures 5-B1, B19 and C1) as

well as the presence of a hematoma, a fibrous-like tissue associated

with the presence of numerous (red) blood cells (Figures 5-B1,

B10), are observed at the cortical host bone site, both supporting

the initial and boundary conditions that were applied in the

multiscale model (Figure 3-B). In the center of the large bone

defect no signs of tissues or infiltration of blood vessels are

detected, only scaffold material together with a low cellularity is

observed (Figures 5-B1-center, C19), corresponding to the predic-

tions of the in silico model (Figure 4-G).

On day 14, a periosteal endochondral ossification reaction is

seen, evidenced by the presence of cartilage (large round cells

staining grey-blue with H&E) and trabecular-like bone (dense

matrix, staining bright pink with H&E, with the clear presence of

embedded osteocytes) (Figures 5-B2, B29; arrow indicates carti-

lage), while direct bone formation occurs endosteally (Figures 5-

B2, B20). The mathematical model predicts a similar distribution

of tissue formation, i.e. direct bone formation near the bony ends

and endochondral ossification further away in the fracture callus

(Figure 4-B,C). In the center of the defect only a highly dense

fibrous tissue is observed in both the experimental, the scaffold

remains stained pink-blue with H&E but lack the presence of

embedded cells (Figure 5-B2-center), as well as the mathematical

model (Figure 4-A). In contrast to the experimental model, the

mathematical model does not predict any blood vessels in the

central callus area (indicated with dots in Figure 3). These vessels,

however, appear to be small and immature whereas the blood

vessels that are associated with the sites of bone formation are large

and mature (compare Figures 5-C2 and C29). This discrepancy

might be explained by the fact that the mathematical framework

only models angiogenesis, i.e. blood vessel growth through the

creation of new vessel branches from existing ones, whereas

vasculogenesis, i.e. de novo network formation from scattered

endothelial cells, is not included here. Indeed, after bone fracture

the hematoma will be filled with blood, containing amongst others

endothelial precursor cells, which could explain the small,

immature blood vessels observed experimentally. We would like

to stress, however, that this is a first hypothesis that is currently

being explored further.

Notice the closure of the bone marrow canal by new bone on

day 56, separating the bone marrow (right) from the scaffold

region (left) (Figure 5-B3, B39, B30). As such, capping of the

bone ends has occurred both in the experimental and the

mathematical model (Figure 4-C). The blood vessels in the

center are still much smaller compared to those near the edges

of the defect (compare Figure 5-C3 and C39). In the center of

the defect no signs of bone formation are detected, only fibrous

tissue is seen, at this time point associated with a very low

cellular content (Figure 5-B3-center). Also in the mathematical

model no additional bone formation is predicted between post

fracture day (PFD) 60 and 90, thereby classifying this fracture

as a non-union [1,2].

After this qualitative validation of the model predictions with

the experimental observations of bone healing in a large defect, the

model was used to understand the mechanisms underlying the

occurrence of fracture non-unions. It appears that in the

mathematical model, chondrogenic differentiation and cell

survival are severely impaired in the central callus area (indicated

with dots in Figure 3) due to the harsh hypoxic conditions (optimal

oxygen tension for chondrogenic differentiation is 3%, minimal

oxygen tension for MSC and chondrocyte survival is 0.5%, see

Figure 2) (Figure 4-D,F). Consequently, the angiogenic growth

factor (gv), which is the major stimulus for vascular growth and as

such endochondral ossification, is not produced in the central

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects
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callus area (Figure 4-E). As a result, the bone healing stops after

capping of the bony ends, resulting in an atrophic non-union

(Figure 4-C). Note that the predicted bone front extents further

into the callus than observed in the in vivo model. This might be

due to some limitations of the computational model. Firstly, in the

current model all the progenitor cells can differentiate towards

both the chondrogenic and osteogenic lineage, depending on the

local growth factor concentrations and oxygen tensions. In reality,

however, it has been shown that the progenitors from the

endosteal callus can only differentiate towards the osteogenic

lineage, resulting in the absence of cartilage in the endosteal callus

[28]. Progenitor cells from the periosteum do have the capability

to differentiate to both lineages, explaining why endochondral

ossification mainly occurs in the periosteal callus [28]. As such, the

current simplification of the model leads to an overestimation of

the amount and the location of the cartilage matrix, resulting in an

overestimation of the predicted bone formation. Secondly, the

current model does not account for changes in callus size and

shape during the healing process which may also influence the

bone formation process.

Figure 2. Overview of the oxygen tensions at which the rate of distinct cellular processes is maximal or changes. Biological processes
that preferentially take place in low oxygen tensions (upper part of Figure 2) will occur in regions where the oxygen tensions will have dropped with
respect to the initial value (e.g. the central fracture zone) while biological processes that preferentially take place in high oxygen tensions (lower part
of Figure 2) will occur in regions where the oxygen tensions will have increased with respect to the initial value (e.g. near the blood vessels of the
periosteal layer). The initial oxygen tension in the central fracture zone is 3.7%.
doi:10.1371/journal.pcbi.1003888.g002
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The defect size of murine bone fractures becomes critical
at 3 mm

After establishing the in silico and in vivo non-union model, the

in silico model was further used to explore the influence of the gap

size on the healing outcome (Figure 6). By increasing the gap size,

the bone tissue fraction at PFD 90 is reduced whereas the cartilage

fraction remains similar (close to zero) and the fibrous tissue

fraction is greatly increased (Figure 6). Although the bone tissue

fraction reaches 84% in a 3 mm defect, there is no cortical

bridging which indicates the formation of a non-union. The

simulation therefore predicts that a murine bone defect becomes

critical at 3 mm. In the remaining part of this study we will focus

on the bone regeneration process in 5 mm defects, in correspon-

dence with the in vivo set-up described above.

The biological potential of the fracture callus is necessary
but insufficient for complete bone healing

Since for all the different gap sizes explored in Figure 6, the

same set of initial and boundary conditions was employed, the

occurrence of fracture non-unions might be attributed to an

Figure 3. Geometrical domain and boundary conditions of the computational model. (A) The geometrical domain considers one-fourth of
the real fracture callus geometry of a critical size defect (assuming symmetry); 1 periosteal callus; 2 intercortical callus; 3 endosteal callus; 4 cortical
bone ends. (B) No-flux boundary conditions are assumed for all variables, except for the mesenchymal stem cells (cm) and fibroblasts (cf) which are
released from the periosteum and surrounding soft tissues near the bony ends as well as the bone marrow [55]; and the osteochondrogenic growth
factor (gbc) which is released from the degrading bone ends and the cortex [56,57]. The central callus area (indicated with dots) is initialized with a
reduced amount of cells (cm,init = 2.103 cells/ml) and growth factors (gbc,init = 10 ng/ml) with respect to the tissues surrounding the bone end
(cm,init = 2.104 cells/ml, gbc,init = 100 ng/ml). The initial oxygen tension (ninit) in the central callus area is 3.7%. The origin of the coordinate system is
placed in the left bottom corner of the geometrical domain.
doi:10.1371/journal.pcbi.1003888.g003

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects
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inadequate vascularization of the central callus region. More

specifically, the ingrowing vasculature which originates from the

bony ends, needs to cover a larger distance in larger defects,

resulting in a too late vascularization of the central fracture area

(Figure 4-G) and consequently harsh hypoxic conditions (Figure 4-

F). As was explained above, these hypoxic conditions lead to cell

death thereby arresting the production of angiogenic growth

factors and ultimately the bone healing process (Figure 4-C).

Clearly, the spatiotemporal patterns of oxygen tension are an

important determinant of successful bone repair which prompted

us to investigate the complex interplay between oxygen delivery,

diffusion and consumption in a critical size defect (5 mm). An

extensive sensitivity analysis was performed on the parameter

values describing the delivery of oxygen (Gn), the diffusion of

oxygen (Dn) and the oxygen consumption by osteoblasts (Qb),

chondrocytes (Qc), MSCs (Qm) and fibroblasts (Qf). Moreover,

since experimental evidence has shown that the biological

potential (e.g. the amount of osteoprogenitor cells and growth

factors present) might be greatly reduced in critical size defects

[26,27], we also explored the influence of the initial conditions

(cm,init, gbc,init, cf,init, mf,init, ninit) in the central callus area

(indicated with dots in Figure 3) on the fracture healing outcome

(Table S1 in the supplementary material).

