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Abstract

We describe an innovative experimental and computational approach to control the expression of a protein in a population
of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to
the cells by comparing the actual protein expression level in the cell population with the desired expression level. We then
built an automated platform based on a microfluidic device, a time-lapse microscopy apparatus, and a set of motorized
syringes, all controlled by a computer. We tested the platform to force yeast cells to express a desired fixed, or time-varying,
amount of a reporter protein over thousands of minutes. The computer automatically switched the type of sugar
administered to the cells, its concentration and its duration, according to the control algorithm. Our approach can be used
to control expression of any protein, fused to a fluorescent reporter, provided that an external molecule known to
(indirectly) affect its promoter activity is available.
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Introduction

A crucial feature of biological systems is their ability to maintain

homeostasis in spite of ever-changing environmental and intracel-

lular conditions. In man-made systems, this ability can be

engineered in devices ranging from the simple thermostat to the

complex autopilot of a modern plane using ‘‘controllers’’, which

operate via a simple ‘‘negative feedback’’ mechanism (Figure 1):

the quantity to be controlled (y) is measured (ym) via a sensor

(whose dynamics are described by F ), then subtracted from the

desired reference value (r) (i.e. negative feedback), and the

resulting error (e) is used by the controller to compute the

‘‘control action’’ (u) to be implemented (or actuated) on the

physical system (e.g. switching on or off the heating, changing the

angular position of the rudder).

Control engineering has been applied as a powerful theoretical

framework to elucidate the underlying principles driving gene

networks [1–4], to predict their dynamics and their robustness to

noise [5,6], and to theoretically demonstrate the possibility of

steering gene network dynamics [7–9].

More recently, other groups have reported experimental

applications of control engineering to drive gene expression from

artificial inducible promoters by means of external stimuli (e.g.

light or osmotic pressure) either in single cells, or across a cell

population [10–12]. Toettcher and colleagues documented a

successful application of closed-loop optogenetic control of

membrane recruitment system in mammalian cells (characteristic

time of process in the order of seconds) [11]. Milias-Argeitis and

colleagues showed how population level control of a light-

switchable gene system (characteristic time in the order of minutes)

can be achieved by manually sampling a liquid culture of S.

cerevisiae, then estimating target protein concentration via flow

cytometry and control this quantity via Model Predictive Control

and Kalman Filtering [12]. While this manuscript was under

review, Uhlendorf and colleagues reported a successful attempt to

drive gene expression from the Hog1 promoter in yeast using as

control input changes in osmolarity [13]. These authors coupled

an external feedback strategy to microscopy and microfluidics to

achieve fully automated external control of the reporter fluores-

cent protein up to 15 hrs.

Here we present, for the first time, the development and

application of an automatic control system to regulate at will the

level of expression of a protein from the GAL1 endogenous

promoter in an exponentially growing population of yeast cells.

We also demonstrated the ability of the control system to regulate

at will protein expression from a complex synthetic transcriptional
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network. We controlled protein expression level by changing in

real-time the concentration of a set of inducer molecules, known to

modulate its expression (i.e. galactose and glucose).

We first demonstrated the ability of our control platform to

regulate the level of expression of a reporter protein fused to the

Gal1p protein from the endogenous GAL1 promoter (Figure 2a).

We then applied the same control platform to regulate the level of

expression in a complex synthetic gene network (Figure 2b), where

the inducer molecule (galactose) directly activates the transcription

factor, Gal4p, which in turns drives the expression of another

transcription factor (Swi5p), which finally binds the promoter

driving the expression of the reporter protein (Cbf1p-Gfp). Due to

these multiple transcriptional/translational steps (Gal4p ? Swi5p

? Cbf1-Gfp), the system is much slower compared to simple

promoter-reporter systems, thus control becomes much more

challenging due to the delay introduced by this indirect regulation.

Our approach is applicable to a large class of gene networks to

control expression of a protein of interest from an endogenous

promoter, provided that: (a) an external molecule known to affect

(even indirectly) the promoter activity is available; (b) a fluorescent

reporter is fused to the protein; and (c) either a mathematical

model of the gene network is available or dynamical properties of

the bioprocess are compatible with a PI-PWM control configura-

tion (see ‘‘Control Objective and Control Strategy’’ and Figures

S7–S8).

Materials and Methods

Microfluidic master mold and devices fabrication
The microfluidic device presented in [14] has been used to trap

cells and perform experiments. To this aim, a master mold has

been produced using a 400 (10:16 cm) silicon wafer as substrate

(Silicon Valley Microelectronics, US). In order to develop this

device, we used multilayer soft-lithography with SU-8 (Micro-

chem, US) as photoresist. Once the mold was ready we used

(Tridecafluoro-1,1,2,2-Tetrahydrooctyl)-1-Trichlorosilane (Sigma-

Aldrich, US) to prevent polymer from sticking to microstructures;

at this point replica molding allowed us to obtain functional

devices (see Supplementary Information).

Experimental setup
The experimental setup is the same for both strains of cells used

in this study (yGIL337 and IC18). Batch cultures were cultured for

48 hrs in Synthetic Complete + Galactose (2%) + Raffinose (2%)

and repeatedly diluted. On the day designated for the actual

control experiment, syringes featuring both Synthetic Complete +
Glucose (2%) and Synthetic Complete + Galactose (2%) +
Raffinose (2%) were connected to the device; syringes filled with

ddH2O were attached to sink ports. Media and sugars filled

syringes were attached to a computer controlled linear guide; the

initial position for the syringes was 88:9 cm above the level of the

device, while the ddH2O syringes were set at 15:2 cm. Hydrostatic

pressure drove the flow of media in the device. We then loaded

cells into the microfluidic device. Visual inspection at 20X and

40X magnifications allowed to exclude the presence of air bubles

in the channels. At this point, the imaging field was set on the cell

trap (see [14] for references) and the control algorithm was started.

In depth details concerning this procedure are reported in

Supplementary Information.

Microscopy and image processing
Microscopy image acquisition has been carried out by with NIS

Elements v. 3.22 software. Phase contrast and fluorescent images

were acquired at intervals of 5 min. The control algorithm was

synchronized with the acquisition process by running a polling

routine that checked for the presence of new files in a predefined

folder. Once a new set of images was found, the control algorithm

run an image processing sub-routine meant to segment the phase

contrast image (see Supplementary Information for more details),

locate the cells and obtain a binary mask that was used to select

only pixels belonging to cells in the field. This mask was employed

in the calculation of the population average fluorescence as

reported in Supplementary Information. Our control scheme then

used this value as a readout of the y signal and then proceeded to

the computation of the input action u.

