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Abstract

Errors in sample annotation or labeling often occur in large-scale genetic or genomic studies and are difficult to avoid
completely during data generation and management. For integrative genomic studies, it is critical to identify and correct
these errors. Different types of genetic and genomic data are inter-connected by cis-regulations. On that basis, we
developed a computational approach, Multi-Omics Data Matcher (MODMatcher), to identify and correct sample labeling
errors in multiple types of molecular data, which can be used in further integrative analysis. Our results indicate that
inspection of sample annotation and labeling error is an indispensable data quality assurance step. Applied to a large lung
genomic study, MODMatcher increased statistically significant genetic associations and genomic correlations by more than
two-fold. In a simulation study, MODMatcher provided more robust results by using three types of omics data than two
types of omics data. We further demonstrate that MODMatcher can be broadly applied to large genomic data sets
containing multiple types of omics data, such as The Cancer Genome Atlas (TCGA) data sets.
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Introduction

Cells employ multiple levels of regulation that enable them to

respond to genetic, epigenetic, genomic, and environmental

perturbations. With advances in high-throughput technologies,

comprehensive data sets have been generated to measure multiple

aspects of biological regulation, such as genetics, transcriptomics,

metabolomics, glycomics, and proteomics. To elucidate the

complexity of cell regulation, diverse types of data from these

different technologies must be integrated.

Sample errors, including sample swapping, mis-labeling, and

improper data entry are inevitable during large-scale data

generation. Some of these errors can be detected during quality

control (QC) on each type of data; however, others are more

elusive and may affect integrative data analysis, depending on the

integration methods used. In some integrative analyses, signature

sets are first defined by each data type individually, for example

signatures for gene expression, methylation, or copy number

variation (CNV). Then, the signatures are overlapped to identify

high-confidence changes [1]. In such analyses, potential sample

inconsistencies may have a limited effect on results. For example,

assume that samples A and B are swapped in gene expression data.

If both samples are involved in the same subgroup (e.g., normal

control or disease), the derived signatures will not be affected by

the sample mis-labeling error. In other integrative analyses, such

as the genetic gene expression studies [2,3], in which the aim is to

discover how DNA variations or single nucleotide polymorphisms

(SNPs) regulate gene expression changes, sample errors could have

a larger effect. In one study, mis-matching of 20% of samples

between genotype and gene expression data decreased the number

of cis-eSNPs by 70% [4].

To fully understand biological systems, it is necessary to

elucidate how genetic and epigenetic perturbations lead to

transcriptomic and proteomic changes, which in turn contribute

to the disease phenotype. Simultaneously considering different

types of biological data can result a better understanding of

biological systems [2,5–8].

With recent advances in high-throughput technologies, multiple

layers of molecular phenotypes have been measured in the same

sample for comprehensive survey of biological systems. To

maximally utilize these data, it is necessary to properly match

different types of data pertaining to the same sample or individual

before integrative analyses. Here we present a sample mapping

procedure called Multi-Omics Data matcher (MODMatcher),

which not only identifies mis-matched omics profile pairs, but also

properly assigns them to the correct samples based on other omics

data. We applied MODMatcher to two large-scale public multi-

omics datasets: one from the Lung Genomic Research Consortium
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(LGRC) and one from The Cancer Genome Atlas (TCGA). In

both cases, adjustment for mis-matched samples improved data

consistency and increased statistic power to identify biological

regulations. All software programs and scripts are available at

http://research.mssm.edu/integrative-network-biology/Software.

html.

Results

Application to LGRC data
The LGRC is a consortium for studying chronic lung diseases

including chronic obstructive pulmonary disease (COPD). Clinical

information and gene expression and methylation profiling data

were obtained from the LGRC data portal (http://www.lung-

genomics.org). Genotype data was provided by the LGRC

consortium. The data set consists of gene expression profiles of

lung tissues from 219 patients with COPD and 108 non-disease

controls (CTRL), and methylation profiles of lung tissues from 173

COPD patients and 76 controls. First, the gender of each sample

was inferred based on three types of data and compared to the

gender annotated in clinical data. There was no ambiguity in

gender prediction based on each individual type of data; the

molecular profiles of different genders were clearly separated

(Figures 1–3). However, we identified several mismatches between

the predicted genders based on omics data and the clinically

annotated genders. Among genders predicted by X-chromosome

heterozygosity, we detected 4 mismatches in CTRL and 5 in

COPD samples, corresponding to a mismatch error rate of 3.5%

(9/256) for SNP genotype profiles (Figure 1). While there was no

gender mismatch in CTRL samples, as judged by the expression

level of Y-chromosome specific gene RPS4Y1, we detected 5

gender mismatches in COPD, corresponding to a mismatch error

rate of 1.5% (5/327) for gene expression profiles (Figure 2).

Among genders predicted from the intensity of the Y-chromosome

specific methyl probe close to FAM197Y2P (see Methods), we

found 1 gender inconsistency in CTRL samples and 15 in COPD

samples, corresponding to a mismatch error rate of 6.4% (16/249)

for methylation profiles (Figure 3). Overall, for 21 unique

individuals (Table S1), the gender information inferred from

different sources did not match either with one another or with

clinical annotation, indicating sample alignment problems.

According to the error rate of gender mismatches, gene expression

profiling data was least likely to be mis-labeled, and methylation

profiling data was most likely to be mis-labeled in the LRGC data

set.

