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Abstract

Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical
components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the
choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one
extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom
potentials. On the other extreme, fast elastic network model (ENM) methods with Ca2only representations and simplified
potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network
Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term
and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of
NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational
ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of
mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use
of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of
application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a
large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to
that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing
mutations and that ENCoM is less biased at predicting stabilizing mutations.
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Introduction

Biological macromolecules are dynamic objects. In the case of

proteins, such movements form a continuum ranging from bond

and angle vibrations, sub-rotameric and rotameric side-chain

rearrangements [1], loop or domain movements through to

folding. Such movements are closely related to function and play

important roles in most processes such as enzyme catalysis [2],

signal transduction [3] and molecular recognition [4] among

others. While the number of proteins with known structure is vast

with around 85K structures for over 35K protein chains (at 90%

sequence identity) in the PDB database [5], our view of protein

structure tends to be somewhat biased, even if unconsciously,

towards considering such macromolecules as rigid objects. This is

due in part to the static nature of images used in publications to

guide our interpretations of how structural details influence

protein function. However, the main reason is that most known

structures were solved using X-ray crystallography [6] where

dynamic proprieties are limited to b-factors and the observation of

alternative locations. Despite this, it is common to analyze

larger conformational changes using X-ray structures with the

comparison of different crystal structures for the same protein

obtained in different conditions or bound to different partners

(protein, ligand, nucleic acid). It is particularly necessary to

consider the potential effect of crystal packing [7,8] when studying

dynamic properties using X-ray structures.

Nuclear magnetic resonance (NMR) is a powerful technique

that gives more direct information regarding protein dynamics

[9,10]. Different NMR methodologies probe distinct timescales

covering 15 orders of magnitude from 10212 s side chain rotations

via nuclear spin relaxation to 103 s using real time NMR [10]. In

practice, there is a limitation on the size of proteins that can be

studied (between 50–100 kDa) although this boundary is being

continuously pushed [11] providing at least partial dynamic

information on extremely large systems [12]. However, only a

small portion (around 10%) of the available proteins structures in

the Protein Data Bank (PDB) are the result of NMR experiments

[5].

Molecular dynamic simulations numerically solve the classical

equations of motion for an ensemble of atoms whose interactions

are modeled using empirical potential energy functions [13–15].

At each time step the positions and velocities of each atom are
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calculated based on their current position and velocity as a result

of the forces exerted by the rest of the system. The first MD

simulation of a protein (Bovine Pancreatic Trypsin Inhibitor,

BPTI) ran for a total 8.8 ps [16] followed by slightly longer

simulations (up to 56 ps) [17]. A film of the latter can be seen

online (http://youtu.be/_hMa6G0ZoPQ). Despite using simpli-

fied potentials and structure representations (implicit hydrogen

atoms) as well as ignoring the solvent, these first simulations

showed large oscillations around the equilibrium structure,

concerted loop motions and hydrogen bond fluctuations that

correlate with experimental observations. Nowadays, the latest

breakthroughs in molecular dynamics simulations deal with

biological processes that take place over longer timescales. For

example, protein folding [18], transmembrane receptor activation

[19,20] and ligand binding [21]. These simulations require

substantial computer power or purpose built hardware such as

Anton that pushes the current limit of MD simulations to the

millisecond range [22]. Despite powerful freely available programs

like NAMD [23] and GROMACS [24] and the raise of

computational power over the last decade, longer simulations

reaching timescales where most biological processes take place are

still state-of-the-art.

Normal modes are long established in the analysis of the

vibrational properties of molecules in physical chemistry [25].

Their application to the study of proteins dates back to just over 30

years [26–30]. These earlier Normal Mode Analysis (NMA)

methods utilized either internal or Cartesian coordinates and

complex potentials (at times the same ones used in MD). As with

earlier MD methods their application was restricted to relatively

small proteins. Size limitations notwithstanding, these early studies

were sufficient to demonstrate the existence of modes representing

concerted delocalized motions, showing a facet of protein

dynamics that is difficult to access with MD methods. Some

simplifications were later introduced and shown to have little effect

on the slowest vibrational modes and their utility to predict certain

molecular properties such as crystallographic b-factors. These

simplifications included the use of a single-parameter potential

[31], blocks of consecutive amino acids considered as units (nodes)

[32] and the assumptions of isotropic [33] fluctuations in the

Gaussian Network Model (GNM) or anisotropic fluctuations [34].

These approximations have drastically reduced the computational

time required, thus permitting a much broader exploration of

conformational space using conventional desktop computers in a

matter of minutes. Of these, the most amply used method is the

Anisotropic Network Model (ANM) [35,36]. ANM is often

referred simply as an elastic network model; one should however

bear in mind that all normal mode analysis methods are examples

of elastic network models. ANM uses a simple Hook potential that

connects every node (a point mass defined at the position of an

alpha carbon), within a predetermined cut-off distance (usually

18 Å). More recently, a simplified model, called Spring general-

ized Tensor Model (STeM), that uses a potential function with

four terms (covalent bond stretching, angle bending, dihedral

angle torsion and non-bonded interaction) has been proposed

[37]. The normal mode analysis of a macromolecule produces a

set of modes (eigenvectors and their respective eigenvalues) that

represent possible movements. Any conformation of the macro-

molecule can in principle be reached from any other using a linear

combination of amplitudes associated to eigenvectors.

It is essential however to not loose sight of the limitations of

normal mode analysis methods. Namely, normal modes tell us

absolutely nothing about the actual dynamics of a protein in the

sense of the evolution in time of atomic coordinates. Plainly

speaking, normal mode analysis is informative about the possible

movements but not actual movements. Additionally, normal

modes tell us of the possible movements around equilibrium.

These two caveats clearly place normal mode analysis and

molecular dynamics apart. First, molecular dynamics gives an

actual dynamics (insofar as the potential is realistic and quantum

effects can be ignored). Second, while the equilibrium state (or the

starting conformation) affects the dynamics, one can explore

biologically relevant timescales given sufficient computational

resources to perform long simulations.

The vast majority of coarse-grained NMA models only use the

geometry of the protein backbone (via Ca Cartesian position)

disregarding the nature of the corresponding amino acid, in doing

so a lot of information is lost. To our knowledge, there have been

three independent attempts at expanding coarse-grained NMA

models over the years to include extra information based on

backbone and side-chain atoms. Micheletti et al. [38] developed

the bGM model in which the protein is represented by Cb atoms

for all residues except Glycine in addition to the Ca atoms. The

Hamiltonian is a function exclusively of Ca and Cb distances. As a

Gaussian model, bGM does not give information about directions

of movement but only their magnitude and can be used solely to

predict b-factors. As Cb atoms do not change position, this model

cannot be used by definition to predict the effect of mutations,

either on dynamics or stability. The authors report results on b-

factor prediction comparable to GNM. Lopéz-Blanco et al. [39]

developed a NMA model in internal coordinates with three

different levels of representation: 1. Heavy-atoms, 2. five pseudo-

atoms (backbone: NH, Ca, CO and side-chain: Cb and one at the

center of mass of the remaining side chain atoms) and 3. Ca

representation. While the potential is customizable, the default

potential uses a force constant that is distance dependent but atom

type independent. The method is validated through overlap

analysis on a dataset of 23 cases. The authors report no significant

differences in overlap for the different representations. Lastly,

Kurkcuoglu et al. [40] developed a method that mixes different

levels of coarse-graining. The authors test the method on a single

protein, Triosephosphate Isomerase with higher atomic represen-

tation for a loop and achieve better overlap values compared to Ca

Author Summary

Normal mode analysis (NMA) methods can be used to
explore potential movements around an equilibrium
conformation by mean of calculating the eigenvectors
and eigenvalues associated to different normal modes.
Each normal mode represents a global collective, correlat-
ed and complex, form of motion of the entire protein. Any
conformation around equilibrium can be represented as a
weighted combination of normal modes. Differences in
the magnitudes of the set of eigenvalues between two
structures can be used to calculate differences in entropy.
We introduce ENCoM the first coarse-grained NMA
method to consider atom-specific side-chain interactions
and thus account for the effect of mutations on eigen-
vectors and eigenvalues. ENCoM performs better than
existing NMA methods with respect to traditional applica-
tions of NMA methods but is the first to predict the effect
of mutations on protein stability and function. Comparing
ENCoM to a large set of dedicated methods for the
prediction of the effect of mutations on protein stability
shows that ENCoM performs better than existing methods
particularly on stabilizing mutations. ENCoM is the first
entropy-based method developed to predict the effect of
mutations on protein stability.

