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Abstract

Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies.
While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for
increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based
inference methods being applied to populations with rapidly changing population dynamics, including pathogens like RNA
viruses. However, fitting epidemiological models to genealogies via coalescent models remains a challenging task, because
pathogen populations often exhibit complex, nonlinear dynamics and are structured by multiple factors. Moreover, it often
becomes necessary to consider stochastic variation in population dynamics when fitting such complex models to real data.
Using recently developed structured coalescent models that accommodate complex population dynamics and population
structure, we develop a statistical framework for fitting stochastic epidemiological models to genealogies. By combining
particle filtering methods with Bayesian Markov chain Monte Carlo methods, we are able to fit a wide class of stochastic,
nonlinear epidemiological models with different forms of population structure to genealogies. We demonstrate our
framework using two structured epidemiological models: a model with disease progression between multiple stages of
infection and a two-population model reflecting spatial structure. We apply the multi-stage model to HIV genealogies and
show that the proposed method can be used to estimate the stage-specific transmission rates and prevalence of HIV.
Finally, using the two-population model we explore how much information about population structure is contained in
genealogies and what sample sizes are necessary to reliably infer parameters like migration rates.
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Introduction

Genealogies can provide valuable information about the

demographic history of a population because the demography of

a population can dramatically shape the structure of a genealogy

[1,2]. For example, fluctuations in population size will shift the

distribution of branching events, or coalescent times, over a

genealogy relative to what would be expected for a population

with a constant size [3]. Other aspects of a population’s

demographic history can also leave behind distinctive genealogical

patterns. For example, the structuring of a population into

different subpopulations can influence the topology of genealogies,

which is often seen as clustering among individuals sampled from

the same subpopulation [4]. These observations have led to great

interest in statistical methods for inferring demographic trends and

parameters from genealogies and given rise to the new field of

phylodynamic inference [2,5–8].

Most statistical methods for reconstructing the demographic

history of a population from genealogies have been motivated by

coalescent theory, which provides a probabilistic framework for

relating the demographic history of a population to a genealogy of

individuals sampled from that population [9,10]. Critically,

coalescent models provide a way to compute the probability of a

given genealogy under a given demographic model. It is

therefore possible to estimate parameters of a demographic

model, such as population size, from a genealogy using

likelihood-based inference methods. Extensions of this basic idea

have been used to estimate changes in population size over time,

for example by the Bayesian skyline methods available in the

BEAST phylogenetic software package [11,12]. Coalescent

theory has also been extended to consider different forms of

population structure, giving rise to structured coalescent models

[13,14]. Statistical methods that allow fitting of structured

coalescent models to genealogies have the ability to estimate

parameters relating to population structure, including migration

rates between populations [7,15].

Recent developments in phylodynamics have focused on

developing models and statistical methods for more complex

demographic scenarios, which have been largely motivated by the

application of coalescent methods to pathogens like RNA viruses

with rapidly changing population sizes. For example, coalescent

models have been developed for populations where birth (i.e.

transmission) rates vary over time [16,17]. Importantly, the

framework of Volz et al. [16] also considers the coalescent process

in populations where transmission rates change over time in a

nonlinear manner, as is often the case for epidemiological models
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like the well-known Susceptible-Infected-Recovered (SIR) model

[18]. Coalescent models have also been developed for common

epidemiological scenarios with population structure that alters the

rate of coalescence in the population [19], but these models are

limited to populations at equilibrium. Finally, Volz [20] presented

a framework that brings together both complex population

dynamics and population structure. This approach has great

appeal as it generalizes coalescent models to allow both birth and

migration rates to change over time as a function of the underlying

population dynamics, which may be nonlinear and far from

equilibrium.

Although recent advances with structured coalescent models

have enabled the analysis of more complex epidemiological

models, the statistical challenge remains of efficiently fitting

stochastic population dynamic models to genealogies. These

models can be extremely high-dimensional due to a large

number of latent state variables for which we have no direct

observations. In Rasmussen et al. [21], a particle filtering

approach was used to marginalize out these latent variables by

forward simulating population dynamic trajectories from the

epidemiological model and then averaging over these trajectories

to a compute a marginal likelihood. For unstructured models,

adapting particle filtering methods to coalescent-based inference

is relatively straightforward as the likelihood of a genealogy is

simply a function of the simulated population dynamic trajecto-

ries. However, for structured models the likelihood also depends

on the internal states of lineages in the genealogy, which may

change over time as lineages move between populations [20].

The probable state of a lineage can only be calculated

retrospectively conditional on the population’s demographic

history and the state of the lineage at the time of sampling. As

we show below, these backward-time dependencies prevent the

direct application of forward-time particle filtering methods to

structured models.

We therefore present a new statistical approach for fitting

stochastic population dynamics models to genealogies using the

structured coalescent approach presented in Volz [20] using a

modified particle filtering algorithm. This modified algorithm

allows for efficient particle filtering under structured coalescent

models where the probability that a lineage is in a certain

population may depend on both the past dynamics of the

population as well as future sampling of lineages. Using this

algorithm, we can fit stochastic, nonlinear epidemiological models

with essentially any form of population structure to genealogies as

long as the model is Markovian. Because population structure

arises naturally in many epidemiological models, we define

population structure in a very broad sense and consider any

model where the population of infected hosts is structured into

different nonequivalent states and therefore lineages in different

infected hosts do not necessarily have an equal probability of

coalescing. This includes models with spatial structure, multiple

stages of infection and models of vector-borne and other multi-

host pathogens.

The paper has the following structure. First, we present the

forward-time epidemiological models that we use as examples

throughout the paper. Next, we review the framework first

developed in Volz [20] for how coalescent models can be

derived for a corresponding forward-time population dynamic

model. We then describe how we can fit structured epidemio-

logical models to genealogies given the corresponding structured

coalescent model. The statistical method we describe combines

MCMC methods with our particle filtering algorithm, and is a

variation of the particle MCMC algorithm of Andrieu et al. [22].

Using simulated genealogies, we show that this algorithm can

accurately reconstruct population dynamics in structured pop-

ulations and obtain reliable estimates of epidemiological

parameters such as transmission rates. We then apply our

approach to the HIV epidemic in Detroit, Michigan in order to

estimate stage-specific transmission rates and infer how preva-

lence and incidence have changed over the course of the

epidemic. Finally, we explore under what conditions parameters

relating to population structure can be inferred from genealogies

and how factors such as sample size affect uncertainty in our

estimates.

Methods

Epidemiological models
In this paper, we use epidemiological models to demonstrate

how mechanistic population dynamic models can be fit to

genealogies. More specifically, we will consider the type of

Susceptible-Infected-Recovered (SIR) models widely used to study

the transmission dynamics of infectious diseases [18,23]. In SIR-

type models, the host population is divided into different

compartments depending on the host’s state (e.g. susceptible or

infected). For generality, we let xt be the vector that holds the

number of hosts in each compartment at time t, for example

xt~fSt,It,Rtg for the standard SIR model. For stochastic models,

the state variables in xt are treated as random variables. We

consider an epidemiological model to be structured if there is more

than one class of infected host.