The initial position of the endothelial cells (see Figure S1 in the

supplementary material), has a small influence on the final bone

tissue fraction (+/22%). This difference can be attributed to a

different spatial filling of the blood vessels in the 2D simulated

geometry and is in the same range as the influence of the stochastic

component in the description of blood vessel migration on the

simulation outcome (+/23%) [24]. Based on these findings, we

consider deviations of more than 2% with respect to 50% of bone

tissue fraction to be sufficient to warrant further analysis. In order to

gain more understanding in the complex non-linear dynamics of the

oxygen model, the mechanisms underlying these significant

deviations were investigated and are discussed in more detail below.

The sensitivity analysis revealed a non-linear influence of the

initial amount of MSCs (cm,init) on the bone tissue fraction at PFD

90. This can be explained by the fact that on the one hand a low

initial concentration of MSCs (cm,init,2.104 cells/ml) reduces the

biological potential of the fracture site since less cells can

contribute to the bone healing process. On the other hand, a

high initial concentration of MSCs (cm,init.2.105 cells/ml) will

Figure 4. The predicted spatiotemporal evolution of fracture healing in a critical sized defect (5 mm). (A) fibrous tissue density (60.1 g/
ml), (B) cartilage matrix density (60.1 g/ml), (C) bone matrix density (60.1 g/ml), (D) chondrocyte density (6106 cells/ml), (E) angiogenic growth factor
(GF) concentration (6100 ng/ml), (F) oxygen tension (61%) and (G) active vasculature.
doi:10.1371/journal.pcbi.1003888.g004
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worsen the detrimental hypoxic conditions in the central callus

region due to the increased amount of oxygen consumption. The

initial concentration of fibroblasts (cf,init) does not show this non-

linear behavior. High initial concentrations of fibroblasts and/or

MSCs are detrimental (cf,init.5.105 cells/ml) since the increased

oxygen consumption will lower the average oxygen tension in the

central callus area. Contrary to the MSCs, low initial concentra-

tions of fibroblasts do not seem to have a major influence on the

final amount of bone formation. This is mainly because fibroblasts

do not contribute to the biological potential of the hematoma as

they cannot differentiate towards the osteogenic or chondrogenic

lineage.

Figure 5. Analysis of healing of large bone defects in the tibia of mice in which a collagen scaffold seeded with periosteal cells was
implanted. (A) Radiographic images of the treated defects (5 mm gap size) showing capping (arrows) of the cortical bone ends, but absence of full
defect healing over the course of 56 days. (B–C) Images of H&E (B) and CD31 (C) stained histological sections of treated bone defects obtained at 3, 14
or 56 days after surgery. H&E provides a general image of the tissues under investigation whereas CD31 specifically stains the blood vessels. The
arrow in B29 indicates cartilage remnants adjacent to new bone tissue. Scale bars: 200 mm and 100 mm (9,0)in B, 100 mm in C. b: cortical bone, p:
periosteal region, e: endosteal region, s: scaffold.
doi:10.1371/journal.pcbi.1003888.g005
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The sensitivity analysis also indicates that the amount of

osteochondrogenic growth factors present in the fracture hema-

toma (gbc,init) is a critical determinant of the final amount of bone

formation. Indeed, increasing the growth factor concentration

results in a significant increase in the amount of bone formation

measured after 90 days of healing. This result can be attributed to

an increased chondrogenic differentiation which limits the oxygen

consumption since chondrocytes consume less oxygen than MSCs.

As such, the central hypoxic area will be reduced leading to more

bone formation.

After the inflammation phase, the fracture callus is filled with

granulation tissue (represented here by mf,init). It appears that a

large amount of granulation tissue negatively influences the

fracture healing outcome which is due to its inhibitory effect at

large matrix densities on the proliferative capacities of MSCs,

fibroblasts, chondrocytes and osteoblasts.

Similar to the initial amount of MSCs also the initial oxygen

tension (ninit) has a non-linear effect on the final amount of bone

formation. Very low oxygen tensions (ninit,0.5%) lead to a larger

hypoxic area and less bone formation whereas oxygen tensions

above 4% (ninit.4%) hamper the proliferation of chondrocytes,

thereby disrupting the cartilage production and consequently the

endochondral ossification process. Interestingly, in the intermedi-

ate range of oxygen tensions (0.5%,ninit,4%), lower initial

oxygen tensions appear to result in more bone formation (Table

S1, 0.7% versus 3.7% oxygen tension of the standard compro-

mised condition). Although intuitively we would expect that these

low oxygen tensions would lead to worse hypoxic conditions,

model analyses show that the average oxygen tension in the

fracture callus remains above 0.8% during the entire healing

period (note that the low oxygen tensions of the central callus area

are averaged with the high oxygen tensions near the bony ends),

which is well above the oxygen threshold for chondrocyte and

MSC cell death (i.e. 0.5%). As such the oxygen tension is low

enough to inhibit extensive proliferation (as the chondrocytes and

MSCs preferentially proliferate at 3% and 4% oxygen tension

respectively, Figure 2) and therefore avoiding too much oxygen

consumption, but high enough to keep a small amount of

remaining stem cells alive. Moreover, the oxygen consumption is

not only reduced due to the smaller amount of consuming cells.

The cellular consumption of oxygen is also oxygen dependent,

leading to a lower cellular consumption in low oxygen environ-

ments. It is the combination of these effects that limits the drop of

the average oxygen tension, allowing the MSCs to survive and

contribute to the bone healing process for a longer period of time

(40 days for case ninit = 0.7% versus 4 days in the standard

condition). A similar reasoning can be made for the case where an

initial gradient of oxygen tensions was applied to the central callus

Figure 6. Predicted tissue fractions at post fracture day (PFD) 90 in bone defects of varying sizes. The 5 mm defect size will be further
investigated in the remaining part of this study. The femurs at the right hand side of the figure schematically represent the bone healing outcome at
PFD 90, i.e. the formation of a union or a non-union.
doi:10.1371/journal.pcbi.1003888.g006
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region (ninit,gr = 0.8%/mm*x). In this simulation the oxygen

tension varied from 0% in the middle of the callus to 4% at the

bony ends. The low oxygen tensions in the central area supported

the maintenance of a small population of MSCs for a longer

period of time (6 days versus 4 days in the standard condition).

This resulted in a larger amount of cartilage and finally bone. Note

that this specific gradient in oxygen tension is less beneficial for the

amount of bone formation at PFD 90 than a uniform distribution

of 0.7%, as in the case of the gradient the oxygen tension in the

middle of the callus is too low to sustain cell viability.

