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Abstract

Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to
noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge
of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making
directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli.
These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious
computational model of (i) how early visual cortical representations are adapted to statistical regularities in natural images
and (ii) how populations of these representations are pooled by single voxels. This computational model is used to predict
single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We
show that statistically adapted low-level sparse and invariant representations of natural images better span the space of
early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed
Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.
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Introduction

An important goal of contemporary cognitive neuroscience is to

characterize the relationship between stimulus features and human

brain activity. This relationship can be studied from two distinct

but complementary perspectives of encoding and decoding [1].

The encoding perspective is concerned with how certain aspects of

the environment are stored in the brain and uses models that

predict brain activity in response to certain stimulus features.

Conversely, the decoding perspective uses models that predict

specific stimulus features from stimulus-evoked brain activity and

is concerned with how specific aspects of the environment are

retrieved from the brain.

Stimulus-response relationships have been extensively studied in

computational neuroscience to understand the information

contained in individual or ensemble neuronal responses, based

on different coding schemes [2]. The invasive nature of the

measurement techniques of these studies has restricted human

subjects to particular patient populations [3,4]. However, with the

advent of functional magnetic resonance imaging (fMRI), encod-

ing and decoding in fMRI has made it possible to noninvasively

characterize the relationship between stimulus features and human

brain activity via localized changes in blood-oxygen-level depen-

dent (BOLD) hemodynamic responses to sensory or cognitive

stimulation [5].

Encoding models that predict single voxel responses to certain

stimulus features typically comprise two main components. The

first component is a (non)linear transformation from a stimulus

space to a feature space. The second component is a (non)linear

transformation from the feature space to a voxel space. Encoding

models can be used to test alternative hypotheses about what a

voxel represents since any encoding model embodies a specific

hypothesis about what stimulus features modulate the response of

the voxel [5]. Furthermore, encoding models can be converted to

decoding models that predict specific stimulus features from

stimulus-evoked multiple voxel responses. In particular, decoding

models can be used to determine the specific class from which the

stimulus was drawn (i.e. classification) [6,7], identify the correct

stimulus from a set of novel stimuli (i.e. identification) [8,9] or

create a literal picture of the stimulus (i.e. reconstruction) [10–12].

The conventional approach to encoding and decoding makes

use of feature spaces that are typically hand-designed by theorists

or experimentalists [8,9,11,13–16]. However, this approach is

prone to the influence of subjective biases and restricted to a priori

hypotheses. As a result, it severely restricts the scope of alternative

hypotheses that can be formulated about what a voxel represents.

This restriction is evident by a paucity of models that adequately

characterize extrastriate visual cortical voxels.

A recent trend in models of visual population codes has been the

adoption of natural images for the characterization of voxels that

respond to visual stimulation [8,13]. The motivation behind this

trend is that natural images admit multiple feature spaces such as

low-level edges, mid-level edge junctions, high-level object parts

and complete objects that can modulate single voxel responses [5].

Implicit about this motivation is the assumption that the brain is

adapted to the statistical regularities in the environment [17] such
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as those in natural images [18,19]. At the same time, recent

developments in theoretical neuroscience and machine learning

have shown that normative and predictive models of natural image

statistics learn statistically adapted representations of natural

images. As a result, they predict statistically adapted visual cortical

representations, based on different coding principles. Some of

these predictions have been shown to be similar to what is found in

the primary visual cortex such as topographically organized simple

and complex cell receptive fields [20].

Building on previous studies of visual population codes and

natural image statistics, we introduce a general approach for

making directly testable predictions of single voxel responses to

statistically adapted representations of ecologically valid stimuli.

To validate our approach, we use a parsimonious computational

model that comprises two main components (Figure 1). The first

component is a nonlinear feature model that transforms raw

stimuli to stimulus features. In particular, the feature model learns

the transformation from unlabeled data without supervision. The

second component is a linear voxel model that transforms the

stimulus features to voxel responses. We use an fMRI data set of

voxel responses to natural images that were acquired from the

early visual areas (i.e. V1, V2 and V3) of two subjects (i.e. S1 and

S2) [21]. We show that the encoding and decoding performance of

this computational model is significantly better than that of a

hand-designed Gabor wavelet pyramid (GWP) model of phase-

invariant complex cells. The software that implements our

approach is provided at http://www.ccnlab.net/research/.

Results

Feature models
To learn the feature transformation, we used a two-layer sparse

coding (SC) model of 625 simple (i.e. first layer) and 625 complex (i.e.

second layer) cells [22]. Concretely, the simple cells were first

arranged on a square grid graph that had circular boundary

conditions. The weights between the simple and complex cells were

then fixed such that each complex cell locally pooled the energies of

25 simple cells in a 5|5 neighborhood. There were a total of 625

partially overlapping neighborhoods that were centered around the

625 simple cells. Next, the weights between the input and the simple

cells were estimated from 50000 patches of size 32|32 pixels by

maximizing the sparseness of the locally pooled simple cell energies.

