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Abstract

The liver is the central organ for detoxification of xenobiotics in the body. In pharmacokinetic modeling, hepatic
metabolization capacity is typically quantified as hepatic clearance computed as degradation in well-stirred compartments.
This is an accurate mechanistic description once a quasi-equilibrium between blood and surrounding tissue is established.
However, this model structure cannot be used to simulate spatio-temporal distribution during the first instants after drug
injection. In this paper, we introduce a new spatially resolved model to simulate first pass perfusion of compounds within
the naive liver. The model is based on vascular structures obtained from computed tomography as well as physiologically
based mass transfer descriptions obtained from pharmacokinetic modeling. The physiological architecture of hepatic tissue
in our model is governed by both vascular geometry and the composition of the connecting hepatic tissue. In particular, we
here consider locally distributed mass flow in liver tissue instead of considering well-stirred compartments. Experimentally,
the model structure corresponds to an isolated perfused liver and provides an ideal platform to address first pass effects and
questions of hepatic heterogeneity. The model was evaluated for three exemplary compounds covering key aspects of
perfusion, distribution and metabolization within the liver. As pathophysiological states we considered the influence of
steatosis and carbon tetrachloride-induced liver necrosis on total hepatic distribution and metabolic capacity. Notably, we
found that our computational predictions are in qualitative agreement with previously published experimental data. The
simulation results provide an unprecedented level of detail in compound concentration profiles during first pass perfusion,
both spatio-temporally in liver tissue itself and temporally in the outflowing blood. We expect our model to be the
foundation of further spatially resolved models of the liver in the future.
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Introduction

The liver is the main site of metabolization and detoxification of

xenobiotics in the body of mammals. Compounds delivered by

blood flow through the portal vein and the hepatic artery are

continuously processed within hepatic cells, such that foreign and

potentially harmful compounds can be cleared from the blood.

Metabolization by enzyme-catalyzed biotransformation produces

chemical alterations of the original compounds, thereby enabling

their elimination. A second, complementary process is the active

secretion to the bile duct from which the compound is further

transported to the gastrointestinal tract. In pharmacology and

medicine, plasma clearance is used to quantify the rate by which a

compound is eliminated from the body [1]. Plasma clearance

describes the overall detoxification capacity of the organism and

summarizes individual clearance rates from all eliminating organs

with the largest contribution coming from the kidney and the liver.

While renal clearance can be measured by urinary secretion, a

quantification of liver detoxification capacity is difficult since the

different physiological functions cannot be assessed directly. In

particular, the relative contributions of the different underlying

physiological functions such as metabolization or biliary secretion

cannot be adequately differentiated since the liver is frequently

rather considered as a net systemic sink. While hepatic turnover

can be indirectly quantified with drugs following a known

pharmacokinetic profile, the local, time-resolved distribution of

compounds within the whole organ can generally not be analyzed

even with distinguished measurement techniques. This holds in

particular for the first pass of drug perfusion in a liver directly after

drug administration, when hepatic tissue is exposed to a novel

xenobiotic for the first time.

Due to the pivotal role of the liver in drug pharmacokinetics and

detoxification, several models quantifying hepatic clearance have

been developed before [2]. These include tube models for

representative hepatic sinusoids (single tubes, in parallel or in

series) [3], dispersion liver models [4], fractal liver models [5],

circulatory models [6,7] including zonal models [8,9], and

distribution-based models describing statistical variations in
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transition times [10]. For a more detailed overview, we refer to

[11].

Generally, PK models are well suited to investigate distribution

and clearance of compounds in the body. In compartmental PK

modeling, a limited number of rather generic compartments is

usually used to simulate plasma concentration and drug clearance.

Following a complementary approach, physiologically based

pharmacokinetic (PBPK) models describe biological processes at

a large level of detail based on prior physiological knowledge [12].

This involves amongst others organ volumes and blood flow rates,

such that physiological mechanisms underlying absorption,

distribution, metabolization and excretion of compounds can be

explicitly described. While most approaches consider intravenous

or oral application of therapeutic compounds, PK models

describing further uptake routes such as inhalation have also been

developed [13,14]. Organs in PBPK models are divided in several

subcompartments. So-called distribution models are used to

describe the mass transfer between these subcompartments which

are quantified based on physicochemical compound information

such as lipophilicity or the molecular weight. Basic PBPK models

can be extended to include enzyme-mediated metabolization or

active transport across membranes [15].

Coming from the field of toxicology [16], PBPK models are

nowadays routinely used in drug discovery and development [17].

They are for example applied in pediatric scaling [18], model-

based risk assessment [19], as well as for multiscale modeling by

integrating detailed models of intracellular signaling [20] or

metabolic networks [21] into the cellular subcompartment, thus

allowing for the analysis of cellular behavior within a whole-body

context [22]. Notably, each organ in PBPK modeling is generally

represented by few well-stirred subcompartments, thus allowing a

quantitative description of drug pharmacokinetics once an

equilibrium between the vascular system and the surrounding

tissue has been reached. However, a spatially resolved description

of drug perfusion in the whole organ covering particularly the first

instants after drug administration is impossible due to the inherent

well-stirred assumption.

To mechanistically describe first pass perfusion, we here present

a spatio-temporal model of drug distribution and metabolization

in a mouse liver. The model represents liver lobes at the spatial

length scale of lobuli such that physiological and molecular

processes can be simulated in great detail. Our combined spatially

resolved model (cf. overview in Figure 1) involves three main

building blocks. These comprise physiological vascular structures,

an organ-scale perfusion model describing blood flow and

advection of compounds, and finally pharmacokinetic models

translated to the spatially resolved tissue. Geometrically accurate

models of murine hepatic vascular structures were obtained by

using in vivo micro-CT imaging [23]. The mass balance within the

tissue was quantified based on equations coming from PBPK

modeling. Our combined model was inspired by [24], where a

lobule-scale perfusion model in more physical detail and also

allowing for deformation of the porous medium is introduced. A

model for cardiac perfusion using very similar modeling

techniques is presented in [25]. It considers multiple geometric

scales, but no draining vascular system and no metabolization.

Our spatially resolved model covers several scales of biological

organization displayed at varying levels of resolution. The scales

range from the organ level to the cellular space where

metabolization and molecular transport take place. The vascular

systems form the scaffolds which links the hepatic in-flow to the

sinusoidal space and thereby to the lobulus level. The model

considers one supplying and one draining vascular system (denoted

by SVS and DVS, respectively), with a homogenized hepatic space

(denoted by HHS) in between as a tissue representation. The HHS

includes in particular the sinusoids which are not explicitly

resolved as vascular structures. In the latter, blood flow is

represented by a fluid transport model [26]. Microcirculation

and microanatomy [27] are only considered in effective form.

While more detailed perfusion and metabolization models on the

lobular scale [28,29] or the tissue-level [2] have been developed

before, the representation of the HHS as a porous medium [30] is

sufficient for our needs.

Figure 1. Conceptual model overview. Our spatially resolved
model is based on mass balance equations from physiologically based
pharmacokinetic modeling as well as organ and vascular geometry
obtained by in vivo imaging. The combined model allows a detailed
simulation of hepatic distribution and metabolization to accurately
describe spatio-temporal effects underlying first-pass perfusion in the
liver.
doi:10.1371/journal.pcbi.1003499.g001

Author Summary

The liver continuously removes xenobiotic compounds
from the blood in the mammalian body. Most computa-
tional models represent the liver as composed of few well-
stirred subcompartments so that a spatially resolved
simulation of hepatic perfusion and compound distribu-
tion right after drug administration is currently not
available. To mechanistically describe the local distribution
of compounds in liver tissue during first pass perfusion, we
here present a computational model which combines
micro-CT based vascular structures with mass transfer
descriptions used in physiologically based pharmacokinet-
ic modeling. In the resulting spatio-temporal model,
hepatic mass transfer is governed by the physiological
architecture and the composition of the connecting
hepatic tissue, such that hepatic heterogeneity and spatial
distribution can be described mechanistically. The perfor-
mance of our model is shown for exemplary compounds
addressing key aspects of distribution and metabolization
of drugs within a mouse liver. We furthermore investigate
the impact of steatosis and carbon tetrachloride-induced
liver necrosis. Notably, we find that our computational
predictions are in qualitative agreement with previous
experimental results in animal models. In the future, our
spatially resolved model will be extended by including
additional physiological information and by taking into
account recirculation through the body.

Spatio-Temporal Simulation of First Pass Perfusion
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Experimentally, the combined model corresponds to an isolated

perfused liver [31,32], since recirculation of blood is not

considered. The resolution of the model allows calculating local

concentration profiles within the tissue which can for example be

used to address heterogeneous phenomena such as spatially

varying distributions of lipid droplets in steatotic livers. Spatial

heterogeneity of pharmacokinetic parameters such as metabolic

capacity can be taken into account. Likewise local exposure

profiles of toxic compounds can be simulated such that off-target

effects of drug therapy can be analyzed at a high level of

resolution. Applications of spatially resolved perfusion and

metabolization modeling include optimized design of therapeutic

treatment where spatio-temporal perfusion effects are of relevance,

e.g. hypothermic machine perfusion [33] or islet cell transplan-

tations [34]. Moreover, such models can be used for planning drug

delivery for which spatially heterogeneous distribution is an

important property and crucial for administration design itself.