Next, we iteratively matched SNP, gene expression, and

methylation profiles using multi-omics identity similarity scores

(Figure 4). We started with three sets of profile pairs with

consistent inferred gender information: 179 pairs (50 CTRL and

129 COPD) for genotype and gene expression data, 182 pairs (51

CTRL 131 COPD) for genotype and methylation data, and 209

pairs (61 CTRL and 148 COPD) for methylation and gene

expression profiling data. Cis regulation pairs (i.e. cis-eSNPs, cis-

mSNPs, and cis methy-mRNA probes) were identified separately

for CTRL and COPD samples. Sample identity similarity scores

Sge, Sgm, and Sme based on identified cis regulation pairs were

calculated for all possible profile pairs. Sge and Sgm were

calculated from the distance between predicted and measured

SNP genotypes. Sme was measured by correlation of rank-

transformed methylation and gene expression levels in samples

(Figure 5, see Methods). The similarity scores for matched profiles

were 3.8, 3.2, and 1.8 standard deviations better than the mean

similarity scores for Sge, Sgm, and Sme, respectively (Figure 6A–C).

Thus, SNP-mRNA sample matches were more reliable than SNP-

methylation or methylation-mRNA sample matches, perhaps

because methylation data tends to be noisy due to intrinsic

technical design [9,10]. Based on the gender-matching results,

methylation profiles have a higher mis-label rate than other profile

data, also contributing to the uncertainties of sample matching of

methylation profiles.

Next, we determined whether mis-aligned samples could be

matched with other unmatched samples by reciprocal best

matching, based on one type of identity similarity score. In other

words, we tested whether mis-aligned genotype profile Gi had the

highest similarity with an unmatched mRNA profile Ej among all

mRNA profiles, and the unmatched mRNA profile Ej had the

highest similarity with Gi among all genotype profiles as well. For

the sample pair with a reciprocal best match, sample labels can be

updated by comparison with mapping results based on other

identity similarities.

When all three types of data are available, the source of any

sample labeling errors can be identified. It is also possible to

remove or identify additional matched profiles that may be

ambiguous as judged from Sge, Sgm, or Sme alone. Since cis-eSNPs

pairs provided the best alignment signal, we started with sample

matching by cis-eQTL. Then, samples were further matched by

cis-mQTL and mRNA-methylation. For the SNP-mRNA profile

match, we tested whether there was a methylation profile that

matches well with both SNP and mRNA profiles in the matched

pair.

After each round of sample matching, the quality of sample

alignment was assessed by counting the number cis pairs

identified. For all pairs among these three data types, sample

mapping correction significantly increased numbers of cis pairs

identified (Figure 7). The number of cis-eSNPs stabilized within

the first 5 rounds (Figure 7A). However, the number of cis-mSNP

pairs stabilized in much later rounds (about 15–17), as expected

because of the higher mis-label error rate and greater noise in the

methylation data. Nonetheless, the numbers of cis-pairs involving

methylation profiles increased substantially with the improved

sample matching (Figure 7B and 7C). In COPD samples, the

number of cis-eSNPs increased by ,100% and the number of cis

Author Summary

Many human diseases are complex with multiple genetic
and environmental causal factors interacting together to
give rise to disease phenotypes. Such factors affect
biological systems through many layers of regulations,
including transcriptional and epigenetic regulation, and
protein changes. To fully understand their molecular
mechanisms, complex diseases are often studied in diverse
dimensions including genetics (genotype variations by
single nucleotide polymorphism (SNP) arrays or whole
exome sequencing), transcriptomics, epigenetics, and
proteomics. However, errors in sample annotation or
labeling often occur in large-scale genetic and genomic
studies and are difficult to avoid completely during data
generation and management. Identifying and correcting
these errors are critical for integrative genomic studies. In
this study, we developed a computational approach, Multi-
Omics Data Matcher (MODMatcher), to identify and correct
sample labeling errors based on multiple types of
molecular data before further integrative analysis. Our
results indicate that signals increased more than 100%
after correction of sample labeling errors in a large lung
genomic study. Our method can be broadly applied to
large genomic data sets with multiple types of omics data,
such as TCGA (The Cancer Genome Atlas) data sets.

MODMatcher: Multi-Omics Data Matcher
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mRNA-methylation pairs increased by ,200%. Consistently,

fewer cis pairs were identified in the CTRL data set than in the

COPD data set. This difference likely reflects disease biology.

Although there were fewer CTRL than COPD samples and thus

less statistical power, the trend of difference was the same when we

sampled equal numbers of COPD samples to CTRL samples

(Figure S1).

Using a series of simulated data sets, we demonstrated that trio

alignment (considering three types of data simultaneously) resulted

in better alignment than duo alignments (considering two types of

data at a time) combined. From the sample alignment of the

LGRC data as describe above, we identified 76 COPD samples

with aligned genotype, gene expression and methylation profiles.

Among these 76 samples, only 65 could be correctly matched

when individual similarity scores such as cis mRNA-methylation

pairs were used. For a fair comparison of trio and duo alignment,

we simulated sample labeling errors by randomly assigning sample

labels using only these 65 COPD samples. As in the empirical

data, we kept low error rates in SNP and gene expression profiling

data. We increased the number of mis-labeled methylation profiles

from 0 to 24 (corresponding error rate 0% to 37%). At each error

rate, we simulated 5 independent data sets and used the average

for comparison. In both of duo and trio alignment, all three data

types were used but in different ways. In duo alignment, we

identified the sample pairs from each pair of data types

independently and summarized them to have final pairs. For an

example, a methylation profile can be matched with an mRNA

profile directly based on the identity similarity score Sme or

through a chain of matches, in which the methylation profile is

matched to an SNP profile which matches the mRNA profile. In

trio alignment, there is an additional three-way identity similarity

score that considers all three data types simultaneously (as

Figure 1. Gender prediction based on genotype data. The inbreeding coefficient F, the X chromosome heterozygosity rate, is used to infer the
gender of samples. F is around 0 in most female samples and around 1 in most male samples. For 9 samples, the inferred genders were inconsistent
with clinically annotated genders (error rate 3.5%).
doi:10.1371/journal.pcbi.1003790.g001