Results

Choice of biological systems to control
Gal1 promoter in S. cerevisiae. In order to test our control

platform on an endogenous promoter in S. cerevisiae, we selected

Figure 1. Feedback control block scheme. The controller consists
of a Proportional-Integral (PI) block followed by a Pulse Width
Modulation (PWM) block encoding of the control input ûu. The PWM
transforms the continuous control action ûu into a train of rectangular
pulses u, which represents either Galactose (high) or Glucose (low). The
alternating series of glucose and galactose pulses is applied to the cell
population to be controlled (Plant), whose output y (the controlled
variable) is filtered (ym) by a low-pass filter (F ) before being fed back to
the controller. The difference between ym and its desired reference level
r, namely the error e, is used by the PI controller to compute the control
input to be supplied to the system to minimize the error signal e.
doi:10.1371/journal.pcbi.1003625.g001

Author Summary

A crucial feature of biological systems is their ability to
maintain homeostasis in spite of ever-changing conditions.
In engineering, this ability can be embedded in devices
ranging from the thermostat to the autopilot of a modern
plane using control systems which operate via a negative
feedback mechanism: the quantity to be controlled is
measured then subtracted from the desired reference
value, and the resulting error is used to compute the
control action to be implemented on the physical system
(e.g. switching on or off the heating, changing the position
of the rudder). Here, we developed and applied a method
to regulate the expression level of a protein, in a growing
population of cells over several generations, in a com-
pletely automatic fashion. We designed and implemented
an integrated platform comprising a microfluidic device, a
time-lapse microscopy apparatus, and a set of motorized
syringes, all controlled by a computer. We tested the
platform to force yeast cells to express a desired time-
varying amount of a gene in yeast. Our method can be
applied to control a protein of interest in vivo allowing to
probe the function of biological systems in unprecedented
ways.

In-Vivo Control of Gene Networks
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the GAL1 promoter driving expression of the Gal1p protein. In

order to follow in real-time the expression level of Gal1p, we used

a strain of yeast cells (yGIL337, Gal1-GFP::KanMX, Gal10-

mCherry::NatMX) constructed by Lang et al. [15] in which the

Gal1 protein, expressed by the GAL1 promoter, was fused to a

green fluorescent protein (Gfp), as shown in [15] (Figure 2a).

The actvity of the GAL1 promoter is governed by the presence

of galactose in the cells’ growing medium. This sugar is interpreted

as a ‘‘switch on’’ signal for the expression of the GAL1 gene; when

yeasts are fed with glucose the production of Gal1 protein is

repressed [16]. Yeast cells will first consume all the available

glucose in the medium and then switch to galactose. Hence, the

control input can either be glucose (switch off signal) or galactose

(switch on signal), but not an intermediate concentration of the

two, because cells will not respond to galactose when glucose is

present.

IRMA synthetic network in S. cerevisiae. IRMA (In-vivo

Reverse engineering Method Assessment) is a synthetic network

we previously constructed in yeast S. cerevisiae and shown in

Figure 2 b [17]. It consists of 5 genes regulating each other via

positive and negative feedback loops, and represents one of the

most complex synthetic networks built so far [18]. The Cbf1-Gfp

fusion protein is expressed from the HO promoter controlled by

two transcription factors: a cell cycle-independent Swi5p mutant

(swi5AAA) and Ash1p. The network comprises a transcriptional

positive feedback loop from CBF1 back to itself, via GAL4 and

SWI5; and a transcriptional negative feedback loop via ASH1. A

further regulation is present between GAL80, GAL4 and SWI5,

whose expression is driven by the GAL10 promoter, bound by

GAL4p. The network can be ‘‘switched on’’ by administering

Galactose (GAL) in the medium, which allows SWI5 to be

transcribed by the GAL10 promoter, or ‘‘switched off’’ by

Glucose.

Of note, CBF1-GFP expression is delayed with respect to the

other genes [17]. This delay is due to the sequential recruitment of

chromatin-modifying complexes at the HO promoter, which follow

binding of Swi5p and other transcription factors [19], and it is

estimated in the range of 100 min [17].

Galactose and Glucose can be used to control the network’s

dynamics, which, in turn, can be tracked by estimating the

fluorescence level of Cbf1-Gfp, one of IRMA’s proteins. By taking

full advantage of the detailed description of the biomolecular

processes provided in [17,19] we derived a Delay Differential

Equations based model (described in Supplementary Information)

that was able to capture, to a reasonable extent, the dynamics of

the gene network [17].

Interestingly, IRMA dynamical properties are commonly

observed in endogenous gene regulatory networks and pathways.

IRMA contains two of the most common regulatory motifs found

in eukaryotic cells, i.e. positive and negative transcriptional

feedbacks loops [20]. Moreover, a protein-protein regulatory

interaction is also present, which is much faster than transcrip-

tional regulatory interactions, thus adding concurrent dynamics at

different time-scales typical of endogenous regulatory networks.

These properties pose two main theoretical and practical

challenges: (a) devising a control algorithm for hybrid dynamical

system switching between two highly non-linear/time-delayed

subsystems; (b) developing a technolgical platform allowing to

probe and control the transcriptional/translational activity of a

cell. IRMA is therefore an ideal benchmark for testing our in-vivo

control strategy on a complex gene network [17,21].

Control objective and control strategy
GAL1 promoter. The control objective consists in driving a

growing population of yeast cells to produce a desired amount of

the Gal1-Gfp fusion protein, over thousands of minutes, by

Figure 2. Biological systems. (a): The Gfp protein was integrated downstream of the endogenous GAL1 promoter (yeast strain courtesy of Prof.
Botstein lab). (b): IRMA is composed of 5 genes encoding for transcription factors modulating the expression of each other. Both the transcription
factors in the network and the promoters driving their expression are shown (adapted from [17]). Solid lines model transcriptional interactions, while
dashed lines are meant to represent protein-protein interactions.
doi:10.1371/journal.pcbi.1003625.g002

In-Vivo Control of Gene Networks
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automatically switching the type of sugar administered to the cell,

its concentration and its duration.

In order to achieve the control objective, we designed a simple

control law to automatically regulate the administration of

Galactose/Glucose to the cells (input u) as a function of the

amount of fluorescent protein produced by the yeast population

(output y), following the scheme in Figure 3.