ENCoM: Atomic Contact Normal Mode Analysis Method
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only representation. All the methods above, while adding more

detail to the representation utilize force constants that are not

atom-type dependent. Therefore, while less coarse-grained, all the

methods above are still atom-type and amino-acid type agnostic.

By definition, irrespective of the level of coarse-graining, such

models cannot account for the effect of mutations on protein

dynamics or stability. It has been shown that different amino acids

interact differently and that single mutations can have a high

impact on protein function and stability [41–43]. Mutations on

non-catalytic residues that participate into concerted (correlated)

movements have been shown to disrupt protein function in NMR

relaxation experiments [44–46]. Several cases have been docu-

mented of mutations that don’t affect the global fold of the protein,

but affect protein dynamics and disrupt enzyme function [47].

To overcome this limitation of coarse-grained NMA methods

while maintaining the advantages of simplified elastic network

models, we developed a new mixed coarse-grained NMA model

called Elastic Network Contact Model (ENCoM). ENCoM

employs a potential function based on the four bodies potential

of STeM with an addition to take in consideration the nature and

the orientation of side chains. Side-chain atomic contacts are used

to modulate the long range interaction term with a factor based on

the surface area in contact [48] and the type of each atom in

contact. Additionally, we introduce a non-specific version of

ENCoM (ENCoMns) where all interactions between atom types

are the same. ENCoM and ENCoMns were validated trough

comparison to ANM, GNM and STeM with respect to the

prediction of crystallographic b-factors and conformational

changes, two properties conventionally used to test ENM methods.

Moreover, we test the ability of ENCoM and ENCoMns to predict

the effect of mutations with respect to protein stability and

compare the ability of ENCoM and ENCoMns to a large number

of existing methods specifically designed for the prediction of the

effect of single point mutations on protein stability. Finally, we use

ENCoM to predict the effect of mutations on protein function in

the absence of any effects on protein stability.

Results

Correlation between experimental and predicted
crystallographic b-factors

We utilized a dataset of 113 non-redundant high-resolution

crystal structures [49] to predict b-factors using the calculated

ENCoM eigenvectors and eigenvalues as described previously [35]

(Equation 4). We compared the predicted b-factors using ENCoM,

ENCoMns, ANM, STeM and GNM to the experimental Ca b-

factors for the above dataset (Supplementary Table S1). For each

protein we calculate the Pearson correlation between experimental

and predicted values. The results in Figure 1 represent the

bootstrapping average of 10000 iterations. We observe that while

comparable, ENCoM (median = 0.54) and ENCoMns (medi-

an = 0.56) have lower median values than STeM (median = 0.60)

and GNM (median = 0.59) but similar or higher than ANM

(median = 0.54). It should be noted that it is possible to find

specific parameter sets that maximize b-factor correlations beyond

the values obtained with STeM and GNM (see methods).

However we observe a trade-off between the prediction of b-

factors on one side and overlap and the effect of mutations on the

other (see methods). Ultimately we opted for a parameter set that

maximizes overlap and the prediction of mutations with complete

disregard to b-factor predictions. Nonetheless, as shown below,

even the lower correlations obtained with ENCoM are sufficiently

high to detect functionally relevant local variations in b-factors as a

result of mutations. As GNM does not provide information on the

direction of movements or the effect of mutations, it is not

considered further in the present study.

Exploration of conformational space
By definition, any conformation of a protein can be described as

a linear combination of amplitudes associated to the eigenvectors

representing normal modes. It should be stressed that such

conformations are as precise as the choice of structure represen-

tation used and correct within the quadratic approximation of the

potential around equilibrium. Those limitations notwithstanding,

one application of NMA is to explore the conformational space of

macromolecules using such linear combinations of amplitudes.

Pairs of distinct protein conformations, often obtained by X-ray

crystallography are used to assess the extent to which the

eigenvectors calculated from a starting conformation could

generate movements that could lead to conformational changes

in the direction of a target conformation. Rather than an

optimization to determine the amplitudes for a linear combination

of eigenvectors, this is often simplified to the analysis of the overlap

(Equation 5), i.e., the determination of the single largest

contribution from a single eigenvector towards the target

conformation. In a sense the overlap represents a lower bound

on the ability to predict conformational changes without requiring

the use of an optimization process.

The analysis of overlap for ANM, STeM, ENCoM and

ENCoMns was performed using the Protein Structural Change

Database (PSCDB) [50], which contains 839 pairs of protein

structures undergoing conformational change upon ligand bind-

ing. The authors classify those changes into seven types: coupled

domain motions (59 entries), independent domain motions (70

entries), coupled local motions (125 entries), independent local

motions (135 entries), burying ligand motions (104 entries), no

significant motion (311 entries) and other type of motions (35

entries). The independent movements are movements that don’t

affect the binding pocket, while dependent movements are

necessary to accommodate ligands in the pose found in the bound

(holo) form. Burying movements are associated with a significant

change of the solvent accessible surfaces of the ligand, but with

small structural changes (backbone RMSD variation lower than

1 Å). Despite differentiating between types of movements based on

the ligands, the ligands were not used as part of the normal mode

analysis. Since side-chain movements associated to the burying

movements cannot be predicted with coarse-grained NMA

methods, we restrict the analysis to domain and loop movements

[51] as these involve backbone movements amenable to analysis

using coarse grained NMA methods. For practical purposes, in

order to simplify the calculations in this large-scale analysis, NMR

structures were not considered. It is worth stressing however that

all NMA methods presented here don’t have any restriction with

respect to the structure determination method and can also be

used with modeled structures. A total of 736 conformational

changes, half representing apo to holo changes and the other half

holo to apo (in total 368 entries from PSCDB) are used in this

study (Supplementary Table S2).

Overlap calculations were performed from the unbound (apo)

form to the bound form (holo) and from the bound form to the

unbound form. Bootstrapped results based onto the best overlap

found within the first 10 slowest modes [52,53] for the different

types of conformational changes, domain or loop are shown in

figures 2 and 3 respectively. In each case a set of box-plots

represent the performance of the four methods being compared,

namely STeM, ANM, ENCoM and ENCoMns. The left-most set

of box-plots represents the average over all data while subsequent

sets represent distinct subsets of the dataset as labeled. The first

ENCoM: Atomic Contact Normal Mode Analysis Method
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observation (comparing Figures 2 and 3) is that all tested NMA

models show higher average overlaps for domain movements

(Figure 2) than loop movements (Figure 3). This confirms earlier

observations that NMA methods capture essential cooperative

global (delocalized) movements associated with domain move-

ments [51]. Loop movements on the other hand are likely to come

about from a more fine tuned combination of normal mode

amplitudes than what can be adequately described with a single

eigenvector as measured by the overlap.

