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Abstract

Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human
cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known
in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion
spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network
embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph
metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of
variability of each measure across scales in the network. We focus specifically on the degree distribution, degree
assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary
statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are
investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the
brain, and range from simple random and regular networks, to models that incorporate specific growth rules and
constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain
regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find
that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously
display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological
mechanisms might be at play in the development of human brain network architecture. Together, the network models that
we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure
from neuroimaging data.
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Introduction

Increasing resolution of noninvasive neuroimaging methods

for quantifying structural brain organization in humans has

inspired a great deal of theoretical activity [1–4], aimed at

developing methods to understand, diagnose, and predict

aspects of human development and behavior based on

underlying organizational principles deduced from these mea-

surements [5–7]. Ultimately, the brain is a network, composed

of neuronal cell bodies residing in cortical grey matter regions,

joined by axons, protected by myelin. Diffusion-weighted

magnetic resonance imaging methods trace these white matter

connections, based on the diffusion of water molecules through

the axonal fiber bundles. While resolution has not reached the

level of individual neurons and axons, these methods lead to

reliable estimates of the density of connections between regions

and fiber path lengths. The result is a weighted adjacency

matrix, with a size and complexity that increases with the

resolution of the measurements [8,9].

The immense complexity of this data makes it difficult to

directly deduce the underlying mechanisms that may lead to

fundamental patterns of organization and development in the

brain [10]. As a result, comparison studies with synthetic network

models, employing quantitative graph statistics to reduce the data

to a smaller number of diagnostics, have provided valuable insights

[11–15]. These models and statistics provide a vehicle to compare

neuroimaging data with corresponding measurements for well-

characterized network null models. However, the methods are still

in development [16–18], and vulnerable to the loss of critical

information through oversimplification of complex, structured

data sets, by restricting comparisons to coarse measurements that

ignore variability [10,19,20].

Two critical questions motivate development of network

methodologies for the brain. The first question focuses on
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predictive statistics: Are there graph metrics that may ultimately be

useful in parsing individual differences and diagnosing diseases?

Comparing empirical brain data to benchmark null models can

establish the statistical significance of a topological property [21–

23], and normalizing a topological property by its null model

surrogate can be a useful preprocessing step prior to the

determination of statistical differences in brain network structure

between groups [16]. The second question focuses on network

characteristics from a fundamental, development and evolutionary

perspective: What organizational principles underlie growth in the

human brain? Here comparing empirical brain data to simplified

model networks that have been created to capture some aspect of,

for example, neurodevelopmental growth rules [24], neuronal

functions [11], or physiological constraints [25] may aid in

developing a mechanistic understanding of the brain’s network

architecture (e.g., [26–28]). Both efforts require a basic under-

standing of the topological similarities and differences between

synthetic networks and empirical data.

In this paper, we perform a sequence of detailed, topological

comparisons between empirical brain networks obtained from

diffusion imaging data and 13 synthetic network models (see

Table 1). The models are investigated in a tree-like branching

order, beginning with the simplest, random or regular graphs,

and progressively adding complexity and constraints (see

Figure 1). The objective of this investigation is to determine,

in a controlled, synthetic setting, the impact of network

properties on the topological measurements. Our goal is not

to create a definitive network model of the brain, but to gain an

intuition for structural drivers of network statistics and to create

a battery of null models to be used in statistical comparisons of

brain networks.

At the coarsest level in the model hierarchy, we distinguish

between synthetic networks that are constructed purely based on

rules for connectivity between nodes (non-embedded), and those

that constrain nodes to reside in anatomical brain regions

(embedded) (see Figure 1). While non-embedded models are

frequently used for statistical inference, recent evidence has

suggested that physical, embedding constraints may have impor-

tant implications for the topology of the brain’s large-scale

anatomical connectivity [2,8,22,26–29]. By examining both non-

embedded and embedded models, we hope our results will help to

guide the use, development, and understanding of more biolog-

ically realistic models for both statistical and mechanistic purposes

[23,30].

A second important classification of the synthetic models in our

study separates those obtained from static ensembles with fixed

statistical properties and those generated using mechanistic

growth rules (see Figure 1). While algorithms for generating

networks based on static sampling and growth rules ultimately

both produce ensembles of fixed graphs for our comparison with

data, additional constraints imposed by underlying growth rules

may facilitate understanding of mechanisms for development and

evolution in the brain as well as other biological and technolog-

ical networks.

To compare the models with brain data, we employ a

particular subset of the many network diagnostics that have been

proposed as measures of network topology [31], specifically

chosen to highlight the regional variability and multiscale nature

of network architecture. Many network diagnostics can be

described as summary diagnostics, in which a property of the

network organization is reduced to a single diagnostic number.

Examples include average path length and average clustering

coefficient. However, the comparison of summary diagnostics

between real and model networks can be difficult to interpret [32]

because they often hide the granularity at which biological

interpretations can be made. To maximize the potential for a

mechanistic understanding, we instead study diagnostics that

provide distributions, visualized and analyzed by two-dimensional

curves or scatter plots where the regional variability of network

structure is readily apparent. The following four diagnostic

relationships are obtained from a distribution of values over

network nodes or topological scales: hierarchy [33], degree

assortativity [34], topological Rentian scaling [35,36], and the

topological fractal dimension [37]. Each of these inherently

relational properties has previously been investigated in the context

of anatomical brain networks in humans [28,38,39]. In this

paper, we use them to examine the differences between

empirically derived anatomical brain networks and synthetic

network models.

Materials and Methods

Data
We utilize previously published diffusion spectrum imaging data

[39] to examine the network structure of anatomical connectivity

between cortical regions in the human brain. In this data, the

direct pathways between N = 998 cortical regions of interest are

estimated using deterministic white matter tractography in 5

healthy human participants [39]. This procedure results in an

N6N weighted undirected adjacency matrix W representing the

network, with elements Wij indicating the (normalized) number of

streamlines connecting region i to region j (see Figure 2).

The organization of white matter tracts can be examined at two

distinct levels of detail: topological and weighted. Studies of the

topological organization of brain anatomy focus on understanding

the presence or absence of white matter tracts between regions

[26–28], while studies of the weighted organization focus on

understanding the strength of white matter connectivity between

those regions. In this paper, we explore the topological organiza-

tion of white matter connectivity between cortical regions. In

Author Summary

White matter tracts crisscrossing the human cortex are
linked in a complex pattern that constrains human
thought and behavior. Why the human brain displays
the complex pattern that it does is a fascinating open
question. Progress in uncovering generative mechanisms
for this architecture requires greater knowledge about
mechanistic drivers of anatomical networks. Here we
contrast network properties derived from images of the
human brain with 13 synthetic network models investi-
gated in a progressive, branching sequence, chosen to
probe the roles of physical embedding and temporal
growth. We characterize both the empirical and synthetic
networks using network diagnostics presented here in
statistical form, as scatter plots and distributions, to reveal
the full range of variability of each measure. We find that
synthetic models that constrain the network nodes to be
physically embedded in anatomical brain regions tend to
produce distributions that are most similar to the
corresponding measurements for the brain. We also find
that network models hardcoded to display one network
property do not in general simultaneously display a
second, suggesting that multiple neurobiological mecha-
nisms drive human brain network development. The
network models that we develop and employ enable
statistical inference of brain network structure from
neuroimaging data.
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future work we plan to build additional constraints into our models

that will enable a comparison of model and empirical weighted

networks.

To study topological organization, we construct the binary

adjacency matrix A in which the element Aij is equal to 1 if the

employed tractography algorithm identifies any tracts (of any

strength) linking region i with region j (i.e., Wij=0). In this data

[39], the adjacency matrix A is relatively sparse, resulting in a

network density of r~2M=½N(N{1)�&2:7%, where

M~
1

2

X
ij

Aij is the total number of connections present. This

estimate of brain network sparsity is consistent with estimates

extracted from other similar data sets of comparable network size

[8,40].

Given the potential variability in the topological organization of

networks extracted from different individuals [8,41–44], we report

results for one individual in the main manuscript and describe the

consistency of these results across subjects in the Supplementary

Materials.

We also briefly note that while extremely rich, this data set

also has its limitations. In particular, the development of high

resolution imaging methods and robust tractography algo-

rithms to resolve crossing fibers are fast-evolving areas of

research. Novel imaging techniques have for example recently

identified the existence of 90-degree turns in white matter

tracts [45], a biological marker that we are not sensitive to in

our data.