Each simple cell was fully connected to the input (i.e. patch of size

32|32 pixels). The patches were randomly sampled from the 1750

images of size 128|128 pixels in the estimation set. To maximize the

sparseness, the energy function (i.e. square nonlinearity) encourages

the simple cell responses to be similar within the neighborhoods while

the sparsity function (i.e. convex nonlinearity) encourages the locally

pooled simple cell energies to be thinly dispersed across the

neighborhoods. As a result, the simple cells that are in the same

Figure 1. Encoding model. The encoding model predicts single
voxel responses to images by nonlinearly transforming the images to
complex cell responses and linearly transforming the complex cell
responses to the single voxel responses. For example, the encoding
model predicts a voxel response to a 128|128 image x as follows: Each

of the 16 non-overlapping 32|32 patches of the image ẑz(i) is first
vectorized, preprocessed and linearly transformed to 625 simple cell
responses, i.e. Wz(i) where z(i) is a vectorized and preprocessed patch.
Energies of the simple cells that are in each of the 625 partially

overlapping 5|5 neighborhoods are then locally pooled, i.e. H(Wz(i))2,
and nonlinearly transformed to one complex cell response, i.e.

log (1zH(Wz(i))2). Next, 10000 complex cell responses are linearly

transformed to the voxel response, i.e. b>w(x) where w(x)~

(( log (1zH(Wz(1))2)>,:::, ( log (1zH(Wz(16))2)>)>. The feature trans-

formations are learned from unlabeled data. The voxel transformations
are learned from feature-transformed stimulus-response pairs.
doi:10.1371/journal.pcbi.1003724.g001

Author Summary

An important but difficult problem in contemporary
cognitive neuroscience is to find what stimulus features
best drive responses in the human brain. The conventional
approach to solve this problem is to use descriptive
encoding models that predict responses to stimulus
features that are known a priori. In this study, we introduce
an alternative to this approach that is independent of a
priori knowledge. Instead, we use a normative encoding
model that predicts responses to stimulus features that are
learned from unlabeled data. We show that this normative
encoding model learns sparse, topographic and invariant
stimulus features from tens of thousands of grayscale
natural image patches without supervision, and reproduc-
es the population behavior of simple and complex cells.
We find that these stimulus features significantly better
drive blood-oxygen-level dependent hemodynamic re-
sponses in early visual areas than Gabor wavelets–the
fundamental building blocks of the conventional ap-
proach. Our approach will improve our understanding of
how sensory information is represented beyond early
visual areas since it can theoretically find what stimulus
features best drive responses in other sensory areas.

Feature Learning to Better Predict Brain Activity
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neighborhood have simultaneous activation and similar preferred

parameters. Since the neighborhoods overlap, the preferred param-

eters of the simple and complex cells change smoothly across the grid

graph. Finally, the complex cell responses of the SC model were

defined as a static nonlinear function of the locally pooled simple cell

energies after model estimation (i.e. total of 625 complex cell

responses per patch of size 32|32 pixels and 10000 complex cell

responses per image of size 128|128 pixels). The SC model learned

topographically organized, spatially localized, oriented and bandpass

simple and complex cell receptive fields that were similar to those

found in the primary visual cortex (Figure 2A) [23–26].

To establish a baseline, we used a GWP model [25,27,28] of

10921 phase-invariant complex cells [8]. Variants of this model

were used in a series of seminal encoding and decoding studies

[8,13,14,16]. Note that the fMRI data set was the same as that in

[8,13]. Concretely, the GWP model was a hand-designed

population of quadrature-phase Gabor wavelets that spanned a

range of locations, orientations and spatial frequencies (Figure 2B).

Each wavelet was fully connected to the input (i.e. image of size

128|128 pixels). The complex cell responses of the GWP model

were defined as a static nonlinear function of the pooled energies

of the quadrature-phase wavelets that had the same location,

orientation and spatial frequency (i.e. total of 10921 complex cell

responses per image of size 128|128 pixels).

Voxel models
To learn the voxel transformation, we used regularized linear

regression. The voxel models were estimated from the 1750

feature-transformed stimulus-response pairs in the estimation set

by minimizing the L2 penalized least squares loss function. The

combination of a voxel model with the complex cells of the SC and

GWP models resulted in two encoding models (i.e. SC2 and GWP2

models). The SC2 model linearly pooled the 10000 complex cell

responses of the SC model. The GWP2 model linearly pooled the

10921 complex cell responses of the GWP model.

