
Geometry Shapes Evolution of Early Multicellularity
Eric Libby1*, William Ratcliff2, Michael Travisano3, Ben Kerr4

1 Santa Fe Institute, Santa Fe, New Mexico, United States of America, 2 School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America,

3 Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America, 4 Department of Biology and BEACON Center,

University of Washington, Seattle, Washington, United States of America

Abstract

Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous
entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major
transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a
subset of units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor
originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to
address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment,
independent yeast lineages evolved a multicellular ‘‘snowflake-like’’ cluster formed in response to gravity selection. Shortly
after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart
and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of
increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The
model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily
important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for
new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach
higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of
total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism
we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in
individuality.
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Introduction

Organisms have increased in complexity through a series of

major evolutionary transitions, in which formerly autonomous

entities become parts of a novel higher-level entity [1–5].

Examples of this transition include the evolution of multicellular

organisms from unicellular ancestors and eusocial ‘‘superorgan-

isms’’ from multicellular ancestors. One of the primary benefits

ascribed to major evolutionary transitions is the potential for the

higher-level entity to evolve division of labor among its lower-level

units [1,2], a subject which has received a good deal of theoretical

attention [6–11]. A salient form of this is reproductive division of

labor in which some lower-level units forgo their contribution to

reproduction of the higher-level entity. This is found in the germ-

soma differentiation in multicellular organisms and worker/queen

roles in eusocial insects [12–17]. While reproductive specialization

is not strictly required for division of labor to provide a fitness

benefit to the higher-level entity, it has evolved repeatedly in

independent lineages [18–22].

Upon a superficial glance, the existence of such reproductive

self-sacrifice seems to present an evolutionary paradox. How

would such a self-destructive tendency be favored by a process

(natural selection) that places a high premium on survival and

reproduction? The resolution of the paradox generally involves a

situation in which the self-sacrifice improves the fitness of the

higher-level unit [6,7,9,11–13,17,23–27]. For ease of discussion,

let us call the lower-level entities ‘‘particles’’ and the higher-level

entities ‘‘collectives’’. Suppose the altruistic action of some

particles allows other particles in their collective to found new

collectives at a higher rate. If these founding particles possess a

tendency for self-sacrifice (which can occur if particles have high

relatedness within collectives), then reproductive division of labor

within collectives can evolve. We emphasize that such altruism

must occur in a strict subset of particles within the collective and

requires the plastic or stochastic expression of phenotypic traits at

the particle level. Thus, while the logic for the evolution of

reproductive self-sacrifice is sound, the mechanistic underpinnings

could be complex. The precise way in which such differentiation

evolves and its presence in the early stages of major transitions are

largely unknown.

A recent evolution experiment on the yeast Saccharomyces
cerevisiae has provided a unique platform to address the issue of

reproductive differentiation during an evolutionary transition in

individuality [28]. In this experiment, populations of unicellular yeast
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were periodically exposed to a selective regime that rewarded cells

that sank quickly in test tubes. During this setting, cells in clusters sink

more quickly than independent cells, incentivizing group formation.

Cluster-forming phenotypes evolved repeatedly via the retention of

cell-cell connections after mitotic reproduction. These group-forming

types outcompeted their unicellular ancestors, driving them to

extinction in all 10 replicate populations within 60 days [28].

Clusters grew in size until the resulting physical strain caused them to

fragment, yielding a form of group reproduction. As a result, the yeast

evolved group formation and reproduction de novo. Interestingly,

these yeast clusters soon evolved a secondary trait: a higher rate of

cellular programmed death (hereafter referred to as apoptosis). Why

would a higher rate of cellular suicide, an ostensibly costly trait, be

favored by natural selection?

A higher rate of apoptosis might have evolved because it

increases collective-level reproduction. Since each cell in the group

is connected solely to its parent and offspring cells [28], it only

takes a single break in any connection to produce two distinct

collectives. Both physical strain and cell death can create such

breaks and, consequently, increase the number of groups.

Selection for a greater number of clusters could promote division

of labor [6–11], providing an explanation for the evolution of

higher rates of apoptosis. Yet, the problem is that the selective

regime seemingly rewards large clusters (group size), not large

numbers of clusters (group fecundity). Moreover, the apoptotic

mechanism of group reproduction acts in direct opposition to

group viability. While there may be a benefit for groups to

reproduce (to reduce the risk of not being transferred due to

random sampling error), as groups divide they become smaller and

sink less quickly, making them less competitive against larger

groups. It would appear that an optimal strategy would be for

groups to grow as large as possible and divide infrequently. In

contrast, when selection for large groups is stronger (requiring

faster settling), groups evolve higher rates of apoptosis and produce

proportionally smaller propagules [28].

To address this conundrum, we build a series of mathematical

and computational models. The first model explores the optimal

way for clusters to split under a selective regime similar to the

Ratcliff et al. experiment [28]. We see that it is possible for high

rates of cluster division to be adaptive, but the opposite is also a

possibility. This first model ignores various details about the yeast

system for tractability, including the geometry of the clusters and

cellular apoptosis. The second model explicitly considers the

cellular arrangement within yeast clusters and the consequences of

apoptosis on cluster reproduction. This model reveals how the

geometric structure of the cluster interacts with apoptosis to affect

the number and size of cluster offspring. We find that the

organization of snowflake yeast imposes powerful limitations on

the available space for new cell growth. By dying more frequently,

cells in clusters circumvent space limitations, and, paradoxically,

reach higher numbers. Finally, we demonstrate that selection for

particular cluster sizes can explain the increased rate of apoptosis

both in terms of total cell number and total numbers of collectives.