Besides investigating the influence of the initial conditions, the

sensitivity analysis also focused on the complex interplay between

oxygen delivery (Gn), diffusion (Dn) and consumption (Qb, Qc, Qm,
Qf). Altering the oxygen delivery (Gn) by the vasculature has a

large effect on the final amount of bone formation. Very low

values of oxygen delivery increase cell death in the central hypoxic

area, resulting in the absence of any bone formation. Increasing

the value of oxygen delivery slightly improves the fracture healing

outcome. Note that, although the bone tissue fraction is 37% in

case of Gn = 22.10212 mol/cell.day and 55% in case of

Gn = 3.2.10212 mol/cell.day, the spatial extent of bone ingrowth

at PFD 90 is very similar (results not shown). This is however

masked by the increased proliferation and matrix production of

fibroblasts who thrive in the well-oxygenated environment created

by Gn = 22.10212 mol/cell.day. As such, the bone tissue fraction

for Gn = 22.10212 mol/cell.day is reduced with respect to

Gn = 3.2.10212 mol/cell.day. The parameter values of the cell-

specific oxygen consumption rates (Qb, Qc, Qm, Qf) also influence

the outcome of the model significantly. For all cell types, it is

beneficial to reduce the oxygen consumption rates since this will

limit the decrease in oxygen tension in the central fracture area

and consequently the amount of cell death. This benefit is greatest

for the MSCs and chondrocytes as these cell types mainly populate

the central fracture area and contribute to the hypoxic conditions

encountered here. Conversely, the amount of bone formation is

greatly reduced when the oxygen consumption rate of the MSCs

(Qm) or chondrocytes (Qc) is increased. The model outcome is also

negatively affected by a high osteoblastic oxygen consumption rate

(Qb) whereas a high fibroblastic consumption rate (Qf) only slightly

reduces the final amount of bone. In the first case, the oxygen

tension near the bony ends is reduced, resulting in hampered

osteogenic differentiation and limited bone formation. In the latter

case, the fibroblasts reduce the oxygen tension in the entire callus

area (the fibroblasts are initially uniformly distributed in the

fracture callus) but this drop is limited due to the small amount of

fibroblasts present. Interestingly, a similar reasoning does not hold

for the MSCs (although they are also initially uniformly distributed

and limited in cell population) since they mainly grow in the

central fracture zone whereas the fibroblasts optimally proliferate

in a well-oxygenated environment such as the tissues surrounding

the bony ends. As such, a high oxygen consumption rate of MSCs

severely impairs the bone formation process whereas a high

oxygen consumption rate of fibroblasts only slightly reduces the

amount of bone formed at PFD 90.

It can be noticed from Table S1 and Figure S2 that the diffusion

properties of oxygen have a major impact on the simulation

outcome. Reducing the diffusion coefficient of oxygen impairs the

bone formation due to the creation of a larger hypoxic zone

(Figure S2-A,C). Increasing the diffusion coefficient appears to be

beneficial although a closer look at these simulation results reveals

that the endochondral process is not captured correctly anymore

with bone formation largely preceding the ingrowth of new blood

vessels (Figure S2-D,F). Note that also in this case a non-union is

formed, since there is no cortical bridging, even though a bone

tissue fraction of 89% is reached (Table S1). Increasing the

diffusion coefficient even further results in a complete absence of

bone formation since the resulting oxygen tensions are too low for

any cell type to survive (Figure S2-H) (see Supporting Text S3).

In conclusion, we can state that the initial conditions have an

important impact on the final amount of bone formation. They are

however not sufficient to result in complete healing of critical size

defects due to insufficient vascularization of the central callus area,

leading to hypoxic conditions and cell death. As such, an adequate

and timely restoration of the vasculature appears to be an

important determinant of the healing outcome.

Contribution of the muscle vasculature to the
vascularization of the fracture callus is beneficial for bone
healing

Inspired by the importance of a timely vascularization as well as

by the limited biological potential of the fracture hematoma, we

explored the influence of the host environment on the bone

healing process in critical size defects. It appears that the fracture

healing process is intimately linked to the surrounding muscle

envelope since clinical evidence has found that open fractures with

significant muscle injury complicate fracture healing and are a risk

factor for the development of non-unions [5–7]. Moreover, tibial

shaft fractures, which are only covered by a thin layer of soft tissue,

are prone to a number of complications often resulting in

additional surgical interventions [5,9,29]. There are a number of

ways by which the skeletal muscle can contribute to the bone

healing process. Firstly, experimental studies have shown that

blood vessels originating in the overlying muscle contribute to the

vascularization of the fracture callus [30,31]. Secondly, muscle

cells are a source of growth factors (e.g. FGF-2, TGF-b) [32] as

well as progenitor cells [33–35]. Thirdly, the muscle envelope

might provide the adequate biomechanical stimuli required for

successful bone healing [36,37].

In order to further unravel the potential mechanisms of

interaction that exist between the bone regeneration process and

the overlying skeletal muscle, the role of the skeletal muscle as a

source for vascularization, progenitor cells and growth factors or a

combination thereof was investigated by applying different

boundary conditions to the in silico model (Figure 7–8). More

specifically, the contribution of the muscle to the vascularization of

the fracture callus was simulated by initializing additional

endothelial cells on the border of the central callus area with the

muscle, either partially or fully covering the fracture gap. The

influence of the muscle as a source of MSCs or growth factors was

represented by a Dirichlet boundary condition, applied to the

upper border for the entire duration of the simulation (i.e. 90 days)

and fully covering the fracture gap (Figure 7). The value of the

Dirichlet boundary conditions is equal to the ones applied in the

standard case, i.e. 2.104 cells/ml for the MSCs and 2 mg/ml for

the osteochondrogenic growth factors [25,38–40]. Since the

mathematical model does not take into account any mechan-

oregulatory stimuli, the influence of mechanoregulatory stimuli

generated by the overlying muscle on the bone formation

processes cannot be evaluated in this study.

The results, summarized in Figure 8, underline the importance

of the host environment for successful fracture healing since all the

investigated conditions improve the amount of bone formation

with respect to the standard condition or result even in bridging of

the critical size defect. Note that the host environment is also more

efficient in stimulating the bone regeneration process than the

initial conditions tested in Table S1, since the host environment

continuously provides the fracture callus with fresh growth factors,

cells and blood vessels (or a combination thereof) whereas the
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initial conditions represent only a single (initial) contribution to the

bone regeneration process. In order to limit the length of the

paper, we will touch upon the most important findings of Figure 8

and refer the reader to Supporting Text S4 for an in depth

discussion of the results. Both the contribution of the muscle as a

source of vascularization (case A) as well as of osteoprogenitor cells

(case D) results in the formation of a union, whereas a partial

supply of blood vessels from the host environment (case B) or

muscle derived release of osteochondrogenic growth factors fails to

result in a complete bridging of the defect (Figure S3). In most

cases, except for cases E and G, the combination of two or more

boundary conditions enhances the bone formation process.

Indeed, the combined delivery of cells and growth factors results

in less bone formation (case E) than the delivery of cells alone (case

D). Figure 8 also shows that without vascular ingrowth from the

muscular environment, the delivery of cells results in the largest

amount of bone formation (case C versus case D). However, if the

fracture callus is fully or partially vascularized by the overlying

muscle, the delivery of growth factors is more beneficial than the

delivery of cells for the final healing outcome (case F versus G, case

I versus J).

In conclusion, we can state that the contribution of the host

environment, and more specifically its role as a source of

vascularization is critical for successful bone healing. Interestingly,

the results indicate that the lack of adequate vascularization can be

rescued by a continuous delivery of osteoprogenitor cells,

potentially in combination with osteochondrogenic growth factors.

Treatment strategies for critical size defects in a
permissive host environment

Intrigued by the results of the previous section, we wondered if

the lack of adequate vascularization could also be rescued by a

single contribution of (more optimal) initial conditions. Or, from

another perspective, whether the initial conditions that were

insufficient to result in successful bone healing in a compromised

environment (Table S1), would be able to stimulate the bone

regeneration process more in a permissive host environment. In

order to answer this question, we use the model in which the

fracture callus is partially supplied by blood vessels from the

overlying muscle (case B, Figure S3) since this environment is not

as compromised as the standard compromised condition (Table

S1) but nevertheless results in the formation of a non-union

without additional cells or growth factors (Figure 8, case B). We

tested three potential treatment strategies: the injection of growth

factors, the injection of cells and the injection of a combination

product. All the injections take place at day zero, making them

initial conditions (Figure 9).

According to the results of Figure 9, all the treatment strategies

yield at least the same (within 2% of intrinsic variability) or more

bone formation than a non-treated fracture in a permissive

environment. Moreover, the permissive environment is clearly

beneficial since the amount of bone formation is increased with

respect to the compromised environment for all the treatment

conditions (Table S1).

