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Abstract

Linking networks of molecular interactions to cellular functions and phenotypes is a key goal in systems biology. Here, we
adapt concepts of spatial statistics to assess the functional content of molecular networks. Based on the guilt-by-association
principle, our approach (called SANTA) quantifies the strength of association between a gene set and a network, and
functionally annotates molecular networks like other enrichment methods annotate lists of genes. As a general association
measure, SANTA can (i) functionally annotate experimentally derived networks using a collection of curated gene sets and
(ii) annotate experimentally derived gene sets using a collection of curated networks, as well as (iii) prioritize genes for
follow-up analyses. We exemplify the efficacy of SANTA in several case studies using the S. cerevisiae genetic interaction
network and genome-wide RNAi screens in cancer cell lines. Our theory, simulations, and applications show that SANTA
provides a principled statistical way to quantify the association between molecular networks and cellular functions and
phenotypes. SANTA is available from http://bioconductor.org/packages/release/bioc/html/SANTA.html.
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Introduction

High-throughput studies, like measuring differential expression

in RNA-seq experiments or morphological changes in RNAi

screens, produce genome-wide data that are often difficult to

interpret. Functional annotation of hits in such studies relies mostly

upon gene set analysis methods, which measure an association

between hits and pre-defined gene sets [1,2] by quantifying

overlap [3] or concurrent trends [2]. These approaches generally

treat hits as independent; only very few exploit an internal

structure [4]. Recently, many high-throughput studies have

produced networks of physical [5,6] or genetic [7–9] interactions,

rather than lists of hits. These networks can be even harder to

interpret than lists of hits. While more and more networks are

being generated, rigorous statistical methods to annotate their

functional content are lacking, thereby making it difficult to

identify and quantify any high-level changes. The need for

rigorous functional analysis of networks becomes especially evident

when trying to quantify the often subtle functional adaptions

observed in networks specific to external stimulation [10,11],

different phenotypes [9], cell types [12,13], or diseases [14,15].

Here, we develop methodology, called SANTA, for the rigorous

and unbiased functional annotation of molecular networks. The

basic input to SANTA are a network and a gene set and the output

is the statistical significance of their association (Figure 1). Like

Gene Set Enrichment Analysis [2], SANTA measures concordant

changes in phenotype, but extends this concept to networks rather

than lists of genes. Our work is directly motivated by a study

describing the functional content of the S. cerevisiae genetic

interaction network by Costanzo et al. [7]. The iconic first figure

of this paper shows a network connecting genes with similar

genetic interaction profiles and nodes highlighted according to

their membership to functional groups defined by the Gene

Ontology. Costanzo et al. find that genes displaying tightly

correlated profiles form discernible clusters corresponding to

distinct bioprocesses and that the relative distance between distinct

clusters appears to reflect shared functionality [7]. This is an

important observation, because it shows which cellular functions

are associated with the genetic interaction network. If the network

had been generated under different experimental conditions that

activate different processes in the cell, these functional associations

would most probably have changed. Using SANTA, it is possible

to quantify the significance of these changes in functional

association in a principled statistical way, something not previously

possible.

SANTA rigorously implements an intuitive association
measure

The roadmap for functional analysis of networks provided by

Costanzo et al. [7] relies on assessing the clustering of selected

nodes on the network. However, their analysis was done by eye

and depends not only on the gene set and the network but also on

the visualisation algorithm used. Clustering on a network is an

intuitive measure of functional content, but without rigorous

statistical methods the significance of observed patterns can not be

assessed objectively. To address this problem, we have adapted

well-tested concepts from spatial statistics [16] to define an
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objective and quantitative association measure between networks

and gene sets. SANTA (spatial analysis of network associations) is

built on the guilt-by-association principle: if a gene set shows a

surprising degree of clustering on a network, we call them

‘associated’ (Figure 2C); if the gene set is randomly distributed

over the network, we call them ‘not associated’ (Figure 2D).

Previous research
Enrichment analysis is a well-developed field and Khatri et al.

[4] recently described three ‘generations’ of statistical methods,

from over-representation analysis and functional class scoring, to

pathway-topology based approaches. While methods in the last

category [17–19] use pathway topology to compute gene-level

statistics, none of them can be directly applied to measure the

functional content of a network. Two related approaches, the

compactness score of PathExpand [20] and EnrichNet [21],

compare the clustering of two sets of genes on a network, but not

the significance of the clustering of a single set. While the

compactness score can be adapted to measure the significance of

clustering, it focusses on the local structure of the network and can

be less effective than SANTA to detect global effects, as we show

below. Other approaches overlay interaction networks with

genome-wide measurements and identify enriched subnetworks

[22–24], to which enrichment analysis can then be applied in a

consecutive step [25]. Again, subnetwork identification does not

directly measure the association between gene sets and networks,

and we show the effect of this difference in a comparison study.

In summary, no approach currently exists that, like SANTA,

globally assesses the functional content of a network. In the

following, we describe the methodology underlying SANTA and

test its efficacy by applying it to both simulated and real data.

Gene set enrichment methods have had a big impact on biological

research and are used in almost every analysis of experimentally

derived gene lists. The case studies we present in this paper show

that SANTA has the potential to have a similar impact on all

functional studies of network data.