Network Diagnostics
We measure four network properties including degree assorta-

tivity, hierarchy, Rentian scaling, and topological fractal dimen-

sion as well as several summary diagnostics, as reported in Table 2.

Assortativity. The number of edges emanating from node i is

referred to as its degree, denoted by ki. The degree assortativity of

a network, or more simply ‘assortativity’ here, is defined as the

correlation between a node’s degree and the mean degrees of that

node’s neighbors which can be calculated as

r~
M{1

P
m jmkm{½M{1

P
m

1
2

(jmzkm)�2

M{1
P

m
1
2

(j2
mzk2

m){½M{1
P

m
1
2

(jmzkm)�2
, ð1Þ

where jm,km are the degrees of the nodes at either end of the mth

edge, with m~1 . . . M [46]. The assortativity measures the

likelihood that a node connects to other nodes of similar degree

(leading to an assortative network, rw0) or to other nodes of

significantly different degree (leading to a disassortative network,

rv0). Social networks are commonly found to be assortative while

networks such as the internet, World-Wide Web, protein

interaction networks, food webs, and the neural network of C.

elegans are disassortative [34].

Hierarchy. The hierarchy of a network is defined quantita-

tively by a relationship between the node degree and the local

clustering coefficient Ci [47]. For each individual node i, Ci is

defined as:

Table 1. Network models names, abbreviations, intuitive descriptions, and associated references.

Model Name Abbreviation Description Citation

Non-embedded

Static

Erdös-Rényi ER Uniform connection probability [60]

Configuration CF Random rewiring preserving degree distribution [110]

Ring Lattice RL Fixed degree to k nearest neighbors [62]

Gaussian Drop-Off GD Gaussian drop-off in edge density with increasing distance
from the diagonal

[60,111]

Modular Small-World MS Fully connected modules linked together by evenly distributed
random connections

[60]

Fractal Hierarchical FH Modular structure across n hierarchical levels; connection density
decays as 1/(En)

[60]

Growth

Barabási-Albert BA Network growth by preferential attachment rule [78]

Affinity AF Two-step preferential attachment growth with hardcoded
assortativity and hierarchy

Embedded

Static

Random Geometric RG Wire together random node locations with shortest possible
connections

[79]

Minimally Wired MW Wire together true node locations with shortest possible
connections

[26–28]

Distance Drop-Off DD Wire together true node locations with a probability
that drops off with distance between nodes

[82]

Growth

Distance Drop-Off Growth DDG Network growth by distance drop-off rule

Hybrid Distance Growth HDG Minimally wired network that grows with distance drop-off rule

doi:10.1371/journal.pcbi.1003491.t001

Resolving Structural Network Variability

PLOS Computational Biology | www.ploscompbiol.org 3 March 2014 | Volume 10 | Issue 3 | e1003491



Ci~
Dexist

Dpossible

ð2Þ

where Dexist is the number of existing triangle subgraphs that

include node i, and Dpossible is the number of node

triples containing node i. Using this local definition, the

clustering coefficient of the graph C as a whole (a summary

diagnostic) is defined as the mean of Ci over all nodes in the

network.

The definition of hierarchy is based on a presumed power law

relationship between the local clustering coefficient Ci and the

Figure 1. Branching structure of synthetic model examination. We distinguish between synthetic networks that are constructed based on
rules for connectivity between nodes (non-embedded), and those that constrain nodes to reside in anatomical brain regions (embedded). We further
distinguish between synthetic networks that are obtained from static ensembles (static), and those that are obtained from growth rules (growing). In
the non-embedded case, we explore common benchmark networks including regular lattice, Erdös-Rényi, and small-world models as well as a second
set of networks that are based on these benchmarks but that also employ additional constraints. For growing models, we explore the Barábasi-Albert
model and introduce an affinity model inspired by preferential attachment-like properties of neuronal growth. In the embedded case, we distinguish
between models that utilize true or false node locations (i.e., models derived from a spatial embedding independent of the known, physical node
locations) and explore several growing models inspired by hypotheses regarding wiring minimization in brain development [26,28,29].
doi:10.1371/journal.pcbi.1003491.g001
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degree ki of all nodes i in the network [33]:

Ci*k
{b
i : ð3Þ

For a given network, the best fit to the scaling exponent b is

referred to as the network hierarchy.

Topological Rentian scaling. In contrast to the physical

Rent’s rule [35], the topological Rent’s rule is defined as the

scaling of the number of nodes n within a topological partition

of a network with the number of connections or edges, e,

crossing the boundary of that topological partition. If the

relationship between these two variables is described by a

power law (i.e., e!npT ), the network is said to show topological

Rentian scaling, or a fractal topology, and the exponent of this

scaling relationship is known as the topological Rent exponent,

pT [48]. Thus, higher values of the topological Rent exponent

are indicative of a higher dimensional network topology.

Pragmatically, to determine pT , we follow the procedure

outlined in [36] where topological partitions are created by a

recursive min-cut bi-partitioning algorithm that ignores spatial

locations of network nodes [28].

Figure 2. Adjacency matrices for brain and synthetic models. Example adjacency matrices are provided for the brain and for the 13
synthetical network models described in Figure 1. In the empirical brain data and the non-embedded null models, network nodes are ordered along
the x and y-axes to maximize connectivity along the diagonal, as implemented by the reorderMAT.m function in the Brain Connectivity Toolbox [60].
In the embedded models, nodes are listed in the same order as they are in the empirical brain data. Abbreviations are as listed in Table 1.
doi:10.1371/journal.pcbi.1003491.g002
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Topological fractal dimension. The topological Rent’s

exponent described above is related to the topological

dimension, DT , of the network according to the inequality

pT§1{
1

DT

[48]. To directly quantify the topological dimen-

sion of a network, we evaluate its topological invariance

under length-scale transformations [37]. We employ a box-

counting method [49] in which we count the number of boxes

NB of topological size lB that are necessary to cover the

network. The fractal dimension of the network can then be

estimated as the exponent dB of the putative power law

relationship

NB&l
{dB
N : ð4Þ

The fractal dimension of a network is a measure of the

network’s complexity. We note that the process of tiling the

network into boxes of different sizes is non-deterministic. To

account for this variability, we report mean values of dB over

50 different tilings of a given network.

Additional quantities of interest. In Table 2, we list several

summary diagnostics of interest to complement our analysis of

relational properties. These include the average path length, the

network diameter, the maximum modularity, and the number of

communities. The average path length between node i and j is

defined as the shortest number of edges one would have to traverse

to move from node i to node j [50]. The path length of an entire

network, P, is then defined as the average path length from any

node to any other node in the network: P~
1

N(N{1)

X
ij

Pij ,

while the maximal path length between any two pairs of nodes is

called the diameter D~ maxijfPijg.
To determine the maximum modularity and number of

communities, we perform community detection by optimizing

the modularity quality function [34,51–54]

Q~
X

ij

Aij{c
kikj

2m
d(gi,gj), ð5Þ

where node i is assigned to community gi, node j is assigned to

community gj, the Kronecker delta d(gi,gj)~1 if gi~gj and it

equals 0 otherwise, c is a resolution parameter (which we set to the

common choice of 1, although other values of c can be used to

examine communities at multiple scales [53,55,56]), ki is the

degree of node i, m is the mean degree of the network, and
kikj

2m
is

the expected weight of the edge connecting node i to node j under

the Newman-Girvan null model [51]. We use a Louvain-like [57]

algorithm to perform the optimization of Q (an optimization which

is NP-hard [53,54,58]) over different partitions to identify

community structure in the network [59]. In Table 2, we report

both the maximum modularity and the number of communities

present in the partition that maximized Q. We note that we

performed the maximization of Q 100 times and we report the

variance in values of Q and the number of communities #com over

these 100 optimization in Table S2 in the Supplementary

Materials.

Statistics, Software, and Visualization
All computational and basic statistical operations (such as t-tests

and correlations) were implemented using MATLAB (2009b, The

MathWorks Inc., Natick, MA) software. Graph diagnostics were

estimated using a combination of in-house software, the Brain

Connectivity Toolbox [60], and the MATLAB Boost Graph

Library (http://www.stanford.edu/,dgleich/programs/). To per-

form the recursive topological partitioning employed in the

examination of topological Rentian scaling, we used the software

tool hMETIS [61].

Several of the network models that we investigate include one or

more tunable parameters affecting the details of the generated

graphs. These include the Barabási-Albert, affinity, and hybrid

distance growth models. To compare these network models to the

data, we optimized parameter values to minimize the difference

between the model network and the empirical brain network.

