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Abstract

The unraveling and control of protein stability at different temperatures is a fundamental problem in biophysics that is
substantially far from being quantitatively and accurately solved, as it requires a precise knowledge of the temperature
dependence of amino acid interactions. In this paper we attempt to gain insight into the thermal stability of proteins by
designing a tool to predict the full stability curve as a function of the temperature for a set of 45 proteins belonging to 11
homologous families, given their sequence and structure, as well as the melting temperature (Tm) and the change in heat
capacity (DCP) of proteins belonging to the same family. Stability curves constitute a fundamental instrument to analyze in
detail the thermal stability and its relation to the thermodynamic stability, and to estimate the enthalpic and entropic
contributions to the folding free energy. In summary, our approach for predicting the protein stability curves relies on
temperature-dependent statistical potentials derived from three datasets of protein structures with targeted thermal
stability properties. Using these potentials, the folding free energies (DG) at three different temperatures were computed
for each protein. The Gibbs-Helmholtz equation was then used to predict the protein’s stability curve as the curve that best
fits these three points. The results are quite encouraging: the standard deviations between the experimental and predicted
Tm ’s, DCP ’s and folding free energies at room temperature (DG25) are equal to 13

0
C, 1.3 kcal=(mol

0
C) and 4.1 kcal=mol,

respectively, in cross-validation. The main sources of error and some further improvements and perspectives are briefly
discussed.
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Introduction

The understanding of the mechanisms used by nature to

stabilize proteins against thermal inactivation is still an open issue

of primary importance. From a theoretical perspective, such

comprehension is fundamental in the study of the adaptive

strategies used by the organisms to inhabit extreme environments.

Due to evolution, such organisms are not only able to tolerate

extreme temperature conditions, that range from less than ten

degree Celsius to more than 120 oC, but require these conditions

for their survival. The control of the thermal resistance is also

important from an applicative perspective, as it would allow the

optimization of a wide series of industrial, bioanalytical and

pharmaceutical bioprocesses through the design and manufacture

of new and more efficient enzymes [1–3].

In the last decades, different attempts and methods have been

developed to obtain proteins of increased thermal stability. Protein

engineering methods that include directed evolution methods [4–

6] have been quite successful even if their applicability remains

limited due to the intensive work required. In silico engineering

approaches based on sequence conservation or free energy

calculation methods have also been developed but with only

partial success [7–12].

Recently, we developed a thermal stability prediction tool based

on (melting)-temperature dependent statistical potentials that are

derived from datasets in which only proteins with given

thermostability properties are included [13–15]. The introduction

of such potentials in the thermal stability framework is motivated

by the fact that the amino acid pair interactions are temperature

dependent, which means that some of them are more stabilizing

than others in the high temperature regime and less stabilizing at

lower temperatures (and vice versa) [16–29]. This peculiar

approach allowed us to study the thermal properties of proteins

without detour through their thermodynamical stability, which is

advantageous since it is well known that the two types of stability

are poorly correlated.

Proteins use different ways to promote their thermoresistance,

which can – in a first approximation – be classified in three main

strategies according to the Nojima analysis [30] (for a more recent

review see also [31]). Let us start by introducing the stability curve

of a protein, which can be described by the Gibbs-Helmholtz

equation:

DG(T)~DHRzDCP T{TRð Þ{T DSRzDCPLog
T

TR

� �� �
, ð1Þ

where DG(T) is the free energy change associated to the folding

transition from the unfolded to the native state, DHR and DSR the

change in enthalpy and entropy measured at the reference

temperature TR, and DCP the change of the heat capacity across

the transition. To obtain this equation, one has to fix the pressure

PLOS Computational Biology | www.ploscompbiol.org 1 July 2014 | Volume 10 | Issue 7 | e1003689

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003689&domain=pdf


of the system, to consider two-state transitions only, and to take

DCP as temperature independent. Usually, the melting tempera-

ture Tm, which is the midpoint of the thermal denaturation, is

chosen as the reference temperature. Eq.(1) can then be rewritten

as:

DG(T)~DHm 1{
T

Tm

� �
{DCP (Tm{T)zT Log

T

Tm

� �� �
, ð2Þ

where DHm is the enthalpy measured at Tm. Sometimes, the

reference temperature is taken equal to Ts, the temperature of

maximal stability, which yields the equation:

DG(T)~DHs{DCP (Ts{T)zT Log
T

Ts

� �� �
: ð3Þ

The first strategy that a protein can use to increase its

thermostability [30] is to make the enthalpy change (DHs)

measured at Ts more negative. This yields an overall decrease of

DG for all temperatures as we can see from Eq.(3) (Figure 1.a). In

the second strategy, DCP becomes less negative, which leads to an

increase of Tm through a modification of the shape of the curve

(see Eq.(2) and Figure 1.b). The last strategy consists in an increase

of the maximum stability temperature, Ts, defined at the

minimum of the DG(T) curve, where the transition is purely

enthalpic. This shifts the curve towards the high temperature

region (see Figure 1.c).