Applications. We use two simple structured epidemiological

models throughout the paper as illustrative examples. The first is a

SIR model with three stages of infection, which illustrates how our

approach can be applied to models where infected hosts progress

through different stages of infection. In the Results section, we

apply this model to HIV data so we assume that these three stages

correspond to the early, chronic and AIDS stages of HIV

infection. The deterministic skeleton of the three-stage SIR model

can be written as the following system of ordinary differential

equations:

Author Summary

Mathematical models play an important role in our
understanding of what processes drive the complex
population dynamics of infectious pathogens. Yet devel-
oping statistical methods for fitting models to epidemio-
logical data is difficult. Epidemiological data is often noisy,
incomplete, aggregated across different scales and gener-
ally provides only a partial picture of the underlying
disease dynamics. Using nontraditional sources of data,
like molecular sequences of pathogens, can provide
additional information about epidemiological dynamics.
But current ‘‘phylodynamic’’ inference methods for fitting
models to genealogies reconstructed from sequence data
have a number of major limitations. We present a
statistical framework that builds upon earlier work to
address two of these limitations: population structure and
stochasticity. By incorporating population structure, our
framework can be applied in cases where the host
population is divided into different subpopulations, such
as by spatial isolation. Our framework also takes into
consideration stochastic noise and can therefore capture
the inherent variability of epidemiological dynamics. These
advances allow for a much wider class of epidemiological
models to be fit to genealogies in order to estimate key
epidemiological parameters and to reconstruct past
disease dynamics.

Phylodynamic Inference
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dS

dt
~mN{L(t)S{mS

dIE

dt
~L(t)S{cEIE{mIE

dIC

dt
~cEIE{cCIC{mIC

dIA

dt
~cCIC{cAIA:

ð1Þ

Infections progress from one stage to the next according to the

rates cE and cC . We assume there is no recovery and that

individuals with AIDS infection die at rate cA instead of the

normal host mortality rate m, where generally cAwm.

The force of infection L(t) is given by

L(t)~e{a(IEzICzIA) (bEIEzbCICzbAIA)

N
, ð2Þ

where N is the host population size (N~SzIEzICzIA). The

exponential term in (2) allows incidence to scale nonlinearly with

the prevalence of HIV in the population and has been frequently

used in HIV models [24–26]. This nonlinear scaling may reflect

heterogeneity in sexual contact rates or behavioral changes as

awareness or diagnosis of the disease grows.

The second model we consider is a simple two-population SIR

model where transmission can occur both within and between the

two populations due to infectious individuals coming into contact

with susceptible individuals in either population. While we do not

explicitly define the factor that structures the population,

population structure could be due to spatial structure or other

factors like age that affect the probability of different hosts

contacting one another. The deterministic skeleton of this model

can be written as follows:

dS1(t)

dt
~mN1(t){bW (t)

S1(t)

N1(t)
I1(t){bB(t)

S1(t)

N1(t)
I2(t){mS1(t)

dI1(t)

dt
~bW (t)

S1(t)

N1(t)
I1(t)zbB(t)

S1(t)

N1(t)
I2(t){nI1(t){mI1(t)

dS2(t)

dt
~mN2(t){bW (t)

S2(t)

N2(t)
I2(t){bB(t)

S2(t)

N2(t)
I1(t){mS2(t)

dI2(t)

dt
~bW (t)

S2(t)

N2(t)
I2(t)zbB(t)

S2(t)

N2(t)
I1(t){nI2(t){mI2(t):

ð3Þ

The parameter m is the host birth/death rate and n is the rate

at which infected hosts recover. N1 and N2 are the host

population sizes, respectively. bW is the within-population

transmission rate and bB is the between-population transmission

rate. We write the transmission rates as bW (t) and bB(t) to allow

the transmission rate to vary seasonally. Both bW and bB are

scaled relative to a base transmission rate b such that bW ~br
and bB~b(1{r), so that the parameter r controls the extent of

mixing or coupling between the two populations, as in Keeling

and Rohani [27]. Under this parameterization, the basic

reproductive number R0~b=(mzn) and is therefore invariant

to changes in r so that we can vary the degree of mixing

between populations while not significantly altering the overall

epidemiological dynamics.

Coalescent models
In this section, we consider formulating structured coalescent

models for the type of structured epidemiological models just

presented. As shown in Volz [20], thinking about population

dynamic models as simple birth-death processes can be useful

when deriving coalescent models that correspond to a given

forward-time model. If we randomly sample individuals from a

population and trace their ancestry back in time, then coalescent

events in the genealogy will correspond to birth events in the

population when both the parent and child lineages are ancestral

to sampled individuals. While deaths may affect the overall

population size, deaths can be ignored along lineages ancestral to

sampled individuals because we know that a lineage could not

have died out at an earlier time if it persisted to be sampled at

some later time. For a structured population, we also must

consider individuals transitioning between different subpopula-

tions through migration events that occur independently of birth

events, although for the type of models we will consider here a

lineage can also transition between populations by being born into

a different population than its parent.

The same birth-death-migration framework can be applied to

pathogens if we assume that each infected host corresponds to a

single individual in the pathogen population. In this case, births

in the pathogen population occur at transmission events between

hosts. Deaths in the population will correspond to recovery or

mortality of infected hosts. If each infected host is represented by

a single pathogen lineage, coalescent events in the genealogy will

correspond to transmission events if both the infected host and

the infector are sampled or give rise to descendent infections that

are sampled. For structured epidemiological models, we also

must consider a pathogen lineage transitioning among popula-

tions, or compartments in SIR-type models, independent of

transmission events. For example, in the three-stage model,

pathogen lineages can transition between different stages of

infection. Here, we will refer to all transitions between states that

occur independently of transmission as migration for generality.

This allows many epidemiological models with some form of

population structure to be thought of as a birth-death-migration

process.

To formalize the birth process, we adopt the notation of Volz

[20] and let F (t) be a matrix that specifies the birth rate of new

lineages in the population at time t, where F (t)~F (h,xt), meaning

that F (t) can be a function of the epidemiological parameters h
and the population state variables xt. Lineages may be in any one

of m states. The rate at which lineages currently in state k give

birth to lineages in state l is given by the element fkl . The rate at

which migration, or transitions between states independent of

birth events, occurs is given by another matrix G(t)~G(h,xt). The

rate at which lineages currently in state k migrate to state l is given

by the element gkl . We treat birth and migration as distinct

processes because, as we will see, they affect the coalescent process

in different ways since coalescent events can only occur at birth

events but migration events can affect the probability of a

particular lineage coalescing with another lineage. The total

number of lineages in each state is given by a vector Y (t), such

that yk(t) gives the total number of individuals in the population in

state k at time t. From here in, we drop the time indices and just

refer to the matrices F and G or the vector Y , but emphasize that

the rates in F and G and the population sizes in Y can be time-

dependent.

We illustrate the F and G matrix notation by decomposing the

three-stage and two-population SIR models presented above into

their component birth and migration processes. For the three-

stage model, we have

Phylodynamic Inference
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F~

bE

S

N
IE 0 0

bC

S

N
IC 0 0

bA

S

N
IA 0 0

0
BBBBBB@

1
CCCCCCA

, ð4Þ

G~

0 cEIE 0

0 0 cCIC

0 0 0

0
B@

1
CA: ð5Þ

In the F matrix, births occur through transmission of the pathogen

from any of the three stages of infection to susceptible individuals.

Because all new infections begin in the early stage, only the

leftmost column of the F matrix has nonzero elements. The

nonzero elements in the G matrix correspond to migration

between stages through disease progression from early to chronic

and from chronic to AIDS.

For the two-population model, we have

F~

bW

S1

N1

I1 bB

S2

N2

I1

bB

S1

N1
I2 bW

S2

N2
I2

0
BB@

1
CCA, ð6Þ

G~
0 0

0 0

� �
: ð7Þ

Because transmission events can move the pathogen within and

between the two populations in either direction, all entries in the F
matrix are nonzero. The G matrix has all zero entries because

there is no migration between populations independent of

transmission.

Before moving on, we note that for an infectious pathogen our

coalescent models make the implicit assumption that coalescent

events in the genealogy correspond to transmission events between

hosts. In essence then, we are ignoring the within-host coalescent

process and assuming that all infected hosts are represented by a

single lineage. This implies that lineages immediately coalesce

once in the same infected host, which may not be true for certain

pathogens where multiple lineages can persist within a host for

long periods of time. Nevertheless, in general our assumption that

each infected host is represented by a single pathogen lineage will

be valid as long as super-infection is rare and there is a strong

bottleneck in the pathogen population at transmission events so

that it is unlikely that more than one lineage is transmitted

between hosts.