Two major examples are intrahepatic injection of chemothera-

peutics or radionuclides (see e.g. [35]), in particular in combina-

tion with optimization of catheter placement [36], and targeted

drug delivery [37] where drugs are injected in bound form and

released at the desired location by mild hyperthermia. Likewise,

our model may support data processing and interpretation in

imaging or diagnostics. We expect the spatially resolved model

presented here to be the foundation stone of further mechanistic

models describing the spatial organization of the liver in an

unprecedented level of physiological detail.

Materials and Methods

Ethics Statement
The animal experiment was reviewed and approved by the local

authorities (NRW LANUV, permit number 10576G1) according

to German animal protection laws.

Constructing a Combined Model
In the methods to be presented, we follow a geometric view

from coarse to fine, i.e. from (1) the body scale (providing organ

input and output) via (2) the vascular structures on the organ scale

(perfusion only) to (3) the tissue scale (perfusion and metaboliza-

tion). Models for steatosis and CCl4-induced liver necrosis are

subsequently presented to demonstrate how our spatially resolved

simulations can be used for the analysis of pathological states

influencing drug distribution in the liver. Finally, some aspects of

computational resolution are addressed.

Overall Model Structure
Our spatially resolved model distinguishes between the supply-

ing vascular tree, the HHS and a draining vascular tree which are

considered in series (Figure 2). For reasons of simplicity, the

supplying vascular system comprises both the portal vein and the

hepatic artery. Since an isolated perfused liver was considered here

which explicitly excludes recirculation through the body, the

respective contributions of the portal vein and the hepatic artery

were not distinguished and only the total blood inflow was taken

into account. The draining vascular system represents the hepatic

vein. Bile ducts were not considered in our model, since their

geometric structure could not be resolved experimentally.

In our combined model, the HHS is composed of several

subspaces in analogy to the liver compartment in PBPK models.

The latter is divided in four subcompartments, i.e. red blood cells

(rbc), plasma (pls), interstitium (int), and liver cells (cell). Those four

subcompartments are also considered as subspaces of the HHS, in

addition a fifth remaining subspace (rest) is taken into account.

This remaining subspace comprises all those parts inside the liver

that are not considered for perfusion, metabolization and active

transport, in particular the larger and explicitly resolved vascular

structures and the bile ducts. The plasma subspace only refers to

the blood plasma. For notational convenience, the sinusoidal

subspace (sin) is defined as the combination of red blood cells and

plasma subspace, thus representing a whole-blood compartment.

The sinusoidal subspace is subject to advection, thereby reflecting

blood flow through the tissue. The actual metabolization takes

place only in the cellular subspace and is part of the PBPK

equations that also model the exchange between the HHS

subspaces. The vascular trees are resolved separately and

considered for pure advection.

The volume fractions of the subspaces relative to the overall

liver volume, also needed for the mass balance in the compartment

models, are denoted by Qi,i[frbc,pls,sin,int,cell,restg. For our

simulations in a mouse liver, we use the values

Qrbc~0:0468, Qpls~0:0572, Qint~0:1470, Qcell~0:6500,

Qrest~0:0990:
ð1Þ

Volume fractions were obtained by setting Qrest to cover the

fraction of the vascular volume inside the segmented liver volume,

both determined from the experimental image data as described

below. The values for the other subspaces from [38] were then

scaled accordingly by (1{Qrest) so that all five volume fractions

sum up to 1. From Equation 1, we immediately obtain

Qsin~QrbczQpls~0:1040.

For the perfusion part in our model, we address how molar

concentrations c of compounds change due to advection through

the vascular systems and the sinusoidal HHS subspace. The

exchange with the remaining HHS subspaces and cellular

metabolization are considered as a separate contribution to our

combined model.

The body scale determines the total perfusion Qtot~35 ml=s of

the liver in mice [38]. The blood flow into and out of the root

edges of the supplying and draining vascular system, respectively,

is the connection of the HHS to the surrounding organism. More

precisely, inflowing and outflowing molar concentrations of the

compounds of interest are the main model input and output

quantities.

Organ Scale—Modeling the Vascular Systems
Obtaining physiological vascular geometries. The geom-

etry of vascular systems and the organ shape used in our model

was obtained from in vivo 3D images as illustrated in Figure 3.

To assess the vascular systems in vivo, a contrast enhanced

micro-CT scan was acquired [23] for a nude mouse. The two

tubes of the micro-CT (CT-Imaging, Erlangen, Germany) were

operated at 40 kV/1:0 mA and 65 kV/0:5 mA. For each micro-

CT sub-scan, 2880 projections containing 1032|1012 pixels,

were acquired over 4 full gantry rotations with a duration of

6 minutes per sub-scan. To cover the whole body, three sub-scans

were acquired, each covering 3 cm in the axial direction. Before

scanning, the mouse received an intravenous injection (5 ml per kg

body weight) of an iodine-based radiopaque blood pool contrast

agent [39]. During imaging, the mouse was anesthetized using a

2% mixture of isoflurane/air. After scanning, a Feldkamp-type

reconstruction was performed at isotropic voxel size 35|35

|35 mm3 using a ring artifact reduction method (CT-Imaging,

Erlangen, Germany), the image dataset was subsequently down-

sampled by a factor of 2 (isotropic).

Spatio-Temporal Simulation of First Pass Perfusion
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From the CT image data, a liver segmentation (including

decomposition in liver lobes) and a graph representation of the

vascular structures (portal vein and hepatic vein) was determined

using segmentation and skeletonization by a semi-automatic and

clinically evaluated [40] procedure described in [41]. The graph

was transformed into a strictly bifurcative tree with cylindrical

edges (vascular pieces between two points, bifurcation to next

bifurcation, or end point to next bifurcation, see Figure 2) of

constant radius following the methods in [42]. The resulting liver

has a volume of 1:077 ml. The obtained vascular graphs

containing 443 and 299 leaf nodes (end points) for the portal

and hepatic vein, respectively, are insufficiently detailed for robust

simulations, so they need to be refined algorithmically.

For this purpose, an implementation [42] of a constrained

constructive optimization method [43] for non-convex organ

shapes was used. In summary, the algorithm determines a set of

leaf nodes, each representing one lobule or a group of lobuli. It

then starts with an initial tree, here obtained from an in vivo CT

scan, and connects the additional leaf nodes by one. Each time, the

algorithm introduces a new bifurcation which is optimal in the

sense of minimal intravascular volume while providing constant

blood supply for each leaf node. In finely resolved hepatic vascular

trees of mice, there are many edges with radius less than 150 mm,

so it is particularly important to take the decrease of effective blood

viscosity due to the Fhrus-Lindqvist effect [44] into account for the

constructive algorithm. The methods of [42] were extended by

more strictly avoiding vascular connections outside the organ.

Note that this algorithm yields physiologically realistic vascular

structures but is not meant to model the vascular development

during organogenesis as studied e.g.in [45]. The algorithmic

procedure is illustrated in Video S1.

Perfusion simulation in the vascular structures. We

assume the same outflow from each leaf edge of the supplying

vascular system and the same inflow to each leaf edge of the

draining vascular system matching the assumptions in the

constrained constructive optimization framework [42] used for

vascular refinement. In particular, homogeneous perfusion is an

assumption currently put into the model and no result.

In the vascular systems, we have essentially one-dimensional (1D)

advection with velocities determined by flow splitting satisfying mass

conservation and the underlying geometry, namely cross-section

areas of edges. There is no diffusion term in the model, we can,

however, not avoid artificial numerical diffusion [46] introduced by

the discretization as discussed in Section 1 in the Text S1.

Figure 2. Conceptual two-dimensional sketch of our liver perfusion model. The homogenized hepatic space HHS is supplied and drained
by the supplying vascular systems SVS and the draining vascular system DVS, respectively. The blood flow through the SVS summarizes the
contributions of both supplying systems (hepatic artery and portal vein). The blood is hereafter transferred to the HHS along the terminal edges of
the supplying vascular tree (dashed lines). After blood has passed through the HHS, flow into the draining vascular tree (hepatic vein) occurs again
along its terminal edges (dashed lines). The HHS itself locally consists of several subspaces, the sinusoidal subspace (combining red blood cells and
the plasma subspace), the interstitial subspace, the cellular subspace, and the remaining subspace. An actual 3D vascular geometry is shown in
Figure 3. The SVS and DVS roots are connected to the rest of the body by the total blood flow in the liver. In the vascular structures, only 1D
advection with given velocities per edge take place. In the HHS, 3D advection (according to a 3D flow velocity vector field) as well as exchange
between the HHS subspaces and metabolization (according to PBPK model parameters) are considered simultaneously.
doi:10.1371/journal.pcbi.1003499.g002

Figure 3. From in vivo scans to vascular geometry. Based on an in vivo micro-CT scan (a) of a mouse, vascular structures (b) in the liver are
segmented and skeletonized. The supplying and draining vascular systems (SVS and DVS) are shown in red and blue, respectively. Furthermore, the
liver is segmented and decomposed in lobes shown in different colors in (c). An algorithmic procedure is used to determine physiological vascular
structures (d) with the desired level of detail, in our case 800 leaf nodes (end points) for each of the two trees are used.
doi:10.1371/journal.pcbi.1003499.g003

Spatio-Temporal Simulation of First Pass Perfusion
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Advection of a molar concentration profile cvasc(x,t) of a single

compound through the vascular systems can be described by 1D

advection as we assume a constant mean velocity ve for each

vascular edge e. As there are no sources inside the vascular

structures, this is described by the partial differential equation

(PDE)

Ltc
vasc(x,t)zveLxcvasc(x,t)~0 ð2Þ

with appropriate initial conditions, boundary conditions at inflows,

or coupling to connected edges. In the combined model, two

advection problems of this form per compound are considered,

one for the plasma and one for the red blood cells (see Figure 2).