The second observation is that STeM performs quite poorly

compared to other methods irrespective of the type of movement

(domain or loop). This is somewhat surprising when one compares

with ENCoM or ENCoMns considering how similar the potentials

are. This suggests that the modulation of interactions by the

surface area in contact (the bij terms in Equation 1) of the

corresponding side-chains as well as the specific parameters used

are crucial.

Focusing for a moment on domain movements (Figure 2),

ENCoM/ENCoMns outperform all other methods for domain

movements in general as well as for every sub category of types of

motions therein. Independent movements show lower overlaps

than coupled ones, a fraction of those movements may not be

biologically relevant due to crystal packing. Interestingly, while

there are no differences between the overlap for independent

movements starting from the apo or holo forms, this is not the case

for coupled movements. In this case (right-most two sets in

Figure 1. Correlation between predicted and experimental b-factors for different ENM models. Box plots represent the average
correlations from a non-redundant dataset containing 113 proteins generated from 10000 resampling bootstrapping iterations. ANM and ENCoM
have comparable correlations but lower than GNM and STeM.
doi:10.1371/journal.pcbi.1003569.g001

ENCoM: Atomic Contact Normal Mode Analysis Method
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Figure 2), it is easier to use the apo (unbound) form to predict the

holo (bound) form, suggesting that the lower packing in the apo

form (as this are frequently more open) generates eigenvectors that

favor a more comprehensive exploration of conformational space.

Lastly, with respect to loop movements (Figure 3), while it is

more difficult to obtain good overlaps irrespective of the method

or type of structure used, overall ENCoM/ENCoMns again

outperforms ANM. Some of the same patterns observed for

domain movements are repeated here. For example, the higher

overlap for coupled apo versus holo movements.

We observe that ENCoMns consistently performs almost as well

as ENCoM irrespective of the type of motion used (all sets in

Figures 2 and 3). As side-chain conformations in crystal structures

tent to minimize unfavourable interactions, the modulation of

interactions by atom types that differentiate ENCoM from

ENCoMns plays as minor but still positive role.

Prediction of the effect of mutations
Normal mode resonance frequencies (eigenvalues) are related to

vibrational entropy [54,55] (see methods). Therefore, it is

reasonable to assume that the information contained in the

eigenvectors can be used to infer differences in protein stability

between two structures differing by a mutation under the

assumption that the mutation does not drastically affect the

equilibrium structure. A mutation may affect stability due to an

increase in the entropy of the folded state by lowering its resonance

frequencies, thus making more microstates accessible around the

equilibrium.

We utilize experimental data from the ProTherm database [56]

on the thermodynamic effect of mutations to validate the use of

ENCoM to predict protein stability. Here we benefit from the

manual curation efforts previously performed to generate a non-

redundant subset of ProTherm comprising 303 mutations used for

Figure 2. Prediction of domain motions. The best overlap found within the 10 slowest internal motion modes for different NMA models on
domain movements. Legend: All (all cases, N = 248), I (Independent movements, N = 130), C (Coupled movements, N = 117), A (apo form, N = 124) and
H (holo form, N = 124). AI (apo form independent, N = 130), HI (holo independent, N = 130), AC (apo coupled, N = 116) and HC (holo coupled, N = 116).
Box plots generated from 10000 resampling bootstrapping iterations. ENCoM/ENCoMns outperform ANM and STeM on all types of motion.
doi:10.1371/journal.pcbi.1003569.g002

ENCoM: Atomic Contact Normal Mode Analysis Method
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the validation of the PoPMuSiC-2.0 [57]. The dataset contains 45

stabilizing mutations (DDG,20.5 kcal/mol), 84 neutral muta-

tions (DDG [20.5,0.5] kcal/mol) and 174 destabilizing mutations

(DDG.0.5 kcal/mol) (Supplementary Table S2). Each protein in

the dataset have at least one structure in the PDB database [58].

As we calculate the eigenvectors in the mutated form we require

model structures of the mutants. We generate such models using

Modeller [59] and are thus assume that the mutation does not

drastically affect the structure. Mutations were generated using the

mutated.py script from the standard Modeller software distribu-

tion. Modeller utilizes a two-pass minimization. The first one

optimizes only the mutated residue, with the rest of the protein

fixed. The second pass optimizes the non-mutated neighboring

atoms. It is important to stress that our goal is to model the

mutated protein as accurately as possible and thus using any

method that unrealistically holds the backbone fixed to model the

mutant form would be an unnecessary simplification. We observe

a backbone RMSD for the whole protein of 0.01+/20.01 Å on

average. Considering that RMSD is a global measure that could

mask more drastic local backbone rearrangements, we also

calculated the average maximum Ca displacement but with a

value of 0.13+/20.12 Å we are confident that while not fixed,

backbone rearrangements are indeed minimal.

In the present work we predict the effect of mutations (Equation

6) for ENCoM, ENCoMns, ANM and STeM and compare the

results to existing methods for the prediction of the effect of

mutations using the PoPMuSiC-2.0 dataset above. We compare

our results to those reported by Dehouck et al. [57] for different

existing techniques: CUPSAT, a Boltzman mean-force potential

[60]; DMutant, an atom-based distance potential [61]; PoPMu-

SiC-2.0, a neural network based method [57]; Eris, a force field

based approach [62]; I-Mutant 2.0, a support vector machine

method [63]; and AUTO-MUTE, a knowledge based four body

potential [64]. We used the same dataset to generate the data for

Figure 3. Prediction of loop conformational change. The best overlap found within the 10 slowest internal motion modes for different NMA
models on loop movements. Acronyms are the same as in Figure 2. Number of cases: All (488), I (252), C (236), A (244) and H (244). AI (126), HI (126),
AC (118) and HC (118). Box plots generated from 10000 resampling bootstrapping iterations. ENCoM/ENCoMns outperform ANM and STeM on all
types of motion. The prediction of loop motions is much harder and here the difference between ENCoM and ENCoMns are more pronounced.
doi:10.1371/journal.pcbi.1003569.g003

ENCoM: Atomic Contact Normal Mode Analysis Method
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FoldX 3.0, an empirical full atom force-field [65] and Rosetta

[66], based on the knowledge based Rosetta energy function. A

negative control model was build with a randomized reshuffling of

the experimental data. Figure 4 presents RMSE results for each

model. The raw data for the 303 mutations is available in

Supplementary Table S3.

ANM and STeM are as good as the random model when

considering all types of mutations together (Figure 4). This is not

surprising as the potentials used ANM and STeM are exclusively

geometry-based and are thus agnostic to sequence. ENCoMns,

ENCoM, Eris, CUPSAT, DMutant, I-Mutant 2.0 and give similar

results and predict significantly better than the random model.

AUTO-MUTE, FoldX 3.0, Rosetta and in particular PoPMuSiC-

2.0 outperform all of the other models.