Receptive fields
We first analyzed the receptive fields of the SC model (i.e.

simple and complex cell receptive fields). The preferred phase,

location, orientation and spatial frequency of the simple and

complex cells were quantified as the corresponding parameters

of Gabor wavelets that were fit to their receptive fields. The

preferred parameter maps of the simple and complex cells were

constructed by arranging their preferred parameters on the

grid graph (Figure 3). Most adjacent simple and complex cells

had similar location, orientation and spatial frequency prefer-

ence, whereas they had different phase preference. In

agreement with [22], the preferred phase, location and

orientation maps reproduced some of the salient features of

the columnar organization of the primary visual cortex such as

lack of spatial structure [29], retinotopy [30] and pinwheels

[31], respectively. In contrast to [22], the preferred spatial

frequency maps failed to reproduce cytochrome oxidase blobs

[32]. The preferred phase map of the simple cells suggests that

the complex cells are more invariant to phase and location

than the simple cells since the complex cells pooled the

Figure 2. Simple cell receptive fields. (A) Simple cell receptive fields of the SC model. Each square is of size 32|32 pixels and shows the inverse
weights between the input and a simple cell. The receptive fields were topographically organized, spatially localized, oriented and bandpass, similar
to those found in the primary visual cortex. (B) Simple cell receptive fields of the GWP model. Each square is of size 128|128 pixels and shows an
even-symmetric Gabor wavelet. The grids show the locations of the remaining Gabor wavelets that were used. The receptive fields spanned eight
orientations and six spatial frequencies.
doi:10.1371/journal.pcbi.1003724.g002
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energies of the simple cells that had different phase preference.

To verify the invariance that is suggested by the preferred

phase map of the simple cells, the population parameter tuning

curves of the simple and complex cells were constructed by

fitting Gaussian functions to the median of their responses to

Gabor wavelets that had different parameters (Figure 4). Like

the simple cells, most complex cells were selective to

orientation (i.e. standard deviation of 21.8u versus 22.9u) and

spatial frequency (i.e. standard deviation of 0.52 versus 0.54 in

normalized units). Unlike the simple cells, most complex cells were

more invariant to phase (i.e. standard deviation of 50.0u versus

158.1u) and location (i.e. standard deviation of 3.70 pixels versus

5.86 pixels). Therefore, they optimally responded to Gabor wavelets

that had a specific orientation and spatial frequency, regardless of

their phase and exact position.

We then analyzed the receptive fields of the SC2 model (i.e.

voxel receptive fields). The eccentricity and size of the receptive

fields were quantified as the mean and standard deviation of two-

dimensional Gaussian functions that were fit to the voxel responses

to point stimuli at different locations, respectively. The orientation

and spatial frequency tuning of the receptive fields were taken to

be the voxel responses to sine-wave gratings that spanned a range

of orientations and spatial frequencies. While the eccentricity, size

and orientation tuning varied across voxels, most voxels were

tuned to relatively high spatial frequencies (Figure 5A and

Figure 5B). The mean predicted voxel responses to sine-wave

gratings that had oblique orientations were higher than those that

had cardinal orientations and this difference decreased with spatial

frequency (Figure 5C). While this result is in contrast to those of

the majority of previous single-unit recording and fMRI studies

[33,34], it is in agreement with those of [35]. In line with [36,37],

the receptive field size systematically increased from V1 to V3 and

from low receptive field eccentricity to high receptive field

eccentricity (Figure 6). The properties of the GWP2 model were

similar to those in [8]. The relationship between the receptive field

parameters (i.e. size, eccentricity, area) of the GWP2 model were

the same as those of the SC2 model. However, the GWP2 model

did not have a large orientation bias.

Encoding
The encoding performance of the SC2 and GWP2 models was

defined as the coefficient of determination (R2) between the

observed and predicted voxel responses to the 120 images in the

validation set across the two subjects. The performance of the SC2

model was found to be significantly higher than that of the GWP2

model (binomial test, p%0:05). Figures 7A and 7B compare the

performance of the models across the voxels that survived an R2

threshold of 0.1. The mean R2 of the SC2 model systematically

decreased from 0.28 across 28% of the voxels in V1 to 0.21 across

11% of the voxels in V3. In contrast, the mean R2 of the GWP2

model systematically decreased from 0.24 across 24% of the voxels

in V1 to 0.16 across 6% of the voxels in V3. Figure 7C compares

the performance of the models in each voxel. More than 71% of

the voxels that did not survive the threshold in each area and more

than 92% of the voxels that survived the threshold in each area

were better predicted by the SC2 model than the GWP2 model.

These results suggest that statistically adapted low-level sparse

representations of natural images better span the space of early

visual cortical representations than the Gabor wavelets.

Decoding
The decoding performance of the SC2 and GWP2 models was

defined as the accuracy of identifying the 120 images in the

validation set from a set of 9264 candidate images. The set of

candidate images contained the 120 images in the validation set

and the 9144 images in the Caltech 101 data set [38]. Note that

the set of candidate images was ten- to hundred-fold larger than

the sets in [8] but comparable to the largest set in [15]. The

performance of the SC2 model was found to be significantly

higher than that of the GWP2 model (binomial test, pv0:05).