These are independent of one another and the same flow velocity

is assumed for both.

At branching points in the supplying vascular system, mass

conservation implies a splitting of the blood volume, but the molar

concentrations do not change. In contrast, at branching points in

the draining vascular system we assume instant mixing of the

molar concentrations. These are obtained as the average of the

inflowing molar concentrations weighted with the respective

volume flow fractions. Mass conservation in the 1D model is

ensured by the flow velocities. For discretizing the advection

problem in Equation 2 for vascular trees, we use a 1D Eulerian-

Lagrangian Locally Adjoint Method (ELLAM) [47] scheme

adapted to the case of branchings. ELLAM allow for flexibly

integrating other phenomena than advection in the discretization

and avoids numerical artifacts occurring in other discretization

schemes for advection problems [48]. Details about the discretiza-

tion are explained in Section 1 in Text S1, the implementation is

an extension of own earlier work [49]. Alternative techniques for

discretizing and simulating flow have been developed before, see

e.g. [50].

The inflow in the root of the supplying vascular system from the

body scale is given by a time-dependent molar concentration

cSVS
in (t). Outflow from terminal edges of the supplying vascular

system is treated by applying an appropriate molar concentration

sink term. Mass conservation is ensured by vascular sink terms

being HHS source terms as discussed below.

In the draining vascular system, the flow of information is

different. Terminal edges drain whatever molar concentration is

present in their vicinity, and the molar concentration obtained at

the root is given back to the body scale as a time-dependent molar

concentration. For this purpose, the inflow at each leaf node is

computed as the average molar concentration near the corre-

sponding draining terminal edge. Again, mass conservation is

ensured by a corresponding sink for the HHS, see below. The

outflow from the root edge of the draining vascular system does

not require special treatment in the advection simulation, it merely

needs to be evaluated for each time step.

Tissue Scale—Modeling the Homogenized Hepatic Space
The HHS is modeled as a porous medium representing the

effective behavior of the whole liver volume, with the sinusoidal

subspace being perfused according to Darcy’s law [51]. The

perfusion is split between the red blood cells and plasma subspaces

(see Figure 2) proportional to their respective volumes.

Using appropriate flow source and sink terms in the HHS

corresponding to the exchange with the vascular systems, flow

velocities for 3D advection in the HHS are obtained. The

advection of concentrations can then be calculated from the

given flow velocities using appropriate discretizations described

in this section. Technical details about the discretization and

implementation in the model are presented in Section 2 in Text

S1. Finally, the pointwise exchange in the spatially resolved model

between different HHS subspaces and the actual metabolization

are modeled by equations coming from PBPK modeling.

Obtaining flow velocities. While the flow velocities in the

vascular systems are easily obtained from the flow splitting

described above and the respective cross-section areas, this is

more complicated in the HHS. Flow in the HHS is determined by

radial outflow and inflow for the terminal edges (see Figure 2) of

the SVS and DVS, respectively. This outflow and inflow is

assumed to be constant along each edge and assumed to happen

along the one-dimensional line segments being the center lines of

the terminal edges where we define source and sink terms g used

in Equation 4.

The Darcy velocity vector field for the blood flow in the

sinusoidal subspace of the HHS is obtained as

vsin(x)~
a(x)

Qsin
+p(x) ð3Þ

where Qsin is the appropriate porosity of the HHS (sinusoidal

volume fraction), a(x) is the effective permeability defined as

permeability divided by dynamic viscosity, and p(x) is obtained

from

{div(a(x)+p(x)) ~g x in HHSsin

Lnp(x) ~0 x on L HHSsin
ð4Þ

where g are the one-dimensional flow sources and sinks due to the

terminal edges as discussed above. Rather than using the two

quantities permeability and dynamic viscosity separately (as in [51]

and commonly done in the literature), we here only need their

ratio a.

For constant effective permeability (a(x)~const), its absolute

value in this setting does not matter for the velocities obtained,

since p scales linearly in a for given flow sources f , and the velocity

v scales linearly in
1

a
for given pressure p. We hence assume the

effective permeability to be a(x)~1. This means that the quantity

p cannot be interpreted as the actual physical pressure present in

the HHS, but merely as a relative pressure. However, p is just an

internal quantity of the computation described above and only the

resulting velocity v will be used later on.

Equation 4 was discretized using standard trilinear finite

elements for computing the pressure p, using the appropriate line

integrals for computing the right hand side source terms. The

hexahedral finite element grid for this purpose was chosen to be

the voxel midpoints of the binary image segmentation of the liver

as obtained from the image processing. A piecewise constant

velocity profile v was obtained from the pressure p using difference

quotients corresponding to the given grid when discretizing the

gradient in Equation 3. Due to the discretization and the lower-

dimensional sources, the resulting velocity field will not have

exactly vanishing divergence. This needs to be taken into account

when simulating advection in the next step.

Perfusion simulation in the Homogenized Hepatic

Space. Using the velocity profile vsin(x) of blood in the

sinusoidal subspace from Equation 3, we can now simulate the

advection of molar concentrations crbc(x,t) and cpls(x,t) of

compounds. For simplicity, we will restrict the presentation to a

single compound. As vsin(x) is constant in time, advection is

described by the PDEs

Ltc
i(x,t)zvsin(x)+xci(x,t)~gvasc,i(x,t) i[frbc, plsg ð5Þ

Spatio-Temporal Simulation of First Pass Perfusion

PLOS Computational Biology | www.ploscompbiol.org 5 March 2014 | Volume 10 | Issue 3 | e1003499



where the gvasc,i(x,t) are lower-dimensional sources and sinks

describing the inflow and outflow of compounds through the

terminal edges of supplying and draining vascular system,

respectively. Again, the velocity is the blood flow velocity and

thus the same for any compound. In our simulations, constant

initial conditions for Equation 5 were used. An explicit treatment

of boundary conditions is not necessary since the velocity vanishes

in normal direction to the liver boundary.

The molar concentration transfer from the supplying vascular

system to the HHS is modeled as follows. In each terminal edge of

the supplying vascular system, compounds are transported along

the whole length to the end point and out of the edge. As we

assume the cross-section area to decrease linearly to zero, this

corresponds to a constant outflow of mass along the terminal edge.

This mass outflow is used as a one-dimensional source term in the

HHS, satisfying mass conservation. This models a flow to

connected smaller vessels or sinusoids from the last resolved

vascular edges.

Terminal edges of the draining vascular system are assigned

an inflow value, in the same manner as for the root edge of the

supplying vascular system. This inflow value is determined as an

average molar concentration in a neighborhood of the terminal

edge. Mass conservation is ensured by considering a corre-

sponding one-dimensional source term with negative sign in the

HHS. Note that this is only an approximation of an inflow

from sinusoids or smaller vessels into the first resolved vascular

edges.

In the supplying vascular system, we assume inflow concentra-

tions to be such that an equilibrium between red blood cells and

plasma concentrations has been obtained before the injected

compound reaches our liver model.

The discretization of Equation 5 using a 3D ELLAM scheme is

described in Section 2 in Text S1.

Metabolization simulation using Physiologically Based

Pharmacokinetic Models. The exchange between the differ-

ent HHS subspaces and the metabolization in the cellular HHS

subspace are described by PBPK model equations. In the

simulations performed, we ignore enzymatic formation of meta-

bolic by-products, i.e. we consider the metabolization as a sink,

and thus need one inflowing and one outflowing molar concen-

tration only.

As mentioned above, PBPK models divide the liver in four

subcompartments, i.e. red blood cells, plasma, interstitium, and

cells. The PBPK models were written in terms of molar

concentrations, so that a pointwise exchange E between the

different subspaces and the contribution of metabolization m can

be written in the form

Lt

crbc

cpls

cint

ccell

2
666664

3
777775~E

crbc

cpls

cint

ccell

2
666664

3
777775z

0

0

0

m(ccell)

2
666664

3
777775

with ci~ci(x,t) for i[frbc, pls, int, cellg

ð6Þ

with E and m defined in Equations 7 and 8a/8b. We here omitted

the dependency of concentrations on space and time to simplify

notation. Note that perfusion and compound inflow are consid-

ered separate from Equation 6.

In all our PBPK models, only passive, gradient-driven exchange

of compounds takes place. We thus write Equation 6 using a 4|4
matrix to quantify exchange E of compounds as

E~

{Prbc,pls

krbc,plsQrbc

zPrbc,pls

Qrbc
0 0

zPrbc,pls

krbc,plsQpls

{Prbc,pls

Qpls
z

{Ppls,int

Qpls

zPpls,int

kpls,intQpls
0

0
zPpls,int

Qint

{Ppls,int

kpls,intQint
z

{Pint,cellk
int

Qint

zPcell,intk
cell

Qint

0 0
zPint,cellk

int

Qcell

{Pcell,intk
cell

Qcell

2
6666666666664

3
7777777777775
ð7Þ

where Qi are the volume fractions from Equation 1; krbc,pls, kpls,int,

kint, and kcell are dimensionless partition coefficients describing

the equilibrium state of molar concentrations for which the

exchange vanishes; and Prbc,pls, Ppls,int, Pint,cell, and Pcell,int are the

local effective permeabilities [1=s] between the different subspaces

of the HHS [12].