It is, in general, not obvious to determine which type of strategy

is adopted by a given protein; often several strategies are used in

combination [31]. A realistic example of stability curve is depicted

in Figure 1.d: the value of the folding free energy DG(T) is plotted

both for a thermostable protein, the O6 -methyl-guanine-DNA

methyltransferase from Thermococcus kodakaraensis (Tk-MGMT)

with Tm = 98.6 oC, and for its mesostable counterpart, the C-

terminal Ada protein from Escherichia coli (Ec-AdaC) with Tm

= 54.8 oC, as determined experimentally in [32]. We can clearly

see that in this case the three strategies are used simultaneously in

the achievement of a higher thermal stability.

The strategies for improving the thermal resistance of a protein

sometimes also improve the thermodynamic stability, defined by

the folding free energy DG(Tr) at room temperature (25 oC), and

sometimes not. The first strategy clearly does; for the other two

strategies, it depends on the relative values of Ts and Tr (see

Figures 1a–c).

It is unfortunately quite difficult to get accurate predictions

of thermal stability. The results described in the literature are

in general family-dependent and sometimes even contradictory

[16–29]. Indeed, the temperature-dependent nature of the

amino acid interactions makes the thermal stability analyses

quite intricate and the mechanism behind it difficult to

unravel. Predicting the thermodynamic stability is not easy

either. There are no methods for predicting the thermody-

namic stability of a given protein, with the notable exception of

molecular dynamic simulations, which are however very time-

consuming and not applicable on a large or medium scale.

Only methods for predicting thermodynamic stability changes

upon point mutations (DDG(Tr)) have been developed and

reach good scores [33–43]. No predictions of the enthalpy DH
or entropy DS do exist either. In contrast, the prediction of

DCP is relatively easy since it is strongly correlated to the

change of accessible surface area upon unfolding [44–46].

In this paper we go a step further than previous analyses

aiming at evaluating either Tm, DG(Tr) or DCP. We indeed

present a method for predicting the whole stability curve

DG(T) of a protein from its sequence and structure, in the

temperature range that is relevant for such systems

(&0{150oC), using as main tool the temperature-dependent

statistical potentials developed and tested in [13]. We would

like to emphasize that this is, to our knowledge, the first

prediction method that outputs the complete stability curve.

To get a satisfactory performance, we used in the predictions

some information about proteins belonging to the same

homologous family, and more precisely their Tm and DCP.

The predicted stability curve yields an estimation of the

melting temperature Tm, the thermodynamic stability DG(Tr),
the temperature of optimal stability Ts, the DCP, as well as the

enthalpy DH and the entropy DS at certain temperatures. We

present our results in cross validation for a set of 45 proteins

belonging to eleven homologous families (for the list of their

PDB codes [47] and their characteristics, see Table S1 of

Supporting Material). The predicted values are compared with

the experimentally determined values when available, and the

different strategies used by the proteins for thermal stabiliza-

tion are investigated and discussed.

Methods

T -dependent statistical potentials
In this section we describe the main tools used in this analysis,

namely the statistical potentials, and how they have been

optimized for the current investigation. The main steps of our

approach are schematically illustrated in Figure 2.

The statistical potentials are well known since some seminal

papers [48–50]. They are derived from the frequency of

associations between certain sequence and structure elements in

a dataset of experimentally determined native protein structures.

Even though such potentials have been extensively and success-

fully used in the analysis of the thermodynamic stability of

proteins, they have only recently been applied in the thermal

stability context, where the temperature dependence of the amino

acid interactions must be taken into account [13–15]. To deal with

this, potentials that depend on the melting temperature were

Author Summary

The prediction of protein stability remains one of the key
goals of protein science. Despite the significant efforts of
the last decades, faster and more accurate stability
predictors on the proteomic-wide scale are currently
demanded. The determination and control of protein
stability are indeed fundamental steps on the path
towards de novo design. In this paper we develop a
method for predicting the stability curve of proteins. This
curve encodes the temperature dependence of the folding
free energy (DG). Its knowledge is important in the study
of protein stability since all the thermodynamic parameters
characterizing the folding transition can be extracted from
it. Our prediction method is based on temperature-
dependent mean force potentials and uses the tertiary
structure of the target protein as well as the melting
temperature (Tm) and the heat capacity change (DCP) of
some other proteins belonging to the same family. From
the predicted stability curves, the Tm, the DCP and the DG
at room temperature can be inferred. The predictions
obtained are compared with experimental data and show
reasonable performances.
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derived from different datasets in which only proteins with given

thermal properties were included. Three such datasets were

considered [15]: a set containing only mesostable proteins,

denoted S+ and characterized by a mean value of the melting

temperature of its entries (�TT+
m ) of about 50oC, a thermostable

ensemble, denoted SD, with �TTD
m

~880oC, and a reference set

containing both mesostable and thermostable proteins, denoted

S , with �TTm
~665oC. The list of proteins belonging to these datasets

are given in Table S0–S11 and Table S13 of the Supplementary

Material of [15].