Coalescent likelihoods
To fit a structured coalescent model to a genealogy, we need

to compute the likelihood of the coalescent model given the

genealogy. To compute this likelihood, we can partition the

genealogy into any number of discrete time intervals. We label

the time partitioned genealogy G1:T , where t~1 is the time of the

first event in the genealogy and t~T is the final event time going

forwards in time (usually the terminal-most sampling event). Time

points are chosen to correspond to the times at which events in the

genealogy occur such as coalescent and sampling events. We can

then further subdivide the genealogy into smaller intervals that

correspond to the Dt time steps used to simulate from the

epidemiological model so that at any time point t we have the state

variables xt corresponding to that time. With the time partitioned

genealogy G1:T , we can compute the likelihood over each interval

in the genealogy, Gt{1:t, and then take the product over all

intervals to compute the total likelihood of the model given G1:T .

Computing the likelihood over a time interval Gt{1:t requires us

to first compute the probabilities that the lineages present in the

genealogy did or did not coalesce within that time interval. The

probability of a coalescent event in turn depends on the expected

rate of coalescence under the model. This expected rate can be

computed for a coalescent model with any arbitrary population

structure using the formalism summarized above for the rates of

birth in F . As shown in Volz [20], the rate of coalescence lij for

two lineages i and j is

lij~
Xm

k

Xm

l

fkl

ykyl

pikpjlzpilpjk

� �
ð8Þ

where, for example, pik is the probability that lineage i is in state k.

How these lineage state probabilities are computed is explained

below. We can make intuitive sense of the coalescent rate in (8) by

noting that fkl is the total rate at which lineages in state k give

birth to lineages in state l in the population and that
1

ykyl

is the

probability that lineages i and j are the two lineages involved in a

particular birth event. However, since we do not know the true

states of i and j we must sum over all possible combinations of

states for these two lineages.

The total rate of coalescence lA for all lineages A present in the

genealogy over an interval of time is then

lA~
X
i[A

X
j[A,jvi

lij : ð9Þ

Given the rates of coalescence, we can then compute the

likelihood over a time interval Gt{1:t under the coalescent model.

If the time interval does not end in a coalescent event, we have

L(Gt{1:t)~e{lADt: ð10Þ

Alternatively, if the interval does end in a coalescent event between

two lineages i and j, we have

L(Gt{1:t)~lije
{lADt: ð11Þ

Lineage state probabilities
As alluded to above, computing the coalescent rates requires us

to compute the probability of each lineage in the genealogy being

in each possible state. At the time of sampling, we may know the

state of a lineage from information gathered from the infected host

from which the sample was obtained. Alternatively, if we do not

know the state of the host at the time of sampling exactly, we can

assign prior probabilities to the lineage being in each state under a

multinomial distribution. Either way, given the initial state or state

probabilities at the time of sampling, we need to be able to

compute the probability of the lineage being in each state at any

point in the past.

Going backwards in time, the lineages transition between states

at the rates given in the F and G matrices, which in turn depends

on the population states x1:T and the parameters h. Given these

transition rates, we have a continuous time Markov process on a

Phylodynamic Inference
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discrete state space along each branch. We can therefore use

master equations to track how the lineage state probabilities

change going backwards through time. In other words, we can

write down differential equations for how the probability mass

assigned to each state flows between states as we move into the

past. As shown in Volz [20], the general form that these master

equations take for any lineage i and state k is

d

dt
pik~

Xm

l

pil

gkl

yl

{pik

glk

yk

zpil

fkl

yl

yk{Ak

yk

{pik

flk

yk

yl{Al

yl

� �
,ð12Þ

where Ak~
X

i[A pik; that is Ak is the expected number of

lineages in state k in the genealogy at a given point in time.

Further details on how the lineage state probabilities are computed

and get updated at coalescent events are given in Text S1. For

convenience, we introduce the notation Pt to denote the lineage

state probabilities for all lineages in the genealogy at time t and

P1:T to denote the complete mapping of lineage state probabilities

onto the genealogy over the entire time partitioned genealogy

G1:T .

Statistical inference
The goal of phylodynamic inference for the type of models

presented above will generally be to infer the parameters of

interest from the genealogy along with the latent population state

variables, such as the number of infected or susceptible hosts over

time. In a Bayesian context then, we would like to infer the joint

posterior density of the model parameters h and the latent state

variables x1:T . Up to a normalizing constant, this posterior density

is given by

p(h,x1:T DG1:T )!p(G1:T Dh,x1:T )p(x1:T Dh)p(h): ð13Þ

From (13), we see that this joint density can be factored into three

parts: the coalescent likelihood p(G1:T Dh,x1:T ) which we outlined

how to compute above; the prior density on the population state

variables p(x1:T Dh) as defined by the epidemiological process

model; and the prior density on the parameters p(h). Although we

may be able to compute each component individually and thereby

the posterior probability of a given set of parameters h and

population states x1:T , the posterior density is not analytically

tractable in general and we must resort to sampling from the

posterior using MCMC methods.

However, it may be difficult or impossible to sample from

complex, high-dimensional densities such as p(h,x1:T DG1:T ) using

standard MCMC methods. We could, for example, use a Gibbs

sampler to iteratively sample from the conditional posterior

densities of h and any component of x1:T , but this strategy can

be extremely inefficient owing to strong correlations among the

parameters and the state variables, leading to slow MCMC mixing

[28]. In Rasmussen et al. [21], a particle MCMC approach known

as the particle marginal Metropolis-Hastings (PMMH) algorithm

was therefore used to sample from the joint posterior density of h
and x1:T . The main motivation behind using the PMMH

algorithm is that we can jointly update h and x1:T together [22].

Each MCMC iteration, we first propose new parameter values h�

and then run a particle filtering algorithm to get a numerical

approximation of the posterior density of the latent state variables

p(x1:T DG1:T ,h�), which we refer to as p̂p(x1:T DG1:T ,h�). Particle

filtering, also known as sequential Monte Carlo, provides a

computational means of approximating high dimensional densities

by providing samples (i.e the particles) distributed according to the

desired density, and are often used in the context of nonlinear and

non-Gaussian state space models [29–31]. We review how particle

filters can be used to fit epidemiological models to genealogies in

Text S1.

After running the particle filtering step in the PMMH

algorithm, we can then sample a particle from p̂p(x1:T DG1:T ,h�) to

get a proposal x�1:T for the latent state variables that is adapted to

the parameters in h�. We can also use the particle filter to compute

the marginal likelihood of h� by marginalizing out the state

variables. Because we jointly accept h� and x�1:T based on the

marginal likelihood, we do not have to independently update x1:T ,

leading to a much more efficient MCMC sampler. Despite

marginalizing out the latent state variables, the remarkable feature

of the PMMH algorithm is it provides an exact (i.e. unbiased)

approximation to the density of interest, p(h,x1:T DG1:T ). The

PMMH algorithm is summarized in pseudo-code below.