Results

Adapting Ripley’s K-Function for networks
Spatial statistics model spatial correlation structures between

observations (analogous to how time series analysis models the

correlation between time points) [26]. One area of spatial statistics

analyses point patterns and asks if points in R2 are occurring at

random or cluster together in any way. A basic tool for the analysis

of point patterns is Ripley’s K{function [16], which can be

estimated by computing how many other points are captured by

drawing a circle of radius s around each point:

K(s) ~
1

ln

X
i

X
j=i

I(d(i, j)vs) ð1Þ

where n is the number of points, l is the density (number of

points per unit area), d(i, j) is the distance between two points in

R2, and I(d(i, j)vs) is an indicator function with value 1 if the

distance d(i, j) between points i and j is smaller than s, and 0
otherwise. If the points are densely clustered, most of them will be

Figure 1. Overview of SANTA. SANTA can be used both to quantify the strength of association between networks and sets of node weights
(using K net) and to prioritise genes for follow-up analyses (using K node). Different node colour intensities represent different node weights.
doi:10.1371/journal.pcbi.1003808.g001

Author Summary

Molecular networks are maps of the tens of thousands of
interactions that occur between the components of
biological systems. Types of interactions include physical,
genetic and functional interactions between genes, gene
products and metabolites. Network-based approaches to
molecular biology are increasingly being used to better
understand cellular functions. Currently, gene set methods
can be used to functionally annotate the hits from high-
throughput studies; however, no methods exist to
functionally annotate molecular interaction networks. This
greatly limits our ability to quantify the often subtle
functional adaptions that occur in networks as they rewire
to respond to external stimuli. Here, we extend well-tested
concepts from spatial statistics to define a general
association measure between networks and gene sets.
Like Gene Set Enrichment Analysis, our approach measures
concordant changes, but does this on networks, rather
than on lists of genes. We validate it both in simulations
and real-world case studies. We apply our approach to
genetic interaction networks mapped under different
conditions and created using different methods, and
demonstrate how it extends the previous analyses of data
sets, allowing us to better understand the high-level
changes that occur within cells.

SANTA: Quantifying the Functional Content of Molecular Networks
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found for small values of s, while for uniformly spread points the

K{function achieves larger values only for large values of s.

Applications of the K{function in computational biology include

detecting host factors involved in virus infection by observing the

clustering of infected cells in siRNA screening images [27].

In our scenario, we measure observations at fixed locations (the

nodes in the graph) instead of random locations in the plane.

However, we can still adapt basic spatial statistics methodology: In

the following paragraphs we will define a K{function for

weighted networks, called Knet, by first defining distance measures

on graphs (instead of R2) and then weighting each node by the

strength of its phenotype. To adapt K(s) to networks, we formalised

the problem using a node-labeled and edge-weighted graph

G~(V ,E), where V is a set of n nodes (vertices) and E(V|V
a set of m (undirected) edges between pairs of nodes (i,j). Node

weights fpv D v[Vg correspond to the strength of a gene’s

phenotype (pv[R, v[V ) or whether the gene is part of a particular

functional group (pv[f0,1g, v[V ) and edge weights fwe D e[Eg
correspond to the strength or significance of interactions.

Graph distances. Distances between non-neighbouring nodes

in this graph can be measured in many ways, including shortest path

lengths, diffusion kernels [28] and the mean first-passage time [29],

which are all implemented in the SANTA software package. There

are subtle differences in the aspects of the network structure

incorporated within each measure. For example, a shortest-path

approach will only take into consideration the one path with the

shortest length, no matter how many other paths exist between two

nodes. A diffusion kernel, on the other hand, takes into account all

paths and will yield a smaller distance the better connected two nodes

are. The results produced by SANTA are generally robust across

distance measures (Figure S3), meaning that it often does not matter

which method is chosen by the user. The shortest path distance

method requires the least computational time and therefore we will

mainly use this method in the paper. Efficient algorithms like

Dijkstra’s or Johnson’s exist to compute shortest paths between all

pairs of nodes [30] and are conveniently implemented in software

packages like ‘igraph’ [31]. However, the diffusion-kernel based

distance measure is used to identify enriched subnetworks, as this

method is seen to produce denser subnetworks.

Many of the graph distance algorithms assume that small edge-

weights correspond to stronger functional association between the

two nodes. Many networks, however, are built by correlation analysis,

where stronger functional associations are shown by a larger weight.

Thus, in practice, the edge weights in a given molecular network

often need to be reweighed to be used as graph distances fde D e[Eg.
Due to differences between the methods used to create each

molecular network, it is necessary to use a different approach when

reweighing the edges of each network. Edges are reweighed so that

the strongest interactions have a graph distance of 0 and the weaker

the interaction the greater the distance (see Methods).

