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Abstract

In operant learning, behaviors are reinforced or inhibited in response to the consequences of similar actions taken in the
past. However, because in natural environments the ‘‘same’’ situation never recurs, it is essential for the learner to decide
what ‘‘similar’’ is so that he can generalize from experience in one state of the world to future actions in different states of
the world. The computational principles underlying this generalization are poorly understood, in particular because natural
environments are typically too complex to study quantitatively. In this paper we study the principles underlying
generalization in operant learning of professional basketball players. In particular, we utilize detailed information about the
spatial organization of shot locations to study how players adapt their attacking strategy in real time according to recent
events in the game. To quantify this learning, we study how a make \ miss from one location in the court affects the
probabilities of shooting from different locations. We show that generalization is not a spatially-local process, nor is
governed by the difficulty of the shot. Rather, to a first approximation, players use a simplified binary representation of the
court into 2 pt and 3 pt zones. This result indicates that rather than using low-level features, generalization is determined by
high-level cognitive processes that incorporate the abstract rules of the game.
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Introduction

Of several responses made to the same situation, those which are

accompanied or closely followed by satisfaction to the animal will … be more

firmly connected with the situation, so that, when it recurs, they will be more

likely to recur…’ (Edward Thorndike, 1874–1949) [1].

No man ever steps into the same river twice, for it’s not the same river

and he’s not the same man (Heraclitus of Ephesus, 535–475 BCE)

[2].

Humans and animals modify their behavior in response to the

consequences of their previous actions, a process known as operant

learning. The standard account for this learning is based on a

family of reinforcement learning (RL) algorithms that assert that

the computational problem of learning from experience is

achieved through the synergy of two processes: first, the values of

the different actions (or more generally, state-actions) are learned

from past actions and their subsequent rewards; second, these

learned values are used to choose (or to learn to choose) among

different actions such that actions associated with a higher values

are more likely to be chosen [3–5] but see also [6–8]. This account

is based, to a large extent, on a large number of laboratory

experiments, in which participants repeatedly choose between the

same small number of alternative actions (e.g., press a button) in

repeated settings and are rewarded according to these actions.

By contrast, in many natural environments, organisms learn

from the consequences of their past actions in settings in which the

same situation and action never recur (not even in the sense that

two ‘‘identical’’ trials ‘‘recur’’ in a laboratory experiment). In these

cases, generalization is an essential part of operant learning [9]. In

this process of generalization, the organism determines which past

situations, actions and their consequences are relevant for the

current situation. In the language of RL algorithms discussed

above, generalization is the process of determining which set of

different situations defines a state and which set of responses

defines an action. The level of generalization determines, roughly

speaking, the density parsing of the set of situations into states and

the set of responses into actions. A limited generalization would

result in a large number of state and actions in the process of

learning whereas broad generalization would result in a small

number of states and actions. Too limited generalization implies

that the organism learns values of states that are essentially

identical, resulting in too-slow learning. Too broad generalization

implies that the organism is inferring the outcome of future

responses from irrelevant past experience, which may lead to

suboptimal behavior even after very long learning. Thus, the

proper level of generalization, which determines the tradeoff

between the speed and the accuracy of learning, is of an utmost

importance in the process of learning. It should be noted that the

question of the proper level of generalization is present even in RL

models that assume continuous states and actions [10,11].

The problem of determining the proper level of generalization is

not limited to operant learning. Indeed, this question has received

considerable attention in the framework of Pavlovian learning and

supervised learning (see [12] and references within). The goal of
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this paper is to elucidate the cognitive strategy underlying

generalization in operant learning in natural conditions.

Professional basketball, which is played by highly motivated and

extensively-trained players, provides an exceptional opportunity to

quantitatively study generalization in operant learning in complex

natural environments. The objective of players in basketball is to

gain points by shooting a ball through a hoop. If successful, the

team is awarded with two or three points, depending on the

distance of the shot attempt from the basket. In a previous study

we demonstrated that players modify their shot selection policy in

response to the recent history of their shots and their outcomes

[13]. After a made (successful) 3-point (3 pt) shot, the probability

of attempting another 3 pt shot is 30% higher than that

probability after a missed 3 pt. Moreover, some of the variability

in players’ shot selection can be accounted for using standard RL

algorithms. However, lacking additional information about the

shots, our previous study was unable to address the question of

what is considered by the players as ‘‘the same situation’’ and ‘‘the

same action’’.