Algorithm 1. The PMMH sampler targeting p(h,x1:T DG1:T )

At each MCMC iteration, with current parameter values h:

1. Sample h� from a proposal density q(h�Dh).

2. Run particle filter to sample x�1:T from p̂p(x1:T DG1:T ,h�) and

obtain the marginal likelihood estimate p̂p(G1:T Dh�).
3. Accept h� and x�1:T with probability

min
p̂p(G1:T Dh�)p(h�)

p̂p(G1:T Dh)p(h)

q(hDh�)
q(h�Dh)

,1

� �
: ð14Þ

While the PMMH algorithm described above works for

unstructured epidemiological models where all infected hosts are

assumed to be in the same population, we encounter an additional

problem for structured epidemiological models. In this case, the

inference task at hand becomes more difficult because we need to

take into account the unknown lineage states. This is done by

conditioning on the lineage state probabilities P1:T when

computing the coalescent likelihood. We can make this depen-

dence on the lineage state probabilities clear by rewriting the

likelihood as p(G1:T Dh,x1:T ,fP1:Tg). We use the notation fP1:Tg to

indicate that while the lineage state probabilities are required to

compute the coalescent likelihood, we are not treating the lineage

states as random variables but rather as probabilities that are

completely determined by the master equations shown in (12)

given h and a population state trajectory x1:T .

Recall that the probability of a lineage being in a certain state in

the past depends conditionally on the state of the lineage at the

time of sampling. This creates a backwards-time dependence

structure that cannot easily be accommodated by the forwards in

time particle filtering methods used in the PMMH approach. This

is because the computational efficiency of the particle filter largely

relies on the ability to resample—replacing particles with low

weights with particles with high weights. In order to resample, we

need to be able to compute the particle weights at any time t,

which in turn requires the ability to compute the likelihood

p(Gt{1:tDh,xt,fPtg) over any time interval. Computing this

likelihood therefore entails being able to compute the lineage

state probabilities Pt, which will depend on the future states of the

system xtz1:T for any structured model. The backward-time

dependency of the lineage state probabilities therefore prohibits

resampling and thus compromises the efficiency of the particle

filter. We therefore use a modified particle filtering scheme that

allows us to resample by computing expected lineage state

probabilities before running the particle filter and then applying

a correction step to counteract any bias introduced by using the
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expected rather than the true lineage state probabilities while

filtering.

In more detail, the algorithm proceeds as follows. We initially

simulate a deterministic trajectory from the epidemiological model

for the state variables in x1:T , which we refer to as �xx1:T . We can

then compute the expected lineage state probabilities �PP1:T going

backwards in time conditional on �xx1:T . We then run the particle

filter forward in time to approximate the density p(x1:T DG1:T ,

h,f �PP1:Tg). Although p(x1:T DG1:T ,h,f �PP1:Tg) is not ultimately the

target density we are interested in, it serves a useful intermediate

purpose. Once we have sampled particles representing trajectories

from p(x1:T DG1:T ,h,f �PP1:Tg), we can re-weight these particles and

use an additional round of importance sampling to get particles

representing samples from p(x1:T DG1:T ,h,fP1:Tg), our density of

interest.

To do this, for each particle j sampled using the particle filter

we compute the true lineage state probabilities Pj
1:T conditional

on the actual population state trajectory of the particle x
j
1:T . We

can therefore compute the corrected weights v
j
T~p(x

j
1:T DG1:T ,h,

fPj
1:Tg) using the true lineage state probabilities. We also store the

expected weights u
j
T~p(x

j
1:T DG1:T ,h,f �PP1:Tg) computed using the

expected lineage state probabilities. With both the expected

weights u
j
T and corrected weights v

j
T we can assign final

importance weights w
j
T~

v
j
T

u
j
T

and resample particles again

according to the final weights in wT . This final round of

importance sampling corrects for any bias we may have

introduced by resampling particles using the expected lineage

state probabilities while filtering and thereby gives us particles

approximately distributed according to the target density

p(x1:T DG1:T ,h,fP1:Tg).
Algorithm 2. The particle filter/importance sampler targeting

p(x1:T DG1:T ,h,fP1:Tg)

1. Run deterministic simulation to obtain �xx1:T and compute the

expected lineage state probabilities �PP1:T conditional on �xx1:T .

2. Initialize the particle filter at time t~1 with N particles.

(a) Set x
j
1 to initial values for all particles.

(b) Assign normalized weights, U
j
1~

1

N
:

3. Run filter from t~2 to t~T .

(a) Propagate particles forward by simulating from the process

model p(x
j
tDx

j
t{1,h).

(b) Set x
j
1:t~(x

j
1:t{1,x

j
t) for all particles.

(c) Compute unnormalized weights conditional on �PP1:T ,

u
j
t~(u

j
t{1)p(Gt{1:tDh,x

j
t,f �PPt{1:tg): ð15Þ

(d) Normalize weights, so that U
j
t ~

u
j
tXN

j~1
u

j
t

.

(e) If resampling at t, resample according to U
j
t .

4. At time T , resample particles again according to U
j
T to get

particles distributed according to p(x1:T DG1:T ,h,f �PP1:Tg).
5. Compute corrected lineage state probabilities Pj

1:T for each

particle conditional on x
j
1:T .

6. Compute corrected weights v
j
T~p(x

j
1:T DG1:T ,h,fPj

1:Tg).

7. Compute final importance weights w
j
T~

v
j
T

u
j
T

and normalize to

get W
j
T .

8. Sample x�1:T from p̂p(x1:T DG1:T ,h,fP1:Tg) according W
j
T .

9. Compute marginal likelihood estimate

p̂p(G1:T Dh)~P
T

t~1

XN

j~1

W
j
T v

j
t: ð16Þ

The particle filter/importance sampler therefore provides us

with a proposal for the population state variables x�1:T and an

estimate of the marginal likelihood. We can therefore plug the

particle filter/importance sampler into step 2 of Algorithm 1 to

obtain a PMMH algorithm for sampling from the joint posterior

density of h and x1:T under structured epidemiological models.

Moreover, because we marginalize over the population state

variables x1:T using the particle filter and then marginalize over

the lineage states by summing over all possible lineage states when

computing the likelihood, we can efficiently sample from the

posterior density using the PMMH algorithm without having to

design proposal updates for the population states or lineage states.

Before moving on, we make a few notes about the potential

limitations and efficiency of the particle filter/importance sampler.

As a basic requirement of importance sampling, the support of the

importance density p(x1:T DG1:T ,h,f �PP1:Tg) must span the support of

the target density p(x1:T DG1:T ,h,fP1:Tg)), so that wherever

p(x1:T DG1:T ,h,fP1:Tg)w0 so must p(x1:T DG1:T ,h,f �PP1:Tg)w0. How-

ever, in order for the particle filter/importance sampler to be

efficient, the density p(x1:T DG1:T ,h,fP1:Tg) should also be similar

to p(x1:T DG1:T ,h, �PP1:Tg). Of course, this might not always be the

case. If the stochastic particle trajectories can diverge largely from

�xx1:T or the lineage state probabilities are highly correlated with

x1:T (such that small changes in the population states lead to large

jumps in the lineage state probabilities), then these two densities

may be quite different, causing the importance sampler to become

very inefficient and requiring us to sample many particle

trajectories in order to obtain a reasonable particle approximation

to p(x1:T DG1:T ,h,fP1:Tg). In such cases, it may be unwise to

resample particles according to their expected weights uT during

the particle filtering stage because these weights will not be

predictive of the corrected weights vT , meaning we may be

discarding particles with high posterior probability under the

desired density p(x1:T DG1:T ,h,fP1:Tg). In practice, this can easily

be checked by making sure that there is a strong positive

correlation between the expected and corrected weights. We found

this to be true for all cases considered in this paper and found that

resampling according to the expected weights during the filtering

stage measurably improved the performance of the algorithm by

reducing the variance in the marginal likelihood estimates, which

tends to improve MCMC mixing overall.

Simulations
We simulated mock genealogies under each model to test the

performance of the PMMH algorithm before applying the method

to real data. Mock genealogies were obtained by first forward

simulating from the population dynamic model while tracking all

infected hosts in the population and the parent-offspring

relationships at transmission events. From the forward simulations,

we could then trace the lineages of infected individuals backwards

through time to obtain the true genealogy for a fraction of sampled

lineages. All population dynamic simulations were performed
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using the tau-leaping algorithm so that the epidemiological

dynamics included demographic noise [32].