MODMatcher: Multi-Omics Data Matcher
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described in Methods). Both trio and duo alignment identified mis-

matches and improved data quality. However, trio alignment was

more robust and superior, especially when mis-labeling error rates

were high (Figure 8). Trio alignment recovered more samples pairs

and predicted sample pairs more accurately than alignments

considering similarity scores independently. In trio alignment, the

additional data type provided more bridging information for

matching mis-aligned samples pairs. Thus, at the same mis-labeling

error rate, trio alignment yielded a higher true positive rate and better

coverage (Figure 8). As error rates increased, the benefit of using trio

alignment became clearer. Thus, in correcting sample mis-matches,

sample alignment considering three types of data simultaneously in

sample alignment may have advantages over combining three

independent duo-alignments. These simulation results confirm that

sample alignment using multi-omics data is a critical QC step.

Alignment that considers three types of omics data simultaneously is

strongly recommended if applicable. Nevertheless, duo alignment is

still useful for identifying and correcting mis-aligned pairs.

Application to TCGA data
1) TCGA BRCA samples. The same sample alignment

approach was applied to another publically available dataset,

TCGA breast cancer samples. There were 317 tumor samples and

20 adjacent normal samples with both gene expression and

methylation profiles (Table 1). Genders of samples were inferred

from molecular markers in gene expression and methylation

profiles. We detected one tumor sample whose predicted gender

was inconsistent based on gene expression and methylation

profiles. After removal of the gender mismatched sample, cis

methylation-mRNA probe pairs were redefined for both normal

and tumor samples. At p-value,0.01, 9195 pairs were identified

for the tumor (FDR,0.02 based on permutation tests) and 537

pairs for normal samples (FDR,0.35). The identity similarity

score Sme based on these cis probe pairs were normally distributed;

one outlier had a higher similarity score (red star in Figure 9A),

indicating a match of profiles of the same patient. There were 8

mis-aligned profile pairs among the tumor samples. Three profile

pairs were matched by reciprocal mapping. Two of them,

‘‘TCGA-BH-A18K-01’’, and ‘‘TCGA-BH-A18T-01’’, were

cross-aligned to each other in methylation and gene expression

profiles (Figure 9B). Interestingly, the barcodes of two samples had

only one difference (K vs. T), suggesting a sample swap in either

the mRNA or methylation profiles. Further comparison with

miRNA profiles of these tumor samples suggested that the swap

was in the mRNA profiles (Figure S2). The updated sample

alignment resulted in more cis pairs (9252 at p-value,0.01) and

also stronger statistical p-values for the cis-correlations. For

example, the p-value for the cis correlation of methylation and

gene expression levels of TMEM139 was 1.6610267 before

alignment and 3.8610274 after alignment.

2) TCGA GBM samples. TCGA glioblastoma multiforme

(GBM) is the first cancer data set in TCGA consisting of CNV,

Figure 2. Gender prediction based on expression of the Y-chromosome specific gene RPS4Y1. The log2 transformed values of RPS4Y1
expression level are clearly separated between male and female samples both in CTRL and patients with COPD (.10 in male samples and ,10 in
female samples). There were no gender mismatched samples in the CTRL and 5 mismatched samples (2 in females and 3 in males) in the COPD set
(error rate of 1.5%).
doi:10.1371/journal.pcbi.1003790.g002

MODMatcher: Multi-Omics Data Matcher
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gene expression, and methylation profiles. There were 470 GBM

tumor samples with both CNV and mRNA profiles. We identified

24 mis-aligned profile pairs. Two of them were cross-aligned

between CNV and gene expression profiles (TCGA-32-2632-01A,

and TCGA-12-3652-01A) (Figure 10A). When we aligned meth-

ylation and gene expression profiles based on the identity similarity

score Sme calculated by using cis methylation-mRNA pairs, they

were cross-aligned to each other as well, indicating that the labels

of mRNA profiles are problematic (Figure 10B). Additionally, the

two samples were self-aligned between CNV and methylation

profiles (Figure 10C). These findings indicate that the sample

labels of the two mRNA profiles were swapped. This example

shows how sample alignment using three different molecular data

sets can be useful for both correcting alignment errors in sample

pairs and identifying the source of the errors.

Discussion

In large-scale genetic and genomic studies, errors in sample

annotation or labeling are common and difficult to avoid

completely. Identifying and correcting these errors is critical for

statistical analysis, especially for integrative analysis. In this study,

we introduce an iterative computational procedure, MOD-

Matcher, that uses multiple types of molecular data (e.g., genotype,

CNV, gene expression, and methylation profiles) for sample

alignment by using cis regulation pairs of each pair of data types to

calculate sample identity similarity scores. When applied to two

large public data sets, LGRC and TCGA, MODMatcher not only

identified mis-aligned profile pairs but also corrected and rescued

mis-labeled samples. In a simulation study of COPD samples in

the LGRC set, sample alignment with three types of data (trio

matching) performed better than alignment with two types of data

(duo matching). When applied to the GBM data set in TCGA, trio

matching unambiguously identified the source of sample labeling

errors. Thus, MODMatcher can rescue mis-aligned or mis-labeled

samples to maximize statistical power in integrative analysis in

large-scale genetic and genomic studies. Indeed, correction of mis-

aligned samples increased both the number of cis pairs identified

and the statistical significance.