Consider a player in possession of the ball. Multiple factors,

including the locations, velocities and postures of team and

opponent players, the score and the time in the game are relevant

to the decision of whether or not to attempt a field goal (FG). In

the framework of RL, all these factors determine the state of the

world. In this paper we focus on the spatial location of the payers,

which provides us with a low dimensional projection of the state of

the world at the time of the FG. Quantifying how the outcome of a

FG in one spatial location affects subsequent FGs in different

locations is thus informative about the pattern and level of

generalization between states. A spatially restricted generalization

implies that the outcome of shots made in a particular location

would have very little effect of behavior in other locations of the

court. By contrast, learning could be independent of shot location,

implying substantial spatial generalization. Between these two

extremes, a made shot in one location may enhance the

probability of another shot from the vicinity of that location, but

not from further away locations. Alternatively, the pattern of

generalization may be more complex. For example, a made shot in

one location may enhance the probability of another shot from the

same distance, the same angle or from the symmetrical location

relative to the basket. Identifying the patterns of spatial

generalization is thus the objective of this study.

Results

The spatial organization of field goal attempts
We examined the records of all players from the National

Basketball Association (NBA) in four regular seasons and

considered their 759,050FGs, measured at a 161 ft2 resolution.

The spatial distribution of FGs is presented in Figure 1A, which

depicts the two-dimensional histogram of the FGs locations,

pooled from all players. The white circle denotes the location of

the basket and the upper boundary is at the half-court line. The

color codes for the number of shots attempted from each location

in a logarithmic scale. As shown in Fig. 1A, the distribution of shot

locations is not homogeneous. Rather, there are islets of higher FG

probability. In our analysis, we used these islets to define 16

regions, delineated by black lines in Fig. 1A.

In order to quantify how the outcome of a FG attempted from

region i affects subsequent behavior at region j we computed, for

each player, three probabilities: the a-priori probability that a

player would attempt a FG from region j, Pr jð Þ, and two

conditional probabilities: the probabilities that a player would

attempt a FG from j, given that his previous FG was a made or

missed FG from region i, Pr jDi, Sð Þ and Pr jDi, Fð Þ respectively (S
and F denote Successful and Failed FG). These three probabilities

determine a learning matrix L whose entries are given by

li,j~
Pr jDi, Sð Þ{Pr jDi, Fð Þ

Pr jð Þ ð1Þ

To gain insight into L, we consider a player that incorporates a

fixed policy that is insensitive to the outcome of past FGs, i.e., a

player that does not learn from past made and missed FGs. In this

case, because behavior is independent of the outcome of the

previous FG, the two conditional probabilities are equal,

Pr jDi, Sð Þ~Pr jDi, Fð Þ~Pr jDið Þ. As a result, li,j~0 Vi, j. Alterna-

tively, consider the extreme case in which a player is very sensitive

to the outcome of the previous FG: after a made FG he always

attempts another FG from the same region whereas the FG

immediately following a miss FG is never repeated from the same

region. In this case, Pr iDi, Sð Þ{Pr iDi, Fð Þ~1 Vi and

Pr jDi, Sð Þ{Pr jDi, Fð Þƒ0 Vi=j. In other words, all the diagonal

elements of L are positive and all off-diagonal elements are non-

positive. More generally, li,jw0 for two regions i=j implies a

generalization from region i to region j: A made shot in region i
motivates subsequent FG attempts from region j whereas a missed

shot in i discourages FG attempts from j. Therefore the learning

matrix L is informative about the generalization pattern in

learning.

We computed the matrix L for all players who passed our

selection criterion (166 players, 161,302 FGs, see Materials and

Methods). The matrix L, averaged over all players, denoted by �LL,

is depicted in Fig. 1B. Several points are noteworthy when

considering �LL. First, the diagonal elements of �LL tend to be positive

(14/16 diagonal elements in �LL are positive, p,0.003, one-tailed

binomial test). This implies that a made FG motivates players to

attempt another FG from the same region relative to a missed FG.