The three-stage model was parameterized to reflect the natural

history of HIV because we planned to apply our method to real

HIV genealogies (see Table 1). We set the disease progression and

AIDS death rate to values that give an average time between

infection and death of about 10 years, consistent with observed

patterns. The incidence scaling parameter a was set to zero so that

in the simulations there was a linear scaling between incidence and

prevalence. The epidemic simulations were seeded with one early-

stage infection at time zero and run for 37 years to reflect the

timespan of the HIV epidemic in the U.S. To obtain mock

genealogies from the complete infection trees, we sampled 200

individuals in the last six years of the epidemic to reflect the fact

that most HIV sequences have been sampled in the recent past.

For all parameters, we chose to use uniform priors over a wide

range of biologically plausible values so that the choice of prior

would have minimal influence on our estimates.

For the two-population model, we added seasonality to the

model by seasonally forcing the base transmission rate b(t) using a

sinusoidal forcing function, where

b(t)~b 1za cos
(tzd)

2p

� �� �
: ð17Þ

The strength of seasonality a was the same in both populations but

we allowed d to differ between the two populations to get

asynchronous dynamics between populations. The values of all

fixed parameters in the model are also shown in Table 1. For the

genealogies, 120 infected hosts were randomly sampled over time

with sampling effort proportional to disease prevalence in each

population. For the two-population model, we fixed the initial

conditions for the number of susceptible and infected hosts in each

population.

For the simulation experiments, we wished to compare

estimates obtained by fitting stochastic models using the PMMH

algorithm against estimates obtained by fitting deterministic

models. To fit deterministic models, we used a Metropolis-

Hastings sampler where, whenever new parameters are proposed,

the likelihood of the genealogy under the new parameters is

computed by conditioning on a deterministic trajectory of the state

variables x1:T simulated from the model using these new

parameters.

HIV data
We applied our method to a set of HIV-1 partial pol sequences

collected from men who have sex with men (MSM) in the

metropolitan area of Detroit, Michigan. The dataset contained

437 HIV-1 subtype B sequences which were originally collected

for drug resistance testing between 2004 and 2011. More

information about this dataset can be found in Volz et al. [26].

Data were anonymized by staff at the Michigan Department of

Community Health before being provided to investigators.

Because this research falls under the original mandate for HIV

surveillance and was de-identified, it was classified as human

subjects research but was exempt from further IRB review.

We reconstructed time-scaled genealogies from the HIV

sequences in BEAST using a relaxed molecular clock [33]. All

sequences identified as likely recombinants were removed from the

alignment prior to the analysis. Tips in the genealogy correspond-

ing to sampled infected individuals were assigned prior probabil-

ities of being in each infection stage based on the time since

infection estimated from CD4 cell counts and genetic diversity

within the host [34].

From the HIV genealogies, we estimated the transmission rates

bE , bC and bA as well as the incidence scaling parameter a. All

other parameters were fixed at the values given in Table 1. Rather

than estimate initial conditions, the time of the initial introduction

of HIV into Detroit was estimated, at which point the epidemic

was seeded with one early-stage infection in a completely

susceptible population. All priors on the parameters were uniform.

For the time of initial introduction the prior was truncated at 1973

as a lower bound and the root time of each tree as an upper

bound. To ensure our phylodynamic estimates of HIV incidence

were reasonable, we compared our estimates against incidence

back-calculated from Michigan Department of Community

Health surveillance data using the method of Yan et al. [35].

Implementation
For all results shown in this paper, the PMMH algorithm was

run for at least 100,000 iterations or until the MCMC fully

converged. For the Metropolis-Hastings step, we chose a

multivariate normal proposal density for q(hDh�), which can take

into account the correlations among different parameters by

optimizing the covariance parameters that specify the density.

For the particle filter, we found that using a small number of

particles (N~10) was sufficient. Running the particle filter with a

small number of particles tends to increase the error, or variance,

in the marginal likelihood estimates. However, this error will not

affect inference as long as the marginal likelihood estimates are not

systematically biased because the error in the estimates will get

averaged out in the encompassing MCMC algorithm. Neverthe-

less, with too few particles we run the risk of the MCMC getting

stuck at erroneously high values of the likelihood. Our choice of

N~10 was therefore a compromise between minimizing the error

in the marginal likelihood estimates and the time taken to run the

particle filter. Resampling within the particle filter was done by

multinomial sampling with replacement. Resampling times were

chosen to minimize the variance in the marginal likelihood

estimates and were usually placed around coalescent events, as

most of the variation in particle weights arises at coalescent times.

The PMMH algorithm was implemented in the software

package PHYLter and Java source code is freely available at

http://code.google.com/p/phylter/. Running the PMMH algo-

rithm for 100,000 iterations using the simulated HIV genealogies

took approximately 10 hours (0.36 s per iteration) on a 3.4 GHz

Intel i7 processor without any parallelization across cores. The

most computationally intensive component of the algorithm is

computing the lineage state probabilities, which involves numer-

ically solving the master equations for each lineage in the

genealogy and has a time complexity of O(m2), where m is the

number of possible lineage states. On the other hand, run times

scale linearly with the number of particles and lineages in the

genealogy. Thus, the efficiency of the algorithm is mainly limited

by the number of states in the model.

Results

Testing the algorithm
Before applying the PMMH algorithm to genealogies recon-

structed from real data, we ran extensive simulations to ensure that

we could accurately recover epidemiological parameters and

population dynamics from mock genealogies. We simulated 100

stochastic realizations of an epidemic from the three-stage model,

keeping track of the underlying infection tree so that we could

obtain the true genealogy for a fraction of sampled lineages. From

the simulated epidemic dynamics, we can see that demographic

stochasticity generates considerable variation in when the
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epidemic begins and peaks (Figure S1). Even with this variability,

we accurately inferred stage-specific prevalence and transmission

rates from the mock genealogies using the PMMH algorithm

(Figure 1). The 95% credible intervals generally contained the true

prevalence for all three stages of infection (Figure 1A). We were

also able to estimate the stage-specific transmission rates associated

with each stage of infection (Figure 1B–D), even though there were

strong correlations among the different transmission rates as seen

in the pairwise joint posterior densities (Figure 1E–G). Overall, out

of all 100 simulations, the 95% credible intervals contained all

three transmission rates 94 times, while the posterior coverage was

greater than 95% for each parameter individually. In contrast,

when we fit deterministic models to the same set of genealogies,

the credible intervals contained the true parameters only 79% of

the time. The PMMH algorithm therefore appears to give reliable

estimates of parameters and epidemiological dynamics and

outperforms deterministic methods when stochasticity plays a role

in the epidemic dynamics.

HIV in Detroit
Given that we were able to reliably estimate transmission

parameters and prevalence in our simulation study, we next

applied the method to HIV genealogies reconstructed from

sequences collected in Detroit, Michigan. A critical question in

HIV epidemiology is to what extent transmission during the early

stages of infection contributes to overall HIV incidence. Trans-

mission during early infection may influence the effectiveness of

interventions based on antiretroviral treatment in limiting the

epidemic [36,37]. If most new cases of HIV result from recently

infected individuals, then prevention strategies that rely on treating

diagnosed individuals, who are likely in later stages of infection,

will directly prevent few transmissions. Thus, the transmission rate

from early HIV infections (EHI) is a key parameter of great

interest, although difficult to measure directly from traditional

surveillance data. Phylogenetic studies of HIV have used the high

degree of clustering and short branch times within these clusters to

argue for a high EHI transmission rate [4,38]. However, clustering

alone cannot be taken as definitive evidence for high EHI

transmission as similar patterns can arise simply from epidemic

transmission dynamics [26]. In this section, we demonstrate that

our inference framework can be used to estimate the EHI

transmission rate and the number of new HIV infections

attributable to EHI from HIV genealogies using models that

explicitly consider HIV’s transmission dynamics, as well as the

stochastic nature of the epidemic dynamics.