Thus, considering the specific geometry of the clusters reveals the

adaptive benefit of the evolution of reproductive self-sacrifice in

the Ratcliff et al. experiment [28], and a possible mechanism for

the emergence of reproductive division of labor during an

evolutionary transition in individuality.

Results

Optimal cluster division
In this section, we build an abstract model to get a rough

understanding of how the experimental regime might select for

different rates and forms of cluster division. When a cluster splits, it

yields both new and smaller clusters. Thus, division simultaneously

affects cluster reproduction and the prospects for viability under

settling selection. How should a cluster balance fecundity against

survival? Similar to the experimental regime of Ratcliff et al. [28],

we use a framework with a growth phase followed by a selection

event, enabling cluster division strategies to depend on time within

the growth phase. Since cluster growth and division change the size

of clusters, we permit splitting strategies to be size-dependent. Here

we use a dynamic programming approach [29,30] to explore

optimal cluster division strategies.

We denote the probability a cluster of x cells survives settling

selection as S(x). Since larger clusters settle faster than smaller

ones, we assume S(x) is a non-decreasing function. In addition, we

assume that division and growth of clusters occur for T time steps

prior to settling selection. We define F (x,t) to be the maximal

reproductive output for a cluster of size x (x§0) at time t
(0ƒtƒT ). As a consequence, if fitness is measured in terms of

number of clusters F (x,T)~S(x), and if fitness is measured in

terms of the number of cells F (x,T)~xS(x). Over each time step

(from t to tz1, where t[f0,1,2,:::T{1g), we assume that clusters

divide and then grow. Specifically, a cluster of x cells at time point

t splits into two clusters of sizes p and x{p (where 0ƒpƒx=2).

We note that this includes the case where the cluster does not

divide (i.e., p~0); therefore, this framework allows us to track

optimal cluster division rate as well as optimal size for cluster

propagules. After division, the new clusters grow according to the

function G(x); that is, a cluster that starts with x cells ends the time

step with G(x) cells. For instance, if every cell in a cluster doubles

over a time step, then G(x)~2x. We have the following

backwards recursion for maximal reproductive output:

F (x,t)~ max
0ƒpƒx=2

(F(G(p),tz1)zF (G(x{p),tz1)) ð1Þ

Suppose fitness is measured in terms of the number of clusters

that survive selection (i.e., F (x,T)~S(x)). In the Supplement, we

Author Summary

A major transition in evolution occurs when previously
autonomous entities become co-dependent in the context
of a higher-level entity. Such transitions include the
evolution of multicellular organisms from unicellular
ancestors and eusocial ‘‘superorganisms’’ from multicellu-
lar ancestors. The evolution of reproductive division of
labor occurs after some of these transitions (e.g., germ-
soma differentiation in multicellular organisms). Yet, how
exactly this occurs is unknown. Here, we examine this issue
in the context of an experimental model of primitive
multicellularity that evolved a form of reproductive
division of labor de novo. Cells within groups evolved
higher rates of death. Through cellular death, groups of
cells split apart and formed new groups in a form of
collective reproduction. The evolution of this trait is
puzzling since cells originally formed groups under
selection for large size. Group splitting produces smaller
groups which are less likely to survive in the experiment.
We show that the organization of the group is key to
understanding evolution of increased cell death. Due to
the arrangement of cells, higher rates of cell death increase
both the number of cells and groups that survive.
Reproductive division of labor evolves because the group
context changes the fitness value of traits.

Geometry Shapes Evolution of Early Multicellularity

PLOS Computational Biology | www.ploscompbiol.org 2 September 2014 | Volume 10 | Issue 9 | e1003803



prove that if G(x)~ax, where a is some positive integer greater

than 1 and S(x) is concave (e.g., S(x)~1{e{cx), then the optimal

strategy is always to divide into halves (or as close to halves as

possible). If cell death is the means of cluster division, these

conditions would predict the evolution of cell death mechanisms

that produce equal sized cluster offspring. Generally in this case,

higher splitting rates could be favored and cell death may be one

way to accomplish this.

However, there are several important caveats regarding this

result. If S(x) is convex over some range of x as might be found in

a Hill function, then it can be optimal not to divide at all (at least

for some sizes; see Supplement). If fitness is measured in terms of

the number of cells (i.e., F (x,T)~xS(x)) rather than the number

of clusters, it can be optimal not to divide even when S(x) is

strictly concave (see Supplement). In such cases, cell death rate

would be predicted to decrease.

Furthermore, the model lacks a mechanistic basis for cluster

division. Such a basis follows from recognizing the geometry of the

cluster. Yeast clusters form when mother cells remain attached to

their budding daughter cells. Because a given mother cell can have

multiple attached daughters, the cluster is a branched acyclic

network (i.e., a multi-branched tree). Suppose cell death severs a

single cell-cell connection. In such a case, a yeast cluster will

produce two daughter clusters. However, the sizes of the daughter

clusters are constrained by the network topology of the mother

cluster. In terms of the above model, some p values will not be

possible and breaking a random link will make some p values

much more likely than others. Consequently, the model’s implicit

assumption that any value of p is equally available to a dividing

cluster is misplaced. Moreover, if the rate of cell death is constant,

then larger clusters should expect more broken links (and therefore

more offspring clusters per unit of time), which is not currently

captured by the above model. To address these issues directly, we

explicitly incorporate cluster geometry into our second model.