To quantify this tendency to repeat successful actions and to avoid

unsuccessful ones, we considered the mean value of the diagonal

terms:
1

16

P16
i~1

�lli,j~0:38+0:09. Roughly speaking, this average

implies that on average, the outcome of a FG changes the

probability that a FG will be repeated from the same region by

Author Summary

According to the law of effect, formulated a century ago
by Edward Thorndike, actions which are rewarded in a
particular situation are more likely to be executed when
that same situation recurs. However, in natural settings the
same situation never recurs and therefore, generalization
from one state of the world to other states is an essential
part of the process of learning. In this paper we utilize
basketball statistics to study the computational principles
underlying generalization in operant learning of profes-
sional basketball players. We show that players are more
likely to attempt a field goal from the vicinity of a
previously made shot than they are from the vicinity of a
missed shot, as expected from the law of effect. However,
the outcome of a shot can also affect the likelihood of
attempting another shot at a different location. Using
hierarchical clustering we characterize the spatial pattern
of generalization and show that generalization is primarily
determined by the type of shot, 3 pt vs. 2 pt. This result
indicates that rather than using low-level features, gener-
alization is determined by high-level cognitive processes
that incorporate the abstract rules of the game.
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Figure 1. The spatial organization of learning. A. The spatial distribution of all 759,050 FGs in our dataset. The basket is depicted by a white
circle and the upper boundary is the half court line. The color codes for the number of FGs taken from each location in log10 scale. The black lines
delineate 16 regions used in subsequent analysis. B. The averaged learning matrix �LL, based on 161,302 FGs attempted by 166 players that passed our
selection criteria (see Materials and Methods). C. Top, Dissimilarity matrix, �DD, computed based on the rows of the matrix �LL in B such that
�ddi,k~DD�lli,�{�llk,�DD is the Euclidian distance between the rows �lli,� and �llk,� of �LL; Middle, Hierarchical clustering of the matrix in B based on the
dissimilarity between the rows (see Material and Methods); Bottom, the dissimilarity matrix ordered according to the dendrogram in the middle
panel. D. same as in C for the columns of matrix �LL.
doi:10.1371/journal.pcbi.1003623.g001
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approximately 38%. Second point worthwhile noting is that many

of the off-diagonal elements are also positive and that the

magnitude of some of them is substantial. For example, the

largest off-diagonal element �ll1,4~0:87+0:17 is as large as the

largest diagonal element, �ll14,14~0:87+0:30. However, not all off-

diagonal terms are positive. For example, while a made shot in

region 1 almost doubles the likelihood of a shot in region 4

compared to a missed FG (�ll1,4~0:87+0:17), it substantially

decreases the likelihood of attempting another shot from region 9

(�ll1,9~{0:53+0:15) and has almost no effect on the likelihood

that the next shot will be from region 8 (�ll1,8~0:03+0:17). To

quantify this heterogeneity in the values of the off-diagonal terms,

we computed the standard deviation of the distribution of the off-

diagonal elements and found that std �lli=j

� �
~0:21. This number,

which is significantly larger than the expected standard deviation

in a process, in which transitions between regions on successive

FGs are random (p,0.001 Monte Carlo permutation test, see

Materials and Methods) is a measure of the spatial heterogeneity in

the generalization: different regions differ by approximately 21%

in their response to made and missed FGs in the other regions.

Clustering analysis
To better understand the pattern of generalization depicted in

the matrix �LL (Fig. 1B), we note that the i, j element in �LL, �lli,j , is a

measure of the effect of the outcome of the shot from region i on

the likelihood that the subsequent shot would be from region j.

Therefore, the row i of the matrix �LL, denoted as �lli,�, is a measure of

the effect of the outcome of a FG attempts in region i on all

subsequent FG attempts. If two rows of the matrix �LL are similar,
�lli,�&�llk,�, then the outcome of FGs in regions i and k similarly

affect subsequent behavior. By contrast, if these two rows are very

different then we can infer that made and missed FGs from these

two regions are treated differently in the process of learning.

Therefore, the similarity between the rows of the matrix �LL is a

measure of the pattern of generalization in the learning.

To study the similarity between the rows, we computed the

dissimilarity matrix �DD, where �ddi,k~DD�lli,�{�llk,�DD is the Euclidian

distance between rows �lli,� and �llk,� of �LL (Fig. 1C, Top). To identify

the regions that similarly affect subsequent behavior we construct-

ed a hierarchical tree (dendrogram) of the rows of �LL (Fig. 1C,

Middle) using agglomerative hierarchical clustering (Materials and

Methods). The dissimilarity matrix, reordered according to the

hierarchical tree is presented in Fig. 1C (Bottom). As clearly seen

in Figs. 1C Middle and Bottom, regions 1, 4, 7, 11 and 14 (left

branch in Fig. 1C, Middle) are grouped together in the clustering

analysis. Interestingly, this grouping follows the separation into

3 pt regions (areas 1, 4, 7, 11 and 14) and 2 pt regions (all other

regions). It should be noted that this grouping into 3 pt and 2 pt

regions is not spatially local (e.g., regions 1 and 14 are furthest

apart). Rather, it reflects the distance from the hoop. Further

considering the finer clustering structure, we find that in the 2 pt

branch (right branch in Fig. 1C, Middle), regions 2, 5, 8 and 12

are grouped together and are separated from the other 2 pt

regions. This grouping contains all long-distance 2 pt regions

except one (region 15) and none of the short-distance 2 pt regions.