Figure 8 compares the performance of the models. The mean

accuracy of the SC2 model across the subjects was 61%. In

contrast, the mean accuracy of the GWP2 model across the

subjects was 49%. The chance-level accuracy was 0.01%. These

results suggest that statistically adapted low-level sparse represen-

tations of natural images can be more effectively exploited in

stimulus identification than the Gabor wavelets.

Spatial invariance
In principle, the SC2 and GWP2 models should have some

degree of spatial invariance since they linearly pooled the

responses of the complex cells that displayed insensitivity to local

stimulus position. Spatial invariance is of particular importance for

decoding since a reliable decoder should be able to identify a

stimulus, regardless of its exact position. Furthermore, a difference

between the degree of spatial invariance of the models can be a

contributing factor to the difference between their performance.

To analyze the spatial invariance of the models, we evaluated their

encoding and decoding performance after translating the images

in the validation set by 0:80 (i.e. approximately the standard

deviation of the population location tuning curves of the complex

cells of the SC model) in a random dimension (Figure 9). The

encoding and decoding performance of the models was found to

decrease after the translations. Unlike the encoding performance

of the GWP2 model, that of the SC2 model decreased less in V3

than V1. This result suggests greater spatial invariance in V3 than

V1. The difference between the mean R2 of the models across the

voxels that survived the threshold before the translations increased

from 0.05 to 0.11. The difference between the mean accuracy of

Figure 3. Preferred parameter maps of the SC model. The phase,
location, orientation and spatial frequency preference of the simple and
complex cells were quantified as the corresponding parameters of
Gabor wavelets that were fit to their receptive fields. Each pixel in a
parameter map shows the corresponding preferred parameter of a
simple or complex cell. The adjacent simple and complex cells had
similar location, orientation and spatial frequency preference but
different phase preference.
doi:10.1371/journal.pcbi.1003724.g003

Feature Learning to Better Predict Brain Activity
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the models across the subjects increased from 12% to 24%. These

results suggest that the SC2 model is more tolerant to local

translations in stimulus position than the GWP2 model.

Control models
Since the SC2 and GWP2 models had different nonlinearities

(i.e. pooling and static nonlinearity), a direct evaluation of the

contribution of their components (i.e. representations and

nonlinearities) to the difference between their encoding perfor-

mance was not possible. Therefore, we estimated two control

models that pooled the same static nonlinear function of the simple

cell responses of the SC and GWP models. The static nonlinear

function was a compressive nonlinearity (i.e. log (1zDsD) where s is

a simple cell response). The compressive nonlinearity roughly

accounts for insensitivities by increasing responses to a stimulus

that is not entirely within a receptive field [39]. The simple cell

responses were defined as the linear responses of the first layer of

the SC model and the even-symmetric Gabor wavelets. While the

performance of the compressive nonlinear SC model was

significantly higher than that of the compressive nonlinear GWP

model, the difference between the performance of the compressive

nonlinear models was significantly lower than that of the SC2 and

GWP2 models (Figure 10). This result suggests that both the

representations and the nonlinearities of the SC2 model contribute

to the difference between the encoding performance of the SC2

and GWP2 models.

To verify the contribution of the nonlinearities to the individual

encoding performance of the SC2 and GWP2 models, we

estimated two more control models that pooled a linear function

of the simple cell responses of the SC and GWP models. We used

linear models since they retain selectivities that are discarded by

nonlinearities. We found that the performance of the linear models

were significantly lower than that of the compressive nonlinear,

SC2 and GWP2 models (Figure 10). This result confirms the

contribution of the nonlinearities that introduced the insensitivities

to the individual encoding performance of the SC2 and GWP2

models.

Discussion

This study addresses the question of how to model feature

spaces to better predict brain activity. We introduced a general

approach for making directly testable predictions of single voxel

responses to statistically adapted representations of ecologically

valid stimuli. Our approach relies on unsupervised learning of a

feature model followed by supervised learning of a voxel model.

To benchmark our approach against the conventional approach

that makes use of predefined feature spaces, we compared a two-

layer sparse coding model of simple and complex cells with a

Gabor wavelet pyramid model of phase-invariant complex cells.

While the GWP model is the fundamental building block of many

state-of-the-art encoding and decoding models, the GWP2 model

was found to be significantly outperformed by the SC2 model. We

used control models to determine the contribution of the different

components of the SC2 and GWP2 models to this performance

difference. Analyses revealed that the SC2 model better

accounts for both the representations and the nonlinearities

of the voxels in the early visual areas than the GWP2 model.

Given that the representations of the SC2 model are

qualitatively similar to those of the GWP model, their contribution

to this performance difference suggests that the SC model

automatically learns an optimal set of spatially localized, oriented

and bandpass representations that better span the space of early

visual cortical representations since it adapts to the same statistical

regularities in the environment as the brain is assumed to be

adapted to [20].