Cluster structure, growth and reproduction
We describe the structure of a cluster by a tree graph in which

nodes represent cells and edges represent physical attachments

between cells (Figure 1). When a cell reproduces, its corresponding

node in the tree gains an edge to a newly created node. This growth

mechanism ensures that cells are only attached to their parent and

offspring. For simplicity we begin the tree with only one node which

represents the first mutant yeast cell to have the capacity to form

clusters, call it Node 0. Each time Node 0 reproduces it generates a

branch which will continue to grow independently. Initially, we

assume that all cells reproduce and do so at the same time. So with

each successive generation the tree doubles its nodes, i.e. the cluster

doubles in the number of cells. After n generations the branches from

Node 0 will be composed of 2n{1,2n{2, . . . 20 cells depending on

when the branch was initiated. The total number of cells in the tree is

1z
Xn{1

i~0
2i~2n (we note this is equivalent to G(x)~2x in the

model from the previous section).

Due to the tree geometry, if a link/edge between two cells/

nodes is severed then it will result in two distinct clusters, i.e. the

cluster reproduces. Since both physical strain and cell death lead

to cluster reproduction, we can view these as mechanisms for

severing an edge between two nodes. It is also possible to divide

clusters by removing a node rather than severing an edge.

Removing a node with more than two connections, however,

could result in ‘‘multiple births’’, which is not typically observed

experimentally. Thus, we assume clusters reproduce via link

severance. Furthermore, in order to explain the experimental

observations of Ratcliff et al. [28], we consider cell death as the

primary mechanism of link severance–although other mechanisms

may also exist. Whatever the mechanism, the location of the

severed edge plays a significant role in determining the sizes of the

resulting cluster offspring. If an edge in the periphery is severed

then one of the resulting clusters will be composed of only a single

cell. In contrast, severing more central edges will result in more

symmetry between offspring clusters.

The particular manner by which cells die determines whether a

severed edge is more likely to be in the periphery or the center. If cell

death is completely random such that the centermost cells are just as

likely to die as newly created cells and the tree is doubling in size every

generation, then the severed edge is more likely to be peripheral. This is

because at any time 50% of the tree is newly created. As a result, there

is a 50% chance that death of a random cell will yield a ‘‘group’’ that is

one (dead) cell in size by breaking its one and only link to the tree. The

expected sizes of the offspring clusters after n rounds of cell

reproduction are
n

2
and 2n{

n

2
, and the ratio of the smaller offspring

to the parent is less than 0:5% after 10 generations (the ratio, P(n),

after n generations is
n

2nz1
). Such a small cluster may not be able to

grow large enough to survive the selective regime and could be

excluded from future growth and reproduction.

If cell death is not completely random but rather related to age

then central edges would be more likely to be severed. In the case

that the oldest cell (Node 0) dies, the sizes of the resulting offspring

clusters will depend on which link is severed. Each link of Node 0
corresponds to one of its branches with 2n{1,2n{2, . . . ,20 cells.

Without a bias as to which link is severed the smaller offspring

would be expected to have
2n{1

n
cells. The ratio of this offspring

to the parent after n rounds of cell reproduction, P(n), is
1

n
(1{

1

2n
). After 10 generations P(n) is approximately 10% which

is 20 times larger than when cell death is completely random.

Thus, weighting death towards older, more central cells increases

the size of the smaller offspring.

Experimental observations of early cluster offspring in the yeast

system suggest that the smaller offspring may be closer to 20{40% of

the size of the parent [28]. To see how link severance via cell death

can achieve such values, we consider again the death of Node 0 which

yielded less offspring asymmetry than random cell death. The oldest

branch of Node 0, created in the first round of cell reproduction, is the

only branch greater than 40% of the tree size– it is half of the size of

the whole tree. The next oldest branch, created the second time Node
0 reproduces, is a fourth of the whole tree size. Each successive

branch is half the size of the previous. If there is no bias in which

branch becomes the offspring then the odds favor the n{1 branches

that are much less than 40%. Instead of unbiased link severing, it

could be that links are severed according to the size of the branch they

are supporting. Bigger branches may produce more strain on their

links compared to smaller branches and, therefore, may break more

easily. Although there are many potential ways to bias severance in

favor of bigger branches, we assume a simple biasing such that the

probability a link is severed is directly proportional to the size of the

branch. In this case, the ratio of the smaller offspring to the parent

after n generations, P(n), is
1

3
(1z

1

2n
) which approaches

1

3
as n

increases. This matches experimental observations more closely and

suggests that cluster division via cell death may be biased both in

which cells die and which links are severed.

Growth constraints
Until now, we have operated under the unrealistic assumption

that all cells in a cluster have the same constant rate of
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reproduction. Although each time a cell reproduces, the cluster

increases in size and span; it also fills the limited volume at the

center. As this space gets crowded, cells lose both access to

nutrients and room for further reproduction. To determine how

the tree geometry experiences volume constraints, we use a 3-

dimensional model of growth in which cells occupy concentric

shells surrounding the central node, Node 0 (Figure 2). By

stretching the cluster along its longest diameter, this model

maximizes the available space and sets an upper bound to the size

capacity of the cluster.