Time-scaled genealogies were reconstructed using BEAST from

HIV-1 partial pol sequences isolated from men who have sex with

men (MSM) in the metropolitan area of Detroit. A representative

genealogy randomly sampled from the BEAST posterior is shown

in Figure S2. We then fit our three-stage SIR model to 10

genealogies sampled from the BEAST posterior to take into

account uncertainty in the genealogy. From these genealogies, we

estimated the transmission rate for each stage, including the EHI

transmission rate, along with the stage-specific dynamics of

prevalence and the incidence (i.e number of new cases) attribut-

able to each stage over the course of the epidemic.

Parameters estimated from the representative HIV genealogy

are shown in Figure 2 and estimates from all 10 genealogies are

given in Table 2. We estimated that transmission rates are higher

during the early and AIDS stages than during the chronic stage, as

expected from previous studies [39–41]. The transmission rate

from EHI is about 20 times higher than during the chronic stage

and about five times higher than during the AIDS stage (Figure 2A–

C). We also found evidence for a nonlinear dependence of incidence

on prevalence, quantified through the incidence scaling parameter

a. Although estimated values of a are small, the posterior density is

clearly centered away from zero, indicating that incidence scales

nonlinearly with prevalence (Figure 2D). Overall, parameter

estimates were largely consistent across genealogies, although there

was considerable variation in the time of initial introduction of HIV

into Detroit estimated from different trees. This is likely attributable

to the large amount of variation in the root times inferred for

different trees, as we inferred earlier times of introduction from trees

with earlier root times.

Stage-specific HIV prevalence inferred from the genealogies

shows a predictable transition from most infections being in the

early stage at the beginning of the epidemic to most infections

being in the chronic or AIDS stages later in the epidemic

(Figure 3A). This is expected given the longer duration of the

chronic and AIDS stages. In general, our phylodynamic estimates

of the epidemic dynamics closely track HIV incidence imputed

from surveillance data from the beginning of the epidemic through

the peak (Figure 3B). While our phylodynamic estimates do not

capture the fluctuations in incidence that occur after 1990, there

was nothing in our model that would allow us to reproduce this

pattern, which likely results from complex changes in HIV

treatment and behavioral changes [34]. Although there was also

considerable variability in the population dynamics inferred from

different genealogies, this variation occurs primarily during the

early stages of the epidemic (Figure 3C). Again, this appears to be

associated with uncertainty in the root times of trees; dynamics

inferred from trees with earlier root times show an earlier rise and

peak in incidence. After the epidemic peaks, the incidence

estimated from different trees seems to converge on similar values.

Table 1. Fixed parameters in the epidemiological models.

Three-stage model Two-population model

Initial population size N = 10,000 Initial population sizes N1 = N2 = 2 million

Birth/death rate
m~

1

40:28
yr21 Birth/death rate

m~
1

70
yr21

Progression rate cE = 1 yr21 Recovery rate
n~

1

7
day21

Progression rate
cC~

1

6:31
yr21 Seasonal amplitude a = 0.08

AIDS death rate
cA~

1

2:55
yr21 Seasonal phase d1 = 0.0 yrs

d2 = 0.5 yrs

doi:10.1371/journal.pcbi.1003570.t001
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Estimates of incidence attributable to each stage show that EHI

contributed to most new infections at the beginning of epidemic

when EHI prevalence was high (Figure 3B). After the epidemic

peak, infections arising from EHI remains high proportional to

EHI prevalence, consistent with the higher transmission rate we

estimated for EHI. In the late 2000’s, we estimated that between

40 to 50% of all new infections arise from EHI, indicating that

early stage infections still play a major role in driving HIV

transmission. These large estimates for number of new infections

arising from EHI are consistent with the phylodynamic estimates

of Volz et al. [34], who fit a more complex but deterministic

epidemiological model to the same set of HIV sequences.

Inferring population structure
While our results for the three-stage model suggest that the

PMMH algorithm works effectively and can be used to estimate

key epidemiological parameters like HIV transmission rates, we

were also interested in how much information genealogies contain

about the structure of populations in general. To explore this

question, we used the two-population model presented in (3), for

which we can tune the strength of population structure by altering

the mixing rate r between populations. Mock genealogies were

simulated under three values of r: low (0.01), medium (0.05) and

high (0.2). At r~0:01, for example, about one in every one

hundred transmission events occurs between populations. For all

Figure 1. Prevalence and transmission rates estimated from a representative genealogy simulated under the three-stage SIR
model. (A) Stage-specific prevalence estimates with the 95% credible intervals shaded and the posterior medians shown as solid lines. Dashed lines
show the true prevalence. (B–D) The marginal posterior densities of the stage-specific transmission rates. (E–G) The corresponding pairwise joint
densities of the transmission rates, which were constructed from the MCMC samples using nonparametric kernel density estimation.
doi:10.1371/journal.pcbi.1003570.g001
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three values of r, we were able to accurately infer the

epidemiological parameters of interest and the population

dynamics from the simulated genealogies (Figure 4 & Figure S3).

While we can easily estimate b under all three demographic

scenarios, the posterior densities become skewed towards increas-

ingly high values of r as mixing increases between the populations

(Figure 4A–C). This indicates that it may be very difficult to obtain

precise estimates of r or other parameters pertaining to population

structure when populations are only weakly structured.

We can visually explore how much information a genealogy

contains about population structure and pathogen movement by

comparing the true lineage states to the computed lineage state

probabilities. In Figure 5A–C, the true state of each lineage over

time is mapped onto the genealogies. For ease of viewing, we only

display a representative subtree of each genealogy. As expected,

under low mixing lineages change states very slowly leading to a

high degree of clustering among lineages sampled from the same

population, whereas under high mixing lineages move rapidly

between states and there is little clustering. We can then compare

the true lineage states with the state probabilities computed under

the median posterior values of the estimated parameters

(Figure 5D–F). When r is low, the state of the lineages at the

time of sampling is highly informative about the state of the lineage

going into the past. However, when we increase r to 0.05, the state

of the sampled lineages is less informative about the past states and

we can see that the lineage state probabilities fluctuate seasonally

according to the asynchronous dynamics between populations.

When r is high, the lineages move between states so rapidly that

there is high uncertainty in the lineage states over the entire tree.

This loss of information regarding the lineage states is readily

observed by considering how the entropy, or uncertainty, in the

lineage states changes going backwards in time (Figure 5G–H).

Visualizing the flow of information along the lineages in the

trees shows how uncertainty in parameters like r depends on how

rapidly information about the lineage states decays. When r is low,

lineages remain in the same state long enough that once a

coalescent event is reached, information about the probable state

of the lineages is still present. In this case, the probable states of the

coalescing lineages provides additional information about the

transmission event with respect to whether the transmission event

occurred within or between populations. By combining informa-

tion from coalescent events across the entire tree, we can then

estimate the rates at which transmission occurs within and

between populations. However, if all information about the past

lineage states is lost before lineages coalesce, the observed

coalescent events will no longer be informative about whether

transmission occurred within or between populations and there-

fore parameters like r will be difficult to precisely estimate.