Specifically, we used the Nelder-Mead simplex method, which is a

derivative-free optimization method, that minimizes the value of a

difference metric dm between the two networks. We chose to let dm

be the sum of the absolute relative difference of nine of the

network characteristics reported in Table 2 (clustering coefficient

C, path length P, diameter D, degree assortativity r, hierarchical

parameter b, topological Rentian exponent pT, topological fractal

dimension dB, modularity Q, and number of communities #com).

Alternative choices for the difference metric could weight some

network characteristics to a greater or lesser degree than others.

However, because we do not a priori have a rubric by which to

determine the biological relevance of a single network diagnostic

in comparison to others, we chose not to utilize such a weighting

scheme.

Results

In this section we individually compare topological network

diagnostics calculated for the empirical brain data to each of the

13 network models that appear in Figures 1 and 2. We proceed

through the catalog of synthetic models along the branches

illustrated in Figure 1. We begin with the simplest models (i.e. non-

embedded, static, random and regular), and incrementally add

structure, constraints, growth mechanisms, and embedding in

order to isolate how these additional features impact the measured

diagnostics.

For each network we present statistical results for three

diagnostics (see Materials and Methods Section): (i) the degree

distribution P(ki) vs. ki, (ii) the mean node degree of the

neighboring nodes vs. node degree ki for each node i (used to

calculate assortativity), and (iii) the local clustering coefficient Ci

vs. node degree ki for each i (used to calculate hierarchy). In

Figures 3–6, the results for the empirical brain network are shown

in gray and the corresponding results for each of the synthetic non-

embedded network models are shown in a contrasting color on the

same graph to facilitate comparisons. In addition, we illustrate the

scaling relationships used to evaluate Rentian scaling and the

topological dimension of each network (see Figure 7). Corre-

sponding results for the synthetic embedded network models are

provided in Figures 8–9 and 10.

For our comparisons, we group the models first into the set of

non-embedded models, followed by the embedded models and we

further group results according to the branches of inquiry outlined

in Figures 1 and 2. For each model we briefly describe our method

for generating the synthetic network, followed by a description of

the diagnostics compared to the empirical results.

Non-embedded Network Models
We begin by comparing the network organization of the brain’s

anatomical connectivity with that of 8 network models whose

structure is not a priori constrained to accommodate a physical

embedding of the nodes in cortical areas. (In the next subsection,
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we will examine 5 embedded network models.) The non-

embedded network models include an Erdös-Rényi graph, a

configuration model with the same degree distribution as the

empirical network, a ring lattice graph, a modular small-world

graph, a fractal hierarchical graph, a Gaussian drop-off graph, a

Barabási-Albert graph, and an affinity graph (see Figure 2 for

associated example adjacency matrices for these graphs and

Table 1 for abbreviations of model names). These models range

from disordered to ordered (e.g., the Erdös-Rényi and regular

lattice models) with a range of mesoscale organization for

intermediate cases (e.g., modular small-world and fractal hierar-

chical models) which influence the network diagnostics, and

(dis)similarities to corresponding measurements for the brain.

Static non-embedded models. Erdős-Rényi (ER) model: The

Erdős-Rényi (ER) model is an important benchmark network that

is often used as a comparison null model for statistical inference.

Specifically, we consider the ‘G(N,M) model’ where the ER graph

is constructed by connecting pairs chosen uniformly at random

from N total nodes until M edges exist in the graph [62]. The

degree distribution generated by this procedure is, as expected,

relatively symmetric about the mean degree r(N{1)&27 (see

Figure 3A(i)).

The ER model is a poor fit to brain anatomical connectivity

(see Figure 3A). The degree distribution is much more sharply

peaked than the corresponding distribution for the brain. For the

ER graph, the variance is approximately equal to the mean

degree, while the corresponding data for the brain is more

broadly distributed. As a result, the ER network misses structure

associated with both high degree hubs and low degree nodes.

Because edges are placed at random, organizational properties

like assortativity and hierarchy are not observed and—as

expected theoretically—the clustering coefficient is smaller and

the path length shorter than that of anatomical brain networks

(see Table 2).

Configuration (CF) model: We next consider a modification of the

ER graph that is constrained to have the same degree distribution

as the empirical data. We refer to this model as the configuration

model (CF). We generate randomized graphs by an algorithm that

chooses two existing connections uniformly at random (a<b
and c<d ) and switches their associations (a<d and c<b)

[63].

The CF model agrees with the empirical degree distribution

by construction (see Figure 3B(i)). However, it does not fit the

higher order association of a node’s degree with that node’s

mean neighbor degree (assortativity) (see Figure 3B(ii)). The

average clustering coefficient remains small, although it is larger

than that observed in the ER network. In Figure 3B(iii), we

observe a small association between the clustering coefficient

and degree (hierarchy) which appears to be driven by nodes of

small degree. To interpret this finding, we note that the nonzero

minimum of the clustering coefficient of a node of degree k is

given by

cmin=0(k)~
2

k(k{1)
: ð6Þ

Thus, nodes of small degree tend to have a higher minimum

non-zero clustering than nodes of high degree. In comparison to

the ER model, the existence of small degree nodes in the CF

model leads to an increased diameter of the graph whereas the

existence of high degree nodes leads to the maintenance of a

short average path length.

Figure 3. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) Erdös-Rényi and (B) configuration model with conserved degree distribution models and the same diagnostics of the brain
anatomical data (grey). Black lines indicate best linear fit to the data (dashed) and model (solid) networks. In panel (B) the lower (nonzero) bound
on the clustering coefficient—which corresponds to the presence of only one triangle—as a function of degree is indicated by the red line.
doi:10.1371/journal.pcbi.1003491.g003
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Figure 4. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) ring lattice and (B) Gaussian drop-off models and the same diagnostics in the brain anatomical data (grey). Black lines indicate
best linear fit to the data (dashed) and model (solid) networks.
doi:10.1371/journal.pcbi.1003491.g004

Figure 5. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) modular small-world and the (B) fractal hierarchical models and the same diagnostics in the brain anatomical data (grey).
Black lines indicate best linear fit to the data (dashed) and model (solid) networks.
doi:10.1371/journal.pcbi.1003491.g005
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Figure 6. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) Barabási-Albert and (B) affinity models and the same diagnostics in the brain anatomical data (grey). Black lines indicate best
linear fit to the data (dashed) and model (solid) networks. In panel (B), the parameter values used for the affinity model are the following: c~1:94,
d~3:48, and E~3:36.
doi:10.1371/journal.pcbi.1003491.g006

Figure 7. Diagnostics estimating the topological dimension. (Main Panel) The number of boxes as a function of the topological size of the
box, as estimated using the box-counting method [49] (see the Materials and Methods section) for the real and synthetic networks. (Inset) The
topological Rentian scaling relationship between the number of edges crossing the boundary of a topological box and the number of nodes inside of
the box (see the Materials and Methods section) for the real and synthetic networks. Lines indicate data points included in fits reported in Table 2.
doi:10.1371/journal.pcbi.1003491.g007
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Ring Lattice (RL) model: In contrast to the two previous models,

the ring lattice (RL) model has a highly ordered topology where

each node is connected to its
2M

N
&27 nearest neighbors.

By construction, the degree distribution for the ring lattice is

extremely sharply peaked. If the number of edges M is divisible by

the number of nodes N, then all nodes have equal degree,

otherwise the remainder is distributed uniformly at random

throughout the network, resulting in a very narrow spread in the

distribution. The clustering coefficient of the RL model is close to

unity, indicating that most neighbors of a node are also connected

to each other. The restriction to local connectivity results in a large

Figure 8. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) random geometric (RG), (B) minimally wired (MW), and (C) distance drop-off (DD) models and the same diagnostics in the
brain anatomical data (grey). Black lines indicate best linear fit to the data (dashed) and model (solid) networks.
doi:10.1371/journal.pcbi.1003491.g008

Figure 9. Comparison between the (i) degree distribution (number f of nodes with a given degree ki), (ii) assortativity (correlation
between a node’s degree ki and the mean degree of that node’s neighbors k’i , summarized by parameter r), and (iii) hierarchy (the
relationship between the clustering coefficient Ci and the degree ki over all nodes in the network, summarized by parameter b) of
the (A) distance drop-off growth (DDG) and the (B) hybrid distance growth (HDG) models and the same diagnostics in the brain
anatomical data (grey). Black lines indicate best linear fit to the data (dashed) and model (solid) networks. In panel (B), we use 4000 minimized
wired seed edges.
doi:10.1371/journal.pcbi.1003491.g009
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diameter and long average path length. The small variation in

degree induced by the random distribution of the remaining edges

is insufficient to induce assortativity (see Figure 4A). Interestingly,

however, the RL model displays topological network hierarchy

because nodes that have been assigned those remaining edges have

a higher than average degree which directly decreases the

clustering coefficient of those nodes. It is important to note that

the topological properties we observe here are consequences of,

rather than artifacts of, the random links that we have distributed

through the model. Indeed, the topological role of randomly

placed links in networks has been the topic of much recent

research (e.g., [47]). In empirically measured networks, it is

possible that some randomly distributed links could be either real

or spurious [64,65], and some methods exist to identify and prune

spurious links in several real systems [65,66].