The RMSE values for the subset of 174 destabilizing mutations

(Figure 5) shows similar trends as the whole dataset with the

exceptions of DMutant losing performance and PoPMuSiC-2.0 as

well as AUTO-MUTE gaining performance compared to the

Figure 4. Root Mean Square Error (RMSE) on the prediction of the effect of mutations. RMSE of the linear regression through the origin
between experimental and predicted variations in free energy variations (DDG). Box plots generated from 10000 resampling bootstrapping iterations
on the entire PoPMuSiC-2.0 dataset (N = 303). With the caveat that the dataset is biased towards destabilizing mutations, ENCoM/ENCoMns predict
the effect of mutations with similar overall RMSE as most other methods.
doi:10.1371/journal.pcbi.1003569.g004

ENCoM: Atomic Contact Normal Mode Analysis Method
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others. It is important to stress that the low RMSE of PoPMuSiC-

2.0 on the overall dataset is to a great extent due to its ability to

predict destabilizing mutations.

The subset of 45 stabilizing mutations (Figure 6) gives

completely different results as those obtained for destabilizing

mutations. AUTO-MUTE, Rosetta, FoldX 3.0 and PoPMuSiC-

2.0 that outperformed all of the models on the whole dataset or the

destabilizing mutations dataset cannot predict better than the

random model. This is also true for CUPSAT, I-Mutant 2.0 and

Eris. ENCoM and DMutant are the only models with significantly

better than random RMSE values for the prediction of stabilizing

mutations.

ANM and STeM outperform all models on the neutral

mutations (Figure 7). All other models fail to predict neutral

mutations any better than random. While the accuracy of ANM

and STeM to predict neutral mutations may seem surprising at

first, it is in fact an artifact of the methodology. As the wild type or

mutated structures are assumed to maintain the same general

backbone structure, the eigenvectors/eigenvalues calculated with

ANM or STeM will always be extremely similar for wild type and

Figure 5. Root Mean Square Error (RMSE) on the prediction of the effect of destabilizing mutations. RMSE of the linear regression
through the origin between experimental and predicted variations in free energy variations (DDG). Box plots generated from 10000 resampling
bootstrapping iterations on the subset of destabilizing mutations (experimental DDG.0.5 kcal/mol) in the PoPMuSiC-2.0 dataset (N = 174). The
results for destabilizing mutations mirror to a great extent those for the entire dataset given that they represent 57% of the entire dataset.
doi:10.1371/journal.pcbi.1003569.g005

ENCoM: Atomic Contact Normal Mode Analysis Method
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mutant forms. Any differences will arise as a result of small

variations in backbone conformation produced by Modeller. As

such, ANM and STeM predict almost every mutation as neutral,

explaining their high success in this case.

At first glance, the comparison of ENCoMns and ENCoM could

suggest that a large part of the effect observed come from a

consideration of the total area in contact and not the specific types

of amino acids in contact. However, the side chains in contact are

already in conformations that minimize unfavourable contacts to

the extent that is acceptable in reality (in the experimental

structure) or as a result of the energy minimization performed by

Modeller for the mutant form given the local environments. The

fact that ENCoM is able to improve on ENCoMns is the actual

surprising result and points to the existence of frustration in

molecular interactions [67].

Considering that none of the existing models can reasonably

predict neutral mutations, the only models that achieve a certain

balance in predicting both destabilizing as well as stabilizing

mutations better than random and with low bias are ENCoM and

DMutant.

Figure 6. Root Mean Square Error (RMSE) on the prediction of the effect of stabilizing mutations. RMSE of the linear regression through
the origin between experimental and predicted variations in free energy variations (DDG). Box plots generated from 10000 resampling bootstrapping
iterations on the subset of stabilizing mutations (experimental DDG,20.5 kcal/mol) in the PoPMuSiC-2.0 dataset (N = 45). With the exception of
DMutant and ENCoM, most methods are not substantially better than random and some are substantially worst for stabilizing mutations.
doi:10.1371/journal.pcbi.1003569.g006
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The analysis of the performance of ENCoM in the prediction of

different types of mutations in terms of amino acid properties

shows that mutations from small (ANDCGPSV) to big (others)

residues are the most accurately predicted followed by mutations

between non-polar or aromatic residues (ACGILMFPWV).

ENCoM performs poorly on exposed residues (defined as having

more than 30% of the surface area exposed to solvent) (Figure 8).

Predictions based on linear combination of models
It may in principle be possible to find particular linear

combinations of ENCoM and other methods that further improve

predictions given the widely different (and potentially comple-

mentary) nature of the various approaches with respect to

ENCoM. We performed linear regressions to find parameters

involving ENCoM and each of the other methods in turn that

maximize the RMSE difference between the combined models

and random predictions (Eq. 8). When considering all types of

mutations together, all mixed models perform better than either

model individually (left-most column in Figure 8). By definition, a

mixed model cannot perform worst than the better of the two

models individually. The contribution of ENCoM to the improved

performance of the combined model varies according to the

Figure 7. Root Mean Square Error (RMSE) on the prediction of the effect of neutral mutations. RMSE of the linear regression through the
origin between experimental and predicted variations in free energy variations (DDG). Box plots generated from 10000 resampling bootstrapping
iterations on the subset of neutral mutations (experimental DDG = [20.5,0.5] kcal/mol) in the PoPMuSiC-2.0 dataset (N = 84). Apart from ANM and
STeM that predict most mutations as neutral as an artifact, no method is better than the reshuffled random model at predicting neutral mutations.
doi:10.1371/journal.pcbi.1003569.g007

ENCoM: Atomic Contact Normal Mode Analysis Method

PLOS Computational Biology | www.ploscompbiol.org 10 April 2014 | Volume 10 | Issue 4 | e1003569



model. The ratio of the relative contributions cENCoM=ci (in

parenthesis), broadly classifies the methods into three categories: 1.

Methods where ENCoM contributes highly, including I-Mutant

(1.1860.25), DMutant (1.0760.31), CUPSAT (1.0260.09) and

Eris (1.0260.11); 2. Methods where the contribution of ENCoM is

smaller than that of the other method but still significant, including

Rosetta (0.9060.11) and FoldX3 (0.8960.08); and finally methods

where the addition of ENCoM have a small beneficial effect,

including in this class Automute (0.6960.13) and especially

PoPMuSIC (0.1860.10). The left-hand side dendrogram in

Figure 8 clusters the methods according to their overall accuracy

relative to random based on the entire profile of DRMSE

Figure 8. Average RMSE differences for different types of mutations, prediction methods and their combinations with ENCoM. We
calculate the RMSE difference (Eq. 8) for different subsets of the data (columns) and different methods (rows). Methods followed by a ‘+’ denote linear
combinations of the named method with ENCoM. The heatmap values (shown within cells) denote the bootstrapped (10000 iterations) average RMSE
difference with respect to random and are color coded according to the map on the upper left (lower values in red signify better predictions). For
example the values in the leftmost column representing all data comes from the subtraction of the averages in the corresponding box plots in
Figure 4 for the non-combined methods and the random model. Different subsets of types of mutations are show according to certain properties of
the amino-acids or residues involved: buried (less than 30% solvent-exposed surface area) or exposed (otherwise), small (A,N,D,C, G, P,S, and V) or big
(otherwise), polar (R,N,D,E,Q,H,K,S,T and Y) or non-polar including hydrophobic and aromatic (otherwise). Both methods and subsets of the data are
clustered according to similarities in the RMSE difference profiles. Cases where the combination of a method with ENCoM is beneficial, i.e., the RMSE
difference is lower than either method in isolation are denoted by a ‘*’ next to their values within the cell.
doi:10.1371/journal.pcbi.1003569.g008
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predictions (Eq. 8) for different subsets of the data (columns)

according to the type of mutations being predicted. This clustering

of methods shows that the relative position of the methods is

maintained throughout except for a small rearrangement due to

changes in the predictions for CUPSAT. This result suggests that

the contribution from the combination of ENCoM to other

methods is uniform irrespective of the type of mutations studied.