The preceding observations about uncertainty in lineage states

suggest that it may be possible to estimate r more precisely if we

increase the number of sampled lineages. Increasing the sampling

fraction will also increase the coalescent rate among lineages,

thereby increasing the probability of lineages coalescing before all

information about their probable state is lost. To test this idea, we

Figure 2. Posterior densities of parameters inferred from one HIV genealogy. Solid red lines mark the median values and dashed lines
indicate the 95% credible intervals. The estimated parameters are the early stage transmission rate bE , the chronic stage transmission rate bC , the
AIDS stage transmission rate bA , the incidence scaler a and the initial introduction time of HIV into Detroit.
doi:10.1371/journal.pcbi.1003570.g002

Table 2. HIV parameter estimates.

Tree bE bC bA a61024 Initial Time

1 1.59 (1.43–1.77) 0.077 (0.006–0.187) 0.328 (0.146–0.653) 1.52 (0.51–4.35) 1975 (1973–1977)

2 1.69 (1.51–1.9) 0.079 (0.007–0.184) 0.318 (0.126–0.59) 1.72 (0.62–4.02) 1976 (1973–1979)

3 1.69 (1.39–1.99) 0.184 (0.02–0.539) 0.593 (0.151–1.26) 5.78 (1.43–11.8) 1976 (1973–1978)

4 1.51 (1.32–1.73) 0.079 (0.007–0.191) 0.316 (0.114–0.648) 1.55 (0.48–4.44) 1974 (1973–1976)

5 1.6 (1.29–1.92) 0.146 (0.016–0.395) 0.786 (0.235–1.64) 5.99 (1.91–11.1) 1973 (1973–1974)

6 1.69 (1.43–1.99) 0.114 (0.008–0.28) 0.543 (0.193–1.0) 3.75 (1.23–8.0) 1974 (1973–1975)

7 1.67 (1.45–1.91) 0.1 (0.012–0.224) 0.431 (0.155–0.823) 2.93 (1.21–5.57) 1974 (1973–1977)

8 1.87 (1.62–2.14) 0.095 (0.006–0.239) 0.521 (0.214–0.964) 4.06 (1.22–8.3) 1979 (1974–1981)

9 1.9 (1.51–2.31) 0.295 (0.025–0.636) 0.823 (0.247–1.74) 10.2 (2.76–17.5) 1980 (1974–1982)

10 1.52 (1.32–1.73) 0.08 (0.009–0.248) 0.433 (0.184–1.29) 2.5 (0.73–10.5) 1974 (1973–1976)

Median posterior and 95% credible intervals for parameters estimated from 10 HIV genealogies.
doi:10.1371/journal.pcbi.1003570.t002
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simulated genealogies under the same three values of r but varied

the sample size. With a sample size of 100, the same as used above,

we see that the likelihood is peaked around the true value of r
when mixing is low but the likelihood profile is fairly flat when

mixing is high (Figure 6A–C). Increasing the sample size to 500

resulted in more curved likelihood profiles but the likelihood

remains relatively flat with high mixing (Figure 6D–F). Doubling

the sample size again to 1,000, the likelihood profiles show

significant curvature for all values of r (Figure 6G–I). This suggests

that while the sample size does play a significant role in

determining whether parameters like r can be precisely estimated

from genealogies, extremely large sample sizes may be required to

estimate parameters pertaining to population structure when the

population is only weakly structured.

Discussion

The approach outlined in this paper allows for structured,

stochastic epidemiological and other population dynamic models

to be fit to genealogies in order to jointly infer past population

Figure 3. Population dynamics inferred from the Detroit HIV genealogies. (A) Stage-specific prevalence estimates from one genealogy with
shaded regions showing the 95% credible intervals and lines the median of the posterior densities. (B) Estimated total yearly incidence and the
estimated incidence attributable to early stage infections. The dashed black line shows the incidence back-calculated from Michigan Department of
Community Health surveillance data. (C) Total incidence estimated from 10 randomly sampled HIV genealogies.
doi:10.1371/journal.pcbi.1003570.g003
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dynamics and model parameters. We believe this to be an

important step forward in the field of phylodynamics because

many populations are structured in ways that could bias estimates

of demographic parameters when using coalescent-based methods

if population structure is not properly taken into account.

Furthermore, unlike earlier methods for fitting structured coales-

cent models to genealogies (e.g. [7,15]), our framework can

accommodate non-equilibrium and nonlinear population dynam-

ics and allows birth and migration rates to vary over time. We can

also include stochasticity in our models when fitting them to data

Figure 4. Parameter and prevalence estimates for the two-population model. Mixing rates between the two populations were varied from
low (r~0:01), medium (r~0:05) to high (r~0:2). (A–C) Joint posterior densities for the transmission rate b and the mixing parameter r. (D–F)
Prevalence estimates for the two populations with the 95% credible intervals shaded and the posterior medians shown as solid lines. Dashed lines
show the true prevalence. Initial conditions for the number of susceptible and infected individuals in each population were fixed at their true values
for these simulations.
doi:10.1371/journal.pcbi.1003570.g004
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obtained from real populations, which may behave very differently

than what would be expected under deterministic models. We can

therefore fit the type of mechanistic population dynamic models

typically used by epidemiologists and ecologists, which often

include population structure, to genealogies.

As we have shown, fitting stochastic population dynamic models

to genealogies through a structured coalescent model poses some

challenges to statistical inference not normally dealt with in the

statistical literature on fitting generic state space models to

observational data. Under our structured coalescent models, the

probability of a genealogy depends conditionally on both the

population state variables as well as the states of individual lineages

over time. However, going backwards in time, the probability that

a lineage is in a certain state can strongly depend on the state that

the lineage was sampled in at some future point in time. Particle

filtering methods, which are widely used to fit state space models to

other sources of data, can perform very poorly under these

circumstances because the state of the system, in this case the

lineage states, can depend strongly on the future states of the

system. One strategy we initially tried was therefore to use a Gibbs

sampling approach to iteratively sample from the conditional

posterior densities of the population state and lineage state

variables in independent steps to avoid the problem of having

both forward and backward time dependencies in the model.

Unfortunately, we found that such a Gibbs sampling strategy can

be very inefficient and suffer from extremely poor MCMC mixing

when there are strong correlations among the parameters and the

lineage states. For example, in our two-population model, the

mixing parameter r controls how rapidly lineages move between

states and is thus highly correlated with the lineage states. If we

update r conditional on our current lineage states, the proposed

value of r will need to be very close to the current value in order

for the proposal to have high enough probability to be accepted

conditional on the current lineage states. We therefore explore a

potentially very large parameter space taking only small steps at a

time.

Given these issues, we decided to use a modified version of the

PMMH algorithm originally proposed by Andrieu et al. [22]. In

this approach, we simply propose new parameter values each

MCMC iteration and then run the particle filter to numerically

integrate over the population state variables. To make the particle

filtering algorithm as efficient as possible within each MCMC step,

we allow for resampling by first weighting the particles according

to the expected lineage state probabilities. Once we have run the

Figure 5. Genealogies simulated under different mixing rates. Mixing rates between the red and blue population were varied from low
(r~0:01), medium (r~0:05) to high (r~0:2). (A–C) The true lineage states mapped onto the genealogy. (D–F) Lineage state probabilities given with
respect to the probability that the lineage is in the red state. (G–I) Entropy in the lineage states, which shows how much uncertainty there is in the

lineage states. For each lineage i, the entropy Hi~{
Xm

k
pik log2

1

pik

� �
.

doi:10.1371/journal.pcbi.1003570.g005
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particle filter forwards in time, we can then compute the true

lineage state probabilities backwards in time and apply an

additional round of importance sampling to correct for any bias

introduced by using the expected lineage state probabilities. With

the true lineage state probabilities of each particle, we can

compute the coalescent likelihood of the genealogy while summing

over all possible lineage states. We can therefore integrate over

both the unobserved population state variables and the lineage

state variables when computing the marginal likelihood of the

parameter proposal. We thus have an efficient MCMC algorithm

for sampling from the posterior density of the parameters without

having to design independent proposals for the population states

or the lineage states. The PMMH sampler therefore has a major

practical advantage over other MCMC approaches that can be

easily quantified. For the models considered in this paper, the

PMMH algorithm typically converged in less than 100,000

iterations whereas for the Gibbs sampler we could run millions of

MCMC iterations and still not converge. The efficiency of this

approach will hopefully make it possible to also consider phyloge-

netic uncertainty in the future by sampling genealogies in addition

to epidemiological parameters in the MCMC algorithm.