Sample labeling errors are not unique to a few data sets, but are

inevitable for any large data sets, despite intensive efforts in QCing

each type of data individually. Our methods based on methylation

profiles for gender inference and alignment with other omics

profiles are novel and have not been included in standard data QC

procedures. We applied our methylation-based gender inference

method to more TCGA data sets and demonstrated that gender

can be unambiguously inferred from methylation profiles (Figure

S3). We identified 1, 4, 1, 2 gender mis-match errors in

methylation profiles in data sets for colon adenocarcinoma

(COAD), kidney renal papillary carcinoma (KIRC), acute myeloid

leukemia (LAML), and lung adenocarcinoma (LUAD), respective-

ly (Table S3). We also applied our methylation-gene expression

Figure 3. Gender prediction based on methylation intensity. The raw intensity of a Y-chromosome methyl probe corresponding to
FAM197Y2P is clearly different between genders. One error was identified in the CTRL and 15 errors were identified in the COPD set (6 in females, 9 in
males) (error rate of 6.4%).
doi:10.1371/journal.pcbi.1003790.g003

MODMatcher: Multi-Omics Data Matcher
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profile matching method to additional TCGA data sets, COAD

and lung squamous cell carcinoma (LUSC), and identified

multiple mis-label errors (examples shown in Figure S4). Thus,

checking sample alignment is a critical and necessary QC step

before integrative analysis.

It is worth to note that the sample identity similarity scores, Sge,

Sgm, and Sme, are calculated by using cis regulation pairs.

Therefore, like the method of Westra et al. [4], MODMatcher

depends on initial sample alignments to generate cis regulation

pairs. However, MODMatcher is more robust and can tolerate

extra noise, as shown in the simulation study. If the error rate of

initial alignment is too high (e.g., .30% mis-alignment), we may

not be able to identify enough cis-regulation pairs to accurately

align samples on the basis of a single identity score. But based on

three-way similarity, more accurate matching pairs can still be

identified.

MODMatcher has several features not found in existing sample

alignment methods such as MixupMapper [4]. First, we proposed

novel methods for methylation profile based gender inference and

sample alignment, and MODMatcher can be applied to diverse

types of data, including genotype, gene expression, methylation,

and CNV. MixupMapper can only be applied to genotype and

gene expression data. Second, by using more than two types of

omics profiles, MODMatcher can not only identify potential mis-

labeled omics profile pairs, but also pinpoint which profiles in the

pairs are mis-labeled (Figures 9 and 10), and do so more robustly

than when only two types of omics profiles are used (Figure 8)

Even though MODMatcher is not designed for matching two

types of omics profiles, it can be applied to data sets consisting of

only two types of omics profiles. MixupMapper and MOD-

Matcher can only be compared for their ability to match

genotype and mRNA profiles. We applied MODMatcher to 8

data sets examined by MixupMapper (downloaded from

http://genenetwork.nl/wordpress/mixupmapper/#additional)

and compared alignment results based on the two methods

(Table S4). MODMatcher results completely agreed with

MixupMapper results in 6 of 8 data sets. For the two datasets

in which the MODMatcher and MixupMapper results are

different, we further assessed sample alignment quality by

counting cis-eQLs identified based on the final matching results.

We input final matching pairs identified by each method and

their corresponding profiles to the same program, MatrixEQTL

[11], to identify cis-eQTLs. In both cases, more cis-eQTLs were

identified with MODMatcher results than with MixupMapper

results (Table S5).

After labeling errors in omics profiles are identified and

corrected by leveraging information from multiple omics profiles,

the corrected profiles can be compared with clinical information to

answer many biological questions, such as what genes’ expression

levels correlate with blood lipid level, and what genes’ methylation

levels correlate with survival of cancer patients. To accomplish

these tasks, we assume that all clinical data are correct, which may

not always be true. There could be errors in clinical data files, such

as missing data, and row or column shifts. It is more challenging to

identify and correct errors in clinical data files than it is to identify

labeling errors in omics profiles. More research efforts are

warranted for checking potential errors in the links between

clinical data and omics profiles.

Figure 4. Sample alignment with MODMatcher. Initial labels of samples are used to determine cis pairs, which are then used to calculate
similarity scores. Based on the similarity scores determined with three data types, the molecular data are matched with each other (1) by gender, (2)
by cis-eSNPs, (3) by cis-mSNPs, (4) by cis mRNA-methylation pairs, and (5) by all trio mapping. Then, updated sample pairs are used to calculate new
cis pairs for another round of alignment. Rounds of alignment are repeated until there are no further changes.
doi:10.1371/journal.pcbi.1003790.g004

MODMatcher: Multi-Omics Data Matcher
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Figure 5. Sample similarity measurement based on cis methylation-mRNA pairs. After cis methylation-mRNA pairs are identified, the
methylation and gene expression levels were rank-transformed. In this figure, there are M samples and i cis pairs. Then Pearson correlation is
calculated and used as sample similarity, Sme, between one methylation profile and all gene expression profiles. If both methylation and gene
expression profiles are from the same individual, self-self correlation coefficient is expected to be significantly higher than correlation coefficients
with other samples.
doi:10.1371/journal.pcbi.1003790.g005

MODMatcher: Multi-Omics Data Matcher
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Materials and Methods

Comprehensive data sets generally consist of clinical or

phenotypic data and multiple types of high-throughput data. For

example, the LGRC data set consists of clinical, genotype, gene

expression, and methylation data. The TCGA tumor data sets

consist of clinical, genotype, gene expression, CNV, methylation,

miRNA, and protein array data. Our procedure is applicable to

data sets with clinical data and at least two different types of omics

data. Here we illustrate our procedure on data sets with clinical

data and genetic, gene expression, and methylation data.