Self-consistency in the prediction of the effect of
mutations

One basic requirement for a system that predicts the effect of

mutations on stability is that it should be self-consistent, both

unbiased and with small error with respect to the prediction of the

forward or back mutations as reported by Thiltgen et al. [68]. The

authors built a non-redundant set of 65 pairs of PDB structures

containing single mutations (called form A and form B) and

utilized different models to predict the effect of each mutation

going from the form A to form B and back. From a

thermodynamic point of view, the predicted variation in free

energy variation should be of the same magnitude for the forward

or back mutations, DDGARB = 2DDGBRA.

Using the Thiltgen dataset we performed a similar analysis for

ENCoM, ENCoMns, ANM, STeM, CUPSAT, DMutant,

PoPMuSiC-2.0 and a random model (Gaussian prediction with

unitary standard deviation). For the remaining methods (Rosetta,

Eris and I-Mutant) we utilize the data provided by Thiltgen. We

removed three cases involving prolines as such cases produce

backbone alterations. Furthermore, PoPMuSiC-2.0 failed to

return results for five cases. The final dataset therefore contains

57 pairs (Supplementary Table S4). The CUPSAT and AUTO-

MUTE servers failed to predict 25 and 32 cases respectively. As

these failure rates are significant considering the size of the

dataset, we prefer to not include these two methods in figures 9

and 10 (the remaining cases appear however in Supplementary

Table S4).

The results in figure 9 show that compared to the random

model (a positive control in this case), Rosetta and FoldX 3.0 show

moderate bias while PoPMuSiC-2.0 and I-Mutant show significant

bias. All biased methods are biased toward the prediction of

destabilizing mutations (data not shown) in agreement with the

results in Figure 3. DMutant, Eris, ENCoM and ENCoMns are the

only models with bias comparable to that of the random model

(the positive control in this experiment).

ENCoM, ENCoMns, and to a lesser extent Rosetta and

DMutant have lower errors than the random model (Figure 10).

All other methods display an error equal or higher than that of the

random model. ENCoM and ENCoMns vastly outperform all the

others models in terms of error.

Lastly, STeM and ANM show low and moderate biases

respectively and errors equivalent to random (data not shown)

but as mentioned, these methods cannot be used for the prediction

of mutations (other than neutral mutations as an artefact).

Prediction of NMR S2 order parameter differences
Mutations may not only affect protein stability but also protein

function. While experimental data is less abundant, one protein in

particular, dihydrofolate reductase (DHFR) from E. coli, has been

widely used experimentally to understand this relationship [69,70].

Recently, Boher et al. [47] have analyzed the effect of the G121V

mutation on protein dynamics in DHFR by NMR spectroscopy.

This mutation is located 15 Å away from the binding site but

reduces enzyme catalysis by 200 fold with negligible effect on

protein stability (0.70 kcal/mol). The authors evaluated, among

many other parameters, the S2 parameter of the folic acid bound

form for the wild type and mutated forms and identify the regions

where the mutation affects flexibility. We calculated b-factor

differences (Equation 4) between the folate-bound wild type (PDB

ID 1RX7) and the G121V mutant (modeled with Modeller) forms

of DHFR (Supplementary Table S5). We obtain a good agreement

(Pearson correlation = 0.61) between our predicted b-factor

difference and S2 differences (Figure 11). As mentioned earlier,

the overall correlation of 0.54 in the prediction of b-factors

(Figure 1) appears at least in this case to be sufficient to capture

essential functional information.

Discussion

Our results show that a small modification of the long-range

interaction term in the potential energy function of STeM had an

important positive impact on the model. This small change

improves the method in comparison to existing NMA methods in

the traditional areas such as the prediction of b-factors and

conformational sampling (overlap) where coarse-grained normal

mode analysis are applied. More importantly however, it opens an

entire new area of application to coarse-grained normal mode

analysis methods. Specifically ENCoM is the first coarse-grained

normal-mode analysis method that permits to take in consider-

ation the specific sequence of the protein in addition to the

geometry. This is introduced through a modification in the long-

range interactions to account for types of atoms in contact

modulated by their surface in contact. As a validation of the

approach we explored the ability of the method to predict the

effect of mutations in protein stability. In doing so we created the

first entropy-based methodology to predict the effect of mutations

on the thermodynamic stability of proteins. This methodology is

entirely orthogonal to existing methods that are either machine

learning or enthalpy based. Not only the approach is novel but

also the method performs extremely favourably compared to other

methods when viewed in terms of both error and bias.

As the approach taken in ENCoM is completely different from

existing methods for the prediction of the effect of mutations on

protein stability, a new opportunity arises to combine ENCoM

with enthalpy and machine-learning methods. Unfortunately, we

tried to create a naı̈ve method based on linear combinations of the

predictions of ENCoM and the different methods presented

without success, perhaps due to the large bias characteristic to the

different methods.

To assess the relative importance of contact area and the

modulation of interactions with atom types, we tested a model that

has non-specific atom-type interactions (ENCoMns), this model is

atom type insensitive, but is sensitive the orientation of side-chain

atoms. While a large fraction of the observed effect can be

attributed to surfaces in contact only, ENCoM is consistently

better than ENCoMns, particularly at predicting destabilizing

mutations where the possibility to accommodate unfavourable

interactions is more restricted. We cannot however exclude the

effect of the intrinsic difficulty in modeling destabilizing mutations.

For stabilizing mutations, the near equivalence of ENCoM and

ENCoMns may be explained in part by the successful energy

minimization of the mutated side-chain performed by Modeller.

ANM and STeM failed to predict the effect of mutations on the

whole dataset. They were not expected to perform well because

their respective potentials only take in account the position of

alpha carbons (backbone geometry). As such ANM and STeM

tend to predict mutations as neutral, explaining their excellent

performance onto the neutral subset and failure otherwise. Our

results suggest that surfaces in contact are essential in a coarse-

grained NMA model to predict the effect of mutation and that the

ENCoM: Atomic Contact Normal Mode Analysis Method

PLOS Computational Biology | www.ploscompbiol.org 12 April 2014 | Volume 10 | Issue 4 | e1003569



specific interactions between atom types is necessary to get more

subtle results, particularly stabilizing mutations.

ENCoM is consistently better than ENCoMns in the prediction

of loop or domain movements irrespective of the dependency of

the coupling of this movement to ligand binding or the starting

structure (apo or holo form) and both outperform ANM and

STeM. Our results corroborate previous work on a mix coarse-

grained method adding a atomistic resolution to loops capable of

improving the prediction of loop movements [40]. ENCoM

performs considerably better than STeM throughout despite

having very similar potentials, showing the importance of surfaces

in contact in the prediction of movements. There is little difference

between ENCoMns and ENCoM in the prediction of b-factors, but

both perform worst than ANM, STeM and GNM. At least in the

case of DHFR b-factor differences capture some essential

characteristics of the system as calculated by NMR. However,

one should be careful in placing too much emphasis on the

validation of b-factor predictions using experimental data derived

from crystals as these are affected to a great extent by rigid body

motions within the crystal [71].

PoPMuSiC-2.0, AUTO-MUTE, FoldX 3.0 and Rosetta

perform better than other models in the whole test dataset of

mutations. However, the dataset consists of 15% stabilizing

mutation, 57% of destabilizing and 28% of neutral mutations.