The actual metabolization m within the cellular subspace is

captured by linear mass action or Michaelis–Menten kinetics [52]

m(ccell)~{kdecaykcellccell (linear mass action) ð8aÞ

m(ccell)~{
V cell

maxkcellccell

Kcell
m zkcellccell

(Michaelis{Menten) ð8bÞ

with a first order rate constant kdecay [1=s] or Michaelis–Menten

parameters V cell
max and Kcell

m .

Our PBPK models were built using the software tool PK-Sim

(version 5.1; Bayer Technology Services GmbH, Leverkusen,

Germany). The PBPK models generated in PK-Sim were exported

and modified in MoBi (version 3.1; Bayer Technology Services

GmbH). All PBPK models consider the pharmacokinetic charac-

teristics of absorption, metabolization, and excretion of the

simulated drug. Physiological parameters describing basic model

structure such as organ volumes, blood flow rates, or surface

permeabilities are provided by the software tool [12,53]. Mass

transfer in PBPK models is described by so-called distribution

models which are parametrized based upon the physicochemical

properties of the compound under investigation. Notably, all

physiological parameters are either explicitly provided in the

PBPK software, e.g. organ volumes or blood perfusion rates, or

they can be calculated by means of the underlying distribution

model. In the latter case, physicochemical properties of the

substance such as lipophilicity (log P) or molecular weight (MW)

are used to quantify corresponding model parameters. The overall

number of independent parameters in PBPK models is hence low

(usually in the order of 3 to 10).

For each of the three exemplary compounds considered here,

PBPK models were developed, i.e. the respective model param-

eters involving local effective permeabilities or partition coeffi-

cients were adjusted with respect to plasma concentration data.

Metabolization parameters (kdecay or V cell
max and Kcell

m ) were

obtained by comparing simulation results of a whole-body PBPK

model to experimentally measured plasma concentrations of the

respective compounds. In contrast, permeabilities and partition

coefficients are derived from physicochemical properties of the

compounds. In order to quantify the model quality, we computed

concordance correlation coefficients [54] for experimentally

measured concentrations and simulated concentrations at the

same time points. Once the PBPK models were established and

found to describe the experimental data with sufficient accuracy,

parameters describing the mass transfer in between the four

(7)
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subcompartments were used to quantify the corresponding

processes in the spatially resolved model of the isolated liver, see

Table 1 for the resulting parameters.

Combined perfusion and metabolization model. Ex-

change of compounds between the different subspaces of the

HHS (see Figure 2) and cellular metabolization is modeled as the

PBPK term from Equation 6 combined with the advection term

from Equation 5. More precisely, advection applies to crbc(x,t)

and cpls(x,t), the PBPK term additionally involves cint(x,t), and

ccell(x,t). Again omitting the dependency of the parameters and

concentrations on space and time to simplify notation, we can

write the combined advection-PBPK problem as an extension of

Equation 6,

Lt

crbc

cpls

cint

ccell

2
6664

3
7775z

vsin:+xcrbc

vsin:+xcpls

0

0

2
6664

3
7775~

gvasc,rbc

gvasc,pls

0

0

2
6664

3
7775zE

crbc

cpls

cint

ccell

2
6664

3
7775z

0

0

0

m(ccell)

2
6664

3
7775ð9Þ

with E and m as explained in Equations 7 and 8a/8b, respectively.

Let us sum up the dependency of parameters on space and time.

For our purposes, the velocity vsin(x) in Equation 9 only depends

on space, the source terms gvasc,i(x,t) depend on space and time.

Effective permeabilities and partition coefficients as well as the

metabolization parameters are constant in space and time except

for kcell(x) in a spatially heterogeneous steatosis model described

below.

Exchange and metabolization could be integrated in the

ELLAM scheme used for discretizing the HHS perfusion, even

if they are nonlinear [55]. Implementing such a combined

ELLAM scheme, however, is quite complex and requires a

timestep appropriate for both phenomena. Instead, we consider

the two phenomena separately and use alternating time steps (see

below for the choice of time step sizes). The advection part is

discretized in space and time by a 3D ELLAM scheme as

described above and in Section 2 in Text S1. For the PBPK part as

in Equation 6, time stepping is necessary for each grid node, and

we use standard Runge-Kutta-Fehlberg 4th/5th order (RKF45)

time stepping [56] which automatically adapts the internal time

step size. This amounts to solving the advection equation 5

involving all of the grid points in each step and the PBPK part of

Equation 9 separately for each grid point.

The simulations, including determining the 3D velocity vector

field in the HHS were implemented in custom C++ code using the

QuocMesh software library (version 1.3; AG Rumpf, Institute for

Numerical Simulation, University of Bonn, Germany).

Steatosis and Necrosis as Examples for Heterogeneous
Pathophysiological States

The final spatially resolved model can also be used for analysis

of pathophysiological states of the liver which have not been taken

into account during model establishment itself. We here consid-

ered the case of steatosis leading to changes in intracellular lipid

content as well as carbon tetrachloride (CCl4)-induced liver

necrosis affecting the spatial composition of the organ. Describing

pathophysiological changes in spatially heterogeneous patterns is a

key strength of our approach. A comparison of the simulation

results with experimental data allows to evaluate model validity,

thereby providing targeted suggestions for model extensions and

modifications.

Steatosis is a common liver disease often caused by obesity or

alcohol abuse [57]. It is characterized by lipid accumulations in

the cellular subspace [58], the influence of which can be

structurally represented in the model. We here analyzed to what

extent steatosis affects hepatic clearance following changes in

intrahepatic drug distribution. For our simulations we consider

data reported from rats in [59, Table 8], namely steatosis extents

of about 21:2+4:6% and 11:0+5:3% (mean + SD) in the left

lateral and median liver lobe, respectively, obtained after two

weeks of a specific diet. We proceed assuming that similar steatosis

patterns can also exist in mice.

Let s(x) be the ratio of lipid accumulation per liver volume at

position x, corresponding to the steatosis percentages in [59, Table

8]. Using the lobe decomposition of our mouse liver dataset (cf.

Figure 3), we consider two states of steatosis. First, we use a

homogeneous lipid accumulation s(x)~0:14468 throughout the

liver. This value is obtained as the average s for s(x)~0:212 in the

left lateral lobe and s(x)~0:110 in the remaining lobes as the left

lateral lobe in our case has 34% of the total volume. Second, we

assign a pseudo-randomly varying value s(x) uniformly distributed

in ½0:143,0:281� (left lateral lobe) and ½0:0305,0:1895� (remaining

lobes) to obtain a spatially heterogeneous steatosis pattern. To

avoid unphysiologically large local variations, we generated

random numbers [60] on a grid four times coarser than the

computational resolution and interpolated multilinearly at the

nodes actually used. The two steatotic cases are visualized in

Table 1. PBPK parameters for the compounds considered.

CFDA SE Midazolam Spiramycin

MW [g=mol] 557:469 325:767 843:06

fu [–] 0:5* 0:06 [91]1 0:4 [92]

log P [–] 2:8{ 2:2986 [91]1 3:4 [92]

krbc,pls [–] 4:179` 0:186` 12:502`I

kpls,int [–] 0:666` 0:406` 0:607`

kint [–] 0:751` 0:148` 0:659`

kcell [–] 21:333:10{3` 65:327:10{3` 5:426:10{3`

Prbc,pls [1=s] 3:767:10{3` 7:709:10{3` 1:006:10{3`I

Ppls,int [1=s] 109:892` 13:187` 87:914`

Pint,cell [1=s] 1:657` 28:255` 0:553`**

Pcell,int [1=s] 1:657` 28:255` 0:553`**

kdecay [1=s] n/a n/a 0:054"

V cell
max [mM=s] n/a 2:845" n/a

Kcell
m [mM] n/a 2:57" n/a

The table lists the PBPK model parameters for CFDA SE, midazolam, and
spiramycin used in our simulations, including literature sources. Molecular
weight MW, fraction unbound fu and lipophilicity log P are used to calculate the
partition coefficients k and permeabilities P used in the PBPK models. The
physicochemical compound parameters were fine-tuned with respect to initial
literature values by comparing PBPK simulation results to experimental PK data.

Likewise, parameters kdecay , V cell
max , and Kcell

m quantifying turnover in the

metabolization terms were fitted to experimental PK data during model
establishment.
* estimated.
{chemformatic prediction.
`computed from the PBPK distribution model [38] based on MW, fu , and log P.
1fine-tuned from literature values during model establishment with respect to
experimental PK data.
"fitted during model establishment with respect to experimental PK data.
Iunused in the experimental setting [32] without RBC.
** adjusted later for the experimental setting [32].
doi:10.1371/journal.pcbi.1003499.t001

(9)
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Figure 4. In this setting, s(x)~shealthy~0:04485 corresponds to

the healthy state [12].

We quantify the impact of steatosis (an increased intracellular

volume fraction s(x) of lipids) by changing in cellular partition

coefficient kcell in the PBPK model. Any other effects of steatosis

are explicitly omitted here for the sake of simplicity of this proof of

concept for a spatial heterogeneity. The cellular partition

coefficient is calculated according to the formula [12]

kcell(s)~
1

kcell
healthy

z
10log P{1

Qcell
: s{shealthy

� �" #{1

ð10Þ

with a constant log P specific for the respective compound and

kcell
healthy~kcell (Table 1).

The values kcell(s(x)) are substituted in Equations 7 and 8a/8b.

As s(x) varies spatially, also kcell(s(x)) and thus intracomparte-

mental exchange and metabolization vary accordingly. This is in

contrast to commonly used PBPK models that, due to their

compartmental organ representation, cannot distinguish between

the homogeneous and heterogeneous case as they only use one

constant value of kcell.