Datasets
1) LGRC data set. Clinical, gene expression and methylation

data were obtained from the LGRC data portal (http://www.

lung-genomics.org). The genotypic data was provided by the

LGRC consortium. The gene expression data was generated with

Agilent V2 human whole genome arrays. The processed mRNA

array data was downloaded from the LGRC website. DNA

methylation data was generated with Nimblegen 2.1M Whole-

Genome Tiling Arrays. Raw DNA methylation data was

downloaded from the LGRC website. The quality of each probe

was compared with background probe signals, and probes with

low quality were excluded from further analysis. Then DNA

methylation level (b value) of each tiling probe was estimated with

the CHARM method [9,12]. We confirmed that the estimated

methylation level for each sample is almost identical with the

processed methylation level data from the LGRC website. There

were gene expression arrays for lung tissues from 219 COPD

patients and 108 non-disease controls (CTRL) and methylation

arrays for lung tissues from 173 COPD patients and 76 controls.

2) TCGA data set. Different types of clinical and molecular

data of various cancers are publicly available at the TCGA data

portal (https://tcga-data.nci.nih.gov/tcga/). To illustrate our

sample alignment procedure, we selected BRCA (one of the

newest cancer data sets) [13] and GBM (the oldest cancer data set)

[14]. Gene expression for the GBM and BRCA data sets was

measured with microarrays. Methylation profiles were measured

with Illumina HumanMethylation27 BeadChips. CNV data were

generated with Affymetrix Genome-Wide Human SNP Array 6.0.

Bulk data on BRCA and GBM samples was downloaded and

processed individually. Each type of data was normalized between

samples by quantile normalization and adjusted for covariance

(e.g., batch number, plate number, center ID, and source site ID of

sample). Samples were initially matched according to their labels

as shown in Table 1.

Gender inference
Gender information is generally included in clinical data. We

also inferred gender information from genotype, gene expression,

and methylation profiling data.

The gender of samples can be predicted from X-chromosome

heterozygosity rates determined with PLINK [15]. An individual is

predicted to be male if the estimated inbreeding coefficient F is .

0.8 and female if F,0.2 [16]. There were inconsistencies between

gender inferred from genotype data and gender provided in

clinical data for the LGRC samples (Figure 1).

Gene expression levels of Y-chromosome specific genes can also

be used to reliably predict gender information. RPS4Y1
(ribosomal protein S4, Y-linked 1) is highly expressed in male

[17]. Its expression level can robustly classify samples into male

and female [6]. Figure 2 shows gender mismatches between

clinical and gene expression data in the LGRC data set.

Raw intensity data in methylation profiling was used to

determine whether probes mapped to Y-chromosome DNA

fragments can be used to classify samples into male and female.

Raw intensities of probes representing the Y-chromosome specific

genes FAM197Y2P, TTTY15, and TBL1Y were significantly

associated with genders in the LGRC data set (t-test p-

values = 3.25610228, 1.79610227, and 8.71610226, respectively).

A methyl probe, ‘‘chrY:9994006’’, representing FAM197Y2P is

the best methyl probe for gender prediction and was used to

classify samples in the LGRC data set into male and female.

Figure 3 shows that a higher mismatch rate between clinical and

methylation profiling data than other pairs of data matching in the

LGRC data set (Table S1).

cis pair mapping
1) cis-eSNP mapping. An eSNP is a single nucleotide

polymorphism (SNP) whose genotype associates with variation in

the expression of a particular gene. If that gene and its

corresponding eSNP are in proximity, the eSNP is called a cis-

eSNP. Cis-eSNPs have been extensively studied for their

association with disease risks [2,6,18], and have been used to

Figure 6. Distribution of similarity scores. (A) The distribution of similarity scores of one profile versus all profiles of other omics data type based
on cis-eQTLs. (B) The distribution of similarity scores of one profile versus all profiles of other data type based on cis-mQTLs. (C) The distribution of
similarity scores of one profile versus all profiles of other data type based on cis mRNA-methylation pairs. If two profiles pertain to the same sample
(self-consistent), their similarity scores (red stars) are expected to be higher than those of cross-matched pairs.
doi:10.1371/journal.pcbi.1003790.g006
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infer sample genotypes from gene expression profiling data [4,19].

To identify cis-eSNPs, we used an efficient eSNP mapping

program, MatrixEQTL [11]. Assuming that genotype had an

additive and linear effect on gene expression, we calculated the t

statics for each SNP and gene expression pair to evaluate the

significance of association. Cis-eSNPs are defined as SNPs within

1 Mb of the genome region of the associated genes. The FDR

(False Discovery Rate) was estimated from p-values with the

procedure of Benjamini and Hochberg [20].

After cis-eSNPs were identified, the genotype gi of the cis-eSNP

for a particular sample i is inferred from the associated gene

expression level ei as follows. First, the mean gene expression level

�eeJ for each genotype J (J~ 0, 1 for haploid cells and J~ 0, 1, 2
for diploid cells) is estimated by using all samples except sample i.
Second, genotype at the cis-eSNP for sample i is inferred by

comparing its gene expression level ei with the mean expression

level of each genotype; the genotype whose mean is the closest to ei

is assigned as the inferred genotype of sample i at the cis-eSNP

location, noted as gei.