Figure 9. Self-consistency bias. The bias quantifies the tendency of a method to predict more accurately mutations in one direction than in the
opposite. Machine learning based methods in particular show a high bias. ENCoM/ENCoMns have low bias.
doi:10.1371/journal.pcbi.1003569.g009
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When looking at each subset, machine learning or enthalpy based

models failed to predict better than random on the stabilizing

mutations subset. Biases in the dataset may have affected the

training of machine-learning methods. For example the training

set of PoPMuSiC-2.0 contains 2648 mutations in proportions that

are similar to those in the testing set with 60%, 29% and 11%

destabilizing, neutral and stabilizing mutations respectively. While

it is true that most mutations tend to be destabilizing, if one is

interested in detecting stabilizing mutations, a method over trained

on destabilizing mutations will not meet expectations. Indeed,

PoPMuSiC-2.0 and I-mutant the two machine learning based

methods, have larger biases and errors than other methods in their

predictions. Our method relies on a model structure of the mutant.

As the modeling may fail to find the most stable side-chain

conformation, it could have a bias toward giving slightly higher

energies to the mutant. Notwithstanding this potential bias,

ENCoM have the lowest error and bias. This may be a case where

less is more as the coarse-grained nature of the method makes it also

less sensitive to errors in modeling that may affect enthalpy-based

methods to a greater extent. Finally, there is one more advantage in

the approach taken in ENCoM. As the network model is a global

connected model it considers indirectly the entire protein, while in

existing enthalpy or machine-learning methods the effect of a

mutation is calculated mostly from a local point of view.

Figure 10. Self-consistency error. The error calculated the magnitude of the biases in the prediction of forward and back mutations. Box plots
were generated from 10000 resampling bootstrapping iterations for the 57 proteins pairs in the Thiltgen dataset. ENCoM/ENCoMns are the methods
with lowest self-consistency errors.
doi:10.1371/journal.pcbi.1003569.g010
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The prediction of the thermodynamic effect of mutations is very

important to understand disease-causing mutations as well as in

protein engineering. With respect to human diseases, and

particularly speaking of cancer mutations, one of the factors that

may lead to tumour suppressor or oncogenic mutations is their

effect on stability (the authors thank Gaddy Getz from the Broad

Institute for first introducing us to this hypothesis). Specifically,

destabilizing mutations in tumour suppressor genes or alternatively

stabilizing mutations in oncogenes may be driver mutations in

cancer. Therefore the prediction of stabilizing mutations may be

very important to predict driver mutations in oncogenes. Likewise,

in protein engineering, one major goal is that of improving protein

stability with the prediction of stabilizing mutations. Such

mutations may be useful not as the final goal (for purification or

industrial purposes) but also to create a ‘stability buffer’ that

permits the introduction of potentially destabilizing additional

mutations that may be relevant to create the intended new

function.

The work presented here is to our knowledge also the most

extensive test of existing methods for the prediction of the effect of

mutations in protein stability. The majority of methods tested in

the present work fail to predict stabilizing mutations. However, we

are aware that the random reshuffled model used may be too

stringent given the excessive number of destabilizing mutations in

the dataset. The only models that predict stabilizing as well as

destabilizing mutations are ENCoM and DMutant, however

ENCoM is the only method with low self-consistency bias and

error.

While the contribution of side chain entropy to stability is well

established [72,73], here we use backbone normal modes to

predict stability. As a consequence of the relationship between

normal modes and entropy, our results attest to the importance of

backbone entropy to stability and increase our understanding of

the overall importance of entropy to stability. The strong trend

observed on the behaviour of different parameters sets with respect

to the a4 parameter is very interesting. Lower values are associated

Figure 11. Prediction of NMR S2 order parameter differences for the G121V mutation on DHFR from E. coli. Experimental values (red,
the bar represents the experimental error) are compared to the inverse normalized predicted b-factors differences, DB (Equation 4, blue line) showing
a Pearson correlation coefficient of 0.6.
doi:10.1371/journal.pcbi.1003569.g011
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with better predictions of conformational changes while higher

values are associated with better b-factor predictions. One way to

rationalize this observation is to consider that higher a4 values lead

to a rigidification of the structure, adding constraints and

restricting overall motion. Likewise, lower a4 values remove

constraints and thus lead to higher overlap.

We used ENCoM to predict the functional effects of the G121V

mutant of the E. coli DHFR compared to NMR data. This position

is part of a correlated network of residues that play a role in

enzyme catalysis but with little effect on stability. The mutation

affects this network by disrupting the movement of residues that

are far from the binding site. We can predict the local changes in

S2 with ENCoM. As these predictions are based on b-factor

calculations, this result shows that at least in this case, even with b-

factor prediction correlation lower than ANM, STeM and GNM

we can detect functionally relevant variations. Clearly, despite the

greater performance of GNM, ANM or STeM in the calculation

of b-factors, these methods cannot predict b-factor differences as a

consequence of mutations, as their predictions are the same for the

two forms. While a more extensive study is necessary involving S2

NMR parameters, our results serve as an example against relying

too heavily on crystallographic b-factors for the evaluation of

normal mode analysis methods.

Methods

The fundamentals of Normal Mode Analysis (NMA) have been

extensively reviewed [74,75]. The key assumption in NMA is that

the protein is in an equilibrium state around which fluctuations

can be described using a quadratic approximation of the potential

via a Taylor series approximation. In equilibrium the force

constants are summarized in the Hessian matrix H that contains

the elements of the partial second derivatives of the terms of the

potential with respect to the coordinates. The potential used in

ENCoM is similar to that of STeM, a Go-like potential where the

closer a conformation R
!

is to the reference (in this case

equilibrium) conformation R
!

0, the lower the energy.
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The principal difference between the potential above and that of

STeM are the bij terms that modulate non-bonded interactions

between amino acid pairs according to the surface area in contact.

Specifically,

bij~
XNi

k

XNj

l

eT (k)T(l)Skl ð2Þ

where eT(k)T (l) represents a pairwise interaction energy between

atom types T(k) and T(l) of atom k and l respectively of amino

acids i and j containing Ni and Nj atoms each. Finally, Skl

represent the surface area in contact between atoms k and l
calculated analytically [48]. We utilize the atom types classification

of Sobolev et al. [76] containing 8 atom types. A matrix with all the

interaction between atom types set at the value 1 is used in the

non-specific ENCoMns model. In Figure 12 we illustrate with the

concrete case of a set of 3 amino acids (D11, D45 and R141) in M.

tuberculosis ribose-5-phosphate isomerase (PDB ID 2VVO), the

differences between ENCoM, STeM and ANM in terms of spring

strengths associated to different amino acids pairs. D45 is equally

distant from R141 and D11 (around 6.0 Å) and interacts with

R141 but does not with D11. Likewise, D11 does not interact with

R141 with a Ca distance of 11.6 Å. ANM assigns equal strength to

all three pairwise Ca springs (as their distances fall within the

18.0 Å threshold). STeM assigns equal spring strengths to the

D11–D45 and D45–R141 pairs. Among the three methods,

ENCoM is the only one to properly assign an extremely weak

strength to the D11–R141 pair, a still weak but slightly stronger

strength to the D11–D45 pair (due to their closer distance) and a

very strong strength to the spring representing the D45–R141

interactions.