As a second example for pathophysiological changes in the liver,

we consider the case of CCl4-induced hepatic injury. Administra-

tion of CCl4 in animal models is a frequently used experimental

protocol to investigate the processes underlying toxic liver damage

[61]. Inducing hepatic injury by CCl4 leads to necrotic cell death

in the pericentral zone, similar to acetaminophen overdoses [62].

We analyzed the impact of pericentral necrosis on hepatic

metabolization capacity. In our spatially resolved model, CCl4-

induced necrosis was represented by replacing the cellular space

by interstitial space in the necrotic volume. The latter was set to be

the 27:5% of the liver volume closest to the DVS terminal edges

(see Figure 4), where the percentage is based on the area analysis

in [63, Table 1], observed one day after CCl4 administration.

Computational Resolution
Our basis for choosing computational resolutions is the actual

size of lobuli in mice. From a cross-section area of A~0:21 mm2, a

radius of r~284:3mm (assuming a regular hexagonal shape), both

from [63, Table 1], and assuming the same elongation (length

divided by diameter) of 1:52 as for human lobuli [64, Chapter

2.5], a mouse lobulus has a volume of approximately 181:9 nl, the

total liver volume of 1{Qrestð Þ1:077 ml thus corresponds to 5333
lobuli. By definition, a lobule is the volume drained by one

terminal edge of the hepatic vein, so a fully resolved vascular tree

has approximately that many leaf nodes.

Computational resolution for the Homogenized Hepatic

Space. The grid spacing for discretizing the HHS was chosen to

be 280 mm, or one eighth of the image resolution of the CT image

data, or approximately the lobulus radius. This choice leads to

49114 grid points inside the liver used in our simulations.

Furthermore, anisotropy due to the internal arrangement of lobuli

does not need to be taken into account at this resolution.

Investigating the influence of discretizations other than hexahedral

meshes considered here and their computational resolution

requires a more elaborate investigation and is beyond the scope

of this study.

Level of detail in the vascular tree. For the simulations

presented later, 800 leaf nodes in both the supplying and draining

vascular system were chosen as a trade-off between model

accuracy (a fully resolved vascular system would have 5333 leaf

nodes) and computational efficiency (i.e. using a small number of

leaf nodes). Less than 800 leaf nodes in the vascular trees was

observed in Section 3 in Text S1 to lead to notable changes in the

results while more details only lead to increasing computational

costs. The vascular systems used for our simulations are visualized

in Figure 3d and Video S2.

Since we do not fully resolve the vascular trees down to the

lobular scale, the flow distance between the two vascular trees does

not coincide with the real size of liver lobuli. Zonation effects [65],

e.g. as observed in the simulations for the steatotic cases below, are

qualitatively correct nonetheless. This is because the time available

for metabolization is constant regardless of the vascular resolution,

as we verify in Table 1 in Text S1, and because we do not consider

individual cells (hepatocytes or other) and in particular do not see

their length scale in our model. Consequently, also the overall

clearance is represented correctly even though the vascular trees

are not fully resolved.

To avoid excessively small time steps in the vascular advection

simulation due to very short edges, a minimum edge length of 0:5
times the computational resolution in the HHS is enforced.

Shorter terminal edges are pruned from the tree, shorter non-

terminal edges are contracted to multifurcations. There is no

further coupling between the discretization grids of the HHS and

vascular structures as illustrated in Figure 5 in Text S1.

Choice of the time step. A fixed time step k~0:05 s was

chosen for the overall simulation (unless specified otherwise), and

we alternatingly compute (1) advection time steps for the two

vascular systems, (2) advection time steps in the HHS, and (3)

metabolization time steps in the HHS. For (1), the time sub-step is

chosen to be an integer fraction of k such that the condition in

Equation 1 in Text S1 is satisfied. Similarly, a 3D analog as

discussed in Section 2 in Text S1 needs to be satisfied for (2). As for

(3), the RKF45 time stepping automatically and adaptively

chooses appropriate sub-steps. The relation between the different

time steps is illustrated in Figure 6 in Text S1.

Results

To apply our model to pharmacological scenarios, we

considered the distribution of three exemplary compounds

covering typical aspects of drug distribution and metabolization:

(1) the tracer carboxyfluorescein diacetate succinimidyl ester

(CFDA SE), (2) the sedative midazolam, and (3) the antibiotic

spiramycin. CFDA SE is a dye used to track proliferation in

animal cells and is used here as a first proof of principle to describe

the general behavior of our spatially resolved model only involving

passive mass transfer. The model for CFDA SE was exemplarily

used to investigate the computational performance and the

influence of the level of detail in the vascular trees with regard

to the number of leaf nodes (see Section 3 in Text S1). Also, we

used the CFDA SE model to verify that the overall mass balance is

satisfied in the combined model.

The PBPK model for midazolam was based on experimental

PK data in mice [66] and considers both passive diffusion to the

cellular subspace and consecutive hepatic metabolization by

CYP3A. It thus extends the pure distribution model for CFDA

SE by enzyme-catalyzed intracellular metabolization. Once

established, the PBPK model of midazolam was used to quantify

mass transfer and metabolization in the spatially resolved model.

For spiramycin, we followed a similar approach by first

establishing a murine PBPK model which is in agreement with

experimental PK data [67], see Figure 5. Parameters used in our

simulations are given in Table 1. The physicochemical properties

of the three compounds together with the kinetic parameters

quantifying metabolization are sufficient to parametrize the overall

Spatio-Temporal Simulation of First Pass Perfusion
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model structure of each of the PBPK models. All remaining

parameters are either directly provided by the PBPK software such

as organ volumes or they are calculated from the underlying

distribution models based on the physicochemistry of the

compounds.

We then used the PBPK model to parametrize the spatially

resolved model. A comparison of the outflow concentrations of the

spatially resolved model with experimental data from an isolated

perfused liver [32] shows a good agreement with the experimental

results. For all three compounds, we compared simulation results

for the healthy reference state to homogeneous and heterogeneous

steatotic states.

CFDA SE—Distribution of a Tracer
As a first application example without metabolization, we

considered the distribution of the tracer CFDA SE within the liver.

Since adequate pharmacokinetic data for CFDA SE were not

available for mice, a PBPK model could not be validated in detail.

Instead, only the basic physicochemical parameters (fu and log P)

were estimated and subsequently used to calculate the parameters

quantifying passive mass transfer in the PBPK model (Table 1).

The pharmacokinetic behavior of CFDA SE was described by

passive exchange as given in Equation 7. We considered an

intravenous dose of 10 mg per kg body mass [68] corresponding to

an inflowing concentration of 5:122 mM for a duration of 2 s for a

20 g mouse. Note that the concentration of the compound in the

inflowing blood encompasses the corresponding equilibrium

concentrations in the red blood cells and the plasma, respectively.

The model for CFDA SE was in particular used as a proof of

concept for the general performance of the spatially resolved

model. We could show with this model that overall mass

conservation is satisfied, see Table 1 in Text S1. Since

metabolization of CFDA SE was not considered here, concentra-

tions of CFDA SE in the in- and the outflow alone could be used

for this essential step in model validation.

The outflow curves for the spatially resolved model (Figure 6)

show two effects, a temporal delay and a more smeared-out form

of the peak from the spatially resolved simulation compared to the

PBPK compartment simulation. The reasons for these observa-

tions become clearer when considering the temporal development

of the concentrations in the four hepatic subspaces. The spatially

resolved model no longer considers mean concentrations in well-

stirred compartments but rather calculates heterogeneous distri-

butions of these compounds. Likewise, the transition times needed

Figure 4. Visualization of pathophysiological states (steatosis, CCl4-induced necrosis) in the spatially resolved liver model. The
images show the distribution of lipid in our steatotic model with homogeneous lipid accumulation throughout the whole liver (a, b) and different
heterogeneous distributions (c, d) in the left lateral lobe and the remaining lobes. The average lipid accumulation over the whole liver is the same in
both steatosis cases. The lipid accumulation is assumed to change the distribution and metabolization behavior according to Equation 9. The liver
volume affected by CCl4-induced necrosis is shown in dark at the bottom (e, f). In each case, a volume rendering (a, c, e) and one coronal slice
through the model liver (b, d, f) is shown along with the vascular structures.
doi:10.1371/journal.pcbi.1003499.g004
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to flow from the supplying to the draining vascular geometry are

heterogeneous due to the different routes taken.

We next visualized the total CFDA SE concentration in the

HHS (Figure 7) obtained as the weighted average of the

concentrations in the different subspaces,

ctotal~QrbccrbczQplscplszQintcintzQcellccell: ð11Þ

Note that this is the quantity one observes in general for CT or

MRI contrast agents by 3D imaging. In Figure 7 and in a Video

S3, the different phases of the first pass of drug perfusion and

distribution are shown. Also, the subsequent wash-out of the

compound can be observed once the incoming pulse has passed

through the liver. Notably, our spatially resolved model describes

drug passage as a continuous process which may be used to

complement experimental image data at discrete time points.

Finally, we simulated steatotic cases where lipid accumulation in

the cellular space of the liver influences the distribution behavior of

compounds. In particular, we considered whether our spatially

resolved simulations may be useful to support diagnostics and

imaging. Concentration changes of CFDA SE due to spatially

homogeneous and spatially heterogeneous states of steatosis are

shown in Figure 8.