The input acts nonlinearly on the dynamics of the network,

since, as soon as the cells sense Glucose in the medium, they stop

responding to Galactose. Therefore, the control input is restricted

to be binary, i.e. either Galactose (u~1) or Glucose (u~0). The

system output y is the level of the green fluorescent protein fused to

Gal1p (Gal1-Gfp), which can be used as a proxy of the protein

concentration [22].

Given the uncertain nature of biological systems and the

difficulty, or impossibility, in deriving precise quantitative math-

ematical models, we decided to design a simple yet effective classic

control scheme, which does not require detailed knowledge of the

system to be controlled.

Proportional-Integral (PI) controllers use the error e in Figure 1

to compute the control action, which is proportional to the present

error (P) and to the past evolution of the error (I) (Supplementary

Information). PI controllers are widely used in industry, and have

been shown to be effective also in controlling protein localization

and signal transduction activity in single cells [11].

Since the control input u is binary, a further step is needed to

convert the output of the PI block (which is proportional to the

error and its integral) to a binary signal. It is impossible, at this

stage, to avoid the analogy with the problems faced in the design of

feedback control strategies for power electronic circuits [23]. Here,

switches and SCRs (silicon controlled rectifiers) can only be turned

on or off, some output is typically measured or estimated and,

particularly in industrial applications, compensating noise and

external disturbances is of utmost importance. The simplest and

most widely used technique in this context is PWM (Pulse Width

Modulation) control; this is also the encoding strategy we

implemented in the control scheme to control the gene network

in the yeast population (Figure 1 and Figure S2).

The idea behind PWM is to encode a continuous time-varying

signal as a train of rectangular pulses, whose duration is

proportional to the amplitude of the encoded signal. In its simplest

implementation, which we used here, a periodic sawtooth wave

(with period equal to 10 min) is compared with the output of the

PI block in order to modulate the width of each pulse [24].

Figure 3. Technological platform enabling in-vivo control experiments. In-vivo control experiment were carried out via a microfludics-based
approach, featuring a computer implementation of the control algorithm and an inverted microscope to sense the fluorescence signal. The computer
uses the images taken by the automated microscopy unit to quantify cells fluorescence (ym) and compare it with the desired amount r. Once the
control algorithm has computed the control action u on the basis of the result of the previous comparison (e), it varies the height of two syringes
filled with either Galactose or Glucose. Hydrostatic pressure generated by the relative difference in the heights of the two syringes drives the flow in
the microfluidic device and determines the type of sugar cells will sense within the chamber. Images are sampled at intervals of 5 minutes and used
by the control algorithm to close the control loop.
doi:10.1371/journal.pcbi.1003625.g003
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We used a simple mathematical description of the GAL1

promoter to tune the gains of the PI regulator and the parameters

of the PWM module (Supplementary Information).

One of the most difficult aspects of controlling a biological

system, which lies at the core of our work, is to devise an

experimental platform enabling such a strategy to be applied to

living cells, as described in the next section.

IRMA network. The control objective is the same as for the

Gal1 promoter previously described, i.e. controlling the level of

expression of the reporter protein (Cbf1-Gfp). However, in the

IRMA network, unlike the GAL1 promoter system, the CBF1-GFP

gene is not under the direct control of the inducer molecule (i.e.

glucose or galactose). Indeed, as shown in Figure 2b, galactose

activates Gal4p, which then drives the expression of Swi5p that

ultimately binds the Gal10 promoter driving Cbf1p-GFP expres-

sion. This adds a considerable delay in the Cbf1-Gfp activation

following galactose treatment [17].

IRMA can be described as a single input-single output

nonlinear time-delayed dynamical system, where the input u
models the presence/absence of Galactose and the output y is the

concentration of one of its proteins, namely Cbf1-GFP.

The control algorithm designed for this system, as we did for the

Gal1 promoter, is based on a PI regulator whose output is encoded

in a switching signal via a PWM module (see Supplementary

Informations for details).

However, in order to compensate for the estimated delay of

100 min in the Gal1-Gfp gene transcription, which may introduce

unwanted oscillations in the controlled variable (i.e. Gfp fluores-

cence level), we designed and implemented a version of the

controller including a predictor inspired by the classic scheme

proposed by Otto Smith [25].

In particular, IRMA’s mathematical model [17] was used to

predict, via simulation, the network behavior by removing the

delay from the model equation. This simulated response is then

Figure 4. In-silico control of IRMA. The PI-PWM-Predictor control scheme has been tested in-silico, using the non-linear IRMA model as a proxy, in
order to evaluate its performances before implementing it in in-vivo experiments. In this experiment, the CBF1-GFP protein (green line) was
controlled so as to follow a triangular reference signal (blue line). The optimal input signal u computed by the control algorithm is reported in red: it is
a square wave encoding Galactose (higher state) and Glucose (lower state). The input binary variable has been rescaled in this plot for the sake of
readability.
doi:10.1371/journal.pcbi.1003625.g004
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used in real-time by the controller to compute the error

(Supplementary Information).

Numerical simulations show that this predictor block, however,

is not strictly necessary for control; specifically, when the delay is

short compared to the desired dynamics of the reference signal, the

predictor can be completely removed from the control scheme

(Supplementary Information and Figures S7–S8).

The PI-PWM control law (with and without the predictor) was

designed and simulated in-silico, in order to evaluate its perfor-

mance before implementation, and to empirically select the control

parameters. Two different experiments were used to assess the

performance of the controller: (1) set-point regulation, where cells are

forced to produce a fixed desired amount of Cbf1-Gfp protein; (2)

signal tracking, where yeasts are required to synthesize a target time-

varying amount of the controlled protein. In-silico results of both

types of experiments are presented in Figure 4, Figures S5–S6–S7–

S8 and in Supplementary Information.

In-silico results show that both set point and tracking experi-

ments can in principle be successfully carried out by the selected

control strategy.

Implementation of the PI-PWM controller for in-vivo
control of protein expression

For the in-vivo control implementation, we designed and

implemented an integrated platform based on a microfluidic

device, a time-lapse microscopy apparatus, and a set of actuated

syringes, all controlled by a computer, as depicted in Figure 3.