Node weights. Exchanging the planar distance d(:,:) in

Equation (1) with a graph distance dg(:,:) directly results in a

version of the K{function that is applicable if the node weights

are in f0,1g. However, in many real situations, e.g. differential

expression analysis or large-scale RNAi screens, the node weights

are real numbers. In this case it is not only of interest how many
‘hits’ are close to each node, but also how strong these hits are. We

implement this notion by weighting the contribution of each node

by the relative weight it carries compared to the other nodes. This

results in a function Kn e t of the form

Kn e t(s)~
2

(�ppn)2

X
i

p i

X
j

(p j{�pp)I(dg(i, j)ƒs) ð2Þ

Figure 2. Application of the K net-function to two gene sets. Example input: (A) S. cerevisiae GI map and (B) gene sets obtained from GO
(‘GO:0044451: nucleoplasm part’ and ‘GO:0070011: peptidase activity’). (C, D) Network annotated with each gene set. From visual inspection, it
appears that the gene set in (C) clusters more significantly than the gene set in (D). SANTA allows us to assess this clustering objectively. (E, F) The K
net-function is computed for the observed gene sets (red and blue lines) and for a large number of permutations (yellow area). (G, H) In order to
quantify the significance of the clustering, the area under the Knet-function curve (AUK) is computed for the observed gene set (red and blue lines)
and for each permutation (grey histogram). An empirical p-value is calculated using a Z-test. For GO:0044451, p = 5.680610230 and for GO:0070011,
p = 0.174, demonstrating objectively that the gene set in (C) does cluster more significantly.
doi:10.1371/journal.pcbi.1003808.g002
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where pi is the phenotype observed at node i and

�pp~
1

n

Xn

i~1
pi. This re-weighting is very similar in spirit to the

re-weighting of the Kolmogorov-Smirnov statistic in GSEA [2].

Generally, we plot Kn e t from 0 to the maximal distance within the

graph (the diameter), in which case Kn e t forms a curve starting

and ending at 0 (Figure S1).

Node-wise K-function. The inner sum of Equation (2) offers

a natural way to prioritise nodes and identify candidate genes for

the mechanisms underlying the observed phenotype. We define

this node-wise K{score as the AUK of the node-wise

K{function, defined as:

Kn o d e
i (s)~

2

�ppn

X
j

(pj{�pp) I(dg(i, j)ƒs) ð3Þ

Computing significance by permutation. To check how

significant observed Kn e t results are, we compare them to curves

obtained by applying Kn e t to sets of randomly permuted hits.

These sets of permuted hits are obtained by randomly redistrib-

uting the node weights across the nodes. When permuting the

node weights, it is not always possible to maintain the degree of

each node, therefore, node degree is not considered when

permuting the weights.

Since we want to quantify the amount of clustering, we are

interested in observed Kn e t-curves that ascend steeper than

random curves. To quantify this, we compute for all curves (the

observed Kn e t and the Np e r m random permutations) the area
under the Knet-curve, or AUK value. An empirical p-value for the

observed AUK is calculated using a Z-test. Figure 2 exemplifies

the application of Kn e t to two GO terms and the yeast genetic

interaction network.

Simulation studies
SANTA successfully identifies clustering on simulated

networks. Functional annotation is an exploratory task without

a general gold standard. In order to test the ability of SANTA to

correctly identify clustered distributions of node weights on

networks, we conducted a number of controlled simulations. In

each of these simulations, we created a network containing a

cluster of high weight vertices of a known strength and applied the

Kn e t-function in order to determine whether it would successfully

identify the clustering.

Each of the networks contained 500 nodes and was created

using the Barabasi-Albert model of preferential attachment [32]. A

seed node was chosen at random. All nodes in the network were

ranked by their distance (using the shortest paths method) to the

seed node and the s closest nodes chosen to be the sample set. A

hit set was then created by choosing 5 nodes at random from the

sample set. Different values of s (10, 20, 50, 100 and 500) were

chosen to simulate different clustering strengths. A value of s equal

to the number of nodes in the network is the same as randomly

sampling nodes from the entire network.

As expected, SANTA identified more significant clustering

when applied to hit sets created with smaller values of s
(Figure 3A). When nodes are randomly sampled from the entire

network, the p-values returned by SANTA were uniformly

distributed (Figure 3B), as expected when the null hypothesis is

true.

SANTA incorporates the global structure of a network for

functional association. One of the main advantages of the

Kn e t-function is that it considers the global topology of a network

when measuring the significance of clustering. This can be

demonstrated by comparing the Kn e t-function to an adapted

version of the compactness score [20]. The compactness score of a

gene set is the mean distance between pairs of nodes in the gene

set. It is used by the PathExpand tool to compare the clustering

strength of different sets of nodes [20]. By comparing the

compactness score of an observed set of nodes to the compactness

scores of permuted sets of nodes, it is possible to produce an

empirical p-value describing clustering significance, much like the

Kn e t-function.

Many real-world networks follow a power-law degree distribu-

tion and contain nodes with both a small and large number of

interacting partners [32]. If the genes in a gene set all have a large

number of interacting partners, then the presence of interactions

between the genes in the gene set could be considered less

significant, as there is a greater likelihood that they would be

observed by chance. Therefore, it is necessary to incorporate the

global structure of the network and consider the number of nodes

located near each node when quantifying clustering significance.

Figure 4 demonstrates that while the Knet-function incorporates

the global structure of the network, the compactness score does

not. The Knet-function can also be applied to continuous

distributions of node weights, while the compactness score can

only be applied to binary sets, limiting its application. For these

reasons, the Knet-function is better suited to measuring the

significance of clustering of node weights on real-world networks.

SANTA provides a complementary method of identifying

enriched subnetworks. Next, we compared SANTA to

approaches that overlay molecular networks with additional node

information and identify a high-scoring subnetwork, using

simulated and real data. A widely used example is BioNet [24],

which identifies enriched subnetworks of nodes by fitting a beta-

uniform mixture (BUM) model to the network in order to score

nodes. Positive-scoring nodes are then aggregated and a minimum

spanning tree calculated between these positive nodes. However,

the presence of negative-scoring nodes between clusters can

prevent BioNet from identifying multiple clusters. As the Kn o d e-

function considers each node individually, it is able to return high-

scoring nodes spread across multiple clusters.