Given sample genotypes measured by SNP array and inferred

from cis-eSNPs, the sample identity similarity between the two

genotypes is defined as Sge~ 1 {
1

N

XN

n~ 1

gn, i { gen, ij j ,

where gn, i and gen, i are the observed genotype based on the

given sample labels (which may be incorrect due to sample mis-

labeling) and the inferred genotype at the nth cis-eSNP for sample

i, respectively, and N is the total number of cis-eSNPs.

Figure 7. Assessment of sample alignment quality. The number
of cis pairs is counted after each round of alignment. The number of cis
pairs increased markedly after alignment in both the CTRL and COPD
sets. The exact numbers of cis-pairs are listed in Table S2. A) cis-eQTLs.
B) cis-mQTLs. C) cis mRNA-methylation pairs.
doi:10.1371/journal.pcbi.1003790.g007

Figure 8. Comparison of sample alignment procedures based
on three or two data types in simulated datasets. A total 65
COPD samples with all three types of data (gene expression, genotype,
and methylation) were used. The mis-labeling error rates were fixed at
3% between gene expression and genotypes. The number of mis-
aligned pairs was varied from 0 to 24 (corresponding error rate, 0% to
37%). Two sample alignment procedures were applied to the simulated
data sets and final aligned pairs were compared with the true
alignment. Triangles, duo-alignment results; circles, trio-alignment
results. Numbers inside triangles or circles indicate the number of
mis-aligned samples in each simulation. Coverage is defined as the
number of correctly aligned pairs divided by 65 (the number of original
pairs). The true positive rate is defined as the number of correctly
aligned pairs divided by all aligned pairs.
doi:10.1371/journal.pcbi.1003790.g008
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2) cis-mSNP mapping. Similar to eSNPs, genotypes of SNPs

are also associated with DNA methylation patterns and are called

mSNPs [21,22]. To identify association between SNP genotype

and methylation level, we used the SNP association mapping

program MatrixEQTL [11], with input changed from gene

expression profiles to DNA methylation profiles. Similarly, cis-

mSNPs are defined as mSNPs within 1 Mb from the genomic

regions of the associated methylation probes.

Figure 9. Examples of sample alignment in the TCGA BRCA data set. (A) A similarity score distribution of a correctly labeled profile. The red
star indicates the similarity score between self-matched profile pairs (gene expression and methylation data profiles are labeled as pertaining to the
same sample). (B) Similarity scores of self-matched pairs (red stars) between gene expression and methylation profiles for two samples are lower than
the similarity scores of cross-matched pairs (blue stars).
doi:10.1371/journal.pcbi.1003790.g009
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After cis-mSNPs are identified, the genotype gi of the cis-mSNP

for a particular sample i can be inferred from the associated probe

methylation level b i as follows. First, the mean probe methylation

level �bbJ for each genotype J (J~ 0, 1 for haploid cells and

J~ 0, 1, 2 for diploid cells) is estimated by using all samples

except sample i. Second, genotype at the cis-mSNP for sample i is

inferred by comparing its methylation level b i with �bbJ the mean

methylation level of each genotype J; the genotype whose mean is

the closest to b i is assigned as the genotype of sample i at the cis-

mSNP location, noted as gmi.

Given sample genotypes measured by SNP and inferred from cis-

mSNPs, the sample identify similarity between the two genotypes is

defined as Sgm~ 1{
1

N

XN

n~ 1

gn, i { gmn, ij j , where gn, i and

gmn, i are observed and inferred genotype at the nth cis-mSNP for

sample i, respectively, and N is the total number of cis-mSNPs.

3) cis methylation-mRNA mapping. DNA methylation is a

common epigenetic signal that regulates gene expression levels.

Increased methylation at CpGs sites near gene promoter region is

associated with gene repression [23,24]. Transcript annotation of

hg18 was fetched from UCSC database and further processed with

the Bioconductor GenomicFeature package. Each methyl probe

was mapped to a transcript whose starting site is within 10 Kb

from the genomic position of the methyl probe. A methyl probe

that is potentially mapped to multiple transcripts on the basis of

the above criterion is assigned to the transcript whose start site is

closest to the genomic position of the methyl probe. Methyl probes

that can’t be mapped to any transcript based on the above

criterion were excluded from further analysis. To identify cis-

regulation pairs, we calculated the Spearman correlation between

the methylation level of a methyl probe and the expression level of

the corresponding gene at p-value,0.01. If multiple methyl probes

were mapped to the same genes, the probe with the best p-value

was selected. Therefore, in subsequent analyses, there was at most

a single cis methylation-mRNA pair for each gene. Thus, any

potential bias driven by a single gene was avoided.

Before aligning methylation and mRNA profiling data, we rank

transformed both gene expression and methylation profiling data

for each methyl probe or gene expression probe as RT( b n, i) and

RT( en, i) , where RT( x) [ ½1, 2, :::, M� is the rank transforma-

tion function and M is the number of samples (Figure 5). Given a

set of cis methylation-mRNA pairs n~ ( 1, 2, . . . , N) , the

sample identity similarity between the two types of data is defined as

Sme~{corr(RT(bi),RT(ei))

~

XN

n~1

RT(bn,i)
XN

n~1

RT(en,i){N
XN

n~1

RT(bn,i) �RT(en,i)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN

n~1

RT(bn,i)
2{(

XN

n~1

RT(bn,i))
2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN

n~1

RT(en,i)
2{(

XN

n~1

RT(en,i))
2

vuut
:

4) cis CNV-mRNA (or methylation) mapping. Copy

number variations (CNVs) of genome regions are commonly

associated with diseases and may be inherited or occur by de novo
mutations. Increasing the DNA copy number of a gene can

increase its expression level. Instead of genotype, CNV data was

aligned to gene expression and DNA methylation profiles in

TCGA data sets. Cis regulation pairs and identity similarity scores

were defined similarly as described above for methylation-mRNA

pairs.