We assume that each cell is an identical sphere with radius r. Cells

occupy shells depending on how many links separate them from

Node 0. For example, the third shell is filled with cells that are 3 links

from the center. The offspring of a cell occupies the next shell and,

conversely, its parent is in the previous shell. Each shell k encloses a

volume equivalent to a sphere with radius R~rz2kr. This volume

(
4

3
pR3) can hold at most (1z2k)3 cells– ignoring issues concerning

the maximum packing of spheres. In the growing cluster, the actual

number of cells within the volume of a shell is simply the total

number of cells in each interior shell. For a given shell k after n

rounds of cell reproduction the total number of cells is
Xk

j~1

n

j

� �
(see Figure 2). Thus, the volume enclosed by shell k is exceeded

when the number of generations n satisfies:

Xk

j~1

n

j

� �
w(1z2k)3 ð2Þ

We calculate the lowest n for which the volume bounded by

each shell is exceeded and find shells 4–6 are the first to overflow

at the twelfth round of cell reproduction (n~12). Even if a cell in

shell 4 could relocate to shell 3 there is no room available because

the volume defined by shell 4 has been exceeded. While there is

still space in the volume contained by shells 7–12, cells from the

overcrowded volume cannot move here because they must remain

connected to their parents in more interior shells.

In addition to the volume constraint, there may be constraints

regarding how many attachments (edges) a single cell can have.

Experimental observations of cluster structure find that most cells

are attached to only a few cells (v5). If there is a limit to the

number of attachments per node then this will alter the

organization of a cluster (Figure 3). For example, a tree with

maximum node degree of 3 will have just 3 branches emanating

from Node 0. Instead of doubling with each round of cell

reproduction, the number of nodes in a branch follows a recursion:

an~an{1zan{2z1, where an is the number of nodes n episodes

after the creation of the branch. Geometries with higher

maximum node degrees (hereafter called ‘‘degree capped’’) also

feature recursive relationships such that in general, for a tree with

degree cap of m, an~an{1zan{2z . . . zan{mz1z1 with the

first m values following an~2n{1. This stems from an important

distinction in trees with a degree cap: their size only increases with

those cells created within the last m generations. These recursive

relationships relate cluster sizes with Fibonacci numbers such that

trees without degree caps are simply Fibonacci sequences of

infinite order. In all cases, the total number of nodes in the tree is

simply twice the number in the largest branch.

As the distribution of cells in branches is altered by limiting the

number of node attachments so, too, is the expected size of offspring

clusters. If Node 0 dies and there is no bias to which link is severed then

the expected offspring size as a proportion of the parent is

P(n)~
1

m
(1{

1

2an

), where m is the degree limit and an is the

Figure 1. Groups as trees. A) Photograph of a cross-section of the yeast snowflake phenotype shows the branching morphology. B) Simulated
group growth from a single cell (Node 0) after 6 rounds of cell reproduction (generations). The different colors represent different branches
emanating from Node 0. The numbers inside nodes represent the generation of their birth.
doi:10.1371/journal.pcbi.1003803.g001
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number in the largest branch. This quickly approaches 1
m

which is

much greater than the value 1
n

found in trees without limits to the

number of node attachments. Consequently, cluster offspring are more

equal in size. In trees without degree caps, biasing which link is severed

according to branch size increased the symmetry of cluster offspring

such that the expected size of the smaller offspring is 33% of the

parent’s size. By comparison, biasing link severance in favor of bigger

branches (as done before) has less of an effect in trees with degree caps.

The expected size of the smaller offspring is 38:2% of the parent’s size

for a degree cap of 3 and 35:2% for a degree cap of 4. While the most

symmetric cluster reproduction is in trees with a degree cap of 3 and

biased link severance, all trees with biased link severance produce an

offspring that is between 33{38:2% of the parent’s size. It should be

noted that a degree cap of 2 can do better but it can only form filaments

rather than snowflake-shaped clusters.

Not only do trees with degree caps produce more symmetric

offspring but they can experience less severe volume constraints.

Since limiting the number of attachments per cell reduces the size

of a cluster, it effectively delays when clusters begin to run out of

space. A tree without degree caps can only go through 11 rounds

of cell reproduction before exceeding the available volume

contained by a shell. A tree with degree cap of 4, however, goes

through 14 generations before encountering a limit at shells 8–11.

A tree with a degree cap of 3 can undergo even more generations,

exceeding shells 14 and 15 on the 20th round of cell division. It

reaches &2 � 104 cells before encountering volume limitations

which is twice that of trees with a degree cap of 4 (&104 cells) and

5–10 times as many cells as trees without degree caps.

Interestingly, trees with degree caps of 2 produce filaments, a

common biological shape, that are free of any volume constraints.

Population simulations
Thus far, we have examined the consequences on cluster

reproduction of link severance due to death of a single cell. In practice,

however, as clusters grow and reproduce, mechanisms of cell death

interact with geometric constraints to create a population of clusters

with a distribution of sizes. In addition, the death of a cell has

downstream consequences by preventing future growth of a branch.

To determine how such mechanisms interact, we simulate the

population expansion from the first mutant capable of forming

clusters, Node 0 (see Methods).