From these different datasets, statistical potentials were derived

using the standard formalism of the inverse Boltzmann law

[13,14]:

DW (s,c,�TTm)%{kT ln
F (s,c, �TTm)

F (s, �TTm)F (c,�TTm)
, ð4Þ

where F (s,c, �TTm) is the relative frequency of observation of the

sequence element s associated to the structure element c, and

F (s,�TTm) and F (c, �TTm) are the frequencies of observation of the

sequence element s and of the structure element c, respectively. In

this computation, s corresponds either to the amino acid type ai of

residue i along the polypeptide chain, or to the amino acid types

(ai,aj) of residues i and j, while c is either the backbone torsion

angle domain tk of residue k, as defined in [51], or the spatial

distance dij between the residues i and j. The former are called

torsion potentials and the latter distance potentials.

While the torsion potentials describe local interactions along the

chain and are a measure of the propensity of a given amino acid to

adopt certain backbone torsion angles, the distance potentials

describe the tertiary interactions and measure the propensity of

amino acids to be separated by a certain spatial distance d. The

values of the distance between two residues, defined as the distance

between the geometrical centers of the heavy side chain atoms,

range between 3.0 and 8.0 A and were grouped into 25 bins of 0.2

A width, with two additional bins that contain distances larger

than 8.0 A and smaller than 3.0 A, respectively.

Note that we have made the �TTm -dependence of the

frequencies explicit to stress that these are computed from a

dataset associated with specific thermal properties, characterized

by �TTm. As a consequence, the potentials are �TTm -dependent and

reflect the thermal characteristics of the dataset from which they

are derived.

Due to the smallness of the dataset, some techniques are

required to smooth the potentials and improve their performances.

A first modification that has been performed is a correction for

sparse data consisting in rewriting the frequencies as [52]:

F (s,c,�TTm)?
sF (s)F (c, �TTm)zgF (s,c,�TTm)

szg
, ð5Þ

where s is an adjustable parameter chosen to be equal to 10 for

the distance potentials and to 20 for the torsion potentials (based

on preliminary tests), and where g is equal to

n(s,�TTm)|n(c,�TTm)=n(�TTm). This correction ensures that the poten-

tials tend to zero when the number of observations in the data set

is too small. A second trick that has been used consists, for a given

bin i, in summing the number of occurrences of the neighboring

bins giving them a decreasing weight:

ni~
ni{2

3
z

ni{1

2
z . . . niz

ni{1

2
z

ni{2

3

� �
ð6Þ

where ni is the number of occurrences in bin i.

Figure 1. Stability curves of thermostable and mesostable proteins. (a,b,c) Different strategies of thermal adaptation of hypothetic proteins.
(d) Comparison between the stability curve of Tk-MGMT (PDB [47] code 1GMT) and its mesophilic counterpart Ec-AdaC (PDB code 1SFE) [32].)
doi:10.1371/journal.pcbi.1003689.g001
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Figure 2. Flowchart of the protein stability curve prediction method.
doi:10.1371/journal.pcbi.1003689.g002
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Families of homologous proteins
Predicting the stability curve of proteins from their sequence

and structure alone is quite a difficult task. To slightly simplify the

problem, we focused on families of homologous proteins, and

make predictions that take into account some informations from

the other family members. We therefore searched the full protein

set S for families of homologous proteins with at least three

members of known Tm. We found 11 such families containing

both mesostable and thermostable proteins. They are: a -amylase,

acylphosphatase, lysozyme, myoglobin, b -lactamase, a -lactalbu-

min, adenylate kinase, cell 12A endoglucanase, cold shock protein,

cytochrome P450 and ribonuclease. The complete list of the 45

proteins belonging to these families is given in Table S1 of

Supporting Material.

Some quantities (such as the number of residues, DCP, etc.)

remain approximately constant inside a given family. This

obviously makes the prediction method simpler to build. Such

family-dependent analysis remains nevertheless quite intricate,

since the thermostability properties of the proteins of a given

family are sometimes very different.