Our approach eliminates the need for predefining feature

spaces. However, the SC model does have a number of free

parameters (e.g. patch size, number of simple and complex cells,

etc.) that must either be specified by hand or using model selection

methods such as cross-validation. Because of computational

considerations, we used the same free parameters as those in

[22]. While the choice of these free parameters can influence what

the SC model can learn, the SC2 model was shown to outperform

the GWP2 model even without cross-validation. Next to cross-

validation, other methods that also infer these free parameters can

further improve the performance of the SC2 model. One method

is to first estimate voxel receptive fields using any approach and

then use these estimates as free parameters (e.g. voxel receptive

field eccentricity as patch size) of voxel-specific feature models.

Another method is to use more sophisticated nonparametric

Bayesian sparse factor models [40] that can simultaneously learn

sparse representations while inferring their number. Furthermore,

our approach included only feedforward projections such that

representations and responses were solely determined by stimuli.

However, taking top-down modulatory effects into account is

Figure 4. Population parameter tuning curves of the SC model. The population phase, location, orientation and spatial frequency tunings of
the simple (solid lines) and complex cells (dashed lines) were quantified by fitting Gaussian functions to the median of their responses to Gabor
wavelets that had different parameters. Each curve shows the median of their responses as a function of change in their preferred parameter. The
complex cells were more invariant to phase and location than the simple cells.
doi:10.1371/journal.pcbi.1003724.g004
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essential to adequately characterize how sensory information is

represented and processed in the brain. For example, attention has

been shown to warp semantic representations across the human

brain [41], and prior expectations have been shown to bias sensory

representations in visual cortex [42]. Extensions of our approach

that include feedback projections can be used to address the

question of how representations and responses are influenced by

top-down processes.

Figure 5. Receptive fields of the SC2 model. The parameter tuning varied across the voxels and had a bias for high spatial frequencies and
oblique orientations. (A) Two-dimensional Gaussian functions that were fit to the responses of three representative voxels to point stimuli at different
locations. (B) Responses of three representative voxels to sine-wave gratings that spanned a range of orientations and spatial frequencies. (C) Mean
responses across the voxels to sine-wave gratings that spanned a range of orientations and spatial frequencies.
doi:10.1371/journal.pcbi.1003724.g005

Feature Learning to Better Predict Brain Activity
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Further extensions of our approach can be used to probe mid-

to high-level extrastriate visual cortical representations in a fully

automated manner. In particular, the SC model can be replaced

by highly nonlinear multi-layer statistical models of natural images

that learn hierarchical feature spaces (i.e. deep learning [43]).

Some of the feature spaces that are learned by these models such

as mid-level edge junctions have been shown to match well with

neural response functions in area V2 [44]. Models that learn even

higher-level representations such as high-level object parts [45] or

complete objects [46] can be used to probe extrastriate visual

cortical representations. For example, heterogenous hierarchical

convolutional neural networks have been shown to predict the

representational dissimilarity matrices that characterize represen-

tations in human inferior temporal gyrus [47]. Similar models

have been shown to learn feature spaces that are admitted by

stimulus sets other than natural images, both within the visual

modality (e.g. natural movies [48]) as well as in other modalities

(e.g. auditory or somatosensory [49]). These models can be used to

probe cortical representations in different sensory modalities.

One approach to estimate deep models is to maximize the

likelihood of all layers at the same time. However, this approach is

not scalable and requires the computation of intractable partition

functions that are impossible to integrate analytically and

computationally expensive to integrate numerically. Nevertheless,

methods such as score-matching [50] and noise-contrastive

estimation [51] have been used to estimate unnormalized

nonlinear multi-layer statistical models of natural images [52,53].

An alternative approach is to use models such as deep belief

networks that comprise multiple layers of restricted Boltzmann

machines. These models can be scaled by convolution [45] and

estimated by maximizing the likelihood of one layer at a time,

using the output of each layer as input for the subsequent layer

[54]. Importantly, generative models such as deep belief networks

make it possible to sample stimuli based on internal network states.

Conditioning these internal network states on stimulus-evoked

brain activity results in a generative approach to decoding. For

example, we have previously shown that a deep belief network that

comprise multiple layers of conditional restricted Boltzmann

machines can reconstruct handwritten digits by sampling from

the model after conditioning it on stimulus-evoked multiple voxel

responses [55].

While introducing a new approach to probe cortical represen-

tations, this study complements other developments in encoding

and decoding. For example, encoding models that involve

computations to account for contrast saturation or heterogeneous

contrast energy were shown to improve prediction of single voxel

responses to visual stimuli [16]. At the same time, these modeling

efforts go hand in hand with developments in fMRI such as the

improvements in contrast-to-noise ratio and spatial resolution that

are facilitated by increases in magnetic field strength [56]. For

example, spatial features of orientation-selective columns in

humans were demonstrated by using high-field fMRI [57]. Jointly,

such developments can provide novel insights into how cortical

representations are learned, encoded and transformed.

In conclusion, we introduced a general approach that improves

prediction of human brain activity in response to natural images.