The clustering analysis of Fig. 1C was aimed at finding sets of

regions that ‘‘affect’’ all other regions in a similar way. However,

there is a complementary way of defining patterns of generalization.

We can consider which regions are similarly ‘‘affected’’ by the

outcomes of FGs in all other regions. The former analysis (Fig. 1C) is

based on prospective similarity, whereas the latter analysis is based on

retrospective similarity. Formally, prospective clustering is based on

similarity between the rows of �LL whereas retrospective clustering is

based on similarity between the columns of �LL. Because the matrix �LL is

not symmetrical, prospective and retrospective clustering are not

identical and in principle may yield different patterns of clustering.

Thus, we repeated the clustering analysis for the columns of �LL
(Fig. 1D).The results of this analysis are similar to those of the

prospective clustering. The most prominent separation of the

regions is into 3 pt and 2 pt regions (Fig. 1D, Middle). Moreover,

within the 2 pt branch (right branch in Fig. 1D, Middle), the long-

distance 2 pt regions (2, 5, 8, 12 and 15) are also clustered together

and separately from the shorter-distance 2 pt regions.

In summary, (1) the prospective and the retrospective clustering

yielded similar findings; (2) To a first approximation, learning is

dominated by the separation of FGs into 2 pt and 3 pt shots, a

grouping that is not spatially local. (3) To a lesser extent, the 2 pt

FGs are further clustered into two groups, short-distance and long-

distance 2 pt FGs. It is interesting to note that the clustering

analysis did not reveal any evidence of generalization that is based

on the angle of the shooting player from the rim.

Next, we further studied how the outcome of a FG attempt in

one region affects subsequent attempts in other regions. Because

the analysis depicted in Fig. 1 indicates that to a first

approximation players cluster the spatial locations into three

regions, we used in our subsequent analysis a coarser partition of

the court into three regions: 3 pt FG attempts (areas 1, 4, 7, 11 and

14), long-distance 2 pt FG attempts (2, 5, 8, 12 and 15) and short-

distance 2 pt FG attempts (all other regions).

Similar to the analysis of Fig. 1B, we computed for each player

the learning matrix corresponding to this coarser division of the

court, l3
i,j , where l3

i,j is defined as li,j (Eq. 1) such that the three

regions i, j[ 1,2,3f g correspond to 3 pt regions, the long-distance

2 pt regions and the short-distance 2 pt regions, respectively.

Averaging over the players yields the 363 �LL3 learning matrix

�LL3~

0:49+0:03 {0:03+0:02 {0:26+0:03

0:09+0:02 0:21+0:02 {0:17+0:01

0+0:02 0:06+0:01 {0:02+0:01

0
B@

1
CA ð2Þ

Where each entry denotes the value of �ll3
i,j+standard error of the

mean (SEM). Several points are noteworthy. First, �ll3
1,1 is by far the

largest element, indicating that made and missed FGs in the 3 pt

region primarily affect subsequent 3 pt attempts such that a made

3 pt increases the likelihood of another FG from that region and a

missed FG decreased it. This is consistent with our previous study,

in which we have demonstrated that the probability of a 3 pt

attempt increases after a made 3 pt and decreases after a missed

3 pt [13]. Second, the two clusters of 2 pt FGs are differentially

affected by the 3 pt FG attempts. Short-distance, but not long-

distance 2 pt are sensitive to the outcome of the previous 3 pt (�ll3
1,2

and �ll3
1,3, respectively). Third, �ll3

2,2 is positive and large, indicating

that players tend to repeat a long-distance 2 pt if made, and to

avoid it if missed. This change of policy comes primarily at the

expense of the short-distance 2 pt. Fourth, long-distance 2 pt FG

attempts have a positive albeit small effect on 3 pt FGs, such that a

made long-distance 2 pt increases the probability of a 3 pt attempt

(�ll3
2,1). Finally, made and missed short-distance 2 pt FGs have only

a small effect on subsequent FGs (�ll3
3,�).