In order to improve the performance of our method, the

datasets S+, SD and S have been further enlarged by adding

proteins that belong to the protein family considered but whose

Tm was estimated from their environmental temperature instead of

being experimentally determined; note that the pairwise sequence

identity within each set was kept below 25% to avoid biasing the

potentials (see [15] for details about the dataset construction

procedure). Strictly speaking, this modification makes the datasets

and the corresponding potentials family dependent.

Computation of the folding free energy at different
temperatures

The folding free energy DG of a given protein is computed at

the temperatures �TT+
m, �TTm and �TTD

m from the (melting-)temperature

dependent potentials defined in the previous subsections. More

precisely, we have:

DG(�TT+
m)~

1

N b0

XN

i,j~1

DW (ai,aj ,dij , �TT+
m)zb1

XN

i,j~1

DW (ai,dij ,�TT
+
m)

"

zb2

XN

i,j,k~1

DW (ai,aj ,tk,�TT+
m)zb3

XN

i,k~1

DW (ai,tk, �TT+
m)

#
,

ð7Þ

DG( �TTm )~
1

2N (b0zc0)
XN

i,j~1

DW (ai ,aj ,dij , �TTm )z(b1zc1)
XN

i,j~1

DWf (ai ,dij ,�TTm )

"

z(b2zc2)
XN

i,j,k~1

DW (ai ,aj ,tk ,�TTm )z(b3zc3)
XN

i,k~1

DW (ai ,tk ,�TTm )

#
,

ð8Þ

DG(�TTD
m)~

1

N c0

XN

i,j~1

DW (ai,aj ,dij , �TTD
m)zc1

XN

i,j~1

DW (ai,dij , �TTD
m)

"

zc2

XN

i,j,k~1

DW (ai,aj ,tk,�TTD
m)zc3

XN

i,k~1

DW (ai,tk, �TTD
m)

#
,

ð9Þ

where i=j,j+1 for the distance potentials, k{8ƒivjƒkz8 for

the torsion potentials, and the parameters P~(b0,b1,b2,

b3,c0,c1,c2,c3) are positive real numbers. The normalization

coefficient N is defined as:

N~
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b0zc0)2z(b1zc1)2z(b2zc2)2z(b3zc3)2

q
: ð10Þ

The temperatures (�TT+
m, �TTD

m , �TTm ) correspond to the average

melting temperatures of the mesostable, thermostable and average

datasets. The real T -dependence of the folding free energies is

obviously related to these melting temperatures. However, it

would be a very strong (and obviously wrong) assumption to

suppose that the average melting temperatures and the real

temperatures are equal. Rather, as will be seen in the next

subsection, a scale parameter must be introduced to relate the �TTm

’s to the real T .

The strategy for identifying the parameter values P consists in

maximizing the anticorrelation between the melting temperature

and the difference in free energies DU~DG(�TTD
m){DG(�TT+

m).

Indeed, DU has been shown to be much more correlated to the

melting temperature than the folding free energy DG [15]. The

optimization is performed on all proteins with known Tm (listed in

Table S1), excluding those of the protein family f that we want to

predict:

Pf ~ arg max
P

½Correlation DU,Tmð Þ� : ð11Þ

The subscript f indicates the family-dependent nature of the

coefficients since their optimization is performed without the

proteins of f . This avoids the overestimation of the performance,

and amounts to cross validation. All the optimizations described in

this paper are performed using the ordinary least square regression

method implemented in Mathemetica 7.0.

Extrapolation of the full stability curve
In the next steps of the computation, we estimate the full

stability curve given by Eq.(2) from the three values of the folding

free energies given by Eqs(7–9), for the set of 45 proteins from the

11 protein families. Let us assume for the moment that the �TTm -

dependence is the true T -dependence of the potentials. Under this

assumption, the stability curve can easily be obtained: it is has the

form (2) and depends on the thermodynamic quantities (DHm, Tm

and DCP), viewed as parameters, which are identified to best fit

the three data points:

f�TT+,DG(�TT+)g,f�TT ,DG(�TT )g,f�TTD,DG(�TTD)g: ð12Þ

However, this simple approach does not give accurate

predictions, both because the Tm - and T -dependences differ

and because the error on these three points, which are moreover

quite close along the T -axis, leads to large errors on the whole

curve. Three different issues must be solved to get reasonable

stability curves.

The first issue concerns the sign of the second derivative of the

curve. In a few cases (less than 10%), this sign is wrong, which

implies that the curve is upside-down and the protein seems

unfolded in the physiological temperature range. This error is

related to the fact that the three points given in Eq.(12) are too

close along the T axis; this is due to the limited number of known

proteins with very low or very high Tm. The shape of the curve

(8)
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depends thus strongly on the relative position of the average point

f�TT ,DG(�TT )g relative to the mesostable and thermostable points

f�TT+,DG(�TT+)g and f�TTD,DG(�TTD)g. Sometimes even a small

variation of these values can lead to the inversion of the shape

of the curve.