Multi-omics data matching procedure
Multiple omics data surveying different molecular traits

pertaining to the same set of samples were mapped according to

the flow diagram in Figure 4. SNP genotype, gene expression, and

methylation data are used for illustration purposes. Other types of

data can be used as well. For example, CNV data was used instead

of SNP data in the TCGA data sets. First, significant cis regulation

(cis-eSNPs, cis-mSNPs, and cis methyl-mRNA) pairs were

identified, and sample identity similarities were calculated based

on these cis pairs as outlined above. Then, matches and

mismatches between omics data were identified in the following

steps (ordered by confidence of each test):

(1) Match by gender. There is no ambiguity for the gender

inferred from an omics profile. Any matched pair of omics

profiles should have consistent gender information.

(2) Match by SNP-mRNA based identity similarity Sge.
After cis-eSNPs are identified, identity similarity Sge is

calculated for all possible pairs of SNP-mRNA profiles based

on the identified cis-eSNPs. The identity similarity Sge of SNP

and gene expression profiles of the same individual is

significantly higher than that of random pairs of profiles

(Figure 6A). If the self similarity score Sge( i, i) is within the

top ‘‘n’’ similarity scores of all possible pairs reciprocally (the

genotype profile Gi mapping to gene expression profiles and

the gene expression profile Ei mapping to all genotype

profiles), the pair of profiles is designated as correctly aligned.

The ‘‘n’’ is #3 depending on the data set. To determine the

value of ‘‘n’’, we calculated the z-score of a genotype profile

Gi mapped to a gene expression profile Ej and vice versa as

z( i ? j) ~
Sge( i, j) { mean( Sge( i, ) )

std( Sge( i, ) )
and z( i / j)

~
Sge( i, j) { mean( Sge( , j) )

std( Sge( , j) )
, and then compared the

z-score distribution of all top 1 similarity scores with the

distribution of z-scores of all top ‘‘n’’ similarity scores. If the z-

score distribution of all top 1 similarity scores is statistically

different (t-test p-value,0.01) from the distribution of z-scores

of all top 2 similarity scores, then ‘‘n’’ is set to 1. Otherwise,

‘‘n’’ is set to 2. In this fashion, we also compared the

distributions of top 1 and top 3 similarity scores. For SNP-

mRNA matching in the LGRC data set, top ‘‘n’’ was set as 1.

For mis-aligned profiles, we further explored whether they

could be matched with other unmatched samples by

reciprocal matching, in which we determine whether a mis-

aligned genotype profile Gi has the highest similarity with an

unmatched mRNA profile Ej among all mRNA profiles, and

the unmatched mRNA profile Ej has the highest similarity

with Gi among all genotype profiles. If there is a reciprocal

best match, then the SNP and mRNA profiles are linked and

sample labels are updated by comparison with mapping

results based on other identity similarities.

Table 1. Profile pairs used in TCGA dataset.

Data type pairs BRCA GBM

CNV-mRNA 165 tumor, 13 normal 470 tumor

CNV-methylation 149 tumor, 0 normal 294 tumor

mRNA-methylation 317 tumor, 20 normal 221 tumor

doi:10.1371/journal.pcbi.1003790.t001
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(3) Match by SNP-methylation based identity similarity
Sgm. After cis-mQTL are identified, the identity similarity score

Sgm is calculated for all possible SNP and methylation profile pairs

based on the set of identified cis-mSNPs. The identity similarity

score Sgm between SNPs and methylation profiles of the

individual is higher than other random pairs (shown in Figure 6B).

As above, if the self similarity score Sgm( i, i) is within the top

‘‘n’’ similarity scores of all possible pairs, the pair of profiles is

designated as correctly aligned. Top ‘‘n’’ was set to 3 in the LGRC

data set. For mis-aligned profiles, we again further explored

whether they could be matched with other unmatched samples by

the reciprocal best matching procedure described above.

(4) Match by mRNA-methylation based identity simi-
larity Sme. After cis methylation-mRNA probes are identified,

the identity similarity score Sme is calculated for all possible

pairs of methylation-mRNA profiles based on the set of

identified cis methylation–mRNA probes. The identity simi-

larity score Sme of methylation-mRNA probes pairs of the same

sample is higher than random pairs (Figure 6C). If the self

similarity score Sme( i, i) is within the top ‘‘n’’ similarity scores

of all possible pairs, the pair of profiles is designated as correctly

aligned. Top ‘‘n’’ was set to 3 in the LGRC data set similar as

above. For mis-aligned profiles, we used the reciprocal best

matching procedure described above to determine whether

they could be matched with other unmatched samples.