Distance analysis
The results presented in Fig. 1 suggest that in the process of

learning, players reduce the complexity of the environment by

Spatial Generalization in Operant Learning: Lessons from Basketball

PLOS Computational Biology | www.ploscompbiol.org 4 May 2014 | Volume 10 | Issue 5 | e1003623



treating the outcome of FG attempts made at different locations as

if they were from the same location. The clustering analysis

indicates that this generalization is primarily determined by the

distance of the FG attempt from the basket. To better understand

how the distance from the basket affects learning, we reanalyzed

the spatial pattern of generalization with a finer distance

resolution, at the expense of angular information, using to the

following procedure: for each player, we binned all FGs according

to their distance from the basket at a 2 ft resolution, separately for

2 pt and 3 pt FGs. For each bin, we separated the FGs according

to their outcome, made or miss, and separately computed, for each

of these outcomes, the conditional probability that the next FG

would be a 3 pt FG. The difference between these two conditional

probabilities is a measure of the dependence of the magnitude of

operant learning on the distance of the FG from the basket. Note

that this focus on the difference in conditional probabilities of a

3 pt FGs as a measure of learning, rather than on the distribution

of locations of the following FGs as in Fig. 1, is motivated by our

finding presented in the previous section that the outcomes of FGs

primarily affect the probability of a 3 pt FG (�ll3
�,1 in Eq. 2). This

focus on a scalar learning variable for each distance, rather than a

vector, enabled us to study learning at a substantial finer spatial

resolution than we could if we have focused on a learning vector,

as in Fig. 1.

The difference between the conditional probabilities, averaged

over all players that passed our selection criterion (300 players, see

Material and Methods), is depicted in Fig. 2A, where the blue and

red dots depict 2 pt and 3 pt bins, respectively. We find that the

effect of the outcome of a FG on the probability that the following

FG would be a 3 pt FG increases with the distance of the FG from

the basket. This results is in agreement with the finding of the

previous section that �ll3
3,3w

�ll3
3,2w

�ll3
3,1. However remarkably, the

increase in the probability is not continuous. Rather, there is a

marked discontinuity in the magnitude of learning when

comparing 2 pt and 3 pt FG bins. To further quantify this

discontinuity, we used the fact the 3 pt line that separates the 2 pt

and 3 pt regions is not equidistant from the basket. Near the

corners of the court, the 3 pt line is closer to the basket than near

the center. Therefore, whether or not a FG made at a distance

between 22 ft and 23.75 ft is a 2 pt or 3 pt FG is determined by

the angle to the FG relative to the basket. This enables us to

dissociate the effect of distance on learning from the effect of the

identity of the FGA on learning. As depicted in Fig. 2A, the

leftmost red dot in Fig. 2A and the rightmost blue dot in Fig. 2A

correspond to 3 pt and 2 pt FGs attempted at almost identical

distance from the basket (23.1 ft and 22.7 ft, respectively).

Nevertheless, the difference in the magnitudes of learning,

quantified as the differences in the conditional probabilities, is

substantial and significant (0.1160.01 and 0.0560.01 for the 3 pt

and 2 pt FGs, respectively, p,0.001 Monte Carlo permutation

test). This discontinuity in the learning magnitudes entails that the

abstract classification of a FG as a 2 pt or 3 pt is an important

aspect of the generalization. In other words, with respect to

learning, players learn from the outcome of 2 pt and 3 pt FGs in a

categorically different manner, even if these FGs were attempted

from the same distance from the basket. These results imply that

rather than low-level features such as the physical distance,

reasoning which is based on the abstract rules of the game,

dominate the pattern of generalization.