To overcome this problem, we imposed a fourth point in the

fitting procedure, in addition to those given in Eq.(12). This point is

taken at a temperature of 0uK, where we impose DG(0) to be equal

to the average of the DG(0) ’s of the other proteins that belong to the

same family. This quantity has no physical interpretation, as the

inverse bell shape of the stability curve may not be extrapolated to

zero temperature; indeed, we have in reality DG(0)~0. This trick is

however quite useful to impose the correct sign of the second

derivative of the curve in the physiological temperature range.

This procedure has been applied when the predicted curve is upside-

down, but also when the value of DG(0) deviates by more than one

standard deviation from the mean D�GG(0) computed inside the family

f . This leads to an overall improvement of the results since it smooths

out possible errors on the average point f�TT ,DG(�TT )g, which is

amplified in the curve derivation procedure.

The second issue is the determination of the overall scaling

factor M of the curve. When more than one value of DCP was

experimentally determined within the considered family f , we fix

M for the protein p in the family f as the ratio:

Mp~
X
p’=p

DC
exp
P (p’)

DCcurve
P (p’)

, ð13Þ

where DCcurve
P is extracted from the predicted curves as the coefficient

of the T lnT term,DC
exp
P is the experimental value and the sum is over

the proteins belonging to f excluding p; this again amounts to obtain

predictions in cross validation. If only one or no DCP values were

available for the family, we took as normalization factor the mean of

theM values found for the other families, excluding the largest and

smallest values. This is a rough approximation since this quantity is

expected to be strongly family dependent. However, despite the crude

approximations made, the final result shows a fair performance that

will certainly improve when more data or an independent DCP

determination will be available.

The last issue concerns the real temperature dependence of the

potentials. Strictly speaking, the �TTm -dependence of the potentials

is different from the real T -dependence, even though they are

obviously related. Indeed, the temperature resistant interactions

can be expected to play a fundamental role in the stabilization in

the high temperature regime and vice versa in the low temperature

region (see [16–20] for the temperature dependence of the amino

acid interactions). The assumption that we made is that the real T
value at which the potentials are calculated is related to the value

of �TTm by a multiplicative factor that we call �gg, which is assumed to

be different for each protein. The strategy for fixing it is the

following: once the function DG(T) has been estimated for all the

proteins p of a given family f , we determined the temperature T̂Tm,p

at which it is zero. We identified �ggp for a protein p[f so as to

minimize the cost function:

X
p’=p

(�ggpT̂Tm,p’{T
exp
m,p’)

2: ð14Þ

Since we are working in cross validation, the sum is over the

proteins p’=p that belong to family f . For a given protein p, the

folding free energy is thus given as DG(gpT).

Results

The prediction of the mechanisms used by proteins to enhance

their thermoresistance is a highly non-trivial issue. The principal

mechanisms of this stabilization can be schematically described in

terms of three strategies (see Figures 1a–c). The first consists in a

global decrease of the folding free energy DG(T) at all

temperatures, which automatically implies an increase of the

melting temperature. The second strategy consists of less negative

values of DCP, which broadens the stability curve. In the third

strategy the temperature of maximal stability Ts undergoes a shift

towards the high temperature region. It is not simple to

understand which mechanism is used by each protein and if it is

used alone or in combination [31]. Moreover, different proteins of

the same family can reach higher thermostability through

completely different mechanisms.

In order to gain understanding into the thermal stability

enhancement strategies and to obtain some quantitative predic-

tions, we designed a method to predict the full stability curve of 45

proteins that belong to 11 homologous families (see Methods

section). The results are the 45 stability curves given explicitly in

Table S3 and plotted in Figure 3.

To make the analysis quantitative, we extracted from these

predicted stability curves three independent thermodynamic

parameters that define the transition, namely Tm, DCP and DG

at 25
0
C, and compared them with the experimental values. For

the melting temperature, the experimental values are known for all

45 entries while for the other two quantities, they are known for 17

and 16 proteins, respectively (see Table S2). We report in Table 1

the standard deviation between the computed and the exper-

imental values, as well as the correlation coefficient between the

two quantities with the corresponding P-values.

Let us start with the analysis of the melting temperature whose

values are simply extracted from the protein stability curves

DG(T) by looking for the zero of Eq. (2), since by definition:

DG(Tm)~0: ð15Þ

The value of the standard deviation between the experimental

and the so computed Tm ’s is, in cross validation, equal to about 13
0
C and reduces to 10

0
C when the 10% worst predicted entries are

excluded (Table 1). This value is comparable with the one found

previously with a different method [15], with the notable

difference that we predict here simultaneously the whole stability

curve. In Figure 4.a, the predicted versus the experimental Tm ’s

are plotted; the corresponding correlation coefficient rTm
is found

to be equal to 0.69 (P-value 10{7), and to increase to 0.76 upon

exclusion of the 10% worst predicted proteins.