Figure 3. Application of K netto simulated networks. Scale-free
networks containing clusters of high-weight nodes of various strengths
were generated. The smaller the distance cutoff used to generate the
cluster, the greater the strength of the clustering. (A) 1000 trials were
completed for each distance cutoff. As expected, the most significant
clustering was measured by the K net-function when smaller distance
cutoffs were used. (B) Q-Q plot of the p-values observed in the
simulation study trials in which no distance cutoff was used and the p-
values expected under the uniform distribution. The high-weight nodes
were distributed homogeneously when no distance cutoff was used.
The observed p-values deviate little from the expected p-values,
demonstrating that the K net-function does not detect clustering when
clustering is not present.
doi:10.1371/journal.pcbi.1003808.g003

SANTA: Quantifying the Functional Content of Molecular Networks
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We conducted a number of simulations in order to compare the

abilities of Kn o d e and BioNet to identify high-scoring nodes

located within multiple clusters on a network. In each simulation, a

network containing 1000 nodes was created using the Barabasi-

Albert model of preferential attachment [32]. 2, 3 or 4 nodes from

distant parts of the network were selected to seed the clusters. For

each seed node, 10 nodes were selected at random under a

probability distribution that ensured that the probability of being

chosen decreased exponentially with the distance from the seed

node (P(i)*10{dg(k,i), where k is the seed node). The selected

nodes became the high-weight nodes and were assigned node

weights from a truncated normal distribution with a mean of 0 and

a standard deviation of 1|10{6, within the interval ½0,1�.
Unselected nodes were assigned node weights from the uniform

distribution, again within the interval ½0,1�. Kn o d e and BioNet

were then applied to the network. If x high-weight nodes are

applied to the network, Kn o d e is said to have successfully identified

a high-weight node if it is ranked within the top x nodes. BioNet

successfully identifies a high-weight node if it is contained within

the returned enriched subnetwork. Figure 5 shows that Kn o d e was

able to successfully identify a greater proportion of labelled nodes

than BioNet when 3 or more clusters were added to the network.

BioNet tended to successfully identify nodes from a single cluster,

but missed nodes contained within others. This highlights an

advantage of SANTA over methods identifying a single top

scoring subnetwork.

Real-world case studies
SANTA identifies functionally-informative enriched subnet-

works. We also compared the Kn o d e-function to BioNet by

rerunning the validation experiment conducted by BioNet. Gene

expression data from two subtypes of diffuse large B-cell lymphomas

(DLBCL) was combined with survival data [33]. P-values were

produced using Cox regression and these were converted into node

weights which were used to annotate the HPRD interaction network

[34]. BioNet and the Kn o d e-function were applied in order to identify

enriched subnetworks. BioNet returned a module containing 38 genes

and 49 interactions. In order to make a fair comparison, the 38 genes

ranked highest by Kn o d e were chosen to form the Kn o d e module.

This module is denser than the BioNet network and contains 86

interactions. Only 7 genes were identified by both BioNet and Kn o d e.

The BioNet module is enriched with genes involved in the oncogenic

NFkB pathway [24]. Fisher’s exact test was used to identify functional

gene sets enriched within the modules [35]. While the Kn o d e module is

not enriched with NFkB pathway genes, the cancer-associated GO

term ‘regulation of apoptosis’ was identified as the most strongly-

enriched gene set (pv1|10{7).

These results demonstrate that the Kn o d e function represents a

complementary method of enriched subnetwork identification.

However, the main purpose we envision for SANTA is to annotate

the functional content of networks and the next case studies focus

on this task.

Correlations in GI profile produce functionally more

informative networks. For further validation, we applied

SANTA to the global genetic interaction (GI) network of S.
cerevisiae, where there is evidence that protein function is more

closely related to the global similarity between GI profiles than to

individual interactions [7]. To measure this effect we contrasted

the functional content of a network of high correlations between

GI profiles with a network of individual GIs. This was done by

quantifying the strength of association of sets of functionally

related genes with each of the networks using the Kn e t-function.

Sets of functionally related genes were obtained from the Gene

Ontology (GO). To ensure that the functional sets were not too

thinly or thickly spread, only GO terms associated with between

20 and 100 network genes were tested. Figure 6A shows that GO

terms indeed tend to cluster more strongly on the correlation

network than on the network of individual GIs, demonstrating that

similarity between GI profiles is a stronger indication of shared

protein function. This effect was independent of the GO term size

and strongest for specific cellular functions like ‘structural

constituent of ribosome’, ‘cytosolic small ribosomal subunit’ and

‘piecemeal microautophagy of nucleus’ (Table S1).