At the core of this platform lies a microfluidic chip [14]. The

chip has a micro-chamber (height: 3:5mm) which ‘‘traps’’ yeasts,

which can only grow in a monolayer, thus making their automated

image analysis easier. Once loaded in the device, yeasts can be

exposed to any combination of two inducer compounds by simply

modulating the difference in hydrostatic pressures at the two inlets,

thanks to the Dial-a-Wave system [14] (Supplementary Informa-

tion). This can be easily achieved by varying the vertical position of

syringes filled with sugar-supplemented media using motorized

linear rails. A Finite State Automaton (FSA), implementing the

control logic, runs on a computer and, at intervals of 5 minutes,

analyses the images automatically captured by the microscope

hosting the microfluidic chip. A custom image processing

algorithm locates the yeast cells in phase contrast and quantifies

the population average Gfp intensity (Supplementary Information

and Figure S9). This information is then used by the controller to

compute the relative duration of Galactose/Glucose pulses, which

must be applied to meet the control objective.

Experimental results
GAL1 promoter. The control experiment consisted in a set-

point control task, i.e. forcing yeast cells to reach and maintain a

constant level of fluorescence equal to 50% of their maximum

fluorescence level when grown in galactose-rich medium. Specif-

ically, after having grown yeast cells overnight in galactose, cells

were placed in the microfludics device, part of the control

platform, for a calibration phase of 180 min during which cells

were kept in galactose to estimate the average maximum Gfp

fluorescence level expressed by the cell population. The desired

value was then set to 50% of the estimated maximum fluorescence

value.

As shown in Figure 5 the control action works effectively in

keeping the output, namely the measured fluorescence, close to the

Figure 5. In-vivo set point control experiments on the GAL1 promoter. (A–D) Four in-vivo set point control experiments were performed on
the GAL1 promoter. The desired (yref in blue) and experimentally quantified GFP fluorescence (y in green) in the cell population are shown for the
whole duration of the experiments; the control action starts at time t~140 min and lasts for 2000 min. The fluctuations in fluorescence during the
180 min calibration phase are due to stress response after loading cells in the microfludics device. The input signal u, computed in real-time by the
control algorithm, is shown in red: a high signal corresponds to galactose-rich growth medium, a low signal to glucose growth medium. (Insets)
Images taken during the experiments show the growing yeast populations at the beginning, at the half and at the end of each experiment.
doi:10.1371/journal.pcbi.1003625.g005
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desired set-point for 2000 min. Despite the increasing number of

cells and the cell-to-cell variability intrinsic to gene expression, the

control error remained bounded for the whole experiment (Figure

S10, S11, S12, S13 and S14 of Supplementary Information).

To assess the effectiveness of the feedback control strategy we

performed two different types of ‘‘negative control’’ experiments:

(1) an additional set-point control experiment, as described before,

but with the difference that as soon as the Gfp reached the desired

set-point value (i.e. 50% of the maximum fluorescence) the control

algorithm was stopped and the input was switched randomly

between galactose and glucose (Supplementary Information); (2)

yeast cells were fed for 2000 min only with galactose (sustained

‘‘ON’’ input).

The results of the negative control experiments are shown in

Figure 6. It can be appreciated that, as expected, when cells were

kept in constant galactose (Figure 6) the measured GFP fluctuated

and diverged from the initial value; whereas, when a random input

was applied (Figure 6) the output of the system diverged from the

desired value, responding to the series of galactose/glucose pulses

provided to cells.

These experiments convincingly demonstrate the ability of our

control platform to achieve and maintain a desired level of

fluorescence by steering gene expression dynamics across the yeast

cell population.

IRMA network. In order to test the control scheme in a more

complex setting, we performed a set-point control experiment in

the IRMA network, where the cell population was required to

reach and maintain a fluorescence level equal to 75% of its

maximum value in Galactose over a time interval of 2000 min
(Figure 7, in Figure S15 and Video S2).

In this experiment, we adopted a simple PI-PWM control, as in

the case of the Gal1 promoter (Supplementary Information). The

experiment started with a short calibration phase of 180 min in

Galactose to estimate the maximum Cbf1-Gfp fluorescence level

produced by the cell population.

As shown in Figure 7 and in Figure S15 the desired fluorescence

level was successfully achieved and maintained for over 24 hours,

the control error did not diverge and remained bounded around

zero. The cell-to-cell variability, estimated using the CV, did not

change appreciably throughout the experiment, and was found in

the expected range [26], despite the increase in the number of cells

(estimated from 25 to 120 cells; Figure S16 and Video S2). As

expected, however, due to the more complex network, the

fluctuations around the set-point are more evident. Indeed the

Normalised Root Mean Squared Error (NRMSE), reported in

Figure S15 is greater in this case when compared to the Gal1

promoter control experiment in Figure S10.

For comparison in Figure S17 and S18, we also reported two

experiment without control input, showing that without active control

protein expression fluctuates during the course of the experiment.

In order to test the PI-PWM-predictor control scheme, we set

up a more challenging signal tracking task, where the Cbf1-Gfp

level of the cell population was required to track a triangular wave

over a time interval of 2000 min corresponding to more than 15
generations of a yeast cell (approx. cell cycle of 90 min), as shown

in Figure 8 (blue line). At the peak of the triangular wave, cells

were required to express a fluorescence level equal to 85% of the

maximum level they could produce.

To estimate the minimum and maximum fluorescence level,

which can vary according to the experimental conditions, the

Figure 6. In-vivo negative control experiments on the GAL1 promoter. (Top panel) the three green signals (ync1 , ync2 and ync3) represent the
measured GFP fluorescence in the cell population for a constant concentration of galactose. The desired (yref in blue) and experimentally quantified
GFP fluorescence (yrandominput in light green) for the whole duration of the random input negative control experiments are also shown. For this
experiments, the control action starts at time t~0 and it is stopped at time t~140 min as soon as the GFP reaches the desired set-point (arrow), from
this time instant onwards, the input randomly switched between galactose and glucose, as described in the Supplementary Information. (Bottom
panel) the dark red line represents the constant concentration of galactose (2%) provided to cells corresponding to the experiments ync1 , ync2 and
ync3 ; the light red series of pulses, corresponding to the experiment yrandominput, represents the closed loop control input calculated by the control
algorithm starting from time t~0 min up to time t~140 min, as indicated by arrow; from this time onwards, the input randomly switched between
glucose and galactose (Supplementary Information).
doi:10.1371/journal.pcbi.1003625.g006
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control experiment started with an initial calibration phase, where

the network was switched off by administering Galactose

(Supplementary Information and Figures S24–S25).

The calibration phase was needed to establish the minimal (in

Glucose) and maximal (in Galactose) Cbf1-Gfp fluorescence level

produced by the cell population. This range was then used by the

control algorithm to calibrate the predictor block and to set the

desired level of fluorescence. The calibration phase lasted

600 min, (Galactose for 180 min and Glucose for 420 min).