We also computed the DCP for all the proteins belonging to the

eleven homologous families. In this prediction, the identification of

the normalization factor Mp defined in Eq. (13) is fundamental.

Unfortunately, we do not have enough input data, i.e. experi-

mental DCP ’s, to identify this parameter inside each family: only

for 17 entries is the DCP known, with moreover often quite large

experimental errors (of the order of 10–20%). When performing

predictions in cross-validation, we have thus to fix Mp indepen-

dently of the other proteins of the family (using the procedure

explained in Methods) for more than half of the entries, which

inevitably gives rise the errors.

The standard deviation between the experimental and the

predicted values of DCP is reported in Table 1. It is equal to 1.3

kcal=(mol
0
C) and reduces to 0.8 kcal=(mol

0
C) when the two

worst predicted proteins are excluded. The experimental and

Protein Stability Curve Prediction
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predicted values are plotted in Figure 4.b; the correlation rDCP

between the two quantities is equal to 0.92 (P-value 10{7), but falls

down to 0.41 upon exclusion of the two worst predictions.

We chose as last independent quantity that can be extracted

from the predicted curves the folding free energy at 25
0
C (DG25).

The considerations made in the previous paragraph about the

normalization factor Mp are valid for this quantity too and thus

we cannot expect a perfect correlation between the predicted and

experimental values due to the lack of data. We found indeed a

standard deviation of 4.1 kcal=mol between predicted and

Figure 3. Predicted stability curves of the 45 proteins considered, which belong to 11 homologous families. The PDB codes, the host
organisms and their environmental temperatures of all the proteins are given in the following list: (a) 2vh7 (Homo sapiens, 37

0
C), 2bjd (Sulfolobus

solfataricus, 80
0
C), 1v3z (Pyrococcus horikoshii, 98

0
C). (b) 1am7 (Bacteriophage lambda, 37

0
C), 2lzm (Escherichia coli, 37

0
C), 1lz1 (Homo sapiens, 37

0
C), 1am7 (Gallus gallus, 41

0
C). (c) 1aqh (Alteromonas haloplanktis, 26

0
C), 1ppi (Sus scrofa, 39

0
C), 1jae (Tenebrio molitor, 28

0
C), 1smd (Homo sapiens,

37
0
C). (d) 2fal (Aplysia limacina, 17

0
C), 1ymb (Equus caballus, 38

0
C), 1bvc (Physeter catodon, 35

0
C). (e) 1blc (Staphylococcus aureus, 34

0
C), 1ke4

(Escherichia coli, 37
0
C), 4blm (Bacillus licheniformis, 43

0
C), 1bmc (Bacillus cereus, 30

0
C). (f) 1hml (Homo sapiens, 37

0
C), 1hfz (Bos taurus, 38

0
C),

1hmk(Capra hircus, 39
0
C). (g) 1p3j (Bacillus subtilis, 37

0
C), 3fb4 (Jeotgalibacillus marinus, 18

0
C), 1s3g (Bacillus globisporus, 15

0
C), 1aky

(Saccharomyces cerevisiae, 28
0
C), 1ank (Escherichia coli, 37

0
C), 1zip (Bacillus stearothermophilus, 51

0
C). (h) 1oa3 (Hypocrea schweinitzii, 40

0
C), 1h8v

(Thrichoderma reesei, 35
0
C), 1oa4 (Streptomyces sp. 11ag8, 30

0
C), 1olr (Humicola grisea, 50

0
C), 1cec (Clostridium thermocellum, 60

0
C). (i) 1csp

(Bacillus subtilis,
0
C), 1mjc (Escherichia coli, 37

0
C), 1c9o (Bacillus caldolyticus, 70

0
C). (j) 1bu7 (Bacillus megaterium, 30

0
C), 1oxa (Saccharopolyspora

erythraea, 31
0
C), 1akd (Pseudomonas putida, 30

0
C), 1n97 (Thermus thermophilus, 68

0
C), 1f4t (Sulfolobus solfataricus, 78

0
C). (k) 1rgg (Streptomyces

aureofaciens, 28
0
C), 9rnt (Aspergillus Oryzae, 49

0
C), 1rnh (Escherichia coli, 37

0
C), 1rbn (Bos taurus, 38

0
C), 2ehg (Sulfolobus tokodaii, 80

0
C).

doi:10.1371/journal.pcbi.1003689.g003
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measured DG25 ’s, which reduces to 2.6 kcal=mol when the two

worst predicted proteins are excluded. The correlation coefficient

rDG25
between the experimental and the predicted values is 0.4 (P-

value 0.05) and 0.7 upon exclusion of the two worst predictions.