(5) Match by trio (simultaneously considering Sge, Sgm,
and Sme). For the samples with all three types of data

available, the source of any sample label mis-matches can be

identified (Figure 4). For example, if we identify a sample mapping

between the gene expression profile of individual A and the

methylation profile of individual B, it is difficult to know which

profile data is mis-labeled or both. If the gene expression profile of

individual A matches the SNP profile of individual A based on Sge

and the methylation profile of individual B is mapped with the

SNP profiles of individual A, then it is certain that the methylation

profile of individual B is mis-labeled. It is also possible to resolve

matching conflicts and to identify additional matched profiles that

may be ambiguous based on a single identity similarity score Sge,

Sgm, or Sme alone. For example, if data quality is low or the initial

profile labeling error rate is high for methylation data, then Sgm

and Sme cannot be accurately calculated. If an SNP-mRNA

sample match exists (SNP profile Gi matches gene expression

profile Ej, then we can search whether there is a methylation

profile Mk that matches Gi and Ej by a three way identity similarity

score as Sgem( i, j, k) ~
Sgm( i, k) { mean( Sgm( i, ) )

std( Sgm( i, ) )

z v
Sme( k, j) { mean( Sme( , j) )

std( Sme( , j) )
, where v is the weight

of similarity Sme relative to Sgm. v was set as 1.2 for the LGRC data

set, reflecting the fact that the matching signal between genotype and

methylation data is stronger than the matching signal between

methylation and gene expression data. v can be estimated

a s sqrt(

mean(
max( Sgm( i, ) ) { mean( Sgm( i, ) )

std( Sgm( i, ) )
)

mean(
max( Sme( i, ) ) { mean( Sme( i, ) )

std( Sme( i, ) )
)

) ,

which is the square root of the ratio of mean maximum z-scores of

each profile under each similarity measurement. To declare

methylation profile Mk a match with Gi and Ej, both Sgm( i, k)

and Sme( k, j) are required to be within top 3 among all possible

similarity scores Sgm( i, ) and Sme( , j) , respectively, and

Sgem( i, j, k) is $2.5.

After label mis-matches between different types of omics data

are identified and sample labeling errors are corrected by

comparing multiple identity similarity measurements, the quality

of sample alignment is re-assessed by counting the numbers of cis

regulation pairs according to the updated data annotation. We

iterate this process until data annotations are stable.

Supporting Information

Figure S1 Numbers of cis methyl-mRNA pairs in CTRL and

COPD samples when equal numbers of samples were used.

(TIF)

Figure S2 The cross-aligned sample pair (TCGA-BH-A18T-

01A and TCGA-BH-A18K-01A) identified by methylation-

mRNA comparison was cross-aligned based on miRNA and

mRNA comparison. Similarity scores based on cis miRNA-mRNA

were around zero for the same labels but similarity scores for

swapped pairs were the highest in both samples. Combined with

the results shown in Figure 9B in main text, mRNA labeling for

these two samples was likely to be problematic.

(TIF)

Figure S3 Gender prediction based on methylation probe

intensity in 12 cancer types in the TCGA dataset. The raw

intensity of a y-chromosome probe was estimated by summation of

the methylated and unmethylated channel. The methyl probe

‘‘cg20401529’’ corresponding to PRKY was used as a gender

marker for Illumina HumanMethylation27 Beadarray. For

PRAD, for which only the HM450 platform is available, the

methyl probe ‘‘cg04042030’’ corresponding to TBL1Y was used.

Red, sample predicted to be female; blue, sample predicted to be

male. The consistency between clinical and predicted gender is

reported in Table S3.

(TIF)

Figure S4 Examples of mis-aligned pairs of mRNA and

methylation profiles in the TCGA COAD and LUSC datasets.

The similarity score for the same sample pairs based on cis

methylation-mRNA pairs was not significantly higher than that of

other pairs, indicating mis-alignment.

(TIF)

Table S1 Samples of mismatched gender information between

clinical annotation and inference from multi-omics data (genotype,

mRNA, and methylation profiles). Red ones are mismatched with

respect to clinical annotation.

(XLSX)

Table S2 Numbers of cis pairs in each round of alignment

corresponding Figure 7.

(XLSX)

Table S3 Gender inference based on methylation probe

intensity in multiple cancer data sets in TCGA. The prediction

(Figure S3) is compared with the clinically annotated gender.

Figure 10. Identification of potential source of mis-labeling error by trio alignment in TCGA GBM samples. (A) The two GBM tumor
samples were cross-matched between CNV and gene expression profiles. Red stars, similarity scores of self-matched pairs; blue stars, similarity scores
of cross-matched profiles. (B) The two samples were also cross-matched between gene expression and methylation profiles. (C) Sample labels were
consistent between CNV and methylation profiles. These results together indicate that the sample labeling error lay in the gene expression profiles.
doi:10.1371/journal.pcbi.1003790.g010
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There are gender mismatched samples in four datasets, COAD,

KIRC, LAML, and LUAD.

(XLSX)

Table S4 Comparison of MODMatcher and MixupMapper

sample alignments between SNP and mRNA profiles on the same

dataset. MODMatcher was applied into 8 dataset including

genotype and mRNA profiles examined by MixupMapper.

MODMatcher and MixupMapper generated the same result for

6 dataset and there are small differences in for other two dataset.

(XLSX)

Table S5 Qualities of sample matching results based on

MixupMapper and MODMatcher. For the two datasets (Choy

CHB+JPT and Choy YRI) where ModMatcher and MixupMap-

per results were different as shown in Table S4, the numbers of cis-

eQTL pairs identified by each alignment method were compared

and MODMatcher identified more cis-eQTLs in both dataset.

Sample pairs identified in the two data sets by MODMatcher are

listed in Tables S6 and S7.

(XLSX)

Table S6 Samples pairs in the Choy CHB+JPT data set

identified by MODMatcher.

(XLSX)

Table S7 Samples pairs in the Choy YRI data set identified by

MODMatcher.

(XLSX)
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