The injection of precursor cells does not significantly improve

the bone healing outcome since the vascularization of the central

callus area is still delayed, resulting in hypoxic conditions and cell

death (Figure 11). The injection of osteochondrogenic growth

factors is able to heal the critical size defect surrounded by a

muscular envelope that partially contributes to its vascularization if

the concentration is sufficiently high (Figures 9–10–11). The

mechanism of action underlying this result can be explained as

follows. The large initial concentration of growth factors will lead

to the differentiation of the osteoprogenitor cells into chondro-

cytes, which consume less oxygen than MSCs. Consequently, the

pool of oxygen-consuming MSCs is reduced thereby limiting the

oxygen consumption. As such, a large initial concentration of

growth factors makes the hypoxic area shrink, finally leading to the

successful healing of the critical size bone defect (Figure 11).

The injection of the combination product has improved the

amount of bone formation but is not as beneficial as osteochon-

drogenic growth factor injections alone (Figures 9–10–11). Indeed,

Figure 7. Schematic representation of the different boundary conditions that were applied to the critical size defect. (A) full vascular
contribution of the overlying muscle (case A, Figure 8) (B) partial vascular contribution of the overlying muscle (case B, Figure 8) (C) Dirichlet
boundary condition of osteochondrogenic growth factors (case C, Figure 8) (D) Dirichlet boundary condition of MSCs (case D, Figure 8). The origin of
the coordinate system is placed in the left bottom corner of the geometrical domain.
doi:10.1371/journal.pcbi.1003888.g007
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the growth factor concentration is not high enough to commit the

entire population of MSCs to the chondrogenic lineage. As such, a

small amount of MSCs remains undifferentiated and can continue

to proliferate and consume oxygen. Since MSCs consume more

oxygen than chondrocytes, the remaining MSC pool increases the

drop in oxygen tension and consequently cell death. As a result,

the amount of bone formation is lower than in the case of growth

factor treatment alone.

The predictions of the mathematical model are compared with

the results of the in vivo set-up where the influence of BMP-2

overexpressing periosteal cells on bone formation in large defects

was explored. Defects, treated with a collagen scaffold containing

mPDCs, thereby mimicking the initial conditions of the compu-

tational model, show little bone formation (Figure 12-B), which is

also predicted by the mathematical model (Figure 9, standard

permissive condition). Interestingly, while defects treated with

mPDCs show no presence of bone or cartilage in the center of the

defect (Figure 12-C1), large amounts of bone and the presence of

cartilage (arrow) and bone marrow are noted in the defects treated

with BMP-2 overexpressing mPDCs (Figure 12-C2, C3). Clearly,

the presence of BMP-2 enhances the bone formation process

which results in a clinical union. Similarly, the computational

model predicts that the injection of only growth factors is sufficient

to heal a large defect in a permissive environment (Figure 9,

gbc,init). Note, however, that in the experimental set-up BMP-2

overexpressing cells are implanted whereas computationally an

initial bolus injection of growth factors is simulated.

In the experimental model, the sites of bone formation are

closely associated with numerous large blood vessels (indicated in

dark brown by the CD31 staining, Figure 12-C5, C6), in contrast

to the small blood vessels observed in the center of the defects

treated with mPDCs only (Figure 12-C4). In the mathematical

model, the blood vessel formation is also closely connected to the

bone formation process (Figure 10). In the central callus area we

hypothesize that the small blood vessels observed in vivo arise

through vasculogenesis, which is not accounted for in the

mathematical model. However, since these small blood vessels

appear to be immature and not associated with bone formation,

the mathematical model does predict the correct tissue distribution

in the central callus area even in the predicted absence of small

blood vessels. As expected, no blood vessels are observed at the site

of cartilage formation (Figure 12-C5, arrow).

Figure 8. Influence of the muscle as a source for vascularization, MSCs, growth factors or a combination thereof on the bone
regeneration process. The tissue fractions are measured at post fracture day (PFD) 90. The standard condition is indicated in bold and has the
following dimensionalized parameter values for the initial conditions in the central area of the fracture callus: cm,init = 2.103 cells/ml, gbc,init = 10 ng/ml,
cf,init = 1.104 cells/ml, mf,init = 0.01 g/ml, ninit = 3.7%. Table S2 summarizes the tissue fractions quantitatively.
doi:10.1371/journal.pcbi.1003888.g008
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While the influence of the amount of seeded cells alone or in

combination with BMP-2 overexpression was not explored

experimentally, the computational simulations predicted an

improvement in the amount of bone formation but not a complete

healing of a large bone defect (Figure 9, cm,init and cm,init/gbc,init).

Note that in a compromised environment, a large defect will

develop into a non-union, irrespective of a growth factor treatment

(Table S1, standard compromised condition), whereas in an

environment with full vascular ingrowth from the overlying

muscle, a union will develop, irrespective of a growth factor

treatment (Figure 8, case A). As such, since the computational

predictions of the growth factor treatment in a permissive

environment reproduce the in vivo observations correctly, one

may speculate that the muscle overlying the large defect in the in
vivo set-up partially contributed to the vascularization of the

fracture callus and consequently the bone healing process. Further

characterization of the origin of the vasculature growing towards

the defect area would be required to confirm this.

From the results discussed above, we can conclude that a single

injection of osteochondrogenic growth factors is able to compen-

sate for the lack of adequate vascularization. Since a single

injection of cells fails to promote complete bridging of the critical

size defect in a permissive environment, a sequence of cellular

injections might be more appropriate strategy.

Treatment strategies for critical size defects in a
compromised host environment

Finally, we used the in silico model to optimize the treatment

strategy of the previous section for critical size defects surrounded

by a compromised host environment. As can be concluded from

Table S1, the lack of muscular contribution to the vascularization

of the fracture callus as well as of osteoprogenitor cells or growth

factors, greatly hampers the bone regeneration process and results

in the formation of a non-union. Furthermore, the initial

conditions can be tuned to improve the amount of bone formation

but are insufficient to provide complete healing of the critical size

defect (Table S1). This was attributed to the delayed vasculariza-

tion of the central callus area, leading to hypoxia and cell death. In

order to improve the limited biological potential of the fracture

callus and host environment, additional progenitor cells or growth

factors can be injected in the fracture callus. However, cellular

strategies would miss their therapeutic target if injections would

take place at day 0, since cell survival would be very limited in

these challenging hypoxic conditions. Therefore, we investigated

whether a single injection of MSCs, osteochondrogenic growth

factors or a combination thereof at a later time point would

improve the bone healing outcome, as in this way the blood vessel

network will have restored at least partially (Figure 13).

As can be seen in Figure 13, the injection of osteochondrogenic

growth factors does not improve the bone healing outcome, except

at PFD 0. This can be attributed to the increased chondrogenic

differentiation and consequently limited oxygen consumption, as

was discussed previously. At the other time points, the delay in

vascularization of the central callus area results in hypoxia and cell

death. Consequently, the injection of additional growth factors is

to no avail since there are no cells present on which they can exert

their influence. Interestingly, the time at which the MSCs or the

combination product was injected, appears to be a critical

Figure 9. Results of three types of treatment strategies in a permissive host environment where the overlying muscle partially
contributes to the vasculature of the fracture callus. The tissue fractions are measured at PFD 90. The standard condition is indicated in bold and
has the following dimensionalized parameter values for the initial conditions in the central area of the callus: cm,init = 2.103 cells/ml, gbc,init = 10 ng/ml,
cf,init = 1.104 cells/ml, mf,init = 0.01 g/ml, ninit = 3.7%. Table S3 summarizes the tissue fractions quantitatively.
doi:10.1371/journal.pcbi.1003888.g009
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determinant for the final amount of bone formation. If the cellular