The population simulations show that the total number of living

cells increases with the probability of cell death (Figure 4A & B). This

paradoxical result is a consequence of the constraints on cell

reproduction due to degree caps and limited volume. For a degree

cap of 3, cells that reach the maximum degree (3 in this case) stop

reproducing. After 21 generations, many cells have reached the

maximum degree and no longer contribute to the growth of the

population. By dying, a link connecting two non-reproducing cells is

broken. This allows one cell to reproduce again and start a new

branch that increases the population by more cells than the cost of the

dead cell. Since a cluster with degree cap of 3 does not encounter

volume limitations until the 20th generation, near the end of the

simulation, the volume constraint does not play a significant role in the

increased cell population. In fact, it can be removed and the total

number of cells still increases with higher rates of cell death. This is not

true with clusters that have a degree cap of 4 (Figure 4C). The higher

degree cap reduces the extent to which fixing a maximum number of

attachments constrains the population while at the same time

increases the strength of the volume constraints– cells experience

volume limitations by the 14th round of cell reproduction. So, both

degree cap and volume constraints allow clusters to increase the

number of living cells by increasing the frequency of cell death.

In biological systems cell death may not be completely random

but rather biased by age. Analytically, we showed that the age of

the dead cell affects the expected sizes of cluster offspring. Here,

we include a bias in the age at which cells die in the simulation by

protecting reproducing cells from death; cells cannot die until a

Figure 2. Volume constraints to tree growth. (Left) A model of the growing tree with Node 0 at the center and shells of nodes surrounding it.
Each cell is a sphere with radius r and the edges are only shown to make relationships clear– edge length is effectively 0. (Right) After n generations,

each shell k contains
n

k

� �
cells exclusively.

doi:10.1371/journal.pcbi.1003803.g002
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set amount of time has passed since their last reproduction. We

expect this to act similarly to decreasing the death rate because

fewer cells are susceptible to death. As such, we predict that the

longer death is delayed the lower the final population. Instead,

we find that delaying death has a variety of effects depending on

the degree cap and the frequency of cell death (Figure 4D). The

results match our expectations when the probability of death is

low (ƒ10{2) or clusters are not degree capped. In contrast, when

the probability of death is high (10{1), the number of cells in

degree capped clusters increases if death is delayed. This effect is

strongest when death is delayed only one round of cell

reproduction, i.e. cells are susceptible when it has been at least

one generation since their last reproductive event. As the delay

gets longer the total number of cells decreases. For a degree cap

of 4, delaying death for 5 rounds of cell reproduction still

produces more cells than when there is no delay, but this is not

true for a degree cap of 3. Thus, delaying death has different

effects depending on the probability of death, the length of the

delay, and the maximum node degree.

Due to volume constraints and degree caps, apoptosis can

increase both the number of cells and the number of clusters. Yet,

the experimental regime rewarded cells that were in clusters

above a certain size– this success might be measured as either the

number of clusters or the number of cells in clusters. The

frequency of cell death affects both the number and size

distribution of clusters. To find which apoptosis rate yields the

most clusters over different size thresholds, we compute the

average number of clusters above threshold for different

probabilities of death (Figure 5A for degree cap of 3 and 5B

for degree cap of 4). For small cluster thresholds (v25 cells), the

highest probability of death 10{1 produces the most cluster

offspring. As the cluster threshold increases to 102 cells, the

probability of death that leaves the most cluster offspring

decreases to 10{2. Larger size thresholds (§105) effectively

reward clusters that never divide, and so the best strategy is to

have the lowest probability of death (here, 10{5). These trends

also hold if the degree cap is 4, but the higher probabilities of

death (10{1 and 10{2) dominate for greater ranges of size

Figure 3. Degree capped tree growth. A) A model of a growing tree with Node 0 at the center and a degree cap of 3. The numbers inside each
node represent the generation of their birth while the colors denote the 3 different branches emanating from Node 0. The table below shows the
total number of cells in each branch and the tree as a whole as a function of the number of generations. The number of nodes of each branch follow
t h e sa m e se r i e s : 1,2,4,7, . . . d e s c r i b e d by t h e r e c u r s i o n an~an{1zan{2z1. T h i s c a n b e s ol v e d a n a l y t i c a l l y t o g e t
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{1. B) A model of a growing tree with a degree cap of 4. Similar to A) there is a recursive

relationship for the number of nodes in a branch but it delves one more generation into the past, i.e. an~an{1zan{2zan{3z1. For both trees the
total number of nodes in the tree is twice the number in the red branch.
doi:10.1371/journal.pcbi.1003803.g003
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thresholds. Moreover, these trends are the same if fitness is

determined not by the number of clusters above threshold but

rather the number of cells in those clusters. Once again, the

higher probabilities of death are successful for size thresholds

from 1 to &104. One notable difference is that for size thresholds

between 101 and 102, the highest probability of death, 10{1,

produces the most clusters but not the most cells– the 10{2

probability of death produces more cells in clusters above

threshold.