These results are shown in Table 1 and plotted in Figure 4.c. A list

of values of Tm, DCP, and DG25 predicted from the 45 stability

curves, as well as the corresponding experimental values where

available, are reported in Table S2 of Supporting Material.

A further outcome that can be derived from the predicted

stability curves is a better understanding of the strategies used

within each protein family to reach a higher thermal stability. In

particular, we can evaluate quantitatively the correlation between

the thermodynamic and thermal stabilities: the linear antic-

orrelation between Tm and DG25 (usually taken as the descriptor of

the thermodynamic stability) is relatively high and is of the order of

0.7 when the two worst predicted families are excluded. The

increase of the thermodynamic stability thus remains the principal

mechanism for the thermal stability enhancement. The reason for

this is that single amino acid substitutions can cause much easier

an increase of the number of thermodynamically stabilizing

interactions, such as hydrogen bonds and hydrophobic interac-

tions, than for example a shift of the optimal stability temperature

Ts towards higher T , for which more complex amino acid

substitutions are in general necessary. This result, which has

already been obtained on the basis of experimental data [31,53], is

here derived purely on the basis of our predictions.

The other two mechanisms for enhancing the thermostability,

discussed in the previous sections, turn out to be important too

even though they show a lower correlation with the melting

temperature. In particular, the shift of the maximum stability

temperature Ts has a linear correlation coefficient of about 0.5

with Tm and the change in heat capacity DCP an anticorrelation

coefficient of about 0.3, when excluding the two worst predicted

families.

These predicted values can be compared with experimental data for

the few proteins for which the full stability curve has been determined

and thus similar correlation coefficients between Tm and Ts, and

between Tm and DCP can be computed (see for example [53]).

Notably, the experimental correlation coefficients rTm ,DG and rTm,DCP

are equal to 0.6 and 0.2, respectively, and are thus quite close to the

correlation coefficient predicted by our method. The shift of Ts

towards higher T appears thus to be a preferred method for enhancing

the thermostability compared to the change in DCP. In other words,

the reduction of the conformational entropy in the denaturated state or

its increase in the native state seems easier to achieve compared to a

change of DCP.

Discussion

The full understanding of protein thermal stability remains a

challenge in protein science despite the large amount of research

on this topic the last decades. As a matter of fact, it is globally more

intricate to understand than the thermodynamic stability. Indeed,

besides the problem due to the marginal stabilization achieved by

a delicate balance of opposite forces, it poses the additional – and

not the least – issue of the temperature dependence of the amino

acid interactions, which is barely known.

We have designed a method based on (melting)temperature-

dependent statistical potentials to deepen the thermal stability

investigation. The basic idea behind this approach is simple and

consists in constructing different datasets in which only proteins

with given thermal properties were considered. Mean force

potentials were extracted from sequence-structure frequencies

computed from these datasets, following the standard statistical

potential formalism, and hence reflect their thermal characteris-

tics. They actually represent the amino acid interactions at some

temperature that is related to the average Tm of the proteins in the

dataset. The folding free energy of a given protein at a given

temperature was estimated on the basis of these Tm -dependent

potentials. More precisely, three different datasets with different

average �TTm ’s were constructed, from which three folding free

energies at these �TTm ’s were computed for each protein. The

identification of the protein’s full stability curve was accomplished

by the identification of the modified Gibbs-Helmholtz equation (2)

that best fits these three points.

Before concluding with future perspectives, let us summarize

briefly the performance of the method and the main errors that

affect it. The standard deviations between the experimental and

computed quantities are equal, in cross-validation, to 13
0
C, 1.3

kcal=(mol
0
C) and 4.0 kcal=mol for the melting temperature, the

DCP and the folding free energy at 25
0
C, respectively. These

results can be considered as rather good especially if one considers

the three main sources of error that we have encountered. The

first source is certainly the lack of data. As already stressed in the

main text and in [15], we do not have enough experimentally

resolved proteins with known Tm to build larger datasets and thus

more accurate potentials, even though we introduced some tricks

to partly overcome this problem. This issue will certainly be

improved when more experimental data will be available. The

second source of error is related to the presence of ligands in some

of the analyzed families, which contribute strongly to the protein

stabilization but which we unfortunately cannot take into account

with our statistical potentials. Finally, the measurement errors are

sometimes quite significant, especially due to the fact that the

experiments are not performed exactly in the same environmental

conditions. These different issues taken together significantly

increase the error on the predictions.

Table 1. Standard deviation (s) and linear correlation coefficient (r) between the experimental and predicted thermal and
thermodynamic parameters.