Our approach primarily relies on unsupervised learning of

transformations of raw stimuli to representations that span the

space of cortical representations. These representations can also be

effectively exploited in stimulus classification, identification or

reconstruction. Taken together, unsupervised feature learning

heralds new ways to characterize the relationship between stimulus

features and human brain activity.

Materials and Methods

Data
We used the fMRI data set [21] that was originally published in

[8,13]. Briefly, the data set contained 1750 and 120 stimulus-

response pairs of two subjects (i.e. S1 and S2) in the estimation and

validation sets, respectively. The stimulus-response pairs consisted

of grayscale natural images of size 128|128 pixels and stimulus-

evoked peak BOLD hemodynamic responses of 5512 (S1) and

5275 (S2) voxels in the early visual areas (i.e. V1, V2 and V3). The

details of the experimental procedures are presented in [8].

Problem statement
Encoding. Let x [ d and y [ q be a stimulus-response pair

where x is a vector of pixels in a grayscale natural image, and y is a

vector of voxel responses. The parameters d and q denote the

number of pixels and voxels, respectively. Given x, we are

interested in the problem of predicting y:

ŷy~ arg max
y

p yDw xð Þð Þ~B>w xð Þ ð1Þ

where ŷy is the predicted response to x, and p is the encoding

distribution of y given w xð Þ. The function w nonlinearly transforms

x from the stimulus space to the feature space, and B linearly

transforms w xð Þ from the feature space to the voxel space.

Decoding. Let be a set of images that contains x. Given

and y, we are interested in the problem of identifying x:

x̂x~ arg max
X[

ry,B>w xð Þ ð2Þ

Figure 6. Receptive field size of the SC2 model as a function of
receptive field eccentricity of the SC2 model and area. The
eccentricity and size of the receptive fields were quantified as the mean
and standard deviation of two-dimensional Gaussian functions that
were fit to the voxel responses to point stimuli at different locations,
respectively. The receptive field size systematically increased from low
to high receptive field eccentricity and from area V1 to V3. Error bars
show +1 SEM across the voxels (bootstrapping method).
doi:10.1371/journal.pcbi.1003724.g006
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where x̂x is the identified image from y, and r is the Pearson

product-moment correlation coefficient between y and B>w xð Þ.
Solving the encoding and decoding problems requires the

definition and estimation of a feature model w followed by a voxel

model B.

Feature model
Model definition. Following [22], we summarize the defini-

tion of the SC model. We start by defining a single-layer statistical

generative model of whitened grayscale natural image patches.

Assuming that a patch is generated by a linear superposition of

latent variables that are non-Gaussian (in particular, sparse) and

mutually independent, we first use independent component

analysis to define the model by a linear transformation of

independent components of the patch:

z~As ð3Þ

where z [ n is a vector of pixels in the patch, A [ n|m is a

mixing matrix, and s [ m is a vector of the components of z such

that mƒn. The parameters n and m denote the number of pixels

and components, respectively. We then define s by inverting the

linear system that is defined by A:

s~Wz ð4Þ

where W [ m|n is an unmixing matrix such that W~A{1. We

constrain W to be orthonormal and si to have unit variance such

that si are uncorrelated and unique, up to a multiplicative sign.

Figure 7. Encoding performance of the SC2 and GWP2 models. The encoding performance was defined as R2 between the observed and
predicted voxel responses to the 120 images in the validation set across the two subjects. The encoding performance of the SC2 model was
significantly higher than that of the GWP2 model. (A) Prediction R2 across the voxels that survived the R2 threshold of 0.1. (B) Mean prediction R2

across the voxels that survived the R2 threshold of 0.1. Error bars show +1 SEM across the voxels (bootstrapping method). (C) Prediction R2 in each
voxel.
doi:10.1371/journal.pcbi.1003724.g007
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Next, we define the joint probability of s by the product of the

marginal probabilities of si since si are assumed to be independent:

p sð Þ~P
m

i~1
p sið Þ ð5Þ

where p sið Þ are peaked at zero and have high kurtosis since si are

assumed to be sparse.

While one of the assumptions of the model is that si are

independent, their estimates are only maximally independent. As a

result, residual dependencies remain between the estimates of si.

We continue by modeling the nonlinear correlations of si since si

are constrained to be linearly uncorrelated. In particular, we

assume that the locally pooled energies of si are sparse. Without

loss of generality, we first arrange si on a square grid graph that

has circular boundary conditions. We then define the locally

pooled energies of si by the sum of the energies of si that are in the

same neighborhood:

c~Hs2 ð6Þ

where c [ m is a vector of the locally pooled energies of si and

H [ m|m is a neighborhood matrix such that hi,j~1 if ci pools

the energy of sj and hi,j~0 otherwise. Next, we redefine log p sð Þ
in terms of c to model both layers:

log p sð Þ&
Xm

i~1

G cið Þ ð7Þ

where G is a convex function. Concretely, we use

G cið Þ~{ log 1zcið Þ.
In a neural interpretation, simple and complex cell responses

can be defined as s and a static nonlinear function of c,

respectively. Concretely, we use log 1zcð Þ to define the complex

cell responses after we estimate the model.