(Supplementary Information and Figures S24–S25).

As shown in Figure 8, Figure S19 and Video S1, the proposed

strategy effectively accomplishes the goal of controlling protein

expression in a complex gene network across a population of yeast

cells, by means of automatic administration of inducer molecules.

Remarkably, the designed control scheme proves to be

sufficiently robust despite the large variation in the number of

cells over the experiment duration (estimated from 100 to 1200

cells; Figure S20) and despite the inevitable biological noise.

Biological noise is a well-known phenomenon that causes

genetically identical cells to respond differently to the same input

[26]. We quantified biological noise by estimating the standard

deviation and the Coefficient of Variation (CV~
s

m
) throughout

the experiment (Figures S19–S20); despite the number of cells

increasing of an order of magnitude during the experiment (102 to

103) the CV does not change considerably, and its level is well in

the expected range for living cells [26]. Hence the population of

cells is entrained by the control signal which keeps them from

deviating from the reference signal, as can be appreciated by

observing the time evolution of the control error (difference

between the average fluorescence value of the population and the

desired reference value) in Figure S21.

Of note, the results are even better than what expected from

simulations (Figure 4), in terms of the offset between the reference

signal and the actual fluorescence level. The improvement in the

experiments can be explained by considering the delay term

present in the mathematical model of IRMA used in the

simulations. Such delay models the time required for the activation

of the HO promoter driving expression of the CBF1 gene in the

network, that was quantified to be equal to 100 min [17]. The

improvement in the experiments is explained by observing that

real cells exhibit a much smaller delay than expected.

A possible explanation of this effect can be found in the epigenetic

control of the HO promoter; the PI controller keeps activating this

promoter indirectly via quickly alternating Galactose and Glucose,

thus preventing the promoter to be completely silenced via chromatin

remodeling, thus considerably reducing the transcriptional delay.

We also performed a second signal tracking experiment where

the cells, after a calibration phase, were forced to increase the

expression of Gfp at the 85% of the maximum value measured

during the calibration and then to follow a linearly decreasing

control reference for 1000 min (Figure 9).

Figure 7. In-vivo set point control experiment on IRMA. (Top panel) the desired (yref in blue) and experimentally quantified GFP (y in green) are
shown for the whole duration of the experiment; the control action starts at time t~0 min and lasts for 2000 min. The p-value estimates the
statistical significance of the control action in maintaining the desired set-point (Supplementary Material). (Bottom panel) the input signal u
computed by the control algorithm is shown in red. (Insets) Images taken during the experiment show the growing yeast population at the
beginning, at the half and at the end of the experiment.
doi:10.1371/journal.pcbi.1003625.g007
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Also in this case the control task was achieved, as shown

Figure 9. As before, the controller was able to keep the average of

the fluorescence close to the reference signal thus the control error

remained bounded for the entire experiment (Figure S22),

although the number of cells was exponentially increasing (Figure

S23).

These results confirm that our control platform can be applied

also to control protein expression in a complex gene network.

Discussion

The experimental results described here convincingly demon-

strate that the expression of a protein can be controlled in vivo in

real-time, using an inducer molecule acting directly or indirectly

on protein expression, by applying principles drawn from classical

control theory, and without requiring detailed quantitative

knowledge of the process to be controlled, at least in the case of

set-point regulation.

An experimental control platform, sharing some similarity with

our work, was presented as this manuscript was under review

[13]. Differently from our approach, the control scheme

proposed by the authors enabled regulation of a reporter protein

expression from the Hog1 promoter using osmotic pressure as a

control input. The authors implemented a model predictive

control scheme which relied on a pre-existing quantitative model

of the Hog1 promoter to be controlled, which may not always be

available when applying the scheme to a different promoter.

Since the authors, for their control scheme, exploited the

osmolarity pathway, which shows adaptation, they needed to

develop a model-based control approach to predict the system’s

behaviour.

One of the advantages of our control scheme is that it can use

as input any molecule and thus it may be easily transferred to

the control of any other endogenous promoter, or gene

network, whose dynamics can be elicited by external molecules

and for which a measurable estimate of the output is available.

Another useful feature is the use of a PI controller that requires

minimal knowledge of the model of the system to be controlled.

This generality, however, comes at a price: first, if the

biological system to be controlled exhibits adaptation, or strong

Figure 8. In-vivo signal tracking control experiment on IRMA. (Top panel) the desired (yref in blue) and experimentally quantified GFP (y in
green) are shown for the whole duration of the experiment (t~2000 min). (Bottom panel) the input signal u computed by the control algorithm is
shown in red. (Insets) Images taken during the experiment show the growing yeast population at the beginning, at the half and at the end of the
experiment.
doi:10.1371/journal.pcbi.1003625.g008
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non-linear behaviors such as hysteresis, the PI controller is

likely to fail, and a model-based control approach may be

required [13,27] (e.g. lack of controllability as investigated in

Liu et al. [28]); second, the need to construct a fusion protein

with a fluorescent reporter, may disrupt the physiological

function of the protein.

In addition to providing an innovative platform to control

protein expression in a completely automatic fashion, our results

show also that binary digital pulses of an inducer molecule can be

encoded and interpreted by the cell population to produce an

‘‘analog’’ response, i.e. a triangular wave of protein expression, or

constant level of the protein.

Digital-to-analog and analog-to-digital conversion are key

features of signaling pathways. Gradients of extracellular stimuli

are converted into an all-or-none responses by signaling pathways

[29]. These digital responses, in turn, are decoded by the cells to

generate analog time-varying transcriptional responses (digital-to-

analog conversion). Here we show that this core mechanism can

Figure 9. In-vivo signal tracking control experiment on IRMA. (Top panel) the desired (yref in blue) and experimentally quantified GFP (y in
green) are shown for the whole duration of the experiment (t~1000 min). (Bottom panel) the input signal u computed by the control algorithm is
shown in red. (Insets) Images taken during the experiment show the growing yeast population at the beginning, at the half and at the end of the
experiment.
doi:10.1371/journal.pcbi.1003625.g009
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be exploited by artificial control systems to modify at will gene and

protein expression.

In this context, we wish to emphasize that, while we focused on

a pulse width modulation scheme alternative strategies can indeed

be devised (e.g. Pulse Amplitude or Pulse Frequency Modulation).