Does the pattern of generalization reflect the difficulty of the

FG? Naively, one could argue that the more distant a FG is, the

more difficult it is and therefore the more informative a made FG

is about the current capabilities of the player (and/or the abilities

of the opponent players). Therefore, a made long-distance FG

influences subsequent FGs more than a made FG short-distance

FG. According to this view, 3 pt FGs are more difficult than 2 pt

FGs. Therefore, they are more informative and thus have a larger

effect on subsequent FGs. Moreover, because there is a categorical

difference in payoff associated with 2 pt and 3 pt FGs, the defense

team is likely to be more motivated to prevent made 3 pt FGs than

to prevent made 2 pt FGs. As a result, 3 pt FGs may be better

guarded and thus categorically more difficult than 2 pt FGs. Such

discontinuity in the difficulty could result in a discontinuity in the

learning magnitude in the transition from 2 pt to 3 pt FGs,

depicted in Fig. 2A. In order to test this hypothesis, we computed

the shooting percentage of FGs from different distances for the

same 300 players analyzed in Fig. 2A. The shooting percentage is

the ratio of made FGs and attempted FGs, and thus is a measure

of the difficulty of the FG. The average shooting percentage as a

Figure 2. The effect of distance from the basket on learning. A.
the difference between the probabilities of attempting a 3 pt after a
make and after a miss FG as a function of the distance of the first shot
from the basket. FGs were sorted into 2ft wide bins according to their
distance from the basket. For each bin and for each player, we
calculated the average distance from the basket and the conditional
probabilities and then averaged over the players. B. The shooting
percentage as a function of the distance from the basket. The
percentage is defined as the ratio between the number of made FGs
and the number of attempted FGs. Error bars denote the SEM. The blue
dots denote 2 pt FGs and the red dots denote 3 pt FGs. Analysis is
based on 263,557 FGs of 300 players that passed our selection criteria
(see Materials and Methods).
doi:10.1371/journal.pcbi.1003623.g002
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function of the distance is depicted in Fig. 2B. As predicted, the

shooting percentage decreases with the distance from the basket.

However, the dependence of the percentage on the distance does

not closely follow the dependence of the learning signal on the

distance. In particular, the shooting percentages of 2 pt and 3 pt

FGs from the same distance are 0.39360.007 (rightmost blue dot)

and 0.39560.006 (leftmost red dot), respectively, which are not

significantly different from each other (p.0.16, Monte Carlo

permutation test). Thus, a difference between the difficulties of the

2 pt and 3 pt FGs cannot account for the discontinuity in the

magnitude of learning. This result indicates that it is the identity of

the shot as a 2 pt or 3 pt shot per se, and not the difficulty of the

FG, that plays the dominant role in the players’ pattern of

generalization.

Basketball and the matching law
In psychology and neuroscience, there is a long tradition of

foraging-like experiments, in which the subject, human or animal,

repeatedly chooses between a small number of alternatives and is

rewarded according to his choices. In many of these experiments,

the probability that a choice would be rewarded decreases with the

frequency of choosing that alternative, corresponding to a situation

known as ‘‘diminishing return’’ in economics. Interestingly, the

aggregate behavior in many of these experiments follows a

behavioral regularity known as ‘‘the ‘‘matching law’’: the fraction

of reward accumulated from choosing an action is proportional to

the fraction of times the action was chosen [14–17]. Put

differently, subjects allocate their choices such that the average

reward per choice is equal for all chosen alternatives. Interestingly,

the matching law is widespread despite the fact that in many cases,

it does not correspond to the policy that maximizes the average

reward. Therefore, the computational principles underlying this

law of behavior have been a subject of discussion for decades (see

[18] and references therein). According to the Theory of

Melioration put forward by Herrnstein and Prelec [19], subjects

estimate the return from the different alternatives and shift their

choice preference in the direction of the alternatives that provide a

higher-than-average return (see [7,8,20–22] for a neural imple-

mentation of this algorithm). In a diminishing return reward

schedule, the shift in choice preference in favor of an alternative

reduces the return from that alternative. This dynamical learning

process reaches a fixed point when choices are allocated such that

the return from all chosen alternatives is equal.

Previous studies have reported that basketball players’ allocation

of 2 pt and 3 pt FGs approximately conforms to the matching law:

the fraction of 3 pt attempts matches the fraction of points gained

by 3 pt shots [23–25]). This is demonstrated in Fig. 3A. Each

circle in Fig. 3A corresponds to the fraction of 3 pt shots as a

function of the fraction of points gained from 3 pt FGs for a single

NBA player (see Materials and Methods). The diagonal line

corresponds to the behavior predicted by the matching law.

While the ‘‘reward schedule’’ in basketball is far more complex

and far less accessible than the reward schedule used in standard

operant learning experiments, ‘‘diminishing return’’ with the

frequency of attempting a FG from a spatial location is likely to

play a role. The reason is that increasing the frequency of attempts

from a location may be associated with the player attempting more

difficult FGs, e.g. FGs that are better guarded by the defensive

team. Moreover, adaptive defensive maneuvers will also contribute

to the diminishing of return. Therefore, the matching of the

returns associated with the 2 pt and 3 pt FGs could indicate that

the basketball players meliorate. What are the state-actions in the

process of melioration? If the spatial generalization is restricted

and the number of effective states is large then the 2 pt and 3 pt

matching could result from matching of a large number of actions,

each associated with a different state, all of which are endowed

with approximately the same return. Alternatively, generalization

may be substantial and in that case matching is a macroscopic

phenomenon, associated with the separation of states into 2 pt and

3 pt regions but microscopically, at a higher resolution, the

matching law is not followed. Thus, the spatial distribution of

returns is indicative of the level of generalization.