treatment is administered before PFD 35, the amount of bone is

reduced (compared to no treatment) since the additional cells

increase the oxygen consumption thereby worsening the hypoxic

conditions in the central callus area. One can notice a further

decrease of the effectiveness of the cellular treatment (cells only as

well as the combination with growth factors) for injections at PFD

7 and 14. This can be related to the oxygen tension encountered in

the central callus area at the time of injection, and the fact that this

oxygen tension evolves with time. More specifically, at PFD 0 the

oxygen tension has dropped only slightly and at PFD 28 the

vasculature is already growing into the fracture callus so that in

both cases the oxygen tension in the central callus area is able to

support the injected cells. At intermediate time points, however,

the oxygen tension is too low to support the injected cells,

explaining why injections at PFD 7 and 14 are the least effective. If

cells are administered at PFD 35, the delay of 35 days between the

occurrence of the fracture and the start of the cellular therapy

allows for a partial restoration of the blood vessel network, which

seems to be optimal for the injection of cells only. The effectiveness

of the combination product, however, continues to increase when

the treatment is further postponed (up to day 56). The non-

linearities in the predicted bone tissue fractions as a function of

time of administration, as well as the discrepancy in optimal timing

between the cellular and combination treatment can again be

explained by the evolving oxygen tension of the central callus area

which gradually increases as a function of time through a

combination of oxygen release from the active vasculature and

passive diffusion. More specifically, the average oxygen tension in

the central callus area of a large non-treated defect surrounded by

a compromised environment increases from 2.2% at 35 days, to

3% at 42 days, 3.9% at 49 days, 5.6% at 56 days and 6.2% at 63

days. At PFD 35 both the oxygen tension as well as the

osteochondrogenic growth factor concentration are low in the

central callus area so that only limited chondrogenic differentia-

tion occurs upon injection of MSCs. However, the low oxygen

tension inhibits extensive cellular proliferation (avoiding too much

oxygen consumption), resulting in a small amount of ‘‘quiescent’’

stem cells (similar to ninit = 0.7%, Table S1). When the oxygen

tension in the central callus area subsequently increases to 3%, the

Figure 10. The predicted spatiotemporal evolution of fracture healing in a permissive environment after different treatments. (i)
bone matrix density (60.1 g/ml), (ii) active vasculature during fracture healing in a permissive environment after an injection of osteoprogenitor cells
(cm,init = 2.105 cells/ml), growth factors (gbc,init = 1.103 ng/ml) or a combination thereof (Figure 9).
doi:10.1371/journal.pcbi.1003888.g010
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remaining MSCs differentiate to chondrocytes and contribute to

the bone regeneration process. As such, there are two bursts of

chondrogenic differentiation which results in an increased amount

of bone formation. If the cellular administration occurs after PFD

35 the increased oxygen tension will enhance the chondrogenic

differentiation, thereby reducing or even eliminating the pool of

‘‘quiescent’’ stem cells. As such the proliferation and survival of the

newly formed chondrocytes will mainly determine the extent of the

bone formation. Since the average oxygen tension in the central

callus area is higher at PFD 56 and 63 than at PFD 49, more bone

will be formed for cellular injections in the former two cases,

compared to PFD 49.

By combining osteochondrogenic growth factors with stem cells,

all the injected MSCs will directly become chondrocytes thereby

depleting the pool of osteoprogenitor cells, irrespective of the

starting time of the treatment. Similar to the cellular treatments

started after PFD 35 the proliferation and survival of the

chondrocytes will mainly determine the extent of the bone

formation. It appears that the average oxygen tension at PFD 56

results in an optimal proliferation and survival of the chondrocytes

and hence subsequent endochondral bone formation. At PFD 63

the average oxygen tension becomes too high for optimal

chondrocytic proliferation thereby reducing the amount of bone

formation.

According to the model results, cellular injections are only

effective if delayed until a specific time point (i.e. day 35,

Figure 13) in order to allow for a partial restoration of the blood

vessel network. Note that although the cellular as well as the

Figure 11. The predicted spatiotemporal evolution of fracture healing in a permissive environment after different treatments. (i)
chondrocyte concentration (6106 cells/ml), (ii) growth factor concentration (6100 ng/ml) and (iii) oxygen tension (61%) during fracture healing in a
permissive environment after an injection of osteoprogenitor cells (cm,init = 2.105 cells/ml), growth factors (gbc,init = 1.103 ng/ml) or a combination
thereof (Figure 9). Note that the scale of the chondrocyte concentration is different from the one displayed in Figure 4.
doi:10.1371/journal.pcbi.1003888.g011
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Figure 12. Implantation of periosteal cells overexpressing the osteochondrogenic growth factor BMP-2 promotes healing of large
bone defects in mice. (A–B) Radiographic analysis (A) and mCT-based quantification (B) of bone formation in large bone defects treated with
collagen scaffolds containing periosteal cells (mPDC; n = 3) or periosteal cells overexpressing BMP2 (mPDC+BMP2; n = 5) showing the clear positive
effect of the presence of BMP2 on bone healing (*p,0.05). (C) Histological sections of defects treated with mPDC or mPDC+BMP2 at day 56 after
surgery, H&E (1–3) and CD31 (4–6) stainings are shown. All images were taken in the central region of the defect. Arrows indicate small regions of
cartilage adjacent to the newly formed bone. Scale bars: 100 mm. b: bone, bm: bone marrow, s: scaffold.
doi:10.1371/journal.pcbi.1003888.g012

Figure 13. Predicted amount of bone formation at PFD 90 in a large defect surrounded by a compromised environment as a
function of the PFD at which the treatment was initiated. The treatment consists of a single injection of cells (cm = 1.106 cells/ml), growth
factors (gbc = 1.103 ng/ml) or a combination thereof. The results of injections at PFD 0 can also be found in Table S1.
doi:10.1371/journal.pcbi.1003888.g013
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combination treatment lead to an increased amount of bone

compared to no treatment (provided the injection is sufficiently

delayed), they nevertheless result in the formation of a non-union

(with a maximal amount of bone at 90 days up to 80% and 85%

respectively). As such, a single injection is insufficient and future

research should focus on an optimal sequence of injections in

order to heal critical sized defects in a compromised environments.

Discussion

This study has used an integrative in vivo - in silico approach to

investigate the occurrence of oligotrophic and atrophic non-unions

as well as to design possible treatment strategies thereof. An

extensive sensitivity analysis was performed in order to study the

complex interplay of blood vessel formation, oxygen supply,

growth factors and (osteoprogenitor) cells on the final healing

outcome in large bone defects. The results of the sensitivity

analysis indicated that the initial conditions (osteochondrogenic

growth factor, MSCs, oxygen) are necessary for the bone

regeneration process but not sufficient for complete bone healing

of a critical size defect (5 mm). They do, however, have an

important impact on the final amount of bone formation.

Interestingly, simulation results of the same oxygen model in a

small defect (0.5 mm) were found to be robust to changes in the

initial conditions [23].

Although the performed sensitivity analysis yields interesting

results, the interpretation thereof should be done carefully due to a

number of reasons. For example, the sensitivity analysis that was

performed in this study (Table S1) used a one-at-a-time (OAT)

design, where the effect of one factor is assessed by varying the

value of only that factor and keeping all other factors fixed. The

main disadvantage of this simple method is its inability to capture

interactions between factors. A simple combination of the

‘optimal’ values of initial conditions (see Table S1: the value that

for an OAT design yielded the most bone at PFD 90) indicates for

instance that a more adequate design is necessary to unravel these

(non-linear) interactions between the different parameters of the

oxygen model. Indeed, combining the ‘optimal’ initial conditions

of MSCs (cm,init), fibroblasts (cf,init), osteochondrogenic growth

factors (gbc,init) and oxygen (ninit) results in 38% of bone after 90

days which is less than for the respective ‘optimal’ initial conditions

alone. The conclusions of the sensitivity analysis are also only valid

for this specific set of parameter values since, for example, the

optimal initial oxygen tension will vary depending on the initial

stem cell concentration. Despite its limitations, the OAT-design

already indicates some interesting non-linear responses of the

model with respect to the initial MSC cell density and the oxygen

tension as well as their interactions. Future work should focus on

more complex designs, including latin hypercube design and

uniform design [41], to calculate quantitative metrics of sensitivity

and study these non-linearities and (higher-order) parameter

interactions further in order to unravel the underlying mechanisms

and define new research hypotheses.