Parameter s s? r r ? N (N ?) P-value

Tm 13.4
0

C 10.2
0

C 0.69 0.76 45 (40) 10{7

DCP 1.3 kcal/(mol
0

C) 0.7 kcal/(mol
0

C) 0.92 0.41 17 (15) 10{7

DG25 4.1 kcal/(mol) 2.6 kcal/(mol) 0.42 0.69 16 (14) 0.05

In the computation of s? and r? , the 10% worst predicted proteins are excluded. N is the number of proteins for which experimental data are available and the results
are computed.
doi:10.1371/journal.pcbi.1003689.t001
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A noteworthy result that can be deduced from our predictive

approach is that the preferred mechanism for enhancing the

thermostability is an increase of the thermodynamic stability, in

agreement with previous results based on experimental data [31].

Unfortunately, this does not allow us to construct an accurate

predictor for the melting temperature on the basis of the

thermodynamic stability only [15], since the other thermostabiliz-

ing mechanisms turned out to be important too – although to a

lesser extent. Taking these other mechanisms into consideration as

we did in this paper led us to a prediction method with much

better performances, which we moreover hope to further improve

in the near future. Furthermore, the analysis of the thermal

stability optimization strategies has also shown that it is not

possible to determine a unique molecular cause or a thermody-

namic effect that explains the complexity of the thermal resistance

Figure 4. Comparison between: (a) the experimental and predicted melting temperatures (in
0
C), (b) the experimental and

computed DCP (in kcal/(mol
0
C)) and (c) the experimental and the predicted DG25 (in kcal/mol), for the set of 45 proteins belonging

to the 11 homologous families. The straight lines correspond to the bisector of the first quadrant (y = x).
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modulation for the different families, since different strategies are

used in combination.

We would like to underline the main strength of our approach

that is the possibility to predict at once all the thermodynamic

parameters that characterize the protein folding transition. We can

indeed predict with our method both the thermodynamic and

thermal stabilities in a large temperature range. As far as we know

this is the only method that is able to do that, and moreover it does

so in a fast and relatively accurate way. Neither the standard

statistical potential formalism nor the molecular dynamics

simulations or the coarse-grained computational approaches to

protein folding are able to consider explicitly the temperature

dependence of the amino acid interactions and give predictions for

both kinds of stabilities.

However, some points of the present analysis can still be

improved, and we plan to do so in a future investigation. In

particular, we will try to supply to the lack of data by enlarging the

dataset of proteins whose thermal properties have been measured

experimentally and subdivide it in more than three subsets so as to

be able to get more reliable fits of the stability curves.

Two different ways can be explored to enlarge the datasets. The

first consists in adding proteins with known structure but unknown

melting temperature. To decide to which of the thermal ensembles

these additional proteins belong, one could estimate their Tm from

the method presented in this paper or from the environmental

temperature of their host organism. The other strategy consists in

the use of proteins with known melting temperature, whose

structures are unknown but could be obtained by comparative

modeling techniques. This approach is motivated by earlier

analyses that tested modeled structures for the prediction of

thermodynamic stability changes upon point mutations on the

basis of standard statistical potentials [54]. Indeed, predictions

applied on modeled structures have been shown to undergo a

surprisingly small accuracy loss compared to experimental

structures owing to the coarse-grained structural representation

on which the potentials are based. This finding lets foresee an

increase of the overall accuracy of our Tm prediction method due

to the enrichment of the datasets with modeled structures. But it

also foreshadows the applicability of the resulting prediction

method to low-resolution or modeled structures, with good

performances. This undoubtedly increases the potentialities and

interest of our approach.

We expect the enlargement of the datasets to play an important

role in the reduction of the prediction errors, since it will allow us

to define more than three datasets and thus to compute the folding

free energies of a target protein at more than three different

temperatures. This should definitely reduce the consequence of the

errors on the predicted points in the (DG,T) -plane when fitting

the stability curve through those points. Moreover, larger datasets

will allow us to consider more types of statistical potentials (for

example potentials that depend simultaneously on amino acid

types, interresidue distances and backbone torsion angle domains

[52]), which are now forbidden for statistical significance reasons.

Note finally that the current version of our prediction method is

family-dependent, as the datasets vary slightly from one family to

another and the optimization of some parameters is performed

inside the families (see Methods section). We would like to stress

that this procedure does in no way bias the predictions. All our

tests are indeed performed in pure cross validation. Rather, this

procedure improves the predictions by exploiting relevant

information that characterizes the homologous families. Another

promising improvement of our prediction method, which would

make it applicable to any target protein of known structure,

consists in extending the current version without too much

accuracy loss to the more general case that ignores any reference

to homologous proteins.

In conclusion, although there is still room for improvements and

generalizations, our approach has opened a novel and original way

for designing fast and accurate predictors of protein stability at

different temperatures.
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