Yeast interaction networks functionally rewire under

external stress. Most studies have mapped GIs in cells under

normal laboratory conditions [7,8,36]. However, it has been

demonstrated that GIs can be condition-dependant [37]. Mapping

GI networks under multiple conditions is therefore likely to reveal

new information about how a cell reorganises itself to cope with

environmental conditions. To measure these effects, we used

SANTA to analyse the changes in functional content that occur in

S. cerevisiae GI networks under external perturbation by the

DNA-damaging agent methyl methane-sulfonate (MMS) [10] and

UV radiation [38]. We again used the association strength of GO

Figure 4. Comparison of K net and Compactness. Example of the
difference between the K net and the Compactness functions. Red circles
represent hits on the network. P-values were computed for both
functions using 1000 permutations. Only the K net-function incorporates
the global structure of the network and therefore only it identifies a
more significant association between set 2 and the network.
doi:10.1371/journal.pcbi.1003808.g004

Figure 5. Comparison of K node with BioNet. Comparison of the
ability of the K node-function and BioNet to identify high-weight nodes
contained within multiple clusters on a single simulated network.
Across 1000 trials, the K node-function identified a greater proportion of
the high-weight nodes when they were distributed across 3 or 4
clusters.
doi:10.1371/journal.pcbi.1003808.g005

SANTA: Quantifying the Functional Content of Molecular Networks
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term-associated gene sets to quantify functional enrichment within

each network. By comparing the association strengths of the GO

terms between the treated and untreated networks, it is possible to

identify pathways and processes that are up- and down-regulated

in response to the changes in environmental condition. GO terms

were applied to each network if they associated with between 20

and 100 genes.

We found several GO terms that associated more strongly with

the MMS-treated network than the untreated network (Figure 6B

and Table S2). GO terms related to the response to DNA-damage,

including ‘DNA repair’, ‘response to DNA damage stimulus’ and

‘covalent chromatin modification’, associated more strongly with

the MMS-treated network. This result is expected and found in the

original publication, thereby providing further validation for

SANTA.

Comparing the functional enrichment of the UV-treated

network replicates the finding of the original publication as well

as identifying subtle changes not reported in the publication

(Figure 6C and Table S3) [38]. The top 10 GO terms most

strongly enriched within the UV-treated network are related to

DNA-damage repair or cell cycle progression; processes known to

be affected by exposure to UV radiation [39]. However, the Kn e t-

function is also able to identify processes affected by UV-treatment

not reported in the original publication. ‘Chromatin silencing at

telomere’ associates more strongly with the untreated network

(pv1:6|10{8) than the treated network (pv3:4|10{5). It has

previously been demonstrated that some of the proteins involved

in transcriptional silencing at the telomeres, such as Sir and Ku,

are also involved in DNA-damage repair [40] and are dispersed

from the telomeres in response to DNA damage [41]. Our results

provide further support for this hypothesis and demonstrate that

the Kn e t-function is able to provide insight into the functional

repurposing of cells that cannot be provided by current methods.

The strength of gene set association was independent of gene set

size (Figure S2). Association strength is also robust across distance

methods (Figure S3). SANTA identifies functional adaptions not

seen in the original analysis and thereby also provides a method of

hypothesis generation. The advantage of SANTA is that it directly

contrasts the functional content of the two networks, which

improves on the indirect enrichment analysis of differing edges in

the original analysis [10].

Interaction networks provide different levels of informa-

tion about cancer cell line maintenance. Different networks

describe different aspects of cellular machinery: co-expression

networks describe transcriptional effects, protein interaction

networks describe complexes and genetic interaction networks

describe epistatic buffering relationships. Identifying the type of

network that associates most with genes of interest can point to the

mechanism underlying observed phenotypes. To exemplify this

idea, we used SANTA to associate RNAi screens in cancer cell

lines [42] to a curated network of physical interactions [43] and to

a functional interaction network created by combining 21 data

sources from 4 species [44], with the aim of identifying the

network that best explains the phenotype. The colon and ovarian

cancer cell line RNAi hits were seen to associate more strongly

with the functional interaction network (Figure 7), indicating that

it is possible to create a network that better explains the

mechanisms that maintain cancer cell line viability by combining

multiple data sources.

Discussion

SANTA is a general approach for functional annotation that

extends enrichment analysis from gene sets to networks. SANTA

combines the guilt-by-association principle, which is one of the

most powerful paradigms for function prediction, with well-tested

concepts adapted from spatial statistics. In this way, SANTA

provides a rigorous implementation of an intuitive measure of

functional annotation. We have applied SANTA to several

datasets from different organisms and our results show how

SANTA rigorously addresses the basic question of which

functional processes are reflected in a network.

In yeast, our results on genetic interactions support the idea that

a strong correlation of GI profiles between two genes is a greater

indicator of shared function than the presence of a single GI. The

reason for this increase in functional information is most probably

that individual GIs don’t bear much evidence for underlying

mechanisms, while having many GI partners in common is strong

Figure 6. Applications of K net to real networks. (A) Comparison of the functional content of a network of raw GIs and a network representing
correlation in GI profile. GO terms are associated more strongly with the GI-correlation network, indicating that this network is functionally more
informative. (B) Comparison of the functional content of the untreated and MMS-treated GI networks. GO terms associated with the response to DNA
damage were enriched within the treated network. (C) Comparison of the functional content of the untreated and UV-treated GI networks. GO terms
associated with cell cycle progression were enriched within the treated network.
doi:10.1371/journal.pcbi.1003808.g006
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evidence for genes acting in the same pathway or complex [45].

Additionally, Costanzo et al. [7] noted that their network captured

only 35% of the previously reported interactions, indicating that a

large number of false positives and false negatives may be present

within GI networks. Networks of correlations in GI profile may be

more robust to the high number of errors that are present when

GIs are mapped.