The dynamics of all cellular variables (apart from the

endothelial cells) is described by means of continuum equations,

meaning amongst others that cell proliferation was captured by

means of a logistic growth equation. While this equation accounts

for a maximal cell density in the callus area, it does not allow to

specify an upper limit to the number of division cycles a cell (such

as an MSC) can undergo before senescence. Because of this upper

limit, in reality the amount of cells that can be obtained through

division is dependent on the original pool size whereas in the

mathematical model, a single cell can theoretically divide until the

entire callus reaches maximal cell density. The main consequence

of this limitation is that our predictions might be too optimistic in

that fracture healing might be even more challenging in reality,

because a sufficient number of cells (such as MSCs) cannot be

reached to heal the fracture. In the future we will try to implement

a description that allows to account for a limited number of

population doublings, potentially through the extension of the

agent-based description of endothelial cells to the skeletal cell

types.

Even though the predictions of the current model might be too

optimistic, all of the conditions explored in Table S1 nevertheless

resulted in the formation of a non-union. Indeed, the simulation

predicts that a murine bone defect becomes critical at 3 mm

(Figure 6) which corresponds to the experimental observation of

Zwingenberger et al. [42]. They report the creation of a persisting

femoral bone defect in nude mice when the defect size is 3 mm

[42]. The predicted value is also in the same range as other mouse

femoral critical defect sizes reported in the literature: 2 mm [43],

3.5 mm [44] and 4 mm [45]. As such, the computational

framework is able to model the occurrence of non-unions and

can be used to design several treatment strategies depending on

the host environment. In our model, a single initial (i.e. at PFD 0)

injection of osteochondrogenic growth factors at sufficiently high

concentration (gbc,init = 1 mg/ml) directly into a callus surrounded

by a permissive environment resulted in complete healing of the

critical size defect (Figure 9). The beneficial effect of growth factor

delivery was also confirmed by the study of Patel et al. [46]. They

report that the BMP-2 release from gelatin microparticles

incorporated within the pores of a scaffold that was implanted

within a 8 mm rat cranial critical defect resulted in significantly

higher bone formation after 12 weeks, i.e. 37.4618.8% (test)

versus 7.867.1% (control) bone volume respectively. Similar

conclusions were made by Willett et al. who studied the influence

of recombinant human BMP-2 (rhBMP-2) delivery on tissue

regeneration in a murine composite injury model [47]. The in vivo
composite injury model consisted of a critically sized femoral bone

defect and an adjacent volumetric muscle injury in the quadriceps

(both 8 mm) [47]. They have shown that treated bone defects

without volumetric muscle loss were consistently bridged whereas

the treatment failed to promote the regeneration process in the

challenging composite injury [47]. Although care must be taken

when directly comparing these findings to our in silico results

(since the exact role of the muscle in the in vivo setting of Willett

et al. was not characterized), they do predict the same trends.

Indeed, the multiscale model predicts a successful healing in the

case of growth factor administration to a critical sized defect that is

fully or partially supplied by blood vessels from the overlying

muscle (Figure 9). In contrast, in a compromised environment

where the role of the muscle as a source of vascularization is

lacking, additional injections of growth factors, either at PFD 0

(Table S1) or at later time points (Figure 13) do not induce bony

bridging of the large bone defect.

In large bone defects not only the initial concentration of growth

factors but also the initial amount of osteoprogenitor cells might be

reduced [26,27]. Consequently, the use of stem cells for the

treatment of critical size defects is actively being pursued [48]. The

injection of MSCs in the callus area elicited an improved healing

response (although without reaching full bridging) in silico if the

environment is sufficiently vascularized to sustain the cell viability,

which according to the model meant that injections were only

effective if delayed until a certain time point (day 35 according to

Figure 13). Similar conclusions were drawn by Geris et al. who

investigated the occurrence of bone atrophic non-unions by an

integrative approach [49]. Based on the recovery of the blood

supply to the interfragmentary gap, they predicted with an in silico
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model that the injection of MSCs at three weeks post-osteotomy

would prevent the onset of an atrophic non-union which was also

confirmed by experimental results [49]. The necessity of

vascularization for successful healing of challenging critical size

defects is also substantiated by the results of Table S1 (no

contribution of the overlying muscle to the vasculature) and

Figure 9 (partial contribution of the overlying muscle to the

vasculature), where an initial injection (i.e. at PFD 0) of additional

cells in a defect that is insufficiently vascularized does not

significantly improve the bone formation outcome. As such, the

mathematical model retrieves the beneficial effect of cellular

injections in some cases, similar to the experimental observations

reported in literature [50,51], although the effectiveness is strongly

dependent on the available vasculature.

Interestingly, the model results indicate that the effectiveness of

a therapy (consisting of the injection of cells, growth factors or a

combination thereof) is dependent on the timing of the treatment

as well as the host environment. The former effect is strongly

related to the biological potential of the fracture callus at the time

the treatment is applied, while the latter potentially constitutes a

source of additional osteoprogenitor cells, growth factors or

vascularization. For example, growth factor injections at PFD 0

or at later time points in a compromised host environment lead to

only 63% and 52% of bone respectively whereas growth factor

injections at PFD 0 in a permissive environment result in the

formation of a union. In all three cases the main cause underlying

the formation of a non-union in a large defect (without treatment)

is the increased cell death in the central (hypoxic) callus area. Since

growth factor injections at PFD 0 result in increased chondrogenic

differentiation, which in turn limits the oxygen consumption and

the decrease of oxygen tension (severity of hypoxia), this treatment

increases the amount of bone formation. Note that nevertheless a

hypoxic area arises which results in the formation of a non-union.

Consequently, a permissive environment that provides additional

vascular ingrowth, improves the bone formation outcome even

further. Growth factor injections at later time points in a

compromised environment are, however, to no avail since there

are no cells left in the central callus area.

In summary, we can state that a treatment will be most

beneficial if it tackles the underlying mechanism of action causing

the hampered bone formation. Although this statement seems a

logical and intuitive design rule, the underlying mechanisms of

actions are a result of the complex non-linear, oxygen-dependent

dynamics of blood vessel formation, oxygen supply, angiogenic

growth factor production, cell differentiation, cell proliferation and

oxygen consumption. The fact that many cellular processes, like

survival, proliferation and differentiation are (non-linearly) depen-

dent on oxygen tension and that they all have a specific range of

Figure 14. Schematic overview of the complex spatiotemporal interplay between the amount of oxygen, growth factors and cells
as well as the gap size, the host environment and the administered treatments.
doi:10.1371/journal.pcbi.1003888.g014
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oxygen tension at which they are ‘optimized’ (maximally affected)

(Figures 1–2), makes it virtually impossible to intuitively predict

the resulting bone healing outcomes. Instead, it requires a rigorous

computational modelling of the governing mechanisms and

dependencies (Figure 14).

Taken all the results together, we can conclude that complete

cortical bridging of a challenging critical size defect will only occur

if growth factors, osteoprogenitor cells and vasculature are present

at the same time and place (Figure 14). Indeed, the blood vessels

will supply the necessary oxygen to ensure cellular survival

whereas the growth factors will promote the correct differentiation

cascade finally resulting in the continuation and successful

completion of the bone regeneration process. Consequently, the

most stringent factor that is lacking in a certain area or at a certain

time point will be an ideal candidate for potential treatment

strategies. For example, bone tissue engineering treatments where

a scaffold seeded with cells and osteochondrogenic growth factors

is implanted in a bone defect, should focus on a timely

vascularization in order to ensure the survival of the implanted

cells. Potential strategies of vascularization include the induction of

a Masquelet-membrane [52,53], the delivery of angiogenic growth

factors [46] as well as the in vitro creation of a pre-vascularized

construct by co-culture of osteoprogenitor cells with endothelial

cells [54]. Encouraging results were for example obtained by Patel

et al. who showed that the dual release of vascular endothelial

growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2)

in a 8 mm rat cranial critical size defect enhanced the bone

formation at 4 weeks, suggesting a synergistic effect of these growth

factors during early bone regeneration [46]. Note that besides the

biological stimuli also mechanoregulatory stimuli influence the

bone formation process [36,37]. The current multiscale model

does not take this into account, meaning amongst others one

assumes that the fracture is sufficiently stabilized through external

or internal fixation such that excessive loading will not play a role

in the formation of a non-union (Supporting Text S2).