The hessian matrix can be decomposed into eigenvectors E
!

n

and their associated eigenvalues ln. For a system with N amino

acids (each represented by one node in the elastic network), there

are 3N eigenvectors. Each eigenvector describes a mode of

vibration in the resonance frequency defined by the corresponding

eigenvalue of all nodes, in other words the simultaneous

movement in distinct individual directions for each node (Ca

atoms in this case). The first 6 eigenvectors represent rigid body

translations and rotations of the entire system. The remaining

eigenvectors represent internal motions. The eigenvectors associ-

ated to lower eigenvalues (lower modes) represent more global or

cooperative movements while the eigenvectors associated to higher

eigenvalues (fastest modes) represent more local movements. Any

conformation of the protein can be described by a linear

combination of different amplitudes A
!

~fAi,:::,A3Ng of eigen-

vectors E
!

n:

R
!

(A
!

)~R
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0z
X3N
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The source code for ENCoM is freely available at http://bcb.med.

usherbrooke.ca/encom.

In terms of running time, the computational cost of running

ENCoM is only slightly higher than that of other methods

representing the protein structure with one node per amino acid.

The main bottleneck in terms of computational time is the

diagonalization of the Hessian matrix. As this matrix is the same

size for ENCoM, ANM, STeM and GNM by virtue of considering

a single node per amino acid, all methods should in principle run

equivalently. Differences occur due to pre-processing, in particular

with ENCoM where this step is more involved due to the more

detailed calculations involved in the measurement of surface areas

in contact. Taking the dataset used for the prediction of b-factors

as an example, we obtain an average running time of 23.8, 30.2

and 34 seconds on average for STeM, ANM and ENCoM

respectively on an Intel Core i7 CPU Q 740 @ 1.73GHz laptop.

Parameterization of ENCoM
In order to obtain a set of a parameters to be used with ENCoM

we performed a sparse exhaustive integer search of the logarithm

of a parameters with ai~ 10{4,108
� �

for i~ 1,4½ � to maximize the

prediction ability of the algorithm in terms of overlap and
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prediction of mutations. In other words, we searched all

combinations of 13 distinct relative orders of magnitude for the

set of 4 parameters a. For each parameter set, we calculated the

bootstrapped median RMSE (see below) Z-score sum for the

prediction of stabilizing and destabilizing mutations,
~ZZmutations~{(~ZZdestabilizingz~ZZmutations). Keeping in mind that

lower RMSE values represent better predictions, the 2000

parameter sets (out of 28561 combinations) with highest
~ZZmutations were then used to calculate Z-scores for overlap in

domain and loop movements. As our goal is to obtain a parameter

set that combines low RMSE and high overlap, we ranked

the 1000 parameter sets according to ~ZZ~~ZZmutationsz
~ZZdomainsz~ZZloops. The parameter set with highest ~ZZ is

(a1,a2,a3,a4)~(102,104,104,10{2) (solid black line in Figure 13).

The optimization of the bootstrapped median is equivalent to a

training procedure with leave-many-out testing. Given the

dichotomy in predicting the effect of mutations and overlap on

the one hand and b-factors on the other, we provide, the following

is the best parameter set observed for the prediction of b-factors

(a1,a2,a3,a4)~(103,105,103,102) with average b-factor correlation

of 0:61+0:13.

The exploration of parameter space shows that there is a clear

trade-off between the prediction of mutations (low RMSE),

conformational sampling (high overlap) and b-factors (high

correlations). Parameter sets that improve the prediction of b-

factors are invariably associated with poor conformational changes

(low overlap) associated to both domain and loop movements and

variable RMSE for the prediction of mutations (red lines in

Figure 13). On the other hand, parameter sets that predict poorly

b-factors, perform better in the prediction of conformational

changes and the effect of mutations (blue lines in Figure 13). The a
parameters used in STeM, a1,a2,a3,a4ð Þ~ 360,72,9:9,3:6ð Þ are

arbitrary, taken without modifications from a previous study

focusing on folding [77]. As expected, this set of parameters can be

considerably improved upon as can be observed in Figure 13

(dashed line).

The four right-most variables in the parallel coordinates plot in

Figure 13 show the logarithm of the a parameters for each

parameter set. Either class of parameter sets, better for b-factors (in

red) or better for overlap/RMSE (in blue) come about from widely

diverging values for each parameter across several orders of

magnitude. There are however some patterns. Most notably for

a4, where there is an almost perfect separation of parameter sets

around a4 = 1. Interestingly, higher values of a1 and a2, associated

with stronger constraints on distances and angles tend also to be

associated to better overlap values. While it is likely that a better-

performing set of parameters can be found, the wide variation of

values across many orders of magnitude show that within certain

limits, the method is robust with respect to the choice of

parameters. This result justifies the sparse search employed.

Bootstrapping
Bootstrapping is a simple and general statistical technique to

estimate standard errors, p-values, and other quantities associated

with finite samples of unknown distributions. In particular,

bootstrapping help mitigate the effect of outliers and offers better

Figure 12. Illustration of the representation of inter-residue interactions by the different NMA methods. The figure shows three amino
acids (D11, D45 and R141) from the M. tuberculosis ribose-5-phospate isomerase (PDB ID = 2VVO). The distances between alpha carbons are shown
with the yellow dotted lines and labeled in black. Interaction strengths relative to ANM (in red) are shown for STeM (green) and ENCoM (yellow). ANM
treats all pairs as equal while STeM treat equally D11 and R141 with respect to D45 even though the interaction between D45 and R141 is much
stronger by virtue of side-chain interactions, as correctly described in ENCoM.
doi:10.1371/journal.pcbi.1003569.g012
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estimates in small samples. Bootstrapping is a process by which the

replicates (here 10000 replicates) of the sample points are

stochastically generated (with repetitions) and used to measure

statistical quantities. In particular, bootstrapping allows the

quantification of error of the mean [78–82]. Explained in simple

terms, two extreme bootstrapping samples would be one in which

the estimations of the real distribution of values is entirely made of

replicates of the best case and another entirely of the worst case.

Some more realistic combination of cases in fact better describes

the real distribution. Thus, bootstrapping, while still affected by

any biases present in the sample of cases, helps alleviate them to

some extent.

Predicted b-factors
One of the most common types of experimental data used to

validate normal mode models is the calculation of predicted b-

factors and their correlation to experimentally determined b-

factors. B-factors measure how much each atom oscillates around

its equilibrium position [6]. Predicted b-factors are calculated as

previously described [35]. Namely, for a given Ca node (i), one

calculates the sum over all eigenvectors representing internal

movements (n = 7 to 3N) of the sum of the squared ith component

of each eigenvector in the spatial coordinates x,y and z normalized

by the corresponding eigenvalues:

Bi~
X3N

n~7

E2
n,i,xzE2

n,i,yE2
n,i,z

ln

ð4Þ

We calculate the Pearson correlation between predicted and

experimental b-factors for each protein and average random

samples according to the bootstrapping protocol described

above.

Overlap
The overlap is a measure that quantifies the similarity between

the direction of movements described by eigenvectors calculated

from a starting structure and the variations in coordinates

observed between that conformation and a target conformation

[52,53]. In other words, the goal of overlap is to quantify to what

extent movements based on particular eigenvectors can describe

another conformation. The overlap between the nth mode, On,

described by the eigenvector E
!

n is given by

On(E
!

n,R
!

)~

P3N

i~1

En,iri

P3N

i~1

En,i

P3N

i~1

ri

ð5Þ

where R
!