Model estimation. We use a modified gradient ascent

method to estimate the model by maximizing the log-likelihood

of W (equivalently, the sparseness of c) given a set of patches:

ŴW~ arg max
W

L WDZð Þ ð8Þ

where L WDZð Þ~{
X

z ið Þ log p H Wz ið Þ
� �2

� �
is an approxima-

tion of the log-likelihood of W and Z~ z 1ð Þ,z 2ð Þ, . . .
� �

is the set of

patches. At each iteration, we first find the gradient of L WDZð Þ:

+WL WDZð Þ~{H> 1zH WZð Þ2
� �{1

0 2WZð ÞZ> ð9Þ

where 0 is the Hadamard (element-wise) product. We then project

it onto the tangent space of the constrained space [58]:

+WL WDZð Þ~+WL WDZð Þ{W+WL WDZð Þ>W ð10Þ

Next, we use backtracking line search to choose a step size

by reducing it geometrically with a rate from 0,1ð Þ until the

Figure 8. Decoding performance of the SC2 and GWP2 models.
The decoding performance was defined as the accuracy of identifying
the 120 images in the validation set from a set of 9264 candidate
images. The decoding performance of the SC2 model was significantly
higher than that of the GWP2 model. Error bars show +1 SEM across
the images in the validation set (bootstrapping method). A more
detailed figure that shows the identified images is provided at http://
www.ccnlab.net/research/.
doi:10.1371/journal.pcbi.1003724.g008

Figure 9. Mean prediction R2 and identification accuracy of the
SC2 and GWP2 models after (a) and before (b) translating the
images in the validation set by 0.86 in a random dimension. The
SC2 model was more invariant than the GWP2 model and its invariance
increased from V1 to V3. (A) Mean prediction R2 across the voxels that
survived the R2 threshold of 0.1 in the case of (b). Error bars show +1
SEM across the voxels (bootstrapping method). (B) Identification
accuracy. Error bars show +1 SEM across the images in the validation
set (bootstrapping method).
doi:10.1371/journal.pcbi.1003724.g009
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Armijo-Goldstein condition holds [59]. Finally, we update W and

find its nearest orthogonal matrix:

W/Wzm+WL WDZð Þ ð11Þ

W/ WW>� �{1
2W ð12Þ

where m is the step size.

Voxel model
Model definition. We start by defining a model for each

voxel. Assuming that p yDw xð Þð Þ*N B>w xð Þ,
P� �

, where

B~(b1, . . . ,bq) [ m|q and
P

~diag(s2
1, . . . ,s2

q) [ q|q, we

use linear regression to define the models by a weighted sum of

w xð Þ:

yi~b>i w xð Þzei ð13Þ

where ei*N 0,s2
i

� �
.

Model estimation. We estimate the model using ridge

regression:

b̂bi~ arg min
bi

1

N

XN

j~1

y
jð Þ

i {b>i w(x jð Þ)
� �

z i DDbiDD
2
2 ð14Þ

where X~ x 1ð Þ, . . . ,x Nð Þ� �>
[ N|d and Y~ y 1ð Þ, . . . ,y Nð Þ� �>

[ N|q is an estimation set, and i§0 is a complexity parameter

that controls the amount of regularization. The parameter N denotes

the number of stimulus-response pairs in the estimation set. We obtain

b̂bi as:

b̂bi~( iImzW>W){1W>Yi ð15Þ

where W~ w x 1ð Þ� �
, . . . ,w x Nð Þ� �� �T

[ N|m and Yi~ y
1ð Þ

i , . . . ,
�

y
Nð Þ

i Þ
T [ N|1. Since m&N, we solve the problem in a rotated

coordinate system in which only the first N coordinates of W are

nonzero [60,61]. We first factorize W using the singular value

decomposition:

W~USV> ð16Þ

where UU>~U>U~IN , S~diag sð Þ [ N|N and V>V~IN . The

columns of U, the diagonal entries of S and the columns of V are the

left-singular vectors, the singular values and the right-singular vectors

of W, respectively. We then reobtain b̂bi as:

b̂bi~V diag
s

s0sz i

� �
U>Yi ð17Þ

where division is defined element-wise. The rotation reduces the

complexity of the problem from O m3
� �

to O mN2
� �

. To choose the

optimal i, we perform hyperparameter optimization using grid

search guided by a generalized cross-validation approximation to

leave-one-out cross-validation [60]. We define a grid by first sampling

the effective degrees of freedom of the ridge regression fit from ½1, N�
since its parameter space is bounded from above. The effective degrees

of freedom of the ridge regression fit is defined as:

df ið Þ~
XN

j~1

s2
j

s2
j z i

ð18Þ

We then use Newton’s method to solve df for i. Once the grid is

defined, we choose the optimal i that minimizes the generalized

cross-validation error:

^
i~ arg min

[L

XN

j~1

y
jð Þ

i {ŷy
jð Þ

i ( )

1{dfð Þ=N

" #2
8<
:

9=
; ð19Þ

where L is the grid, and ŷy
jð Þ

i ð Þ is ŷy
jð Þ

i given a particular .