In conclusion, the multiscale oxygen model was able to capture

the essential aspects of in vivo atrophic and oligotrophic non-

unions. Interestingly, thorough model analyses assisted in under-

standing the underlying mechanisms of action, i.e. the delayed

vascularization of the central callus region resulted in harsh

hypoxic conditions, cell death and finally disrupted bone healing.

Since a timely vascularization was found to be critical for the

successful healing of large bone defects, the oxygen model was

used to design and test potential treatment strategies for both

permissive and compromised host environments. A qualitative

correspondence between the predicted outcomes of certain

treatment strategies and experimental observations was obtained,

clearly illustrating the model’s potential. Furthermore, the results

of this study demonstrate that due to the complex non-linear,

oxygen-dependent dynamics of blood vessel formation, oxygen

supply, angiogenic growth factor production, cell differentiation,

cell proliferation and oxygen consumption, it becomes virtually

impossible to determine the effectiveness of a treatment strategy

intuitively thereby underlining the importance computational

modelling tools. Moreover, the model predictions also showed

that the effectiveness of a therapy is strongly influenced by the host

environment since it can serve as a source of additional

osteoprogenitor cells, growth factors or vascularization to populate

the fracture callus and increase the biological potential thereof.

Consequently, future research should focus on extensive experi-

mental characterization as well as computational modelling of the

host environment and its interaction with potential treatment

strategies.

Supporting Information

Figure S1 Graphical representation of the initial posi-
tion of the ECs for six different simulation cases.

(TIF)

Figure S2 The predicted spatiotemporal evolution of
fracture healing in a critical sized defect (5 mm) for
different values of the diffusion coefficient of oxygen. (A–

D–G) bone matrix density (60.1 g/ml), (B–E–H) oxygen tension

(61%) and (C–F–I) active vasculature for different values of the

diffusion coefficient of oxygen (Dn): (A–B–C) 2.10213 m2/s, (D–E–

F) 2.10211 m2/s, (G–H–I) 2.10210 m2/s (Table S1).

(TIF)

Figure S3 The predicted spatiotemporal evolution of
fracture healing in different host environments. (i) bone

matrix density (60.1 g/ml), (ii) active vasculature. (case A) the

overlying muscle fully contributes to the ingrowing vasculature,

(case B) the overlying muscle partially contributes to the ingrowing

vasculature, (case C) the overlying muscle produces growth factors

over the entire length of the gap and (case D) the overlying muscle

delivers osteoprogenitor cells over the entire length of the gap

(Figure 8).

(TIF)

Table S1 Overview of the results of the sensitivity
analysis on the initial conditions and the parameter
values describing oxygen delivery, oxygen diffusion and
oxygen consumption.

(DOCX)

Table S2 Influence of the muscle as a source for
vascularization, MSCs, growth factors or a combination
thereof on the bone regeneration process.

(DOCX)

Table S3 Results of three types of treatment strategies
in a permissive host environment where the overlying
muscle partially contributes to the vasculature of the
fracture callus.

(DOCX)

Text S1 Description of the mathematical model.

(DOCX)

Text S2 Estimation of the interfragmentary strains.

(DOCX)

Text S3 Influence of the diffusion coefficient of oxygen.

(DOCX)

Text S4 Influence of the host environment.

(DOCX)

Author Contributions

Conceived and designed the experiments: AC NvG LG GC HVO.

Performed the experiments: AC NvG. Analyzed the data: AC NvG LG

GC HVO. Contributed reagents/materials/analysis tools: AC NvG LG

GC HVO. Wrote the paper: AC NvG LG GC HVO.

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects

PLOS Computational Biology | www.ploscompbiol.org 19 November 2014 | Volume 10 | Issue 11 | e1003888



References

1. Roberts TT, Rosenbaum AJ (2012) Bone grafts, bone substitutes and
orthobiologics The bridge between basic science and clinical advancements in

fracture healing. Organogenesis 8: 114–124.

2. Marsh D (1998) Concepts of fracture union, delayed union, and nonunion. Clin
Orthop Relat Res S22–S30.

3. Rodriguez-Merchan EC, Forriol F (2004) Nonunion: General principles and

experimental data. Clinical Orthopaedics and Related Research 4–12.

4. Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of

Compromised Fracture Healing. Journal of the American Academy of

Orthopaedic Surgeons 20: 273–282.

5. Fong K, Truong V, Foote CJ, Petrisor B, Williams D, Ristevski B, Sprague S,

Bhandari M (2013) Predictors of nonunion and reoperation in patients with

fractures of the tibia: an observational study. Bmc Musculoskeletal Disorders 14:
103.

6. Krettek C, Schandelmaier P, Tscherne H (1995) Nonreamed Interlocking

Nailing of Closed Tibial Fractures with Severe Soft-Tissue Injury. Clinical
Orthopaedics and Related Research 34–47.

7. Cross WW, Swiontkowski MF (2008) Treatment principles in the management

of open fractures. Indian Journal of Orthopaedics 42: 377–386.

8. Cameron J, Milner D, Lee J, Cheng J, Fang N, et al. (2013) Employing the

Biology of Successful Fracture Repair to Heal Critical Size Bone Defects. In:

Heber-Katz E, Stocum DL, editors. New Perspectives in Regeneration. Springer
Berlin Heidelberg. pp. 113–132.

9. Dickson KF, Katzman S, Paiement G (1995) The importance of the blood

supply in the healing of tibial fractures. Contemp Orthop 30: 489–493.

10. Bak B, Andreassen TT (1989) The effect of aging on fracture healing in the rat.

Calcif Tissue Int 45: 292–297.

11. Day SM, DeHeer DH (2001) Reversal of the detrimental effects of chronic
protein malnutrition on long bone fracture healing. J Orthop Trauma 15: 47–

53.

12. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and
inflammatory conditions. Nat Rev Rheumatol 8: 133–143. nrrheum.2012.1

[pii];10.1038/nrrheum.2012.1 [doi].

13. Nikolaou VS, Efstathopoulos N, Kontakis G, Kanakaris NK, Giannoudis PV
(2009) The influence of osteoporosis in femoral fracture healing time. Injury 40:

663–668. S0020-1383(08)00495-6 [pii];10.1016/j.injury.2008.10.035 [doi].

14. Stinchfield FE, Sankaran B, Samilson R (1956) The Effect of Anticoagulant
Therapy on Bone Repair. Journal of Bone and Joint Surgery-American Volume

38: 270–282.

15. Altman RD, Latta LL, Keer R, Renfree K, Hornicek FJ, Banovac K (1995)
Effect of nonsteroidal antiinflammatory drugs on fracture healing: a laboratory

study in rats. J Orthop Trauma 9: 392–400.

16. Hulth A (1989) Current concepts of fracture healing. Clin Orthop Relat Res
265–284.

17. Geris L, Vander SJ, Van Oosterwyck H (2009) In silico biology of bone

modelling and remodelling: regeneration. Philos Transact A Math Phys Eng Sci
367: 2031–2053. 367/1895/2031 [pii];10.1098/rsta.2008.0293 [doi].

18. Isaksson H (2012) Recent advances in mechanobiological modeling of bone

regeneration. Mechanics Research Communications 42: 22–31.

19. Pivonka P, Dunstan CR (2012) Role of mathematical modeling in bone fracture

healing. BoneKEy Rep 1. 10.1038/bonekey.2012.221.

20. van Gastel N, Stegen S, Stockmans I, Moermans K, Schrooten J, et al. (2014)
Expansion of periosteal progenitor cells with FGF2 reveals an intrinsic

endochondral ossification program mediated by BMP2. Stem Cells

32(9):2407–18

21. van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, et al. (2012)

Engineering vascularized bone: osteogenic and proangiogenic potential of

murine periosteal cells. Stem Cells 30: 2460–2471. 10.1002/stem.1210 [doi].

22. Carlier A, Geris L, Bentley K, Carmeliet G, Carmeliet P, et al. (2012) MOSAIC:

a multiscale model of osteogenesis and sprouting angiogenesis with lateral

inhibition of endothelial cells. PLoS Comput Biol 8: e1002724. 10.1371/
journal.pcbi.1002724 [doi];PCOMPBIOL-D-12-00618 [pii].