In determining which apoptosis rate produces the most

clusters, we assumed that the probability of death is an

evolvable trait. The same may be true of other features related

to cluster organization or cell death such as degree cap and the

age bias of cell death (the death delay). To find which

Figure 4. Total number of cells resulting from different rates of cell death and geometric constraints. A) Total number of living cells in
groups with maximum node degree 3 in 100 simulations at 4 different probabilities of cell death. The highest probability of death (10{1 in blue) has
the largest number of cells and the greatest variance in final cell number. B) Same as A but with maximum node degree 4. Once again the highest
probability of death (10{1 in blue) produces the most cells. C) The same as B but the volume constraints are removed, i.e. the maximum node degree
is still 4 but there is no limit to the number of cells in each shell. The 10{1 probability of death no longer increases the population of cells. D) The
mean number of living cells when a cell’s susceptibility to death is delayed by 0–5 generations (* time units) since it last reproduced. The colors
correspond to probabilities of death: 10{1 (blue), 10{2 (red), 10{3 (green), 10{5(black); and the line style represents the degree cap: no cap (solid), 4
(dashed), 3 (dotted). In trees with degree caps of 3 and 4, the highest probability of death results in even more cells when death is delayed one
generation but less as death is delayed further. In all other cases, delaying death results in less cells.
doi:10.1371/journal.pcbi.1003803.g004
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combination of these traits, ‘‘strategies’’, yields the most

clusters above threshold, we compare combinations of degree

cap, probability of death, and death delay (Figure 6A, B). For

each combination of traits we grow a population of clusters

from a single cell, Node 0, and compute the distribution of

cluster sizes. This is repeated 100 times and we compare the

strategies across different cluster size thresholds. For weak

thresholds that permit small clusters of less than 25 cells, the

most clusters are left by those without degree caps who have a

probability of death of 10{1 and no death delay. This strategy

also produced the most living cells without considering cluster

size thresholds (Figure 4D). For intermediate cluster thresholds

between 25 and 1000 cells, a degree cap of 4 with a probability

of death of 10{1 is best. As the size threshold increases within

this range so does the optimal death delay. For cluster size

selection between 103 and 104 the best strategy shifts back to

Figure 5. Selection for group size. A) The number of groups that satisfy size thresholds are shown for a degree cap of 3 for different probabilities
of death: 10{1 (blue), 10{2 (red), 10{3 (green), 10{5 (black). As the group size increases, the number of groups above threshold drops. Small group
size favors higher probabilities of death while large group size favors low probability of death. B) Same as A but with a degree cap of 4. The range in
which 10{1 is dominant has expanded and 10{2 does better at group sizes above 104 . C) The number of cells within groups that satisfy size
thresholds for a degree cap of 4 is shown for different probabilities of death (same color scheme). In contrast to B, the 10{2 probability of death has a
much larger range in which it is best. Comparing B and C, there is a region between 10 and 100 cells in which the 10{1 probability of death produces
more groups but fewer cells in those groups than 10{2.
doi:10.1371/journal.pcbi.1003803.g005
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clusters without degree caps who have a probability of death of

10{1 and death delays above 0. The largest cluster size

selection (w104) finds the lowest probabilities of death with all

degree caps doing well. In general, these results hold if the

number of generations in the simulations is reduced from 21 to

19.

We next consider how the best combinations of traits for

different size thresholds fare in cluster offspring symmetry. We

Figure 6. Best strategies for different group size selection. A) The probability of death that yields the most group offspring is shown for each
threshold of group size for different rounds of cell reproduction (blue for 21, red for 19). The degree caps follow the same organization broken down
by probability of death. In general the 10{1 probability of death for a degree cap of 4 and no cap is the best strategy for most group sizes. Once the
group size gets large (w104) lower probabilities of death begin to win as it is advantageous not to divide large groups. B) The best strategies from A
for group size thresholds ¡ 103 are distinguished by death delay (number of rounds without reproduction before a cell is susceptible to death). The
optimal strategy of 10{1 for no cap has no death delay, i.e. all cells are susceptible to death. For group size thresholds around 102 where degree cap
of 4 with probability of death 10{1 does better, the death delay increases with group size threshold. This increased death delay effectively lowers the
probability of death. C) The average size of group offspring as a percent of parent size is shown for each optimal strategy from A (death delays
included). The values are all under 9% and are much smaller than those experimentally observed. There was, however, only one strategy which left
more symmetrical groups (a degree cap of 3 with the highest probability of death).
doi:10.1371/journal.pcbi.1003803.g006
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compute the average size of offspring cluster for the best strategies

(Figure 6C) and find that they produce much smaller offspring

than the 30{40% observed experimentally: &3% of the parent’s

size for small cluster selection, &9% for intermediate clusters, and

v1% for large clusters. Although they fall short, only a degree cap

of 3 with the highest probability of death left more symmetrical

cluster offspring (&20%). The symmetry of offspring did not

compensate for the limits such a stringent degree cap places on

population size.

To see if higher rates of cell death could be selected for in the

context of evolving populations, we expand our simulations to

include mutations and repeated cycles of growth and selection

mimicking the transfers of the experiment [28]. We start the

simulation with a single cell, Node 0 with no degree cap and a low

rate of cell death (10{8). Along with each round of cell

reproduction and death, there is a round of mutation. Cells

mutate with a probability of 10{3 (assuming there are many

mutations that affect the probability of cell death) and are assigned

a new probability of death randomly sampled from a uniform

distribution between 10{8 and 1. After the population grows 106

cell divisions, we randomly pick clusters based on their diameter as

a proxy for settling speed until we have 10% of the population.

This process of growth and selection is repeated for 100 transfers

(Figure 7). The result is a rapid growth in the average probability

of death for the population. The probability of death reaches 10{2

within a similar number of transfers as was found experimentally

(&60 transfers [28]).

Methods

Population simulations compute the growth and reproduction of

clusters from a single cell, the first mutant to form clusters, Node 0.