Gaussian Drop-Off (GD) model: Compared to the brain, the

random and randomized models exhibit lower clustering, and the

regular ring lattice exhibits higher clustering. An intermediate

topology between these two extremes is obtained by generalizing

the concept of local connections from the ring lattice to a

stochastically generated network where the density of connections

drops off at rate k with increasing distance from the main diagonal

of the adjacency matrix.

We chose a value for k by examining the empirical brain data as

follows. First, we reordered the adjacency matrix such that the

connections (represented by nonzero matrix elements) are

predominantly located near the matrix diagonal, using the code

reorderMAT.m in the Brain Connectivity Toolbox [60]. We then

fit a Gaussian function to the empirical drop-off of the first 400 off-

diagonal rows of the reordered brain adjacency matrix [60]. The

fit provided an R2 value of approximately 0.75.

The very localized structure in this GD model, similar to that

observed in an RL model, is softened by the presence of a few

long-range connections which decreases the path length and

brings the average clustering coefficient closer to that of the data

(see Figure 4B). The non-periodic boundary conditions lead to a

small subpopulation of nodes with low degree. Because these

nodes are neighbors in the adjacency matrix, they tend to be

connected to one another, leading to an assortative topology. The

same explanation underlies the existence of a hierarchical topology

in this GD model, because these low degree boundary nodes

predominantly connect with one another.

Modular Small-World (MS) model: Small world networks have

received a great deal of attention [47] as a conceptual

characterization of structure that combines local order with long

range connections. While the small world concept is sufficiently

general that most networks that are not strictly regular or random

fall into this category, small world organization represents more

biologically relevant organization than the previous four cases

[8,28,67,68]. In addition to the small-world feature, biological

networks including those extracted from human brain connectome

data [8,69–71] also often display community structure where set of

nodes (modules) tend to be highly and mutually interconnected

with one another combined with some long-distance connections.

For this study, we construct a synthetic small world network that

consists of small, fully-connected modules. While networks

composed of large modules could also be studied, we instead

chose to use 4-node modules that produced networks displaying

large regional heterogeneity in combination with small network

building blocks, a pattern consistent with the hierarchical structure

observed in brain networks [8,69,72–74]. The modules in this MS

model are randomly linked with one another with enough edges to

match the density of the empirical network. This topology leads to

high clustering, short path length, and small diameter [60]. The

randomly distributed inter-module links emanating from relatively

high degree nodes decrease the clustering coefficient of these nodes

because nodes in two different modules are unlikely to be

otherwise linked. This structure therefore leads to a hierarchical

topology (see Figure 5A(iii)). However, because the inter-module

links are randomly distributed, nodes that contain such links are

no more likely to share an edge with another such node than they

are to share a link with any other node in the network. The MS

model therefore does not display any observable assortativity (see

Figure 5A(ii)).

Figure 10. Diagnostics estimating the topological dimension. (Main Panel) The number of boxes as a function of the topological size of the
box, estimated using the box-counting method [49] (see the Materials and Methods section) for the real and embedded model networks. (Inset) The
topological Rentian scaling relationship between the number of edges crossing the boundary of a topological box and the number of nodes inside of
the box (see the Materials and Methods section) for the real and embedded model networks. Lines indicate data points included in fits reported in
Table 2.
doi:10.1371/journal.pcbi.1003491.g010
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Fractal Hierarchical (FH) model: Like small world networks, fractal

hierarchical topology has become a popular classification of

networks and applies broadly, at least to some extent, to topologies

that are neither regular nor random. Fractal hierarchical structure

has been linked to some observed network structure in the brain

[8,69,72–74] and its use in neural network models produces

several behaviors reminiscent of empirical neurobiological phe-

nomena [11,75,76].

To construct a fractal hierarchical model [33], we follow the

approach outlined in [77]. We begin with a set of 4-node modules.

We connect pairs of these 4-node modules with a probability p1 to

form 8-node modules. We connect pairs of 8-node modules with a

probability p2 to form 16-node modules. Importantly, the

probability p of inter-module connections decreases at each level

at a prescribed drop-off rate; that is, p1 is larger than p2, p2 is

larger than p3, etc. The probabilities at each level are related to

one another by a probability drop-off rate. This module-pairing

process is repeated until we have formed a 1024-node fractal

hierarchical network. To obtain a N~998 network comparable to

the empirical brain data, we chose 26 nodes uniformly at random

to delete from the network. If the network contained more (fewer)

edges than the empirical network, we repeated the process with an

increased (decreased) probability drop-off rate. The algorithm

terminates when we obtain an FH model network with the correct

number of edges.

The fractal hierarchal network yields extremely similar results to

the small world network in terms of the degree distribution,

assortativity, and hierarchy (compare Figure 5A with Figure 5B).

The striking similarities are surprising given the differences in how

the two networks are constructed. While the networks share strong

4-node module building blocks, they differ in their coarser

structure. The similarity in the results depicted in Figure 5 suggest

that the level-dependent structure in the FH model is not well-

captured by these graph properties. Other types of network

properties that specifically test for multiresolution phenomenon in

brain structure might more readily distinguish between these two

synthetic models [56].

Growing non-embedded models. In this section we explore

two non-embedded growth models (see Figure 1). The first is the

Barabási-Albert preferential attachment model and the second is

an affinity model which we design to capture assortative and

hierarchical structure.

Barabási-Albert (BA) model: All models described thus far, with the

exception of the configuration model, share a common and critical

short-coming: the degree distribution is much narrower than that

of the empirical networks. A model that produces a broader

distribution of node degrees is the Barabási-Albert model of

preferential attachment [78].

To construct a BA network, we begin with a single edge

connecting two nodes. Then we iteratively add a single node to the

network by linking the new node to m existing nodes. The

probability of linking the new node to an existing node is given by

a preferential attachment function P(k)~kzk0 with dimension-

less parameter k0 tuning the rate of decrease in the degree

distribution. Note that as k0??, the resultant graph becomes

increasingly similar to an ER graph.

To identify a BA model network in this family that best fits the

empirical data, we tune k0 to minimize the difference between the

model topology and the empirical topology as described in the

Materials and Methods Section. We find that networks construct-

ed using k0~4 provide the best available fit to the empirical data.

The number of edges m added with each new node is determined

by the total number of edges M. This procedure produces

networks with low clustering and broad degree distributions,

although the number of low-degree nodes is underestimated in

comparison to the empirical data (see Figure 6A(i)). Despite the

broad degree distribution, the network does not display an

assortative or hierarchical topology (see Figure 6A(ii)–(iii)).

Affinity (AF) model: We introduce an extension of the BA model

that includes constraints specifically designed to capture assortative

and hierarchical structure. We define the affinity model by a two

step preferential attachment function that does not depend on a

node’s current degree but instead depends on a dimensionless

affinity parameter a. We begin with N nodes, and to each node we

assign a unique affinity ai distributed uniformly at random in the

interval [0,1]. The value of ai remains unchanged throughout the

growth process (see Algorithm 1). We choose a node with

probability !a
c
i and link that node preferentially to another node

j with a similar affinity aj . This assortative mixing for affinity

ensures degree assortativity. In addition, we choose a preferential

attachment function (see Algorithm 1, line 6) such that nodes with

small values of affinity (e.g. small degree) are relatively more likely

to gain edges with neighbors of similar affinity (and therefore

degree) than nodes with large values of affinity. Small degree nodes

therefore are more clustered than their high degree counterparts,

leading to a hierarchical network structure.

To compare this model to the empirical data, we use a

derivative-free optimization method to identify the parameter

values for c, d, and E that minimize the difference between the

empirical and model networks; see the Materials and Methods

Section. The AF model has a very broad degree distribution with a

concentration of low degree nodes and an extremely heavy tail of

high degree nodes (see Figure 6B(i)). The network is both

assortative and hierarchical although the average clustering is

lower than that found in the empirical data (see Figure 6B(ii)–(iii)).