Encoding and decoding
In the case of the SC model, each randomly sampled or non-

overlapping patch was transformed to its principal components

such that 625 components with the largest variance were retained

and whitened prior to model estimation and validation. After the

images were feature transformed, they were z-scored. The SC

model of 625 simple and 625 complex cells was estimated from

50000 patches of size 32|32 pixels that were randomly sampled

from the 1750 images of size 128|128 pixels in the estimation set.

The details of the GWP model are presented in [8]. The SC2 and

GWP2 models were estimated from the 1750 feature-transformed

stimulus-response pairs in the estimation set.

Figure 10. Mean prediction R2 of the linear one-layer (l),
compressive nonlinear one-layer (cn) and nonlinear two-layer

(2) SC and GWP models across the voxels that survived the R2

threshold of 0.1 in the case of (2). The mean prediction R2 of the
linear one-layer models were below the R2 threshold of 0.1. The mean
prediction R2 of the nonlinear SC models were significantly better than
those of the nonlinear GWP models. The compressive nonlinearity and
the nonlinear second layer increased the mean prediction R2 of the
linear and compressive nonlinear models, respectively. The nonlinear
second layer increased the mean prediction R2 of the compressive
nonlinear SC model more than it increased that of the compressive
nonlinear GWP model. The error bars show +1 SEM across the voxels
(bootstrapping method).
doi:10.1371/journal.pcbi.1003724.g010
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Voxel responses to an image of size 128|128 pixels were

predicted as follows. In the case of the SC model, each 16 non-

overlapping patch of size 32|32 pixels of the image were first

transformed to the complex cell responses of the SC model (i.e.

total of 625 complex cell responses per patch and 10000 complex

cell responses per image). The 10000 complex cell responses of the

SC model were then transformed to the voxel responses of the SC2

model. In the case of the GWP model, the image was first

transformed to the complex cell responses of the GWP model (i.e.

total of 10921 complex cell responses per image). The 10921

complex cell responses of the GWP model were then transformed

to the voxel responses of the GWP2 model. The encoding

performance was defined as the coefficient of determination

between the observed and predicted voxel responses to the 120

images in the validation set across the two subjects.

A target image was identified from a set of candidate images as

follows. Prior to identification, 500 voxels were selected without

using the target image. The selected voxels were those whose

responses were predicted best. The target image was identified as

the candidate image such that the observed voxel responses to the

target image were most correlated with the predicted voxel

responses to the candidate image (i.e. highest Pearson product-

moment correlation coefficient between observed and predicted

voxel responses). The decoding performance was defined as the

accuracy of identifying the 120 images in the validation set from

the set of 9264 candidate images. The set of candidate images

contained the 120 images in the validation set and the 9144 images

in the Caltech 101 data set [38].
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41. Çukur T, Nishimoto S, Huth AG, Gallant JL (2013) Attention during natural vision

warps semantic representation across the human brain. Nat Neurosci 16: 763–770.

42. Kok P, Brouwer GJ, van Gerven MA, de Lange FP (2013) Prior expectations
bias sensory representations in visual cortex. J Neurosci 33: 16275–16284.

43. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and
new perspectives. IEEE Trans Pattern Anal Mach Intell 35: 1798–1828.

44. Lee H, Ekanadham C, Ng A (2007) Sparse deep belief net model for visual area

V2. In: Neural Information Processing Systems.

45. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In:

International Conference on Machine Learning.

46. Le Q, Ranzato M, Monga R, Devin M, Chen K, et al. (2012) Building high-level

features using large scale unsupervised learning. In: International Conference on
Machine Learning.

47. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, et al. (2014)

Performance-optimized hierarchical models predict neural responses in higher
visual cortex. Proc Natl Acad Sci U S A.

Feature Learning to Better Predict Brain Activity

PLOS Computational Biology | www.ploscompbiol.org 11 August 2014 | Volume 10 | Issue 8 | e1003724



48. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical invariant

spatio-temporal features for action recognition with independent subspace

analysis. In: Conference on Computer Vision and Pattern Recognition.

49. Saxe AM, Bhand M, Mudur R, Suresh B, Ng AY (2011) Unsupervised learning

models of primary cortical receptive fields and receptive field plasticity. In:

Neural Information Processing Systems.

50. Hyvärinen A (2005) Estimation of non-normalized statistical models by score

matching. J Mach Learn Res 6: 695–709.

51. Gutmann MU, Hyvärinen A (2012) Noise-contrastive estimation of unnorma-

lized statistical models, with applications to natural image statistics. J Mach

Learn Res 13: 307–361.
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