Extending these results to networks rewired under external

stimulation, we show how SANTA quantifies subtle functional

changes. In humans, we showed how SANTA can contribute to

understanding the mechanisms underlying large RNAi screens.

Testing the association of hits with many different networks

(transcriptional, proteomic, genetic) can help us to understand

which cellular mechanisms underly the phenotypes. In summary,

our results support that SANTA accurately quantifies the

functional content of networks, points to mechanisms underlying

observed phenotypes, and provides a natural way to compare

functional changes across networks.

We expect SANTA to contribute mostly to the functional

annotation of networks derived under different environmental

conditions (like the GI networks we used as case studies here).

However, SANTA is a very general approach and the examples

we presented here also show other uses: it can also be used to

annotate RNAi hits (if different functional networks are available)

and prioritise individual hits over others (using Kn o d e). In the

future, we see many further opportunities for applying SANTA.

For example, new methods of automated, single-cell phenotyping

measure genetic interaction networks across a broad spectrum of

phenotypes [9] and a functional annotation method like SANTA

could have great impact on understanding which cellular processes

are reflected in which phenotype. Another potential application

for SANTA lies in network-based medicine, where drug develop-

ment for complex diseases is developing towards targeting

dynamic network states [46–48] and network-based analysis has

identified cancer subtypes [49]. Functional annotation of these

networks will further our understanding of the biology underlying

these diseases.

Gene set enrichment analysis is the first step in the unbiased

analysis of most experimentally derived gene lists and we expect

SANTA to have a similar impact on all functional studies of

network data.

Methods

Shortest paths distance measure
There are a number of different methods available to calculate

the distance between a pair of nodes in a network. One of the

simplest methods involves identifying the shortest path connecting

the node pair and using the length of this path. The shortest paths

distance measure can be applied to networks with or without

weighted edges. In unweighted networks, the shortest path is equal

to the number of edges included within the shortest path. In

weighted networks, it is the sum of the edge weights along the

shortest path.

A number of different algorithms are available to compute the

shortest path between two nodes. Which algorithm is most efficient

depends on the type of network being analysed. If no edge weights

are present, then the breadth-first search algorithm is ideal. If edge

weights are present and each edge weight is non-negative, then

Dijkstra’s algorithm is more efficient [30].

Diffusion kernel-based distance measure
The diffusion kernel-based distance measure is another

method of calculating distances between pairs of nodes [28].

An advantage of the diffusion kernel-based method over the

shortest-paths method is that whilst the shortest-paths method

calculates the distance along a single path, the diffusion kernel-

based method incorporates distances along multiple paths.

Like the shortest paths method, the diffusion kernel-based

method can also be applied to networks with or without edge

weights. One interpretation of the method is the continuous

time limit of a random walk across the network, resulting in

highly-connected nodes being associated with smaller node

pair distances.

The negative graph Laplacian (H ) is used to create a diffusion

kernel for the network. H is a square matrix of size V|V with

entries:

H
unweighted
ij ~

1 when i*j

{di when i~j

0 when i=j

8><
>: ð4Þ

H
weighted
ij ~

wij when i*j

{
X

j
wij when i~j

0 when i=j,

8><
>: ð5Þ

H is specified for networks with and without edge weights.

i*j indicates that node i and node j are connected by an edge

and i=j indicates that they are not directly connected. di is the

number of edges associated with node i (the degree of node i).
wij is the weight of the edge connecting nodes i and j. The

Figure 7. K net identifies the most functionally informative
network. Association of genes essential in the proliferation of cancer
cell lines with a network of curated physical interactions (IntAct) and a
functional network created using 21 data sources (HumanNet).
Association was stronger between colon and ovarian cancer cell line
RNAi hits and the functional network, indicating that the functional
network provides more information about the mechanisms that drive
cancer cell line maintenance.
doi:10.1371/journal.pcbi.1003808.g007
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diffusion kernel can then be defined by calculating the matrix

exponential (D):

D~ lim
n??

1z
bH

n

� �n

~ exp (bH) ð6Þ

The fact that H is diagonalizable (H~UDU{1) makes it easier

to compute D. If D is a diagonal matrix with entries (di)i~1,...,n,

then D~ exp (bH)~U exp (bD)U{1. exp (bD) is a diagonal

matrix with entries ( exp (bdi))i~1,...,n [28].

Mean first-passage time-based distance measure
Mean first-passage time (MFPT) can also be used to compute

the distances between pairs of nodes [29]. The MFPT-based

measure is similar to the diffusion kernel-based measure in that it

can be compared to completing a random walk across the

network. The MFPT of a walk from node i to node j (mi,j )

represents the expected number of steps required to reach node j

for the first time:

mi, j~
X?
n~1

nf
(n)

i, j ð7Þ

where f
(n)

i, j is the probability that the random walk reaches node

j for the first time after n steps. The MFPT between each node

pair can be computed analytically using the equations:

M~(I{ZzEZdg)D ð8Þ

Z~(I{epT{A){1 ð9Þ

where I is the identity matrix, E is a matrix with equal

dimensions containing only 1s, e is a column vector containing

only 1s, p is a column vector of the stationary distributions of the

Markov chain, A is the Markov chain transition matrix and D is a

diagonal matrix with elements:

dvv~
1

p(v)
ð10Þ

Costanzo et al. yeast GI networks
Costanzo et al. tested for genetic interactions (GI) between 5.4

million gene pairs in S. cerevisiae using synthetic genetic array

(SGA) analysis [7]. Using this data, we created two interaction

networks: the first from raw GI scores (E) and the second from

correlations in interaction profile. The raw interaction network

contains both positive (Ew0:16) and negative (Ev{0:12) interac-

tions (78,701 interactions between 4,326 genes). GI scores were

converted into edge distances by calculating:

de~{log10
DED

DEDmax

ð11Þ

The correlation network was created by computing, for each

gene pair, Pearson’s correlation coefficient for the respective rows

of the complete GI matrix. Pairs of genes were connected in the

network if their interaction profile correlation coefficient exceeded

a threshold. Using a threshold of PCCw0:125 ensured that the

correlation network contained a similar number of interactions to

the raw network (76,434 interactions between 4,326 genes).

Correlation coefficients (ce) were converted into edge distances

by calculating:

de~{log10ce ð12Þ

Bandyopadhyay et al. yeast GI networks
174,000 gene pairs were tested for interactions in MMS-treated

and untreated S. cerevisiae [10]. Modified T-tests were used to

compare the growth rate of the observed double mutant against

the rate expected given that no interaction exists. We previously

demonstrated that a strong correlation in GI profiles is a greater

indicator of shared function than raw interactions. Therefore, we

created a correlation network for each condition by computing

Pearson’s correlation coefficient for each gene pair. A threshold of

PCCw0:3 for the MMS-treated network and PCCw0:25942 for

the untreated network was applied to ensure that each network

contained an equal number of interactions (3067 interactions

between 419 genes). Correlation coefficients were converted into

edge distances using Equation 12.

Srivas et al. yeast GI networks
45,000 gene pairs were tested for interactions in S. cerevisiae

treated with high doses of UV radiation (80J=m2) and untreated S.
cerevisiae. Modified T-tests were used to produce interaction scores

(S) for each of the gene pairs. Too few gene pairs were tested to

build a GI correlation network and therefore networks of raw

interactions were created. Pairs of genes were connected in the

networks if Sw1:25 or Sv{1:25. The UV-treated network

contains 5,799 interactions between 1,406 genes and the untreated

network contains 6,270 interactions between 1,406 genes. Interac-

tion scores were converted into edge distances by calculating:

de~{log10
DSD

DSDm a x

ð13Þ

IntAct physical and genetic interaction network
IntAct is an open source database for molecular interaction data

[43]. H. sapiens data from the database was downloaded on 2013-

05-02 to create the biological network used in Figure 7. This

network contains 6,856 genes and 21,291 interactions. No

confidence scores were available for the interactions and therefore

no edge distances are associated with the network.

HPRD physical interaction network
The Human Protein Reference Database is a database of

physical and functional interactions between genes and proteins

[34]. The HPRD network was downloaded from the R package

DLBCL, version 1.3.7 [50]. To allow for comparison of the Kn o d e

function to BioNet, only the largest cluster of interacting genes was

used. The final HPRD network contains 7,756 interactions

between 2,034 genes.

SANTA: Quantifying the Functional Content of Molecular Networks
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HumanNet functional interaction network
HumanNet is a functional network that combines 21 sources

of genomic and proteomic data from four species to build a

human-specific biological network [44]. These sources of data

include gene co-citation, gene co-expression, curated physical

and genetic interactions, high-throughput physical and genetic

interactions, co-occurrence of protein domains and bacterial

orthologs from C. elegans, D. melanogaster, H. sapiens and S.
cerevisiae. Version 1 of the database was used to create the

biological network used in Figure 7. Log likelihood scores were

provided for each of the interactions. To reduce the density of

the network, interactions with log likelihood scores less than 2

were removed from the network. This network contains 8,475

genes and 58,636 interactions. Log likelihood scores LLSe

were converted into edge distances by calculating:

de~{log10
LLSe

LLSemax

ð14Þ

Cancer cell line RNAi hits
RNAi technology can be used to identify genes essential to the

survival of cancer cell lines. Cheung et al. performed genome-wide

RNAi screens of 102 cell lines across 6 cancer types: oesophageal

squamous cell carcinoma, glioblastoma (GBM), non-small-cell-lung

cancer (NSCLC), pancreatic cancer, ovarian cancer and colon cancer

[42]. 11,194 genes were targeted. The weight of evidence approach

was used to compute essentiality scores for each shRNA for each set

of cancer cell lines [42]. GENE-E (http://www.broadinstitute.org/

cancer/software/GENE-E/index.html) was used to collapse the

shRNA-wise essentiality scores into gene-wise p-values. P-values are

produced by permuting the shRNA scores 10,000 times in order to

create artificial genes. The second best score of the shRNA within

these artificial genes is then compared to the second best observed

shRNA score. Gene-wise p-values sv were converted into node

weights pv by calculating:

pv~{log10sv ð15Þ

DLBCL gene expression and survival data
Gene expression data for two subtypes of diffuse large B-cell

lymphomas (DLBCL): germinal center B-like phenotype (GCB,

112 tumors) and activated B-like phenotype (ABC, 82 tumors), was

obtained from the R package DLBCL, version 1.3.7 [50]. This

package also contains data on patient survival. The data originally

comes from a study of patient survival after chemotherapy [33]. P-

values for differential expression and risk association were

produced using Cox regression. These p-values were combined

using second-order statistics in order to produce gene-wise

association scores which could be applied to the networks.