The randomly chosen edges connecting nodes of high degree

induce a small diameter and short path length.

It is not surprising that the AF model provides a better fit for the

empirical data for these specific diagnostics than other synthetic

networks we have considered so far, since it was specifically

constructed to do so. This is, however, no guarantee that this

algorithm will capture other network properties of the empirical

data. Indeed, the fact that the affinity model also shows a similar

topological dimension to the empirical brain network is surprising

and interesting (see next section).

Diagnostics estimating the topological dimension. In

this section, we compare topological measures of the empirical

data with the set of 8 non-embedded synthetic networks: 6 static

models and 2 growth models.

Algorithm 1. Growth algorithm for the affinity model.
Input :number of nodes N

number of edges M
number of seed edges M0

attachment regulators c, d and E
Output :Adjacency matrix A
1 initialize graph with N nodes;
2 connect M0 pairs of nodes chosen uniformly at random;
3 assign each node an affinity given by ai~

i{1
N{1

;
4 while M ’~current # of edgesvM do
5 | out of the set of nodes with kw0, choose a node i with

probability !a
c
i

6 | connect node i to node j (chosen at uniformly at
random) with probability

| !Dai{aj Dminf0,{dzE:aig

7 end
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Using a box-counting method, we estimate the fractal dimen-

sion of the empirical and synthetic model networks (see the

Materials and Methods Section) and observe three distinct classes

of graphs (see Figure 7, main panel). The first group, which

includes the Erdös-Rényi and modular small-world models, has a

diameter that is too small to allow an adequate estimation of the

fractal dimension of the network using the box-counting method.

The second group, which includes the Gaussian drop-off and ring

lattice models, has a large diameter leading to a small fractal

dimension. The third group, which includes the remainder of the

models, has a similar diameter to the empirical network and

therefore similar fractal dimension. By these comparisons, the

affinity model is the best fit to the data and the configuration

model is the second best fit.

The Gaussian drop-off and ring lattice models also show distinct

topological Rentian scaling in comparison to the other models (see

Figure 7, inset). Above a topological box size of 16 nodes, the

number of inter-box connections does not increase because the

edges are highly localized topologically. All other models display a

swifter scaling of the number of edges with the number of nodes in

a topological box in comparison to the empirical data. The affinity

model displays the most similar scaling to that observed in the

empirical data.

Embedded Network Models
The non-embedded models described in the previous section

necessarily ignore a fundamental property of the brain: its

embedding in physical space. Spatial constraints likely play an

important role in determining the topological properties of brain

graphs [22,26–29]. In this section, we explore the topological

properties of spatially embedded graphs in which the probability of

connecting any two nodes in the network depends on the

Euclidean distance between them [79]. We explore the same

topological diagnostics as we did in the previous section: degree

distribution, assortativity, hierarchy, and diagnostics estimating the

topological dimension of the network. As a whole, we find that

spatially embedded models capture more topological features of

the empirical networks than models that lack the physical

embedding constraint.

To clarify the distinction between embedded and non-embed-

ded network models, it is necessary to highlight the differences

between topological and physical notions of space. Many

topological models (such as the Barabási-Albert model) are often

described in ways that utilize notions of ‘‘local’’ connections.

However, this concept of locality is present in a purely topological

sense and not in a geographical sense. Topological models such as

the Barabási-Albert model are not derived from spatial embed-

dings in R2 or R3 and therefore the nodes of these networks do not

have spatial positions and the edges of these networks do not have

physical lengths. The nonequivalence of topological and geo-

graphic structure is illustrated by the fact that a network topology

(e.g., BA) can either remain non-embedded or can be embedded

into Euclidean space (e.g., R3) in many different ways: in some

embeddings, the topological distance between nodes could

correlate with the physical distance between nodes, but in other

embeddings one need not observe such a correlation. While the

previous section described topological and non-embedded models,

in this section we focus on networks that have been embedded into

Euclidean space.
Static embedded models. Random Geometric (RG) model: A

random geometric model can be constructed by distributing nodes

uniformly at random in a 3-dimensional volume [79–81]. We

employ a classical neurophysiological embedding in which the x-

axis represents the right-left dimension, the y-axis represents the

anterior-posterior dimension, and the z-axis represents the

superior-inferior dimension. We use a rectangular volume where

the length of each side is equal to the maximal Euclidean distance

between nodes as measured along that axis and we distribute N

nodes uniformly at random within this volume. The M pairs of

nodes with the shortest between-node distance are each connected

by an edge.

In the RG model, the heterogeneity of node placement in the

volume leads to a broad degree distribution and high clustering

between spatially neighboring nodes, leading to a large network

diameter and long path length (see Figure 8A(i) and Table 2).

Because of the homogeneity of the connection rule, which is

identical across all nodes, nodes with high degree (those in close

proximity to other nodes) tend to connect to other nodes of high

degree and nodes of low degree (those far from other nodes) tend

to connect to nodes of low degree, leading to degree assortativity

(see Figure 8A(ii)). Nodes at the edges of spatial clusters in the RG

model will tend to have high degree but low clustering, leading to a

hierarchical topology (see Figure 8A(iii)).

Minimally Wired (MW) model: As noted above, nodes in the RG

model are placed uniformly at random in a 3-dimensional volume.

To add additional anatomical constraints to the model, we can

construct a minimally wired model (MW) in which nodes are

placed at the center of mass of anatomical brain regions. The M

pairs of nodes with the shortest between-node distance are then

each connected by an edge.

Despite the fact that both models live in R3, the MW provides

an interesting point of comparison to the RG because it allows us

to assess what topological properties are driven by the precise

spatial locations of brain regions alone. The degree distribution in

the MW is narrower than it is in either the RG or the empirical

brain network, likely because the brain parcellation used in this

study is largely grid-like over the cortex (see Figure 8B(i)). Like the

RG, the MW displays degree assortativity and a hierarchical

topology (see Figure 8B(ii)–(iii)), and has high clustering and long

path length. However, in general the diagnostic relationships

extracted from the MW model do not match those of the empirical

brain network as well as those extracted from the RG model.

To gain an intuition for the relationships between the observed

network statistics in the RG and MW models, it is useful to

delineate the similarities and differences between the two models.

The RG and MW models are embedded models, meaning that all

nodes have a location in physical space, and both models are

embedded into R3. The network topologies that we observe in

these models are mathematical consequences of the spatial

locations of the nodes combined with the rules for wiring. The

RG model contains nodes that are distributed uniformly at

random within the brain volume while the MW model contains

nodes that are placed at points along the cortical surface

(excluding white matter and subcortical structures). Both models

stipulate short physical connections but according to different

rules. Given the complex combination of similarities and

differences between these models, it is not possible to state

whether there is a single factor driving the observed differences in

network topology without a more in depth study of network

models that bridge the topological and geographical space

between the RG and MW models.

Distance Drop-Off (DD) model: Both the minimally wired and the

random geometric models connect only the M pairs of nodes with

the shortest inter-node distance. These models therefore lack long

distance connections which are known to be present in the brain,

and have been argued to enable swift communication between

distant brain areas [67]. To include this additional biological

characteristic, we next study the distance drop-off model (DD)
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[82], in which we place nodes at empirical brain region locations

and then connect pairs of nodes with a probability that depends on

the distance r between nodes: P!g(r). Note that the minimally

wired model is a special case of the DD model if we choose

P!g(r) to be a step function with threshold r0. Here, however, we

fit a function g(r) to the connection probability of the empirical

data as a function of distance (see Supplementary Material).

The results of the DD model are similar to those that we

observed in the case of the minimally wired and random geometric

models (see Figure 8C). However, longer distance connections are

present in this model which decrease the clustering, path length,

diameter, and strength of the assortativity and hierarchy. In

general, the diagnostic relationships extracted from the DD model

match those of the empirical brain network significantly better

than the same diagnostics extracted from the RG and MW

models.

Embedded growth models. Distance Drop-Off Growth (DDG)

model: The random geometric, minimally wired, and distance

drop-off models all have narrower degree distributions than the

empirical data. To expand the degree distribution while still

utilizing the empirical node placement and empirically derived

probability function P!g(r), we construct a distance drop-off

growth model (DDG). We begin with M0 seed edges which we

distribute uniformly at random throughout the network. To ensure

we have a connected graph, we choose a node i uniformly at

random from the set of nodes with kiw0. We create an edge

between node i and node j, which is chosen uniformly at random

with no constraint on kj , according to the probability P!g(r). We

continue adding edges in this manner until the number of edges in

the network is equal to M, creating a final DDG model network.