The simulation approach involves agent-based tracking of cell

information, including the cluster it belongs to, the shell it is in, its

parent cell, its number of offspring, the size of each of its branches

(for biased link severance), and the time it last divided. Simulations

have discrete time steps representing cell generations. At the start

of a time step, all cells reproduce so long as they satisfy three

conditions: 1. they are alive, 2. they have not reached the

maximum degree (degree cap), and 3. there is room in the next

shell where their offspring will reside (volume constraints).

Following reproduction, we implement cell death. Initially all

cells are susceptible and have a constant probability of death. This

assumption is relaxed at times to delay death until a cell has been

unable to divide a certain number of time steps, effectively

protecting younger cells from death. If a cell dies then one of its

links is randomly severed, biased by the number of cells along that

branch (weighting). Dead cells remain attached to a cluster and no

longer reproduce. Each simulation goes through 21 rounds of

reproduction and death (cluster reproduction) which would allow

planktonic cells to reach populations of w106 cells. At the end of

the simulation, the distribution of cluster sizes is computed as well

as the total number of living cells in those clusters. Simulations are

done using the numerical software MATLAB (version 7.12.0.635

Natick, Massachusetts: The MathWorks Inc., 2011).

Discussion

An experiment exploring the emergence of multicellularity

observed the rapid evolution of groups from unicellular precur-

sors in the yeast Saccharomyces cerevisiae when cultures were

placed under selection for rapid settling through liquid medium

[28]. Soon after the establishment of groups, cells also evolved a

higher rate of apoptosis. Elevated cell death clearly lowers cell

viability, but it would also seem to lower group viability. This is

because settling selection favors large clusters and cell death

facilitates group division, and thus size reduction. Why would

natural selection favor elevated– as opposed to reduced– levels of

apoptosis? Here we show that the organization of the group and

the constraints imposed by its geometry are instrumental in

understanding the functional consequences of apoptosis. By

increasing the frequency of cell death, both the number of cells

and groups can increase. Thus, a trait which is harmful to the

cells that express it (they die) acts as a form of suicidal altruism

and is beneficial to both the long-term number of cells and group

entities once the group structure is considered. Furthermore, this

trait may play a key role in the evolutionary transition to

multicellularity.

With the transition from unicellularity to multicellularity there is

an important shift in the level of organization and individuality [1–

3]. A key requirement for multicellularity is formation of a

cohesive group of cells. Group formation offers distinct advantages

over a strictly solitary lifestyle such as protection from predation

[31,32], access to new niches [4], and survival in harsh

environments [33]. However, for groups to qualify as units of

selection, they must also possess the capacity to beget group

offspring [27,34,35]. In this experimental yeast system, clusters

grew in size and as a result of cell death or physical strain they

fragmented and thereby reproduced. As a result, the yeast

simultaneously evolved group formation and a mode of reproduc-

tion de novo. The later evolution of increased cell death led to

more frequent cluster reproduction, thereby, linking reproductive

self-sacrifice at the lower-level to fecundity at the higher-level.

From a certain perspective, the fitness of the apoptotic lower-level

units is subjugated to elevate the fitness of higher-level units, which

is taken to be a hallmark of an evolutionary transition in

individuality [1,2,27,36,37].

Figure 7. Evolution of higher rates of cell death. Clusters
alternate between growth phases, in which the population increases by
106 cells, and selective phases, in which clusters are randomly chosen
based on size (see Methods) similar to the experimental regime. Cells
can mutate and change their probability of death. Starting from a
probability of death of 10{8 , the average probability of death in the
population evolves to around 10{2 .
doi:10.1371/journal.pcbi.1003803.g007
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Interestingly, evolution of increased cell death also acts to

stabilize the transition to multicellularity. If a cell with a higher

rate of death were to leave the context of its collective, it would not

fare well in competition with other cells who never formed groups

(and never evolved greater apoptosis). In this way, the trait ratchets

cells into a multicellular lifestyle by making them less competitive

with their unicellular ancestors. This prevents abandonment of the

collective and reversion to unicellularity. By tying the fate of cells

to the fate of their groups, such context dependent traits stabilize

primitive multicellular forms.

The amount of stabilization provided by a context dependent

trait would likely depend on the fitness tradeoff between

unicellular and multicellular life. More stabilization is expected

from traits that severely hamper the fitness of cells outside the

group context. It is unknown whether such stabilizing traits are

common but with the yeast system analyzed in this paper there is

robust selection for increased apoptosis rates. Rather than finding

a narrow range of conditions that selected for moderately higher

rates of cell death, we found strong selection for high rates of cells

death (1{10%) across a wide spectrum of cluster size thresholds.

In fact, the only regime where increased cell death does not

succeed is when groups need to be close to the maximum possible

size. This regime selects for the lowest cell death rates and results

in a single group encompassing the entire population. Otherwise,

when size selection required minimum group sizes from 0 to 104,

high rates of cell death allowed cells to circumvent limitations

imposed by geometry. Interestingly, these limitations were of two

different classes: limits to the number of connections and limits to

space. The relative importance of each limitation depends on the

geometry. Limits to connections are stronger for trees with a

maximum node degree of 3 and under while limits to space are

more restrictive when the maximum degree is 4 and higher. As a

consequence, a gamut of different tree geometries encounter

limitations to growth that robustly select for high rates of

apoptosis.