~fri,:::,r3Ng represent the vector of displacements of

coordinates between the starting and target conformations. The

larger the overlap, the closer one can get to the target

conformation from the starting one though the movements

defined entirely and by the nth eigenvector. We calculate the best

overlap among the first 10 slowest modes representing internal

motions.

Evaluating the effect of mutations on dynamics
Insofar as the simplified elastic network model captures essential

characteristics of the dynamics of proteins around their equilib-

rium structures, the eigenvalues obtained from the normal mode

analysis can be directly used to define entropy differences around

equilibrium. Following earlier work [54,55], the vibrational

entropy difference between two conformations in terms of their

respective sets of eigenvalues is given by:

Figure 13. Performance of different parameter sets on the prediction of mutations, b-factors and motions. We present as a parallel plot
the bootstrapped median RMSE for stabilizing and destabilizing mutation, average best overlap for domains and loop movements as well as self-
consistency bias and errors. In the right-most four columns with include the logarithm of the 4 alpha variables. Different parameter sets are colored
based on b-factors correlations (red gradient) or domain movement overlaps (blue gradient). The black line represent the specific set of parameters
used in ENCoM while the dashed line represents the values for ENCoM using the set of alpha parameters employed in STeM. There is a dichotomy in
parameter space such that most sets of parameters are either good at predicting b-factors or overlap and mutations.
doi:10.1371/journal.pcbi.1003569.g013
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In the present work the enthalpic contributions to the free energy

are completely ignored. Therefore, in the present work we directly

compare experimental values of DG to predicted DS values. In

order to use the same nomenclature as the existing published

methods, we utilize DDG to calculate the variation of free energy

variation as a measure of conferred stability of a mutation.

Root mean square error
A linear regression going through the origin is build between

predicted DDG and experimental DDG values to evaluate the

prediction ability of the different models. The use of this type of

regression is justified by the fact that a comparison of a protein to

itself (in the absence of any mutation) should not have any impact

on the energy of the model and the model should always predict

an experimental variation of zero. However, a linear regression

that is not going through the origin would predict a value different

from zero equal to the intercept term. In other words, the effect of

two consecutive mutations, going from the wild type to a mutated

form back to the wild type form (WTRMRWT) would not end

with the expected net null change.

The accuracy of the different methods was evaluated using a

bootstrapped average root mean square error of a linear regression

going through the origin between the predicted and experimental

values. We refer to this as RMSE for short and use it to describe

the strength of the relationship between experimental and

predicted data.

Self-consistency bias and error in the prediction of the
effect of mutations

If one was to plot the predicted energies variation of DDGARB

versus DDGBRA and trace a line y = 2x, the bias would represent

a tendency of a model to have points not equally distributed above

or below that line while the error would represent how far away a

point is from this line. In other words, considering a dataset of

forward and back predictions, the error is a measure of how the

predicted DDG differ and the bias how skewed the predictions are

towards the forward or back predictions [68]. A perfect model,

both self-consistent and unbiased, would have all the points in the

line. Statistically, the measures of bias and error are positively

correlated. The higher the error for a particular method, the

higher the chance of bias.

Linear combination of models
We determined the efficacy of linear combinations involving

ENCoM and any of the other models for the prediction of the

effect of mutations on thermostability as follows. For a given

bootstrap sample of the data, we rescaled the DDG predictions of

each model as follows:

DDGexperimental!biDDGi~DDGi
0 ð7Þ

where the vector notation signifies all data points in the particular

bootstrap sample and the index i represents each model as well as

the random model. We then use singular value decomposition to

determine the best parameter the normalized predicted DDG0

values to calculate the parameters that maximize the RMSE

difference between the linear combination model and the random

predictions as follows

DRMSEi~RMSEi{RMSErandom ð8Þ

where

RMSErandom~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
bootstrap sample

DDGexperimental{DDG0random

 !2

N

vuuuut
and

RMSEi~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
bootstrap sample

DDGexperimental{DDG0i{
cENCoM

ci
DDG0ENCoM

� � !2

N

vuuuut ð9Þ

The bootstrapped average DRMSEi is then calculated from the

10000 bootstrap iterations. The relative contribution of ENCoM

and the model i under consideration is given by the ratio of the

parameters cENCoM=ci. It is interesting to note that this ratio could

be seen as an effective temperature factor, particularly considering

that predicted DDG values are primarily enthalpic in nature for

certain methods and entropy based in ENCoM.
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19. Cabana J, Holleran B, Beaulieu M-È, Leduc R, Escher E, et al. (2013) Critical

hydrogen bond formation for activation of the angiotensin II type 1 receptor.

Journal Of Biological Chemistry 288: 2593–2604.
20. Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A, et al. (2012) Oncogenic

mutations counteract intrinsic disorder in the EGFR kinase and promote

receptor dimerization. Cell 149: 860–870.
21. Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, et al. (2011) How does

a drug molecule find its target binding site? J Am Chem Soc 133: 9181–9183.

22. Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, et al. (2009)

Millisecond-scale molecular dynamics simulations on Anton. In: Proceedings of
the Conference on High Performance Computing Networking, Storage and

Analysis; 14–20 November 2009, Portland, Oregon, United States. ACM SC
’09. Available: http://dx.doi.org/10.1145/1654059.1654126

23. Wang Y, Harrison CB, Schulten K, McCammon JA (2011) Implementation of

Accelerated Molecular Dynamics in NAMD. Comput Sci Discov 4: 015002.

24. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5:
a high-throughput and highly parallel open source molecular simulation toolkit.

Bioinformatics 29: 845–854.

25. Atkins P, de Paula J (2010) Physical Chemistry. 9 ed. W. H. Freeman.
26. Tasumi M, Takeuchi H, Ataka S, Dwivedi AM, Krimm S (1982) Normal

vibrations of proteins: glucagon. Biopolymers 21: 711–714.

27. Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in
terms of low-frequency vibrational modes. Proc Natl Acad Sci USA 80: 3696–

3700.

28. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and
fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:

6571–6575.

29. Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin
inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181: 423–447.

30. Brooks B, Karplus M (1985) Normal modes for specific motions of

macromolecules: application to the hinge-bending mode of lysozyme. Proc Natl
Acad Sci USA 82: 4995–4999.

31. Tirion M (1996) Large Amplitude Elastic Motions in Proteins from a Single-

Parameter, Atomic Analysis. Phys Rev Lett 77: 1905–1908.

32. Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block
approach for determining low-frequency normal modes of macromolecules.

PROTEINS: Structure, Function and Genetics 41: 1–7.

33. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations
in proteins using a single-parameter harmonic potential. Fold Des 2: 173–181.

34. Doruker P, Atilgan AR, Bahar I (2000) Dynamics of proteins predicted by

molecular dynamics simulations and analytical approaches: application to alpha-

amylase inhibitor. PROTEINS: Structure, Function and Genetics 40: 512–524.

35. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, et al. (2001)

Anisotropy of fluctuation dynamics of proteins with an elastic network model.
Biophys J 80: 505–515.

36. Doruker P, Jernigan RL, Bahar I (2002) Dynamics of large proteins through

hierarchical levels of coarse-grained structures. J Comput Chem 23: 119–127.

37. Lin T-L, Song G (2010) Generalized spring tensor models for protein fluctuation

dynamics and conformation changes. BMC Struct Biol 10 Suppl 1: S3.

38. Micheletti C, Carloni P, Maritan A (2004) Accurate and efficient description of

protein vibrational dynamics: comparing molecular dynamics and Gaussian
models. Proteins 55: 635–645.
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