The degree distribution and assortativity of the DDG are

surprisingly similar to that observed in the empirical data (see

Figure 9A(i)–(ii)). However, the stochasticity of the growth rule

induces a decrease in clustering and we do not observe a

hierarchical topology (see Figure 9A(iii)). Neither the network

diameter nor the path length are significantly altered in

comparison to the non-growing distance drop-off model.

Hybrid Distance Growth (HDG) model: The minimally wired and

distance drop-off growth models display values of summary

diagnostics that are most similar to the data (see Table 2). In a

final model, we combine facets of both models in a hybrid distance

growth model (HDG). We begin by creating a minimally wired

model for the M0 shortest connections. We then use the growing

rule of the distance drop-off growth model to add the remaining

M{M0 edges to the network. This process can be interpreted as

the creation of strongly connected functional modules that

afterwards are cross-connected and embedded in the full network.

Using a derivative-free optimization method, we estimate that the

value of M0 that produces a HDG model network most similar to

the empirical network is M0~4000; see the Materials and

Methods section.

As expected, this HDG model produces a degree distribution,

assortativity, and hierarchy in between those produced by the

minimally wired and distance drop-off growth models and

therefore similar to those observed in the data (see Figure 9B(i)–

(iii)). However, the clustering, diameter, and path length remain

low in comparison to the empirical data (see Table 2), suggesting

that this model does not contain as much local order as the brain.

Diagnostics estimating the topological dimension. In

this section, we compare topological measures of the empirical

data with the set of 5 embedded synthetic networks: 3 static models

and 2 growth models.

We observe that the estimates of the topological dimension,

using both box-counting and Rentian scaling methods, derived

from the physical network models are more similar to the

empirical data than those derived from the topological network

models (see Figures 7 and 10). The two highly locally clustered

networks (the minimally wired and random geometric models)

have larger diameters than the brain, decreasing their estimated

fractal dimension in comparison. The distance drop-off and

distance drop-off growth models are higher dimensional than the

empirical data while the hybrid distance growth model displays the

same dimension as the empirical data. The hybrid model also

produces Rentian scaling with the most similar exponent to that

obtained from the empirical data. The identified similarities

between models and empirical data are somewhat surprising given

that none of these models were explicitly constructed to attain a

given topological dimension.

Discussion

We examined graph diagnostics of 13 synthetic network models

and compared them to those extracted from empirically derived

brain networks estimated from diffusion imaging data [39]. Some

of these models have been defined previously (ER, CF, RL, GD,

MS, FH, BA, RG, MW, DD) and others we introduce here for the

first time (AF, DDG, HDG). Models which have not previously

been applied to the study of diffusion imaging data from the

human brain include the RG, DD, AF, DDG, and HDG models.

Rather than using solely summary statistics, we characterize

distributions and relational properties to more accurately probe

the regional variability of network structure. To exercise this more

comprehensive analytical approach, we purposefully chose to

begin with simple models and iteratively add additional levels of

complexity. The inclusion of very simple models (e.g, ER and RL)

further enabled us to highlight the structure of the newly defined

models (AF, DDG, HDG). In this discussion section, we offer

interpretations of many of these models in terms of biologically

inspired mechanisms.

We found that in general if a model was hard-coded to display

one topological property of the brain (e.g., the degree distribution

or the assortativity), it was unlikely to also display a second

topological property, suggesting that a single mechanism is

unlikely to account for the complexity of real brain network

topology. We also observed that those models that employed

information about node location and inter-node distances (e.g.,

embedded network models) were more likely to display similar

topological properties to the empirical data than those that were

constructed based on topological rules alone (e.g., non-embedded

network models). In our examination, three models performed

noticeably better than all others: the hybrid distance growing

model, the affinity model, and the distance drop-off model.

Together, these results provide us with important insights into the

relationships between multiple topological network properties.

Moreover, these model networks form a catalogue of null tests with

a range of biological realism that can be used for statistical

inference in static as opposed to dynamic network investigations

[23,70].

Figure 11A provides a summary of graph diagnostics extracted

from real and synthetic model data. We measure the relative

difference between model and data, normalized by the value

obtained from the model that fits the data the least for each

diagnostic: (rmodel{rdata)=maxfrall modelsg. Models are placed in

descending order, from those with the largest relative difference to

the data (left-most side of the graph) to those with the smallest

relative difference to the data (right-most side of the graph). We

observe that embedded models generally have a smaller relative

distance to the empirical data than non-embedded models. This
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result demonstrates that the brain is highly spatially organized, a

fact that supports the view that physical constraints likely play an

important role in large-scale properties of neurodevelopment.

Integrated Insights
While the details of this set of analyses are of course important,

we can also propose a set of integrated insights into the biological

underpinnings of structural brain network organization based on

the collective results extracted from these models. First, the fact

that models hard-coded to display one topological property are

unlikely to also display a second topological property suggests that

the processes of neurodevelopment have not been selected by

evolutionary drivers to optimize a single topological variable. Such

a suggestion is intuitively plausible: What mechanisms exist to

isolate and optimize single topological properties in the compli-

cated cellular milieu of a developing organism? Evidence from

evolution and development instead suggest that the neuronal

systems in living organisms are constrained by energy and

metabolic concerns [83]. While energetic concerns may subse-

quently translate into constraints on topological network architec-

tures [12,25,28], topological features are unlikely to be the singular

driving mechanism of evolution.

Supposing that energetic concerns play a role in guiding

network connectivity in large-scale brain structure, how might

these concerns manifest themselves in the observed network

organization of a single organism at a single point in time? One

Figure 11. Comparison of the network models and brain data. (A; Top Panel) For each model, we illustrate how summary network statistics
(Assortativity r, hierarchy b, clustering C, Rentian scaling pT , fractal dimension dB, diameter D, mean path length P, modularity Q, and number of
communities #com) differ from the same statistics extracted from empirical data. (A; Main Panel) The black line indicates the sum of the absolute
values of the relative difference between each model and the data. The color image in the background indicates the difference between the degree
distribution of the model and that of the data: red colors indicate that the model has too many nodes of a given degree, while blue colors indicate
that the model has too few nodes of a given degree. Less saturated colors indicate more similarity between the degree distributions of the model
and the data. (B) Colored lines indicate the sum of the absolute values of the relative difference between each model and the data from 6 separate
diffusion imaging scans, acquired as described in [39].
doi:10.1371/journal.pcbi.1003491.g011
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possibility is that such constraints would impact on the physical

length of connections since long connections are arguably more

costly to both develop and maintain [12,25,28]. Consistent with

this possibility, we observe that models that penalize physical

length of connections (embedded models) tend to be more similar to

the empirical data than models that hard-code specific topological

properties (non-embedded models). This gross result, robust to

individual variation in different model parameters, supports the

view that biological physics may be a more fundamental driver of

structural brain architecture than network topology.

However, we also note that simple distance models remain

unable to capture all of the intricacies of the observed network

architecture. While there is certainly room to construct more

complicated physical models, it is also arguable that additional

biophysical constraints are playing a secondary but influential role.

A key feature of networked neuronal systems is their development

over time, which displays complicated maturation-dependent

trajectories [84–86]. It is therefore intuitively plausible that growth

processes pose unique constraints on network development that

cannot be captured by static physical distances alone. Indeed, we

observe that 2 of the 3 models that display most similarity to the

empirical network structure are growing models (the affinity model

and the hybrid distance growth model, which we define for the

first time in this paper), suggesting that principles underlying the

time evolution of network structures is critical. If true, this result

uncovers a major gap in current network models of neuronal

systems: namely, a sequence of models of increasing complexity

that account for both physical constraints and growth processes on

final (adult) network architecture. We speculate that such models,

which obey principles of both physics and time, will be best able to

capture observed empirical brain network structure.

Pragmatic Uses of Models and Model Batteries
Model interpretations aside, it is important to emphasize that

this work has a complementary purpose: to provide researchers

with mathematical null models to inform statistical inference. The

pragmatic uses of these models fall under two broad categories: (i)

the use of a single model and (ii) the use of the full model battery.