Midazolam—Distribution and Metabolization of a Drug
As a pharmacokinetic application including intracellular

metabolization, we next considered the distribution and metabo-

lization of the sedative midazolam. For model establishment and

parameter identification, we used previously published PK data

[66] for mice obtaining an intravenous dose of 2:5 mg per kg body

weight. Metabolization of midazolam by CYP3A was quantified

by using gene expression data as a proxy for tissue-specific protein

abundance within a whole-body context [15]. This also involves a

specific quantification of the hepatic metabolization capacity

which is an essential prerequisite for the consecutive parametri-

zation of mass transfer in the HHS. The PBPK model of

midazolam was pre-parametrized with the physicochemical

compound parameters molecular weight, fraction unbound and

lipophilicity. Subsequently, the compound parameters as well as

the metabolization parameters were fine-tuned with respect to the

Figure 5. PBPK model establishment and parameter identification. Pharmacokinetic simulations of an intravenous dose of midazolam of
2:5 mg per kg body weight (left) and an oral dose of spiramycin of 400 mg per kg body weight (right) are shown. The PBPK simulations (red lines) were
compared to experimental data (green asterisks) for midazolam [66] and spiramycin [67] in mice.
doi:10.1371/journal.pcbi.1003499.g005

Figure 6. Results of the single pass perfusion of CFDA SE (outflow concentrations). For perfusion by CFDA SE, the large plot (left) shows
the outflowing CFDA SE concentration in the healthy state of the isolated mouse liver model and the two steatotic states for a CFDA SE inflow during
2 seconds. For comparison, results for a PBPK simulation are shown as well. The four small plots (right) show the mean CFDA SE concentrations in the
four subspaces of the homogenized hepatic space as well as the ranges between 5th/95th and 25th/75th percentiles, respectively, to illustrate the
ranges of the concentrations in the spatially resolved model. The PBPK simulation results, shown for comparison, in contrast yield one value for each
compartment at any given time point, representing only mean values.
doi:10.1371/journal.pcbi.1003499.g006
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experimental PK data [66] (Table 1). The simulated plasma time

curves obtained with the thus established PBPK model are in good

agreement with the experimental PK data in mice (Figure 5). For

the midazolam PBPK model in Figure 5, a concordance

correlation coefficient rc~0:899 was found, see also Figure 3 in

Text S1.

We next used the model parameters identified in the midazolam

PBPK model for the spatially resolved model. As before, mass

transfer of midazolam within the liver was described by passive

exchange between the sinusoidal and interstitial subspace as well

as the interstitial and cellular subspace as given in Equation 7. In

addition, a nonlinear cellular metabolization according to

Equation 8b was considered in this model. Values for the

parameters in the equations are listed in Table 1. We considered

a dose of 2 mg per kg body mass, corresponding to an inflowing

concentration of 1:654 mM for a duration of 2 s.

Outflow concentration time curves from the draining vascular

system for the healthy state are shown in Figure 9. The total molar

amounts (concentrations integrated over the whole liver) of

compounds contained in the red blood cells, plasma, interstitial

and cellular subspaces are plotted in Figure 9. In the simulations,

we again observe a delayed and more smeared-out peak in the

spatially resolved model. After 120 s simulated time, our model

predicts a metabolization of approximately 45% of the injected

midazolam (healthy state), the rest having flown out from the

model or still being present in the HHS and vascular systems. For

midazolam metabolization, we also considered steatosis and CCl4-

induced liver necrosis. In the homogeneous and heterogeneous

steatotic state, an increase of the metabolization compared to the

healthy state by 18% and 16%, respectively, can be observed,

again after 120 s simulated time. For liver necrosis following CCl4
intoxication [61] our simulation predicts a decrease of 20:2% of

the metabolized midazolam amount after 120 s.

Spiramycin—Comparison to Experimental Data from an
Isolated Perfused Liver

Finally we considered a model for the antibiotic spiramycin for

which experimental data for an isolated liver were available in the

literature [32]. For model establishment and parameter identifi-

cation, we again used previously published PK data [67] for mice

obtaining an oral dose of 500 mg per kg body weight of

spiramycin. Intravenous PK data are generally necessary for

PBPK model development in order to identify systemic clearance

capacity and distribution behavior without overlaying processes in

the gastro-intestinal tract during oral absorption. Since intrave-

nous PK data, however, were not available for mice, intravenous

monkey PK data [69] were used for establishment of the

fundamental model structure (Figure 1 in Text S1). We considered

a linear metabolization term and pre-parametrized the distribution

model with the physicochemical compound parameters (MW, fu,

log P). Based on the structure of the intravenous PBPK model, we

then established a model for oral administration of spiramycin in

mice [32]. Subsequently the model parameters were adjusted with

respect to the experimental data [67] (Table 1). As before for

midazolam, the spiramycin PBPK model provides a quantitative

description of hepatic clearance capacity. The simulation time

curves with the mouse PBPK model for intravenous spiramycin

administration are in good agreement with the experimental

plasma concentrations (Figure 5). For the PBPK model for

spiramycin, we obtained a concordance correlation coefficient

rc~0:845, see also Figure 3 in Text S1.

Based on the validated mouse PBPK model for spiramycin we

parametrized the spatially resolved model which is structurally

identical to that of midazolam, except for the (now linear)

metabolization kinetics. The spatially resolved model was then

used to simulate experimental data for administration of spiramy-

cin in an isolated liver [32]. The model structure of our spatially

resolved model corresponds entirely to the experimental setup of

the ex vivo assay, the availability of such highly specific data

provided the opportunity to further validate our model. In the

experiments [32], perfusion was performed using a buffer not

containing red blood cells. The volume fractions from Equation 1

were hence changed to ~QQrbc~0:0 and ~QQpls~0:104. Moreover, a

total perfusion of ~QQtot~5 ml=min was used, which changes the

flow velocities in our model and requires using a smaller time step

(~kk~0:02 s). Passive exchange between plasma, interstitial, and

cellular subspaces was again modeled as in Equation 7, mass

transfer involving red blood cells, however, was set to zero to take

into account the specific experimental setup [32]. Due to the

unphysiologically high flow rate, the local effective permeability

parameters between interstitial and cellular space were adapted to
~PPint,cell~0:040:1=s and ~PPcell,int~0:627:1=s. An inflowing spira-

mycin concentration of 1 mM for a duration of 15 minutes was

used as inflow condition reproducing the inflowing concentration

profile in the experimental setup [32].

For a comparison to the experimental data reported in Figure 2

(wild-type) in [32], the outflowing rate of spiramycin was

computed and plotted in Figure 10, again for the healthy state

and the two steatotic states described above. Comparing

experimental outflow concentrations and those simulated using

the spatio-temporal model for the healthy reference case, a

concordance correlation coefficient rc~0:624 is obtained. Com-

plementarily, volume renderings were generated at different time

points after the end of the inflow for 15 minutes (Figure 10) and

show the spatial distribution of the spiramycin concentration

immediately. This comparison illustrates very nicely how our

spatially resolved model can be used to relate macroscopic

observations in the plasma to distribution processes at the tissue

scale.

Discussion

Simulation Results
We here present a spatially resolved model which describes the

perfusion, distribution, and metabolization of compounds within

the liver. The model structure is based on mass transfer equations

obtained from PBPK modeling and vascular structures generated

from micro-CT imaging. Our model excludes in particular any

recirculation through the body such that metabolization and

distribution of compounds can be considered without any

overlaying effects. After the end of the initial administrations, a

bi-phasic behavior can be observed which is initially governed by

the distribution within the tissue and a slow release afterwards.

Note that wash-out after the end of injection is additionally

determined by advection in the blood flow.

Comparing outflowing concentrations from our spatially

resolved simulations to those from PBPK compartment models

showed a temporal delay, both for CFDA SE and midazolam

(Figures 6 and 9). This is because the compound now needs to pass

sequentially through the supplying vascular system, the homoge-

nized hepatic space and the draining vascular system. Different

paths through the liver model require different transit times, hence

the peaks are more smeared-out in the spatially resolved

simulations. This is further emphasized by the temporal develop-

ment of the concentrations in the four hepatic subspaces for the

CFDA SE simulations (Figure 6). The spatially resolved model no

longer considers mean concentrations in well-stirred compart-

ments but rather calculates heterogeneous distributions of the

Spatio-Temporal Simulation of First Pass Perfusion
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Figure 7. Results of the spatio-temporal perfusion simulations of CFDA SE in the liver. The volume renderings show the distribution of
CFDA SE in the mouse liver for the healthy state at different time points, showing the first pass of perfusion (tƒ2 s), the distribution phase
(1 sƒtƒ5 s) and the wash out (t§3 s).
doi:10.1371/journal.pcbi.1003499.g007

Figure 8. Influence of spatially heterogeneous lipid distributions on CFDA SE concentrations in steatosis. A comparison (b) of the CFDA
SE concentrations at t~10 s in the heterogeneous steatotic state (a) to the healthy state of the isolated mouse liver (see Figure 7) shows higher
concentrations of the lipophilic tracer throughout the steatotic liver model. The difference (c) between the heterogeneous and homogeneous
steatotic states exhibits higher CFDA SE concentrations (red spots) outside the left lateral lobe with higher lipid accumulation in the homogeneous
case, see Figure 4. Notice that the color scales are different. This clearly shows that spatial resolution is indispensable for accurate modeling. For a
clearer visualization of the concentration differences in the HHS volume, we omitted the vascular structures in the volume renderings (b and c).
doi:10.1371/journal.pcbi.1003499.g008
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concentrations. Likewise, the transition times needed for the

compounds to flow from the supplying to the draining vascular

systems are heterogeneous due to the different routes taken. This

shows the general performance of the spatially resolved model

where mass flows follows the physiological architecture of hepatic

tissue governed both by vascular geometry and the composition of

the connecting hepatic tissue. While this temporal delay only plays

a role during first pass perfusion or similar sudden incidents,

results from the spatially resolved model can nevertheless be used

to revise PBPK model parameters by comparison with targeted

experimental data [32].