The control quality obtained by our control scheme is

remarkably good in the case of the Gal1 endogenous promoter,

but it may seem unsatisfying in the case of the IRMA network

when compared to classic control engineering approaches applied

to engineering systems and devices. This is the first attempt to

control gene expression in a complex network using feedback

control in a noisy biological system. Indeed, the presence of cell-to-

cell variability is one of the key obstacles when implementing

control strategies for living systems. This is why here we aimed at

controlling the average fluorescence level of the cell population,

which is shown to converge towards the desired value. Moreover,

the control scheme keeps biological noise from increasing and at a

physiological level as estimated by the CV. Interestingly, in a

related work [13] reporting the result of a control strategy applied

to a simpler gene circuit (a single promoter), the observed cell-to-

cell variability is comparable to ours, demonstrating the inevita-

bility of biological noise, and the challenges laying ahead for

controlling gene expression in living cells.

The microfluidics-based control strategy we developed enables

control experiments using small volumes of reagents with minimal

perturbations to the cells. It can be easily implemented with

limited costs to fine tune the expression of a protein of interest

from an endogenous promoter with minimal intervention (i.e.

introduction of a fluorescent reporter gene).

We believe that experimental biologists will find new and clever

ways to apply our approach to study trafficking or signalling

pathways and the endogenous control mechanisms of a cell.

Indeed the ability to simply overexpress a protein has led to

innumerable new discoveries, and with our work we are providing

a new ability which could be beneficial to many.

Supporting Information

Figure S1 IRMA hybrid model. A hybrid model featuring

two distinct vector fields (F1 and F2) has been derived from the

model presented in [17]. As long as Glucose is administered (u~0)

F1 is activated, while the system switches to F2 as soon as

Galactose is added to the medium to reflect the inner dynamics of

the synthetic circuits to be controlled.

(TIF)

Figure S2 IRMA control scheme. The upper block scheme

represents the control algorithm. The lower block magnifies the

Predictor block referred to as Pred in the previous schematic.

The yref signal sets the desired output y for the controlled system

P. The prediction block (Pred ) uses the input u and output y
related to the actual plant P to compute an anticipated version

of the output obtained by simulating the response ŷy of

mathematical model of P in which t~0. This signal is

immediately used to assess the effectiveness of the control action

by feeding it back to the first comparator that computes the

error e made by the system. Moreover, the actual output y of the

plant, is compared with a delayed version of the ŷy signal (as

effect of the e{t block contribution) to account for discrepancies

between the predicted (via IRMA’s model M ) and real plant

behavior. A low-pass filter meant to suppress high-frequency

noise is applied to the resulting signal to obtain (ys) that is finally

fed back to the comparator that will subtract it from yref so as to

obtain the control error e.

(TIF)

Figure S3 Cohen-Coon approximation for IRMA. In order

to design a suitable PI controller we estimated three parameters,

namely H, m and d (as referenced in [30]) from the step response

profile of the IRMA nonlinear model in equation 1–5. The solid blue

line represents the response of our gene network (Cbf1p being the

output) to the addition of Galactose to the growth media at t~0 s
while the dashed blue line shows the same information for the time

delayed linear system identified with the method in [30].

(TIF)

Figure S4 Finite State Automaton implementing the
control algorithm in Figure S2. In the initial state, state 0, the

calibration is carried out as previously described. The system

cycles on this state until the initialization is completed and then

moves to state 1. At this point given the error e, the PI - PWM

block is simulated to compute the control input u. In state 2 the

model prediction is calculated given u; the input is then applied to

the physical system by means of hydrostatic pressure modulation

in step 3 (the correct amounts of Galactose/Raffinose and Glucose

are provided at the end of this step). In state 4 the delayed version

of computed output is calculated; during state 5, the presence of a

new image is verified, and the image processing algorithm is run in

order to obtain the system output measure. Given this it is possible

to calculate ys and the error e for the next control iteration. The

algorithm then moves to state 1 for a new control iteration to start.

(TIF)

Figure S5 In-silico prediction-based signal tracking
control of IRMA. The predictor-based algorithm is applied to

control the dynamical model of IRMA to a time varying reference

signal (yref , in blue); the computed control input (higher state

standing for Galactose and lower state meaning Glucose

providing) is represented in red (u). The good overlap between

the reference signal and the simulated Cbf1 time evolution (y)

provides evidence for the robustness of the designed control

scheme in two cases: (top panel) with no delay (t~0 min) and with

t~100 min (bottom panel).

(TIF)

Figure S6 In-silico prediction-based set point control of
IRMA. The predictor-based algorithm is applied to control the

dynamical model of IRMA to a constant reference signal (yref in

blue). The set point is calculated as the 80% of the maximum value

for the simulated Cbf1 time evolution evaluated until t~0min.

The control input (computed after time 0 where higher state

standing for Galactose and lower state meaning Glucose

providing) is represented in red (u). The simulation was performed

with the dynamical model without delay (top panel) or with a delay

t~100 min (bottom panel). In both cases, the control action is

able to guarantee good dynamical performances of the system,

indeed the simulated Cbf1 time evolution (y in green) tightly

matches the reference signal.

(TIF)

Figure S7 In-silico PI/PWM signal tracking control of
IRMA. The PI/PWM control algorithm is applied to control the

dynamical model of IRMA to a time varying reference signal (yref ,

in blue); the computed control input (high level: Galactose; low

level: Glucose) is shown in red (u); the Cbf1 time evolution is

shown in green (y). When the control is applied to the model

without the delay, the control output (y) follows the reference

signal (top panel); whereas the PI - PWM is not able to achieve the

control objective for the model with the delay (t~100 min)

(bottom panel).

(TIF)
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Figure S8 In-silico PI/PWM set point control of IRMA.
The PI/PWM control algorithm is applied to control the

dynamical model of IRMA to a constant reference signal

(yref inblue). The set point is equal to 80% of the maximum value

for the simulated Cbf1 time evolution evaluated until t~0min.

The control input, computed after time 0, is shown in red (u high

level: Galactose; low level: Glucose). The simulation was

performed with the dynamical model without delay (top panel)

or with a delay t~100 min (bottom panel). When the control is

applied to the model without delay, the control output (y) follows

the reference signal (top panel); on the contrary, the PI - PWM is

not able to achieve the control objective for the model with the

delay (t~100 min) (bottom panel).

(TIF)

Figure S9 Image processing. The algorithm applies Otsu

thresholding to binarize the grey scale phase contrast image (A).

Convex hulls (B) are then used to limit the application of the

Circular Hought Transform to find cells’ centers and edges (C).