To test this, we used the results presented in Fig. 2B to compute

the return of FGs as a function of the distance of the FG from the

basket. As is illustrated in Fig. 3B, despite the fact that the

aggregate returns of 3 pt and 2 pt FGs are comparable

(1.31460.007 and 1.17360.004, respectively) when computing

the returns on a finer spatial resolution substantial deviations from

Figure 3. Matching and deviations from matching. A. The
fraction of 3 pt FG attempts as function of the fractional 3 pt income,
defined as the fraction of points gained by the offensive team from the
time of the 3 pt shot until the time that the opposing team got hold of
the ball. Each point corresponds to a single player that passed our
selection criterion (same as in Fig. 2, see Materials and Methods) and
the black diagonal line denotes the behavior expected from the
matching law. B. The return as a function of the distance from the
basket for 2 pt (blue) and 3 pt (red) FGs. The matching law predicts that
the returns would be equal. Each point is an average over all players in
A and error bars are SEM.
doi:10.1371/journal.pcbi.1003623.g003
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the matching law are observed. This result further substantiate the

finding that it is abstract classification of the shot as a 2 pt or 3 pt

shot dominates the players’ pattern of generalization.

Discussion

In this study we used professional basketball to probe the

cognitive strategy underlying generalization in operant learning in

natural conditions. Generalization in learning indicates that events

taking place in one state of the world affect the policy utilized in

other states of the world. We used the spatial locations of players at

the times of shot attempts as a proxy for the state of the world, and

quantified the level of generalization between the states. Using

hierarchical clustering analysis of the spatial conditional probabil-

ities of shots we found that the pattern of generalization indicates

that the separation of FGs into 2 pt and 3 pt shots, high-level

abstract features of the game that seem of little relevance to the

learning task, dominates the pattern of generalization. This result

is also supported by the finding that while the matching law is a

good approximation to the aggregate allocation of FGs into 2 pt

and 3 pt shots, there are substantial deviations from this law of

behavior on a finer spatial resolution.

We interpret these findings as resulting from learning processes

that are taking place in the brains of the shooting players.

However, because these players operate in a complex strategic

setting, other contributors to behavior should be considered. For

example, the outcome of the shot may affect defensive maneuvers,

which could change the spatial distribution of subsequent shots.

However, this mechanism is unlikely to be a main contributor

because defense is likely to respond to a made shot by preventing

another shot from the same location, whereas we found that the

diagonal elements of �LL tend to be positive. Another potential

contributor to the changes observed in behavior may be changes

in the behavior of the player’s coach or teammates. In a previous

study we discussed this possibility at length. In short, if changes in

a player’s behavior result from actions taken by the player’s coach

or teammates then the learning observed in players within the

same team are expected to be correlated. However, such

correlations were not found [13]. Thus we conclude that while it

is likely that many additional factors contribute to behavior, it is

learning processes within the shooting players that dominate the

generalization patterns reported in this paper.

Models of operant learning often take as given that the learner

has full information about the relevant states and actions in the

problem. However, in real-life situations (and probably also in

laboratory settings), the necessary preliminary step of identifying

these states and actions is an essential part of operant learning.

This is also often the case in machine learning, where

classification is often preceded by feature extraction [26]. Our

results highlight the importance of this preprocessing stage in the

learning [9,27].

Another contribution of this work is methodological. The

distinction between the prospective and retrospective similarity

may prove beneficial when studying generalization in other

learning tasks. For example, in a standard supervised learning

paradigm, the participant is instructed to learn the mapping

between n stimuli sif g and their desired responses aif g. The

learning is quantified by computing the set of probabilities pji

� �
that denote the probability that the response of the participant to

stimulus si, is aj [28]. These probabilities can be used to define a

n|n matrix whose entries are pji. The prospective and

retrospective clustering analysis that we used to study generaliza-

tion in operant learning can be readily applied to this task to better

quantify the pattern of generalization.

Recent years have seen a growing interest in data acquired from

professional sports. Basketball data, in particular, were used to

study various phenomena, such as decision making in shot

selection [13,29–33], the ‘hot hand’ belief [34,35], how coaching

experience affects the effectiveness of timeouts [36], and the

dynamics of scoring within a game [37]. Off the court, basketball

players were subjects in imaging experiments examining the

underlying neural mechanisms of action anticipation and evalu-

ation [38,39]. A major advantage of professional basketball is that

large quantities of carefully collected behavioral data can be used

to study the behavior of highly-motivated and extensively-trained

humans in their natural settings, complementing the more

controlled experiments in laboratory settings. With the develop-

ment of high-speed cameras and automatic image processing, the

extensive public interest in sports’ statistics can be utilized to

enhance our understanding of the computational principles

underlying different cognitive processes.