Previous approaches already described macroscopic effects such

as transit time distribution [10,11], this can also be reproduced

using our model. In addition, our approach provides a mechanistic

interpretation and visualization of the underlying processes. Our

model allows for example a physiology-based description of the

liver, thus providing more insight into drug distribution and

underlying clearance processes. Likewise, in contrast to fractal

models [11] translating the vascular branching to effective

pharmacokinetics parameters, we consider the actual anatomical

geometry of the organ and its vascular structures. A highly

resolved representation is indispensable for models that can also

describe individual, potentially heterogeneous, pathologies of the

liver. One major drawback, however, of the spatially resolved

model is the highly increased computational effort required to run

the simulations, see Table 1 in Text S1.

To initially validate our spatially resolved model, we compared

simulation results for spiramycin to experimental data obtained ex

vivo with an isolated liver. The outflow concentrations simulated

using the spatially resolved model and the experimental measure-

ments in [32] are not in full agreement. Note, however, that the

simulations of the isolated perfused liver are actually a prediction,

since the original equations in the PBPK model were initially

adjusted with respect to in vivo PK data [67]. In the light of this

workflow it should be noted that the PBPK model represents only

an intermediate step before the final spatially resolved model is

ultimately established. It is only in this subsequent step that the

liver model is integrated in the spatially resolved model, in this case

to simulate ex vivo data from an isolated perfused liver [32]. Our

approach hence extrapolates in vivo results obtained in a whole-

body context to ex vivo data generated in an isolated liver as such

supporting a structural transfer of knowledge. Hence, the setup of

an isolated perfused liver is a suitable test case. The drawback of

this prediction approach is the necessity of integrating experimen-

tal data coming from different sources which may partly explain

the deviations in the stationary phase during the first 15 minutes

during the onset of perfusion.

While deviations between experimental data and simulated

concentrations can be attributed to large experimental standard

deviations or limitations of in silico to ex vivo transferability, a

general agreement between the spatially resolved model and

experimental data can be observed (Figure 6). In particular, the

clearance rate after the interruption of the spiramycin inflow is in

good agreement with the experimental data. This illustrates how

our spatially resolved model can be used to relate macroscopic

observations in the plasma to distribution processes at the lobulus

scale.

When applying the combined model to the case of steatosis it

was found that already a spatially homogeneous change in the

tissue composition leads to spatially heterogeneous differences in

the distribution (Figure 8). The observed behavior showing the

effect of an increased intracellular lipid content is actually a

zonation effect on the length scale between terminal edges of the

supplying and the draining vascular system. As discussed above,

the qualitative result and the overall clearance are correct even

though the flow distance between the two vascular trees is not the

real hepatic lobule size. It was also found that the increased lipid

content of the cells leads to longer intracellular retention times

since the bound and thus immobile drug fraction increases. In

turn, this leads to higher metabolization rates since lipid binding

protects the compound from a fast wash-out due to increased

retention times in steatotic livers.

Differences between spatially homogeneous and heterogeneous

steatotic states were also analyzed (Figure 8). It was found that the

difference in lipid accumulation between different lobes and within

the lobes had an observable influence on the concentrations as

retention times in the cellular subspace are longer in case of higher

lipid accumulation. This heterogeneous effect is only visible in

Figure 9. Simulations with a spatially resolved model for midazolam. The large plot (left) shows the outflowing midazolam concentrations for the
healthy state and the pathological states for a midazolam inflow during 2 seconds. For comparison, results for simulations with a PBPK model are shown as
well. The four smaller plots (right) show the total amounts contained in the subspaces of the liver, using the same lines and colors. Here, a difference
between healthy and pathological states can be observed. In case of CCl4-induced necrosis, higher outflow concentrations are predicted whereas they are
lower in the steatotic cases. In particular, the outflow concentration as well as the amounts contained in the plasma and the interstitium also show a
difference of up to 7:4, 8:7, and 8:8 percent, respectively, between the homogeneous and heterogeneous steatotic states (marked by arrows).
doi:10.1371/journal.pcbi.1003499.g009
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spatially resolved modeling (Figure 9). The model thus provides a

mechanistic description of pathophysiological states of the liver

and can moreover distinguish between different spatial patterns of

the pathology.

Let us point out that both the temporal delay of the outflowing

peak and differences between different steatotic states are inherent

properties of the spatio-temporal model that the original

compartmental PBPK model cannot describe. In contrast, the

spatially resolved model can capture these effects in a qualitatively

plausible way.

Our model predicts increased metabolization in steatotic livers,

but decreased metabolization following CCl4-induced liver necro-

sis. The simulations hence provide testable predictions which can

be compared to previously published experimental data [70,71].

For steatotic livers, drug lipophilicity has been related to intrinsic

elimination clearance in rats with nonalcoholic steatohepatitis

(NASH) and control rats, respectively [70]. From this study, an

increased clearance of approximately 70% can be estimated for

midazolam (log P~2:3) in steatotic animals. Even though this

relationship has been established in rat livers perfused in situ and

cannot be translated directly to our model, it nevertheless confirms

qualitative validity of our simulations, since our model predicts an

increased metabolization between 16% and 18%. For more

detailed comparisons, simulations and experimental measure-

ments would need to be performed for the same experimental

setup and in particular in the same species. However, the

significantly increased clearance found experimentally in steatotic

animals already points to the necessity of a more refined diseased

model of steatosis since lipid accumulation alone is obviously not

sufficient to explain the observed decrease in metabolic capacity.

Possible model extension include, amongst others, previously

discussed changes in microcirculation [72] and intracompart-

mental permeability [70]. For CCl4-induced necrosis, our

computational findings are also qualitatively validated by exper-

imental observations, where a decreased metabolization of

midazolam after CCl4 pretreatment has been found in rats [71].

Comparing the experimental findings with our current model

structure indicates that decreased cytochrome levels in CCl4-

treated animals need to be considered as future model extensions.

Here, our spatially resolved model could in particular be used to

differentiate the contributions of enzymatic depletion and volu-

metric extension of necrosis on the decrease of metabolic capacity.

Model Extensions
Despite the performance of the newly developed spatially

resolved model, several limitations need to be addressed, which

represent excellent opportunities for future model refinement. On

the technical side, a more detailed geometric vascular model and

flow simulation [73], not only using constant velocity in each

cylinder could be considered. However, all this will drastically

increase computational costs with little benefit as the intravascular

flow patterns are largely irrelevant for what happens in the HHS.

Figure 10. Results for the metabolization of spiramycin and comparison to experimental data from an isolated perfused liver. The
plot shows the outflow rates of spiramycin from our single pass perfusion model for a spiramycin inflow during 15 minutes compared to
experimental data from an isolated perfused liver [32]. While the experimental values were measured in a healthy liver, we also show simulation
results for the steatotic states. The volume renderings show the total spiramycin concentration for four time points after the end of the inflow
(t~0 minutes).
doi:10.1371/journal.pcbi.1003499.g010
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Deformations of the organ as in [24,74] could also be taken into

account. Likewise, changes of the effective blood viscosity [75]

besides those due to the Fhrus-Lindqvist effect [44] could also be

considered in the model.

The hepatic artery as the second supplying vascular system with

other inflow concentration could become part of the model if its

geometry and the local mixing of blood provided by portal vein

and hepatic artery is known for the concrete situation considered

[76]. This would also allow for more realistic flow velocities in the

SVS. More generally, perfusion heterogeneity could also be

considered as well as geometric scales of the perfusion [25]. A

more detailed sensitivity analysis than merely one with respect to

the vascular geometry (Figure 7 and Table 1 in Text S1) should be

performed. For this purpose, known variations as well as

measurement uncertainty of both PBPK model parameters and

physiological/geometrical data need to be quantified, see e.g. [77].

For a physiologically relevant simulation output, such a sensitivity

analysis will require substantial experimental and computational

effort and should be part of a future study. Other implementations

of the advection-PBPK simulation in the HHS should be

investigated as well as the influence of computational resolution

on the results. Comparing such fundamentally different imple-

mentations, however, is beyond the scope of this article.

When considering other metabolization processes, additional

compounds, e.g. products formed by the metabolization or

compounds only stored in the cellular HHS subspace can easily

be included in the model. The exchange across membranes, E in

Equation 7, can also be extended easily by active or other

nonlinear processes.

As discussed above, comparing our computational simulations

of pathophysiological states of the liver to experimental data

[70,71] suggests several model extensions. For steatosis, these

include, but are not limited to, a significant increase in liver weight

as observed in [59, Table 6] as well as changes and spatial

variations in the effective permeability a in Equation 4 and the

volume fractions Qsin, Qint, and Qcell, as a significant decrease of

functional capillary density (sinusoidal length per area) was

reported [59, Figure 17]. Sinusoidal flow velocities, however,

were not observed to change significantly [59, Figure 16]. Other

studies indicate that a change in the microcirculation should be

taken into account in a more realistic model of steatosis, see [72].