Single models can be used to address the question ‘‘How

different are my two sets of networks in property y beyond that

expected by their differences in property x.’’ For example, one

might have a group of networks from a clinical population and a

group of networks from a control population. The two groups

might differ in both their degree distribution and their clustering

coefficient. However, one would like to test whether their

difference in clustering coefficient is more than expected given

their difference in degree distribution. That is, one would like to

isolate the independent contribution of one network parameter to

the phenotype of the disease. The statistical test one could then

employ is to compare the clustering coefficient of the empirical

networks in one group (normalized by the clustering coefficient of

the associated configuration models, which control for degree

distribution) to the clustering coefficient of the empirical networks

in the other group (again normalized by the clustering coefficient

of the associated configuration models). Such a test directly

determines whether the clustering coefficient is more different

between the two groups than expected given the differences in

their degree distributions. While we have used the clustering

coefficient and degree distribution for simplicities sake in this

argument, all other (potentially more complicated) pairs of

properties can be examined similarly (e.g., hierarchical structure,

preferential attachment, modular structure, wiring properties,

etc.).

In addition to single models, model batteries can be used to

probe more general questions of group differences between sets of

networks, for example from clinical and control populations. In

some group comparisons, it is possible to observe marginally

significant group differences in many network properties but to not

observe any single network property that is affected drastically in

isolation. In such cases, it is useful to report a comprehensive

statistical test that encompasses these findings, rather than report a

series of separate t-tests. In this context, model batteries can be

extremely useful because they can provide response functions (such

as the summed relative difference from data, illustrated for a single

individual in Figure 11A) that indicate the differences between the

data and the model battery. Different individuals can have

different response functions (as illustrated in Figure 11B), as can

different groups. To directly compare these functions between

groups, one can use a branch of statistics known as functional data

analysis (for a relevant textbook see [87] and for an application in

network neuroimaging see [88]). Model batteries therefore

complement network diagnostics in providing measurable statistics

that can be used to identify subtle differences in network

architecture between groups.

In the following sections we discuss the details of each model

more fully and relate our results to prior work. We conclude with a

description of model interpretations, future directions, and

methodological limitations.

Non-embedded Models
We probe non-embedded models with differing amounts and

types of structure. While the Erdös-Rényi model provides an

important benchmark with a random topology, it bears little

resemblance to the brain network. Although a homogeneous

random distribution of links has been suggested to characterize the

small-scale structure of neuron-to-neuron connections [89,90], the

large-scale structure of human and animal brains instead displays

heterogeneous connectivity [67]. Perhaps one of the simplest

measures of this heterogeneity is found in the degree distribution,

which displays a predominance of low degree nodes and a long tail

of high degree nodes. In comparing the degree distribution of the

brain to that obtained from a BA model, it is clear that this tail,

however, is not well-fit by a power-law, a finding consistent with

previous reports in brain anatomy [21,38] and function [15,91].

However, by matching the empirical data, for example using a

configuration model with the same degree distribution, we note

that we do not automatically uncover higher order structures like

assortativity, suggesting that the degree distribution provides only

limited insight into the forces constraining brain network

development.

Several decades ago, neuroanatomists observed that the pattern

of connections in several animal brains displayed a combination of

both densely clustered areas and long range projects between

distant areas [92–95]. The regular lattice and Gaussian drop-off

models are able to capture these densely connected structures but

fail to capture the extent of long-range connectivity observed in

the brain. The small-world modular and fractal hierarchical

models contain both properties: dense local connectivity and long-

range interactions. The fractal hierarchical model has the added

benefit of containing nested structures, which have been impli-

cated in the heterogeneity of neuronal ensemble activity [11] and

in the separation and integration of information processing across

multiple frequency bands [96]. Moreover, hierarchical modular

structure has been identified in organization of white matter

streamlines in human diffusion weighted imaging data [8,72,74]

and implicated in neurobiological phenomena [11,75,76].
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None of the non-embedded models discussed earlier in this

section simultaneously provide a heterogeneous degree distribu-

tion, degree assortativity, hierarchical topology, and realistic

topological dimensions. Such a ‘‘No Free Lunch’’ rule is perhaps

unsurprising, in that a network that is developed to directly obtain

one property typically fails to also display a second property. This

result suggests that the topological properties that we explore here

are in some sense independent from one another. It is, however,

important to clarify that the interpretation of our findings in light

of the observed correlations between network diagnostic values

themselves, estimated over different networks or models (see

previous literature, e.g., [97,98], and results for the current data

presented in Figure S4 in the Supplementary Materials), that

suggest the need for methods to identify distinguishing properties

among networks [56,99]. The two sets of observations can be

brought together by realizing that while classes of networks (e.g.,

brain networks) might display correlated network diagnostics

values, these relationships need not be expected theoretically from

any randomly chosen set of networks. Indeed, networks can be

segregated into families based on the profile of interdependence

between network diagnostic values [100].

Finally, in our affinity model, we hard-code both degree

assortativity and a continuous hierarchical topology, rather than

the discrete hierarchy employed in nested models like the fractal

hierarchical model examined here. Interestingly, however, and in

contrast to the other non-embedded models, we simultaneously

obtain a heterogeneous degree distribution, and similar estimates

of the topological dimension. This model fits multiple properties of

brain networks that were not explicitly included in the construc-

tion of the network model, but are nevertheless a consequence of a

three-parameter fit in the specific affinity model selected. The

affinity model therefore serves as a promising candidate as both a

generative model and statistical null model of brain organization.

Embedded Models
In an effort to include additional biological constraints, we also

explore several models that employ information regarding either

the physical placement of network nodes or that place constraints

on the Euclidean lengths of network edges. In general, this set of

networks outperforms most of the non-embedded network models

that we studied, demonstrating that the brain is highly spatially

organized and supporting the notion that physical constraints

might play important roles in brain network development and

structure [8,25–29,90,101,102].

It is important to preface the discussion of our results by

mentioning the fact that the properties of empirically derived brain

networks display a heterogeneity that could at least in part stem

from the peculiar physical properties of the organ. Brains are

symmetric objects, with the two hemispheres being connected with

one another via tracts in the corpus callosum and via subcortical

structures. This separation allows for a very different topology

within a hemisphere than between hemispheres. Moreover, cortical

areas (gray matter) form a shell around the outer edges of the brain

while their connections (white matter) compose the inner volume.

Finally, brain areas are inherently heterogeneous in physical

volume, making their distances from one another far from

homogeneous. While the morphology of the brain constrains its

potential topological properties, evidence also suggests that the

lengths of tracts connecting brain areas follow a heavy tailed

distribution, with short tracts being relatively common and long

tracts being relatively rare [26,27]. These findings are in concert

with the idea that energy efficiency—to develop, maintain, and use

neuronal wiring—remains a critical factor in brain evolution and

development [29,103].

In this study, we begin with a random geometric model, whose

nodes are placed uniformly at random in a volume but whose

edges selectively link nodes that are nearby in physical space. In

light of the simplicity of this model, it is somewhat surprising that

we obtain such good agreement with the empirical degree

distribution, the presence of assortativity, and the presence of a

hierarchical topology. In the minimally wired graph we employ a

similar connection rule but also fix node placement to be identical

to that in the empirical brain network, following previous studies

[28]. However, neither of these two models are able to capture the

extent of long-distance connections observed in the empirical data.

By employing the distance drop-off model, we can fix a connection

probability that varies with distance, rather than simply a

connection threshold. This connection probability, however, is not

enough to provide a realistically broad degree distribution. Our

distance drop-off growth model combines the strengths of each of

these models by laying down a set of seed edges uniformly at

random in a volume and then iteratively adding edges between

pairs of nodes according to a probability that falls off with inter-

node distance. The resulting degree distribution and assortativity

properties are the best match to the empirical data of the models

that we studied. A hybrid between the minimally wired model and

the distance drop-off growth model does not perform significantly

better in matching these properties and shows a hierarchical

structure that is more pronounced than the data.

Importantly, the embedded network models examined here are

purposely simplistic. While arbitrarily more complex models could

be constructed, our goal was to isolate individual drivers of

topology and probe their relationship to observed network

diagnostics. Other studies of interest in relation to these findings

include those that explore the effects of geometric folding [90],

radial surface architectures [102], and the effects of wiring

minimization on functional networks [25].

Model Interpretations
While the construction of network models is genuinely critical in

providing null tests for statistical inference of brain structure from

data, this avenue of research also has the potential to provide key

insights into the neurobiological mechanisms of brain develop-

ment and function if performed with appropriate caution. In light

of this second use, we note that several of the network models

discussed in this paper employ rules that are reminiscent of—or

even directly inspired by—known biological phenomena. For

example, physical models that place constraints on the length of

connections in Euclidean space are consistent with the known

distribution of connection lengths in the brain and the modern

understanding of metabolic constraints on the development,

maintenance, and use of long wires [26–29,101,103].