Materials and Methods

All individual games data in the form of play-by-play is available

online. (http://www.basketballgeek.com/data/).

Data analysis and statistical procedures
Regions 1–16 defined in Fig. 1A contained 2.9%, 5.6%, 4.2%,

5.7%, 3.3%, 3.3%, 6.9%, 5.5%, 6.9%, 3.8%, 2.4%, 4.1%, 5.0%,

4.0%, 2.4% and 33.3% of the FGs, respectively, such that less than

1% of the FGs were attempted from outside these 16 regions and

thus were excluded from the analysis. The criterion for including a

player at the analysis presented in Fig. 1B–D was that he

attempted at least 10 FG from each of the 16 regions in the season.

The number of players that met this criterion was 167, where a

player is defined per season (e.g., if the same player passed our

criteria in two seasons he is counted twice). However, one of the

players was discarded because one of the rows in the learning

matrix L was ill-defined.

In the analysis of Fig. 2, each player’s FGs were sorted into 2 ft

wide bins according to their distances from the hoop. A player was

included in this analysis if he missed at least one FG and made at

least one FG from each of the bins, a criterion which resulted in

300 players.

All statistical analyses are within-player: the numbers were

computed separately for each player and then were averaged over

the players, giving equal weight to each player in the average;

averages reported are accompanied by the SEM. In addition, all

analyses are within a game and therefore, in all conditional

probabilities we only considered the effect of the outcome of shots

1 to N-1 on the locations of shots 2 to N, where N is the index of

the last shot made by the player in the game.

When quantifying the heterogeneity in the values of the off-

diagonal term of Fig. 1B we computed the standard deviation of

the distribution of the off-diagonal terms. In order to show that this

standard deviation is larger than expected by chance assuming no

learning, we performed the following Monte Carlo permutation

test: independently for each player, we estimated the prior

probability of a FG in each of the 16 regions. Then, we computed

the pair-wise learning index (Eq. 1) for a surrogate data in which

the subsequent FG was replaced with a FG drawn from the

estimated of the prior probability. By averaging over all players we

obtained a substitute �LL matrix in which there is no generalization

between successive FGs. The reported p-value indicates the

number of times out of 104 repetitions of this procedure in which

the standard deviation obtained from surrogate data exceeded the

standard deviation of the original data.
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Similar tests were performed when testing for significant

between the rightmost blue bin and leftmost red bin in Fig. 2A

and 2B. For each player included in that analysis, we estimated the

prior conditional 3 pt probabilities and percentages from the two

bins. Then, we computed the difference in the conditional 3 pt

probabilities and the percentage for surrogate data drawn from the

estimation of the prior probabilities and percentages, and averaged

over the players. The reported p-value indicates the number of

times out of 104 repetitions of this procedure in which the statistic

of the surrogate data exceeded the statistic of the original data.

For the analysis in Fig. 3 we define the return of an FG to be the

number of points gained by the team of the shooting player from

the time of the FG until the opposing team got hold of the ball.

The analysis is based on the data of the 300 players used in Fig. 2.

For each player we computed the return of every FG.

Hierarchical clustering
For each player that passed our criteria, we used Eq. 1 to

compute the pair-wise learning index between every 2 regions

delineated in Fig. 1A. The results were averaged across the players

to form a matrix, �LL (Fig. 1B), whose �lli,j entry measures how much

(on average) made and missed FGs from region i are generalized

to region j. We performed agglomerative hierarchical clustering

[40] on �LL (Fig. 1C) and on �LLT (Fig. 1D). The initial clustering

consisted of 16 clusters, one of for each row of �LL (and �LLT). At each

step of the algorithm, the two clusters with the lowest distance

between them are merged to form one cluster. We used Ward’s

linkage to measure the distance between clusters, such that the

distance between clusters r and s is given by:

d r, sð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrns

nrzns

s
DD�xxr{�xxsDD ð3Þ

Where nr and ns are the number of elements in clusters r and s

respectively, the norm is the Euclidian distance and �xxr and �xxs are

the centroids of these clusters where the centroid of a cluster r is

defined as �xxr~
1

nr

Pnr
i~1 xri where xri is the i-th object in the

cluster.
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