Whether or not the type of coalescent models considered here

are appropriate for a particular pathogen is another important

issue. The coalescent models assume that each infected host

corresponds to a single pathogen lineage. If this were indeed

always the case then coalescent events in the genealogy would

always correspond to transmission events in the population. In

reality, coalescent events will not occur instantaneously at

transmission events but at some time before the actual transmis-

sion event because there will be a waiting time between when a

lineage is transmitted and when it coalesces with another sampled

lineage in the host. How closely the actual transmission event

corresponds in time with the coalescent event will likely depend on

the within-host dynamics of the pathogen [42]. For chronic viral

infections like HIV where multiple lineages can persist within a

given host for months or years, this may result in a large

discrepancy in the timing of transmission and coalescent events.

Nevertheless, a simulation study using a realistic distribution of

within-host coalescent times for HIV found that the difference in

timing between coalescent and transmission events was not

sufficient to bias estimates of epidemiological parameters [34].

This may be due to the fact that a large fraction of HIV

transmissions are due to recently infected individuals, in which

case the within-host coalescent event cannot have occurred very

long before the actual transmission event. A more principled

approach to pursue in the future may be to impute the actual times

of transmission conditional on the time of the coalescent events

using information about within-host population dynamics. For

example, additional information about pathogen population sizes

over the course of a typical infection could provide an informative

prior on waiting times between transmission events and coalescent

events within hosts.

Another possible violation of the coalescent model occurs if

sampled individuals have descendants that are themselves

sampled, which can occur when samples are collected serially

over time. The coalescent model implicitly assumes that when a

Figure 6. Likelihood profiles for the strength of coupling r obtained from genealogies simulated under different values of r. Red
lines correspond to the true value of r. The likelihoods were computed from genealogies with 100 samples in (A–C), 500 samples in (D–F) and 1000
samples in (G–I). These sample sizes correspond, respectively, to approximately 0.2%, 1.0% and 2% of all infected individuals being sampled.
doi:10.1371/journal.pcbi.1003570.g006
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new lineage is sampled, that lineage is sampled from a different

host than any other lineage already in the genealogy. However, if a

lineage is sampled from a host that has other sampled descendant

lineages in the genealogy, then this results in a coalescent event in

the tree that does not correspond to a transmission event in the

population. A similar problem would arise if we unwittingly

sampled more than one lineage from a single infected host.

However this is likely to occur only if sampling is dense relative to

prevalence over time. For example, if sampling is dense at the

beginning and the end of an epidemic, then with a high probability

hosts sampled at the beginning of the epidemic will likely have

sampled descendants at the end of the epidemic. We acknowledge

that the coalescent models used in this paper cannot adequately

handle these types of situations, although for the HIV analysis it is

unlikely that this is a serious problem seeing as all sequences were

sampled in the recent past when prevalence was high. In cases

where this is likely to be a serious problem, it may be worth

developing metapopulation coalescent models, such as those

introduced by Dearlove and Wilson [43], that allow hosts to be

infected by more than a single lineage.

As our application to HIV showed, the PMMH algorithm

allowed us to infer key epidemiological parameters like stage-

specific transmission rates directly from genealogies. However, in

the case of HIV, individuals stay in the same stage of infection for

long periods of time relative to the timescale of the epidemic. The

stage of infection of sampled individuals is therefore highly

informative about the state of the lineage going into the past. Our

experience with HIV may therefore not be representative of our

general ability to infer parameters pertaining to pathogen

transmission or movement in structured populations. In fact, our

simple two-population SIR model revealed certain conditions

under which it may be inherently difficult to estimate parameters

relating to population structure. When lineages move between

states rapidly due to transmission or migration any particular

lineage is likely to have changed states multiple times before a

coalescent event is reached, leading to high uncertainty about the

state of lineage over the majority of the genealogy. This is

somewhat analogous to the problem of site saturation in

phylogenetic inference, where multiple transitions at a particular

site along branches can render that site phylogenetically uninfor-

mative [44]. In the case of rapid transition rates among population

states, observing the state of lineages at the time of sampling offers

little or no information about the structure of the population

because all information about the state of the lineage is quickly

lost. Under these circumstances, it will be difficult to precisely

estimate migration rates or other parameters relating to population

structure from genealogies as we saw from the likelihood profiles of

the mixing parameter in the two-population model, although it

may be possible with many samples or a large sample fraction.

This echoes earlier work on inference with structured coalescent

models, where researchers have found it difficult to estimate

migration rates from genealogies even without the complication of

complex population dynamics [7,45].

Although it may not always be possible to precisely estimate

parameters relating to population structure from genealogies, we

can imagine several cases in which the ability to fit mechanistic

epidemiological models to genealogies that include population

structure may be extremely useful. For example, our methods

could be used to fit spatially structured models to genealogies of

samples collected in different locations and could potentially

complement recently developed phylogeographic methods that

consider spatial structure but do not generally take into account

local population dynamics at any particular location [46,47]. For

instance, incorporating both spatial and temporal dynamics could

be important when the structure of a population is not static but

changes over time due to changes in migration rates, which

themselves may vary due to non-stationary population dynamics

across locations. Our approach can also be applied in cases where

sampling effort is distributed unevenly among populations so that

the assumption of random sampling in unstructured coalescent

models has obviously been violated. In this case, structured

coalescent models can be used to control for non-random sampling

as long as sampling is random within the subpopulations defined in

the coalescent model. Finally, our methods can be applied to multi-

host or vectored pathogens where lineages can move among

different host or vector species. As shown in Rasmussen et al. [48]

for the case of dengue, including the dynamics of both the host and

vector populations in coalescent models may be necessary in order

for population dynamics inferred from genealogies of vector-borne

pathogens to be accurate.

We end by noting that the methods presented here can be used

to fit epidemiological models to genealogies as well as other

sources of data simultaneously. For example, we previously

showed how unstructured epidemiological models can be fit to a

genealogy and a time series of case reports simultaneously and it

would be straightforward to extend the methods presented here to

include time series or other observational data [21]. This could be

especially helpful when certain parameters or aspects of the

dynamics are difficult to infer from one data source but for which

an alternative data source could be highly informative. For

example, case report data may be aggregated over different

subpopulations obscuring some of the heterogeneity present in the

population but could be revealed by also considering information

present in a genealogy. Consolidating data sources in this way will

likely play an important role in epidemiological modeling in the

future, especially as molecular sequence data become increasingly

available and phylodynamic methods become integrated into

modern epidemiology.

Supporting Information

Figure S1 Simulated epidemic dynamics for 100 sto-
chastic realizations of the three-stage SIR model. Total

prevalence includes all three stages of infection.

(TIF)

Figure S2 Representative time-scaled HIV genealogy
from Detroit, Michigan.

(TIF)

Figure S3 Marginal posterior densities of the parame-
ters in the two-population model with low mixing
(r~0:01) between populations. Blue lines show the true

values. The estimated parameters are: (A) the transmission rate b;

(B) the mixing rate r; (C) the amplitude of seasonal forcing a; (D–

E) the seasonal phases for the two populations d1 and d2. Similar

estimates of the seasonality parameters were obtained with

medium and high mixing between populations.

(TIF)

Text S1 Summary of the particle filtering algorithm for
genealogies and details on how lineage state probabil-
ities are computed.

(PDF)
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