(TIF)

Figure S10 In-vivo set point control experiment no. 1
for the GAL1 promoter - fluorescence standard devia-
tion. By using the off-line analysis described in the text, it is

possible to compute the standard deviation of the fluorescence for

each frame acquired during the control experiment. The desired

amount of protein (yref in blue), the quantified GFP (y green line)

and the standard deviation’s upper and lower bounds (thin green

lines) are shown; the control error (top pane in black) is computed

as the difference between the feedback signal and the control

reference. The input signal u computed by the control algorithm is

shown in red (bottom panel).

(TIF)

Figure S11 In-vivo set point control experiment no. 2
for the GAL1 promoter - fluorescence standard devia-
tion. By using the off-line analysis described in the text, it is

possible to compute the standard deviation of the fluorescence for

each frame acquired during the control experiment. The desired

amount of protein (yref in blue), the quantified GFP (y green line)

and the standard deviation’s upper and lower bounds (thin green

lines) are shown; the control error (top pane in black) is computed

as the difference between the feedback signal and the control

reference. The input signal u computed by the control algorithm is

shown in red (bottom panel).

(TIF)

Figure S12 In-vivo set point control experiment no. 3
for the GAL1 promoter - fluorescence standard devia-
tion. By using the off-line analysis described in the text, it is

possible to compute the standard deviation of the fluorescence for

each frame acquired during the control experiment. The desired

amount of protein (yref in blue), the quantified GFP (y green line)

and the standard deviation’s upper and lower bounds (thin green

lines) are shown; the control error (top pane in black) is computed

as the difference between the feedback signal and the control

reference. The input signal u computed by the control algorithm is

shown in red (bottom panel).

(TIF)

Figure S13 In-vivo set point control experiment no. 4
for the GAL1 promoter - fluorescence standard devia-
tion. By using the off-line analysis described in the text, it is

possible to compute the standard deviation of the fluorescence for

each frame acquired during the control experiment. The desired

amount of protein (yref in blue), the quantified GFP (y green line)

and the standard deviation’s upper and lower bounds (thin green

lines) are shown; the control error (top pane in black) is computed

as the difference between the feedback signal and the control

reference. The input signal u computed by the control algorithm is

shown in red (bottom panel).

(TIF)

Figure S14 In-vivo set point control experiments GAL1
promoter - cell count and coefficient of variation. (A-D)

For each of the experiments of Supplementary Figures S10, S11,

S12 and S13, the number of cells (top) and the coefficient of

variation (bottom) are shown.

(TIF)

Figure S15 In-vivo set point control experiment for the
IRMA network - fluorescence standard deviation. By

using the off-line analysis described in the text it is possible to

calculate the standard deviation of the fluorescence for each frame

acquired during the control. The desired amount of protein (yref

in blue), the quantified GFP (y green line), the standard deviation’s

upper and lower bounds (thin green lines) and the control error e
in black are shown; mean m, variance s and coefficient of variation

CV of the control error are also shown; the p-value was computed

as described in the Supplementary Information text (top panel).

The input signal u computed by the control algorithm is shown in

red (bottom panel).

(TIF)

Figure S16 In-vivo signal tracking control experiment
for the IRMA network - cell count and coefficient of
variation. For the experiment of Supplementary Figure S15, the

number of cell (top panel) and the coefficient of variation (bottom

panel) are shown.

(TIF)

Figure S17 Response to a sustained galactose input for
the IRMA network. Green line: fluorescence measured when

the cells are treated with galactose for the whole experiment; light

green line: fluorescence measured during the in-vivo set point

control experiment (Figure 7 - main text); black line: the control

reference of the set-point control experiment (Figure 7 - main text);

red line: the sustained galactose input provided to the cells

population; light red: the input calculated automatically by the

control algorithm and used to regulate the production of GFP to

the desired level in in-vivo set point control experiment (Figure 7 -

main text).

(TIF)

Figure S18 Response to a sustained galactose input for
the IRMA network. Green line: fluorescence measured when

the cells are treated with galactose for the whole experiment; blue

line: the control reference of the set-point control experiment

(Figure 7 - main text) (Top panel).(Bottom panel) red line: the

sustained galactose input administered to cells. The normalised

root mean square error (NRMSE) of the deviation between the

blue and the green signal has been reported to be equal to 0.33.

(TIF)

Figure S19 In-vivo signal tracking control experiment
for the IRMA network - fluorescence standard deviation.
By using the off-line analysis described in the text it is possible to

calculate the standard deviation of the fluorescence for each frame

acquired during the control. The desired amount of protein (yref

in blue), the quantified GFP (y green line) and its upper and lower

bound of the standard deviation (thin green lines) are plotted (top

panel). The input signal u computed by the control algorithm is

shown in red (bottom panel).

(TIF)
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Figure S20 In-vivo signal tracking control experiment
for the IRMA network - cell count and coefficient of
variation. For the experiment of Figure S19, the number of cell

(top panel) and the coefficient of variation (bottom panel) are

plotted.

(TIF)

Figure S21 Internal signals of the control experiment in
Fig. 8 (main text). Time evolution of the most relevant signals in

the control loop are shown. In particular the Galactose

concentration in the medium (u) provided to the cells has been

plotted in red, while the output of the delay-free model (ŷy) and its

delayed version (ŷyt) are shown in green and violet respectively.

The error signal e (black) calculated as the difference between yref

and ys (cyan) is also depicted; mean m, variance s and coefficient

of variation CV of the control error are also shown.

(TIF)

Figure S22 In-vivo signal tracking control experiment 2
for the IRMA network - fluorescence standard deviation.
By using the off-line analysis described in the text it is possible to

calculate the standard deviation of the fluorescence for each frame

acquired during the control. The desired amount of protein (yref

in blue), the quantified GFP (y green line) and its upper and lower

bound of the standard deviation (thin green lines) are plotted; the

control error calculated as the difference between the feedback

signal and the control reference is shown in black (top panel). The

input signal u computed by the control algorithm is shown in red

(bottom panel).

(TIF)

Figure S23 In-vivo signal tracking control experiment 2
for the IRMA network - cell count and coefficient of
variation. For the experiment of Figure S22, the number of cell

(top panel) and the coefficient of variation(bottom panel) are

plotted.

(TIF)

Figure S24 Calibration phase. The calibration data have

been reported for the experiment in Fig. 8. The simulated (blue)

and quantified (green) Gfp evolution have been used to relate

fluorescence data to model predictions (model units).