23. Carlier A, Geris L, van Gastel N, Carmeliet G, Van Oosterwyck H (2014)

Oxgen as a critical determinant of bone fracture healing - a multiscale model.
J Theor Biol.

24. Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid

bioregulatory model of angiogenesis during bone fracture healing. Biomech
Model Mechanobiol 10: 383–395. 10.1007/s10237-010-0241-7 [doi].

25. Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV (2008) Angiogenesis

in bone fracture healing: a bioregulatory model. J Theor Biol 251: 137–158.
S0022-5193(07)00567-X [pii];10.1016/j.jtbi.2007.11.008 [doi].

26. Stevens MM (2008) Biomaterials for bone tissue engineering. Materials Today

11: 18–25.

27. Bruder SP, Fox BS (1999) Tissue engineering of bone - Cell based strategies.

Clinical Orthopaedics and Related Research S68–S83.

28. Colnot C (2009) Skeletal Cell Fate Decisions Within Periosteum and Bone
Marrow During Bone Regeneration. Journal of Bone and Mineral Research 24:

274–282.

29. Utvag SE, Iversen KB, Grundnes O, Reikeras O (2002) Poor muscle coverage
delays fracture healing in rats. Acta Orthopaedica Scandinavica 73: 471–474.

30. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue

repair and long bone reconstruction. Langenbecks Archives of Surgery 388:
344–346.

31. Harry LE, Sandison A, Pearse MF, Paleolog EM, Nanchahal J (2009)

Comparison of the Vascularity of Fasciocutaneous Tissue and Muscle for

Coverage of Open Tibial Fractures. Plastic and Reconstructive Surgery 124:
1211–1219.

32. Hamrick MW, Mcneil PL, Patterson SL (2010) Role of muscle-derived growth

factors in bone formation. Journal of Musculoskeletal & Neuronal Interactions
10: 64–70.

33. Liu RJ, Birke O, Morse A, Peacock L, Mikulec K, et al. (2011) Myogenic

progenitors contribute to open but not closed fracture repair. Bmc Musculo-
skeletal Disorders 12.

34. Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto Y, et al. (2008) Osteogenic

properties of human myogenic progenitor cells. Mechanisms of Development 125:
257–269.

35. Gersbach CA, Guldberg RE, Garcia AJ (2007) In vitro and in vivo osteoblastic

differentiation of BMP-2- and Runx2-engineered skeletal myoblasts. Journal of

Cellular Biochemistry 100: 1324–1336.

36. Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, et al. (2009)

Differential Regulation of Blood Vessel Formation between Standard and

Delayed Bone Healing. Journal of Orthopaedic Research 27: 1133–1140.

37. Lienau J, Schmidt-Bleek K, Peters A, Weber H, Bail HJ, Duda GN, Perka C,
Schell H (2010) Insight into the Molecular Pathophysiology of Delayed Bone

Healing in a Sheep Model. Tissue Engineering Part A 16: 191–199.

38. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003)
Fracture healing as a post-natal developmental process: Molecular, spatial, and

temporal aspects of its regulation. Journal of Cellular Biochemistry 88: 873–884.

39. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor
regulation of fracture repair. Journal of Bone and Mineral Research 14: 1805–

1815.

40. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration:
current concepts and future directions. BMC Med 9: 66. 1741-7015-9-66

[pii];10.1186/1741-7015-9-66 [doi].

41. Carlier A, Chai YC, Moesen M, Theys T, Schrooten J, et al. (2011) Designing

optimal calcium phosphate scaffold-cell combinations using an integrative
model-based approach. Acta Biomater 7: 3573–3585. S1742-7061(11)00258-3

[pii];10.1016/j.actbio.2011.06.021 [doi].

42. Zwingenberger S, Niederlohmann E, Vater C, Rammelt S, Matthys R, et al.
(2013) Establishment of a femoral critical-size bone defect model in

immunodeficient mice. Journal of Surgical Research 181: E7–E14.

43. Srouji S, Ben-David D, Kohler T, Muller R, Zussman E, et al. (2011) A Model
for Tissue Engineering Applications: Femoral Critical Size Defect in

Immunodeficient Mice. Tissue Engineering Part C-Methods 17: 597–606.

44. Manassero M, Viateau V, Matthys R, Deschepper M, Vallefuoco R, et al. (2013)
A Novel Murine Femoral Segmental Critical-Sized Defect Model Stabilized by

Plate Osteosynthesis for Bone Tissue Engineering Purposes. Tissue Engineering

Part C-Methods 19: 271–280.

45. Harris JS, Bemenderfer TB, Wessel AR, Kacena MA (2013) A review of mouse
critical size defect models in weight bearing bones. Bone 55: 241–247.

46. Patel ZS, Young S, Tabata Y, Jansen JA, Wong MEK, et al. (2008) Dual

delivery of an angiogenic and an osteogenic growth factor for bone regeneration
in a critical size defect model. Bone 43: 931–940.

47. Willett NJ, Li MTA, Uhrig BA, Boerckel JD, Huebsch N, et al. (2013)

Attenuated Human Bone Morphogenetic Protein-2-Mediated Bone Regenera-
tion in a Rat Model of Composite Bone and Muscle Injury. Tissue Engineering

Part C-Methods 19: 316–325.

48. Steinert AF, Rackwitz L, Gilbert F, Noth U, Tuan RS (2012) Concise Review:
The Clinical Application of Mesenchymal Stem Cells for Musculoskeletal

Regeneration: Current Status and Perspectives. Stem Cells Translational

Medicine 1: 237–247.

49. Geris L, Reed AA, Vander SJ, Simpson AH, Van Oosterwyck H (2010)
Occurrence and treatment of bone atrophic non-unions investigated by an

integrative approach. PLoS Comput Biol 6: e1000915. 10.1371/journal.-
pcbi.1000915 [doi].

50. Amorosa LF, Lee CH, Aydemir AB, Nizami S, Hsu A, et al. (2013) Physiologic

load-bearing characteristics of autografts, allografts, and polymer-based scaffolds
in a critical sized segmental defect of long bone: an experimental study.

International Journal of Nanomedicine 8: 1637–1643.

51. Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, et al. (2011) Bone

Formation and Neovascularization Mediated by Mesenchymal Stem Cells and
Endothelial Cells in Critical-Sized Calvarial Defects. Tissue Engineering Part A

17: 311–321.

52. Masquelet AC, Begue T (2010) The concept of induced membrane for
reconstruction of long bone defects. Orthop Clin North Am 41: 27–37. S0030-

5898(09)00071-6 [pii];10.1016/j.ocl.2009.07.011 [doi].

53. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet
technique for the treatment of bone defects: tips-tricks and future directions.

Injury 42: 591–598. S0020-1383(11)00130-6 [pii];10.1016/j.injury.2011.03.036

[doi].

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects

PLOS Computational Biology | www.ploscompbiol.org 20 November 2014 | Volume 10 | Issue 11 | e1003888



54. Preininger B, Duda G, Gerigk H, Bruckner J, Ellinghaus A, et al. (2013) CD133:

Enhancement of Bone Healing by Local Transplantation of Peripheral Blood
Cells in a Biologically Delayed Rat Osteotomy Model. Plos One 8.

55. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003)

Fracture healing as a post-natal developmental process: molecular, spatial, and
temporal aspects of its regulation. J Cell Biochem 88: 873–884. 10.1002/

jcb.10435 [doi].

56. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor

regulation of fracture repair. J Bone Miner Res 14: 1805–1815. jbmpr11

[pii];10.1359/jbmr.1999.14.11.1805 [doi].

57. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular

aspects of bone healing. Injury 36: 1392–1404. S0020-1383(05)00276-7

[pii];10.1016/j.injury.2005.07.019 [doi].

A Combined In Vivo-In Silico Approach to Treat Large Bone Defects

PLOS Computational Biology | www.ploscompbiol.org 21 November 2014 | Volume 10 | Issue 11 | e1003888