Moreover, changes of the intracompartemental permeability [70,

Figure 4A] as well as the activity of drug metabolizing enzymes

due to steatosis as discussed in [78] may affect the cellular

metabolization of compounds. For CCl4-induced liver necrosis,

changes in cytochrome levels [71] need to be considered in

addition to necrotic changes in organ geometry. Here, our

spatially-resolved model together with targeted liver histology

could be used to differentiate between the different contributions

to the decrease in metabolic capacity. Such integrative studies will

allow further systematic analyses including iterative model testing

and refinement in the future. More general pathological situations

can be considered if one has solid knowledge of their spatial

heterogeneity and their influence on the model parameters. In case

of drugs being administered, also temporal changes of the

parameters are possible and can be included in our model. A

sensitivity analysis of the spatially resolved model with respect to

such parameter perturbations could help to quantify their

influence on the heterogeneity of drug distribution.

The model in general is not specific for mice, so it can be

applied to other species provided the geometry information and

PBPK parameters are available. Possibly other connectivity

patterns between larger vascular structures and sinusoids depend-

ing on the species [79] (or, closely related in the simulation,

diffusion of compounds through vascular walls) need to be taken

into account. The vascular tree geometries used in the model are

easily exchanged if more detailed experimentally [80] or

algorithmically [42] determined data is available. Similarly, more

detailed information about the geometric shape of lobuli (as in [81]

for human livers) could be taken into account. In particular, in

vivo imaging with a slightly higher level of detail than used here

will allow running simulations for patient-specific vascular

geometries, thus providing great promises for imaging and

diagnostics in the future. Corrosion casts [82], or other types of

ex vivo specimens, also scanned in micro-CT, provide higher

resolution as time and high radiation doses are not an issue, but

obviously do not permit in vivo imaging. Even higher resolution

could be obtained by extracting vascular geometries from optical

microscopy images of histological serial sections [80]. This,

however, requires a tremendous experimental and image process-

ing effort and again is not applicable in vivo.

Outlook
As discussed above, possible zonation effects are qualitatively

correctly observed at the length scale between the two incomplete

vascular trees in our model rather than the actual length scale of

hepatic lobuli. For correct observations in lobuli, our organ-scale

simulations should be complemented by sinusoid-scale [83] or

lobule-scale simulations in a multi-scale framework [21,84].

Since the model can deal with pathological states of the liver

and in particular spatially heterogeneous such states, their

influence on the intrahepatic distribution of compounds could

thereby be simulated pointing to future applications of spatio-

temporal modeling in diagnostics. Here, comparison of our

continuous simulations with new MRI or CT based image data

could support the detection of pathological deviations. Predicting

contrast agent distributions may help optimize time points for

imaging after injection, benefiting from the much higher temporal

and spatial resolution which our simulations can provide. The

comparison of simulated and measured contrast agent distribu-

tions could therefore be used to identify changes in physiological

parameters such that pathologies can be diagnosed.

The possibility to simulate heterogeneous distributions provides

also important applications for the prediction of toxic side effects.

The spatially resolved model allows a location-specific prediction

of exposure profiles within the liver. PBPK models have been

linked before to models at the cellular scale to predict toxicity

responses within hepatic metabolism in response to paracetamol

[21]. Together with the spatially resolved model, this can now be

used to simultaneously simulate intralobular exposure profiles and

the specific cellular response. This allows an in silico prediction of

toxic side-effects following the drug administration during the first

pass perfusion. Simulations of spatial heterogeneity can also be

used to describe local zonation effects within an whole-organ

context. PBPK models have been used before to describe

genotype-specific differences in hepatic drug uptake [19] and

intracellular metabolization [20]. Since the corresponding equa-

tions are also used in the spatially resolved model, it also becomes

possible to describe first pass effects in a genotype-specific way.

Our spatially resolved model could be used for a wide range of

technical and medical applications. It could for example be used

for hypothermic machine perfusion [33] of livers to be

transplanted for which mere static cold storage is ineffective. In

this case, recirculation by a perfusion device needs to be considered,

for which the influence on relevant compound concentrations can

be described based on the existing PBPK models. Moreover, the

model could be used to improve treatment planning for islet cell

transplantations [34]. Here, mainly the perfusion simulation is
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needed to predict the distribution of a concentration of cells (not

solutes) injected in the portal vein. Similarly, the model could help to

improve intrahepatic injection of compounds, as discussed in the

introduction. Another application could be optimization of targeted

drug delivery [37] where drugs are injected in bound form and

released at the desired location by mild hyperthermia induced by

focused ultrasound. For this purpose, the model has to be combined

with a heat transfer simulation [85].

For in vivo modeling within an organism context, more

complicated full-body recirculation needs to be taken into account.

This in turn requires our model to be integrated in whole-body

simulations, regardless whether or not other organs are imple-

mented at a comparable level of detail. Since our model has a

spatially resolved internal state and (depending on the exchange

and metabolization kinetics) may behave non-linearly, a transfer

function approach [86] is not immediately applicable. Including

recirculation in combination with our spatially resolved model will

allow to mechanistically describe the distribution kinetics of fast

acting drugs shortly after administration, similarly as it is has been

done before with other circulatory models [11]. Extending such

earlier approaches, our model will additionally use CT-based

vascular trees within the liver.

While the spiramycin simulations above show general agree-

ment with experimental results in [32], this is just a first step

towards an exhaustive validation of our approach. Starting points

for the important step of model validation in future studies could

be comparing simulated and experimentally measured outflow

concentrations similar to what was done in [32] or time-resolved

imaging of the distribution of tracers (at least imaged on some

slices; see e.g. [87]) for comparison to simulation results as in

Figure 7. For the latter, also mean transit times [87] estimated

from the results in Figure 6 or from Equation 6 in Text S1 could

be used for comparison to experimental results. The setting of a

compound not entering the cellular subspace, such as in [88] for

MRI contrast agent in rats, could be a starting point with a simpler

model. In both cases, the ex vivo setting potentially allows for

artificially low and thus slow total perfusion, possibly enhancing

CT or MR imaging at multiple time points. Much higher spatial

resolution at a single time point could be obtained from

histological whole-slide scans for which registration [89] and

analysis [90] techniques are available. More generally, validation

combined with a parameter sensitivity analysis could also help to

narrow down parameter ranges where the model predicts

physiologically realistic behavior. In this regard, our model could

be used for experimental planning to estimate the required spatial

and temporal resolution for imaging. Likewise, the number of

animal sacrifices could be minimized by specific design of

experiments. The model could furthermore be used to quantify

the contribution of first pass effects to the overall bioavailability

and the experimental variability.

As outlined above for steatosis and CCl4-induced liver necrosis,

our model can be used in combination with targeted experimental

data to iteratively investigate pathological changes in liver

physiology. Validation or falsification of computational predictions

can thereby support mechanistic insights in underlying processes

such that overall model structure can be adjusted accordingly. Due

to the large level of detail included in our model, such

modifications can be directly assigned to specific pathophysiolog-

ical changes. It is thus possible to test hypotheses about the

behavior of pathological livers or to analyze pharmacokinetic

effects such as zonation [65]. To this end, PK data, which are

ideally sampled densely in time both in the portal vein and in the

hepatic vein need to be compared to specific simulation results.

Experimentally, one could for example use isolated, pathological

livers from genetically modified mice strains or use PBPK models

to correlate plasma PK data in these animals with exposure

profiles in the liver. Verifying or falsifying these in silico results can

then, in turn, trigger further model refinement.

Conclusion
We here present a novel method for spatially resolved

simulations of first pass perfusion in the liver based on mass

balance equations from physiologically based pharmacokinetic

modeling as well as vascular geometries obtained by in vivo

imaging. The spatio-temporal description of blood flow through

the vascular systems in combination with distribution models used

in pharmacokinetic modeling allows a mechanistic yet local

description of compound perfusion within the tissue. Our

combined model is capable of representing spatial parameter

heterogeneity, so that the local impact of pathophysiological

changes within the liver can be analyzed.

The model was used in the present study to investigate spatio-

temporal effects of first pass perfusion for exemplary drugs. Two

pathophysiological states, steatosis and CCl4-induced necrosis,

were considered and were found to influence the distribution and

metabolization of the compounds. Future applications of the

model include optimized design of therapeutic treatments where

spatially heterogeneous distributions or spatio-temporal perfusion

effects are of relevance, e.g. targeted drug delivery, islet cell

transplantations, or catheter placement for intrahepatic injections.

We expect the spatially resolved model to be the foundation for

further physiologically highly detailed modeling which will help to

address specific spatial aspects of pharmacokinetics in the future.
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89. Schwier M, Böhler T, Hahn HK, Dahmen U, Dirsch O (2013) Registration of

histological whole slide images guided by vessel structures. Journal of Pathology

Informatics 4: 10.

90. Homeyer A, Schenk A, Dahmen U, Dirsch O, Huang H, et al. (2011)
A comparison of sampling strategies for histological image analysis. Journal of

Pathology Informatics 2: 1–6.

91. Genome Alberta & Genome Canada (2013). Drugbank 3.0. URL http://www.

drugbank.ca.

92. Furusawa N (2000) Binding profile of spiramycin to oviducal proteins of laying

hens. Journal of Veterinary Medicine Series A 47: 585–591.

Spatio-Temporal Simulation of First Pass Perfusion

PLOS Computational Biology | www.ploscompbiol.org 18 March 2014 | Volume 10 | Issue 3 | e1003499

http://www.drugbank.ca
http://www.drugbank.ca