(TIF)

Figure S25 IRMA switch off experiment. Top panel: the

green signals represent the measured fluorescence during in-vivo

switch - off experiments, the blue signal is the result of in-silico

switch off experiment using the dynamical model of IRMA (all the

experimental signals are rescaled to the model range). Bottom

panel: the input used to perform the experiment; cells have been

fed for 180 minutes with galactose (ON signal, 1 for the

mathematical model) and for 420 minutes with glucose (OFF

signal, 0 for the mathematical model).

(TIF)

Text S1 Supplementary information text. All the addi-

tional details concerning materials and methods of the present

work are here reported.

(PDF)

Video S1 Movie of the experiment in Figure 8. (Top left

panel) Yeast cell fluorescence during the control experiment; (top

right panel) cell count; (bottom left panel) desired (yref in blue)

experimentally quantified GFP fluorescence (y in green) and input

(u in black) calculated by the control algorithm are shown for the

whole duration of the experiment; (bottom right panel) histogram

of the cell fluorescence distribution.

(MPG)

Video S2 Movie of the experiment in Figure 9. (Top left

panel) Yeast cell fluorescence during the control experiment; (top

right panel) cell count; (bottom left panel) desired (yref in blue)

experimentally quantified GFP fluorescence (y in green) and input

(u in black) calculated by the control algorithm are shown for the

whole duration of the experiment; (bottom right panel) histogram

of the cell fluorescence distribution.

(MPG)

Acknowledgments

We are thankful to Prof. Botstein for providing yeast strains.

Author Contributions

Conceived and designed the experiments: FM GF DdB MdB. Performed

the experiments: FM GF. Analyzed the data: FM GF. Contributed

reagents/materials/analysis tools: EO LDS FM GF. Wrote the paper: FM

GF DdB MdB. Technology transfer: MF JH.

References

1. Iglesias PA, Ingalls BP (2010) Control theory and systems biology. The MIT
Press.

2. Russo G, Di Bernardo M, Sontag ED (2010) Global entrainment of
transcriptional systems to periodic inputs. PLoS computational biology 6:

e1000739.

3. Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity
and insulation. Molecular systems biology 4: 161

4. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, et al. (2006) Module-

based analysis of robustness tradeoffs in the heat shock response system. PLoS
computational biology 2: e59.

5. El-Samad H, Khammash M (2006) Regulated degradation is a mechanism for
suppressing stochastic fluctuations in gene regulatory networks. Biophysical

journal 90: 3749–3761.

6. Murphy KF, Adams RM, Wang X, Balazsi G, Collins JJ (2010) Tuning and
controlling gene expression noise in synthetic gene networks. Nucleic acids

research 38: 2712–2726.

7. Apgar JF, Toettcher JE, Endy D, White FM, Tidor B (2008) Stimulus design for

model selection and validation in cell signaling. PLoS computational biology 4: e30.

8. Bagheri N, Stelling J, Doyle F (2007) Circadian phase entrainment via nonlinear
model predictive control. International Journal of Robust and Nonlinear

Control 17: 1555–1571.

9. Klavins E (2010) Proportional-integral control of stochastic gene regulatory
networks. In: Decision and Control (CDC), 2010 49th IEEE Conference on.

IEEE, pp. 2547–2553.

10. Uhlendorf J, Bottani S, Fages F, Hersen P, Batt G (2011) Towards real-time

control of gene expression: Controlling the hog signaling cascade. In: Pacific

Symposium on Biocomputing. World Scientific, pp. 338–349.

11. Toettcher JE, Gong D, Lim WA, Weiner OD (2011) Light-based feedback for
controlling intracellular signaling dynamics. Nature methods 8: 837–839.

12. Milias-Argeitis A, Summers S, Stewart-Ornstein J, Zuleta I, Pincus D, et al.
(2011) In silico feedback for in vivo regulation of a gene expression circuit.

Nature biotechnology 29: 1114–1116.

13. Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F, et al. (2012) Long-

term model predictive control of gene expression at the population and single-
cell levels. Proceedings of the National Academy of Sciences 109: 14271–14276.

14. Ferry M, Razinkov I, Hasty J (2011) Microfluidics for synthetic biology from
design to execution. Methods Enzymol 497: 295.

15. Lang GI, Botstein D (2011) A test of the coordinated expression hypothesis for
the origin and maintenance of the gal cluster in yeast. PloS one 6: e25290.

16. Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, et al. (2008)

Metabolic gene regulation in a dynamically changing environment. Nature 454:
1119–1122.

17. Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, et al. (2009) A yeast
synthetic network for in vivo assessment of reverse-engineering and modeling

approaches. Cell 137: 172.

18. Camacho DM, Collins JJ (2009) Systems biology strikes gold. Cell 137: 24–26.

19. Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription
and chromatin remodeling factors to a cell cycle–and developmentally regulated

promoter. Cell 97: 299–311.

20. Yosef N, Regev A (2011) Impulse control: temporal dynamics in gene

transcription. Cell 144: 886–896.

21. Menolascina F, di Bernardo M, di Bernardo D (2011) Analysis, design and

implementation of a novel scheme for in-vivo control of synthetic gene
regulatory networks. Automatica 47: 1265–1270.

In-Vivo Control of Gene Networks

PLOS Computational Biology | www.ploscompbiol.org 13 May 2014 | Volume 10 | Issue 5 | e1003625



22. Gordon A, Colman-Lerner A, Chin TE, Benjamin KR, Yu RC, et al. (2007)

Single-cell quantification of molecules and rates using open-source microscope-

based cytometry. Nature methods 4: 175–181.

23. Kassakian JG, Schlecht MF, Verghese GC (1991) Principles of power

electronics, volume 46. Addison-Wesley Reading, USA.

24. Banerjee S, Verghese GC (2001) Nonlinear phenomena in power electronics.

IEEE press New York.

25. Smith O (1957) Closed control of loops with dead time. Chem Eng Progress 57:

217–219.

26. Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and

biological noise: from microbes to mammals. Cell 144: 910–925.
27. Samoilov M, Arkin A, Ross J (2002) Signal processing by simple chemical

systems. The Journal of Physical Chemistry A 106: 10205–10221.

28. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks.
Nature 473: 167–173.

29. Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for
analyzing information flow in biological networks. Science signaling 5: re1.

30. Aström KJ, Murray RM (2010) Feedback systems: an introduction for scientists

and engineers. Princeton university press.

In-Vivo Control of Gene Networks

PLOS Computational Biology | www.ploscompbiol.org 14 May 2014 | Volume 10 | Issue 5 | e1003625