Gene-wise p-values were converted into node weights using

Equation 15.

Gene Ontology database
The Gene Ontology (GO) database consists of a hierarchical

structure of gene annotations [1]. Annotations from this database

were used in Figure 6. The GO database consists of 3 top-level

ontologies: molecular functions, biological processes and cellular

components, all of which were used in each figure. S. cerevisiae GO

term annotations were retrieved from the Saccharomyces Genome

Database (www.yeastgenome.org) using the R package

org.Sc.sgd.db, version 2.10.1 [51].

Compactness score
The compactness score C is defined as the mean shortest path

distance between pairs of nodes in a set P on graph G [20].

C(P)~
2
X

i, j[P;ivj
dg(i, j)

DPD � (DPD{1)
ð16Þ

In order to measure the significance of the observed compact-

ness score, we compared it to scores produced using sets of

randomly permuted hits. An empirical p-value for the observed

compactness score is calculated using a Z-test.

Implementation
The methodology described in this work has been assembled as an

R package called SANTA, which is available for download at http://

bioconductor.org/packages/release/bioc/html/SANTA.html. This

package is distributed with the code (in the form of a vignette, Text

S1) and the data required to reproduce all of the results given in this

paper. The vignette also contains the parameters used with the

Barabasi-Albert model of preferential attachment to create the

simulated networks. The running time of SANTA depends on the size

of the network and the number of permutations being run. Using

1000 permutations, SANTA requires 1GB of RAM and 25 seconds

on a single Intel Xeon E5-2640 to measure the strength of association

of a single gene set on the raw Costanzo et al. GI network (78,701

interactions between 4,326 genes). SANTA can use parallel

computing (where available) to reduce running time.

Supporting Information

Figure S1 Comparison of Ripley’s K-function and Kn e t.
(A) Ripley’s K-function (K(s)) counts how many points on a plane

are captured within circles of increasing radius (s) around each

point. Here, circles are drawn from only a single point (red circle).

(B) The graph of K(s) for the distribution of points in (A). If the

clustering of points were greater, then the K(s) function would

increase faster and the area under the curve (AUK) would be

greater. (C) The Kn e t-function computes the absolute deviation of

the sum of the weight of nodes within a certain distance of each

node from the Null model. The distance from a single node (red

circle) is shown. The darker the colour of the node, the greater its

weight. (D) The graph of the Kn e t-function for the network and

node weights in (C). The greater the clustering of the node weights

on the network, the greater the AUK.

(TIF)

Figure S2 Correlation between set size and Kn e t p-
value. Plot of the significance of the clustering of sets of network

genes associated with a GO term against the set size on GI

networks mapped in (A) untreated yeast and (B) yeast treated with

the DNA-damaging agent MMS. Only those GO terms that

associate with either or both networks with a strength of pv0:001
are shown. Many GO terms share a large number of genes due to

their ontological relationship. When those GO terms that are

ancestors of other GO terms tested are removed, Pearson’s

correlation coefficient equals 0.004 for the treated network and 2

0.040 for the untreated network, demonstrating that there is little

correlation between set size and Kn e t p-value.

(TIF)
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Figure S3 Correlation in network-gene set association
strength between distance methods. Pair-wise comparison

of the association strengths of GO terms across the three distance

methods. The networks tested were the MMS-treated (Top) and

untreated (Bottom) S. cerevisiae GI networks created using data

from Bandyopadhyay et al. Association strength correlation across

networks is very high (PCCw0:98), demonstrating that the results

produced by SANTA are generally robust across distance

methods.

(TIF)

Table S1 GO terms differentially associated with a
network of raw GIs and GI profile correlations. Kn e t was

used to test the strength of association between sets of genes

associated with various GO terms and the two network types. This

table contains the GO terms that associated most strongly

(pv1|10{8) with one or both of the networks. GO terms are

ranked by their differential association strength (D), with the terms

associated more strongly with the network of GI profile

correlations positioned towards the top and the terms associated

more strongly with the network of raw GIs positioned towards the

bottom. A greater number of GO term genes associated more

strongly with the network of GI profile correlations.

(PDF)

Table S2 GO terms differentially associated with the
untreated and MMS-treated GI networks. Kn e t was used to

test the strength of association between sets of genes associated

with various GO terms and the two network types. The table

contains the GO terms that associated most strongly (pv0:001)

with one or both of the networks. GO terms are ranked by their

differential association strength (D), with the terms associated

more strongly with the treated network positioned towards the top

and the terms associated more strongly with the untreated network

positions towards the bottom.

(PDF)

Table S3 GO terms differentially associated with the
untreated and UV-treated GI networks. Kn e t was used to

test the strength of association between sets of genes associated

with various GO terms and the two network types. The table

contains the GO terms that associated most strongly (pv0:001)

with one or both of the networks. GO terms are ranked by their

differential association strength (D), with the terms associated

more strongly with the treated network positioned towards the top

and the terms associated more strongly with the untreated network

positions towards the bottom.

(PDF)

Text S1 Vignette containing details of how to reproduce
the results given in this paper.

(PDF)
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