However, even topological constraints that link nodes that have

similar sets of neighbors can be interpreted as favoring links

between neurons or regions that share similar excitatory input

[25]. As an example, our affinity model hard-codes two inter-node

relationships. First, nodes with a similar degree are more likely to

be connected to one another by an edge, leading to degree

assortativity throughout the network. This behavior can be

thought of as a mathematical representation of the intuitive

principle of spatial homophily: large neurons with expansive

projections (e.g., pyramidal or basket cells) are more likely to

connect to one another because they densely innervate tissue over

large distances. Network assortativity can also stem from the

temporal homophily that occurs during development: neurons that

migrate over longer distances during development are more likely

to come into contact with—and therefore generate a synapse

with—one another than neurons that migrate over shorter
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distances. The second topological relationship hard-coded into the

affinity model is the prevalence of clustering in local neighbor-

hoods, a property consistent with physical constraints on network

development. As neurons develop, it is intuitively more likely for

them to create synapses with neighboring neurons than non-

neighboring neurons, thereby closing topological loops in close

geographic proximity. While we have only provided a few

examples here, links between topological rules and biological

phenomena provide potentially critical neurophysiological context

for the development and assessment of synthetic network models.

Future Directions
The perspective that we have taken in choosing synthetic

network models is one of parsimonious pragmatism. We seek to

identify models with simplistic construction rules or growth

mechanisms to isolate topological (non-embedded) and physical

(embedded) drivers of network topology. One alternative perspec-

tive would be to begin with a certain graph topology (for example,

an Erdős-Rényi graph), and iteratively rewire edges to maximize

or minimize a network diagnostic or set of network diagnostics

[25]. However, this approach requires prior hypotheses about

which network diagnostics are most relevant for brain network

development, a choice that is complicated by the observed

correlations between such diagnostics [97]. Another approach is to

employ exponential random graph models [16,19,104], which

provide a means to generate ensembles of networks with a given

set of network properties but do not provide a means to isolate

mechanistic drivers of those network properties. A third approach is

to construct a mechanistic model based on particle-particle collisions,

which might serve as a physical analogy to the biological phenomena

of neuronal migration through chemical gradients [105,106]. In each

of these cases, a perennial question remains: at what spatial scale

should we construct these models to gain the most insight into the

relevant biology? Important future directions could include the

development of multiscale growth models, enabling us to bridge the

scales between neuronal mechanisms and large-scale structure.

Methodological Limitations
There remain important limitations to our work. In particular, we

have focused on understanding the (binary) topology of brain network

architecture rather than its weighted connection strengths. Our choice

was informed by three factors: 1) An understanding of the relationship

between synthetic network models and brain network topology could

be useful for informing a similar investigation into network geometry, 2)

In these particular networks, node degree (binary) and node strength

(weighted by the number of streamlines) are strongly correlated

(Pearson’s correlation coefficient r~0:41, p~1|10{41) and there-

fore topology serves as a proxy for weighted connectivity, and 3) The

choice of how to weight the edges in an anatomical network derived

from diffusion imaging is an open one [107], and therefore

investigations independent of these choices are particularly useful.

Network models constitute necessarily simplified representations

of often very complex systems. The 13 synthetic network models

we study in this work could be extended to include additional

physical features of the human brain. For example, a key

constraint on brain morphology and connectivity lies in the

organ’s bilateral symmetry. This symmetry in brain structure is

evident in the distribution of anatomical connectivity in the brain

networks examined in this study: pairs of homologous regions are

more than 3 times more likely to be connected to one another than

pairs of non-homologous regions. As described in [39], each of the

998 regions used in the parcellation is affiliated with one of 66

anatomical parcels defined based on surface reconstruction

performed in Freesurfer. We calculated the average density of

connections between all of the regions in one anatomical parcel

and all of the regions in another anatomical parcel. In this way, we

obtain a pairwise density of connectivity between all 66 anatomical

parcels. The average density of connections between homologous

regions is 15.22% and the average density of connections between

non-homologous regions is 4.05%. The topological ramifications

of this symmetry are not well understood.

Moreover, in simple network models, emphasis is placed on

characterizing the patterns of network edges while the character-

istics of individual nodes (apart from their connectivity) are

examined to a lesser degree [108]. The development of more

complicated models that account for feature vectors of brain

region properties could provide additional insights into neuro-

physiological phenomena. Indeed, quantifying the relationship

between a brain region’s connectivity and its functional or

anatomical properties is a critical goal of network neuroscience.

Initial forays into this area have demonstrated that topological

properties of a brain region (node degree) can be linked to

neurophysiological properties (prevalence of amyloid-beta

deposition) [109], suggesting the utility of network approaches in

providing mechanistic hypotheses regarding disease attributes.

Conclusion
In this paper, we have examined the mechanistic drivers of

network topologies by employing and developing a range of

synthetic network models governed by both topological (non-

embedded) and physical (embedded) rules and comparing them to

empirically derived brain networks. These tools may prove useful

in the statistical inference of anatomical brain network structure

from neuroimaging data. Future efforts can further build on these

findings to identify neurobiologically relevant mechanisms for

healthy brain architecture and its alteration in disease states.

Supporting Information

Figure S1 Empirical connection probability drop-off
with physical distance. The connection probability drop-off

g(r) for (A) intra- and (B) inter-hemispheric connections. Empirical

brain data is given by the data points: red indicates bins that were

not utilized in the fits, blue indicates bins in which xvx0, cyan

indicates bins in which xwx0, green indicates outlier bins

excluded from fit. Fits are given by the lines: dotted line indicates

the initial single truncated power-law fit, solid black line indicates

the piecewise truncated power-law fit, and solid green indicates the

piecewise truncated power-law fit with the interpolation to g(0) = 1.

(EPS)

Figure S2 Reliability of relational properties across
data sets. The (i) degree distribution (number f of nodes with a

given degree ki), (ii) assortativity (correlation between a node’s

degree ki and the mean degree of that node’s neighbors k’i,
summarized by parameter r), and (iii) hierarchy (the relationship

between the clustering coefficient Ci and the degree ki over all

nodes in the network, summarized by parameter b) for each of the

six data sets separately shown in panels (A)–(F). In panel (A), data

set 1 shown in grey was used in the visualizations provided in the

main manuscript.

(EPS)

Figure S3 Reliability of the topological dimension
estimates across data sets. (Main Panel) The number of boxes

as a function of the topological size of the box, estimated using the

box-counting method [49] (see Materials and Methods) for the six

empirical brain data sets. (Inset) The topological Rentian scaling

relationship between the number of edges crossing the boundary of
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a topological box and the number of nodes inside of the box (see

Materials and Methods) for the six empirical brain data sets.

(EPS)

Figure S4 Correlation between network properties over
empirical networks and models. Each ijth element in this

matrix represents the Pearson correlation coefficient between the

values of network diagnostic i computed for all networks and models

studied (Brain, ER, CF, RL, GD, MS, FH, BA, AF, RG, MW, DD,

DDG, and HDG) and the values of network diagnostic j computed

for the same networks and models. The color indicates the strength

of the correlation with red colors indicating positive correlation and

blue colors indicating negative correlation. In this matrix, we show

the Pearson correlation coefficient between all possible pairs of the

following network diagnostics: assortativity r, hierarchy b, clustering

C, Rentian scaling pT, fractal dimension dB, diameter D, mean path

length P, modularity Q, and the number of communities.

(EPS)

Table S1 Parameter estimates for empirical connection
density drop-off for the fits of Equation 2 in Text S1 to
intra- and inter-hemispheric data.
(PDF)

Table S2 Variance in network diagnostic values. For

each network or network model, we report the mean value of several

network diagnostics as well as the estimated variance in those

diagnostic values. Sources of variance that we report include the

error (95th percentile) in the fit, the standard deviation of a

diagnostic value estimated over 100 computations performed on the

same network, and the standard deviation of a diagnostic value

estimated over 100 realizations of a network model with the same

parameter settings. The difference between the variance computed

over 100 computations and that computed over 100 realizations is

equal to the variance due to the model alone. For the original brain

data and the minimally wired graph, we do not compute variance

over realizations because these networks are deterministic. For the

models in which the fits for the topological fractal dimension include

only two data points, no fitting confidence interval is given.

(PDF)

Text S1 Supplementary text. In this Text S1 document,

we include the following supporting materials: (i) a detailed

description of parameter estimates for the distance drop-off models

used (DD, DDG, HDG), and (ii) a description of correlations

between network diagnostic values.

(PDF)
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