Although using selective regimes based on Ratcliff et. al.
experiment [28], favored high rates of cell death similar to those

observed in the experiment, it did not match the same magnitude

of offspring-parent ratio (30{40%). One reason for the mismatch

with experimental data could be the compounding effects of cell

death on the reproduction of the clusters. Experimental popula-

tions undergo repeated generations of cell reproduction and death

which alters the geometric arrangements of cells. In comparison,

the population simulations of Figures 4-7 contain nascent clusters

who have grown from a single cell over the course of only 21

generations. They may not have had enough time to accumulate

dead cells which alters their structure and promotes the birth of

larger cluster offspring. Another possible reason for the mismatch

could be due to our implementation of cell death. If cell death

occurs under conditions of low nutrient concentration or build-up

of cellular waste products, then cells in the center of clusters may

be substantially more likely to die, which would produce relatively

larger offspring clusters. Also, our models do not explicitly

incorporate physical forces within growing clusters, which could

affect likely break points, and thus, relative size of offspring

clusters.

Our model implicitly assumes that the environment in which

cells and groups grow is nutrient rich, and that the death of a cell

provides the possibility for replacement by future cells. This allows

apoptosis to overcome the cost of sacrificing a cell through the

benefit of additional cellular reproduction. If, instead, the

environment were nutrient poor and death of a cell did not

guarantee replacement, then high rates of apoptosis would

encounter an additional cost not reflected in our model, and

would likely be less successful. It is possible that the model could be

modified to consider cell survival as a function of crowdedness

rather than cell fecundity. Cells in more crowded areas have less

access to nutrients and by dying could create more access for

neighbors, potentially improving their survival. These consider-

ations lie outside the scope of this paper. In the experimental

regime, as in the model, populations were grown in nutrient rich

environments and so increased apoptosis led to both higher group

and cell number. Still, it is important to recognize that the fitness

consequence of traits depend on both the environment established

by the group as well as its external environment.

While there have been many theoretical studies on the evolution

of division of labor within multicellular organisms, modeling that

division in the context of the multicellular geometry represents an

under-explored direction. Considering the fitness implications of

group geometry reveals that the group represents a novel, dynamic

environment, one constructed bottom-up by individual cells. As

such, variations in cellular physiology affect the geometry of the

cluster, which in turn affects cell growth and survival. For

example, if a cell has a morphology that only permits three

connections to other cells, then the maximum possible cluster size

will be much smaller than a cellular morphology that permits four

connections. Similarly, different group formations impose different

selective pressures on the cells within groups. The difference

between three and four connections determines when cells will run

out of space within the group. Although we considered a simple

model with identical cells defined by just a few properties

(maximum degree, apoptosis rate, and death delay), we found

that these traits interact in surprising ways. For instance,

increasing cell death increased the number of living cells but

delaying death for cells– effectively reducing the apoptosis rate–

had contrasting effects depending on the maximum degree and

duration of the delay.

We only investigated how altering cell death affects cluster

size and the number of cells/clusters in the population, but it is

possible that cells could evolve different shapes, sizes, or

behaviors which modify whole group-level traits. In fact, recent

work has shown that strong selection for faster settling results in

the evolution of larger, more elongate cells, which increase both

group size and settling speed [38]. The environment faced by

cells in clusters is not uniform: cells in the interior should

experience a lower concentration of resources (as they must

diffuse past other yeast that are consuming them) and higher

concentrations of waste products. These environmental gradi-

ents provide reliable cues that could allow a cell to determine its

position within the cluster. As cells change their location within

the geometry and experience different internal environments, it

may be advantageous to adopt different strategies or forms. This

raises the possibility that selection can favor location-specific

morphological or behavioral differentiation. Indeed, this may

provide an evolutionary origin to primitive multicellular

developmental programs.

Supporting Information

Figure S1 Optimal propagule sizes using the dynamic
programming approach. Here we programmed the recursion

from Eq. 1 in SI and solved for the optimal division popt as a

function of cluster size (x) and time (t). In our graphs we focus on a

small range of sizes (0ƒxƒ10) over five time steps. For all runs we

assume G(x)~2x (clusters double every time step). In the program

we set a maximum cluster size (of xmax~350; note, the largest a

cluster could get within our focal range would be (10)(25)~320).

We vary the function F (x,T) in these graphs and plot the optimal
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division size as the smaller fraction of a cluster after the split (fopt).

Note for x~0, we set fopt~0 (although actually the optimal

fraction is undefined) and for x~1, fopt must be 0. Whenever

distinct fractions give equivalent optimal strategies, the smallest

fraction is plotted. a) Here we have a purely concave function

F (x,T)~S(x)~(1{e{0:1x), and we see that the optimal strategy

is to split the cluster into two equal pieces. Of course, for clusters

with an odd number of cells, this is impossible, but the optimal

strategy is to divide the cluster as evenly as possible (e.g., a cluster

of size 5 gets split into a cluster of size 3 and one of size 2, for

fopt~
2

5
~0:4). b) Suppose the survival function is purely concave

(S(x)~(1{e{0:1x) as before), but now maximal reproductive

output is measured in terms of number of cells surviving selection,

and not the number of clusters. Here, F (x,T)~

xS(x)~x(1{e{0:1x). In this case, it is optimal to avoid splitting

under all conditions in our range. c) In cases where the survival

function flips concavity across our range, optimal division can

depend on size and time. Here F (x,T)~S(x)~
xh

yhzxh
, where

y~5 and h~2. d) The same function is used here as in part (c),

but h~10.

(TIF)

Text S1 This document shows derivation of the dynam-
ic programming approach and calculation of optimal
division strategies.

(PDF)
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