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Abstract

Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT,
though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been
investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual
interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for
analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In
this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their
respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and
to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction
inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor
FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3
inhibitor 6-bromoindirubin-39-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN,
corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent
with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model,
substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor
gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR
suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also
cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously
unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for
transcriptional stability.
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Introduction

Immortalisation is a hallmark of cancer commonly achieved by

transcriptional reactivation of the telomerase reverse transcriptase

gene TERT [1]. Multiple transcription factors modulate TERT

and previous studies have identified many of those which

individually contribute to activate or repress telomerase levels in

cancer cells, resulting in a highly complex picture of TERT

regulation [2]. In cancer cells lacking tight control of chromatin

mediated silencing present in normal cells, a few factors such as c-

Myc and Sp1 may act as ‘‘master regulators’’. However, many

other factors bind the TERT promoter, co-operating with these

and other pathways, and acting together to ensure telomerase

expression in a wide variety of cancer cells.

It is increasingly recognised that transcription factors do not

behave in isolation, but rather as a complex co-operative network

[3] and TERT expression most likely also occurs in this context

[4,5]. For example, TERT transcriptional suppression by different

TP53 family members is mediated through distinct combinations

of binding sites for c-Myc, Sp1 and E2F-family proteins [6], while

E2F family members themselves activate or suppress TERT in a

cell-specific manner [7]. Furthermore, WT1 dependent TERT

repression in renal cancer cells involves upregulated expression of

TERT repressors SMAD3 and JUN, as well as down-regulation of

activators AP-2 and NFX1 [8].

We previously observed that GSK3 inhibition causes wide-

spread TERT promoter remodelling and that GSK3 inhibited

ovarian cancer cells show long-term unstable telomerase suppres-

sion, correlating with altered protein expression and oscillation of

several TERT regulatory factors, particularly c-Jun [4]. Thus,

upstream telomerase regulatory interventions are mediated through

multiple effects at the promoter but can also cause broader network
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effects. In addition, TERT regulators such as p53 and NF-kB are

also known to exhibit complex dynamic behaviour such as

oscillating expression under certain conditions [4,9].

These dynamic effects may be of relevance for therapeutic

interventions directed at telomerase expression including gene

therapy and pathway therapeutics. For example, it is likely that

many different combinations of active signalling pathways and tran-

scription factors are compatible with TERT expression. Therefore,

TERT expressed under different ‘‘network states’’ may be more or

less susceptible to targeting by specific agents. Hence, there is a need

for systems-level understanding of telomerase control.

Approaches such as network inference or enrichment analysis

are useful in identification of functional relations in omics data

[5,10–13]. However, in-silico mathematical models of pathway

dynamics are also proving increasingly useful to understand

organising principles of signal transduction [14]. In one example,

integration of proteomics data with sensitivity analysis of a kinetic

model of ERK pathway activation suggested that PC12 cell

differentiation relies on distributed control [15]. Modelling may

also prove useful in translational systems pharmacology as, for

example, in probing signalling mechanisms which give rise to

resistance to anti-HER2 antibodies [16] or identification of NGF

pathway targets [17].

Here, we report the first mathematical model of TERT

regulation. We developed a classical Boolean threshold network

model involving TERT and 14 of its regulatory transcription

factors. Boolean networks (BN) are among the simplest dynamic

modelling tools but are useful models of transcriptional networks

[18,19]. The general BN modelling framework is discussed in

detail in the materials and methods section. Briefly, BN offer a low

resolution modelling solution comprising a set of nodes (genes)

connected in a network, each of which takes one of two states (on

or off). In each run-time step, active nodes positively or negatively

regulate the on/off state of other nodes as determined by a rule

table. Node states are updated on each step. In this study, we use

the rule that if fewer repressors than activators of any node are on

in any time step, then that node will become or remain active on

the next step. Alternatively, if repressors dominate, the node will

be turned off. As discussed in materials and methods, classical BN

models always converge either to steady states or oscillations.

Characterisation of these is a principal method of model analysis.

Though their dynamics are simple, BN have been used to

investigate a range of cellular pathways [20–22]. Advantages

include ease of modelling constitutive activation or suppression of

nodes by modifying their rule tables or of investigating particular

interactions by adding or deleting them from the model. BN are

well suited for first models of complex systems such as the current

model of TERT where few kinetic parameters are known.

We adopted a transfection screening approach in A2780

ovarian cancer cells for development of our core model

interactions. We obtained promoter reporters and expression

vectors for 14 transcription factor regulators of TERT and

transfected these against each other, testing all pair-wise interac-

tions. The updating rule was then applied to the defined

interactions and model steady states evaluated. The model

successfully predicted TERT transcriptional responses to several

signalling inhibitors and reproduced the well documented role of

MYC expression as a master regulator of TERT. Thus, cell based

screening may be a useful general approach for production of BN.

Further analysis of the role of MYC led to the finding that AR co-

suppression is able to reverse MYC dependent TERT suppression

in A2780 cells. We also tested the addition of Ets-factor gain of

function at TERT as has been reported to occur in TERT

promoter mutations [23–25]. Under these conditions, TERT

suppression by MYC inhibition is fragile, suggesting a role for Ets-

factors in promoting TERT expression robustness. An extrapola-

tion from topological analysis of the model suggests that TERT

may be hard wired for transcriptional stability in cancer cells

which has possible implications for pathway therapeutics ap-

proaches targeting telomerase.

Results

Development of TERT network model by transfection
screening

In order to develop a BN model, it was first necessary to define a

static structural model of the TERT transcriptional network. As

described in supplemental file Text S1, we initially tested several

literature-derived networks before deciding to employ the novel

approach of reporter screening to define an interactions network

for TERT transcriptional regulation at the level of a single cell line.

The literature-derived models had, in general, poor performance

in reporting dynamic behaviour relevant to TERT expression

which may be because the interactions are curated from

experiments performed in divergent contexts using a range of

different cell lines and reagents. We assembled a panel of luciferase

reporter vectors comprising 1 kb proximal human gene promoter

regions for a set of 14 previously reported TERT regulatory

transcription factors. Correspondingly, we obtained a panel of

expression vectors for the same factors. These comprised SP1,

MYCN, RELA, MYC, HIF1A, FOS, STAT3, AR, JUN, TP53, E2F1,

MXD1, SP3, and NR2F2 (table 1). The sources of promoter and

expression constructs are given in materials and methods. Our

TERT reporter construct has previously been reported [26]. We

interrogated all pair-wise interactions by cotransfecting each

expression vector against the entire promoter panel.

Each interaction identified from the transfection data was

incorporated in the network model as an activating interaction

mediated by a given transcription factor if the overexpressed

transcription factor increased the activity of a promoter. If

promoter activity was decreased, the interaction was defined as

repressive. These results are shown in figure 1. Note that the effect

Author Summary

Tumour cells acquire the ability to divide and multiply
indefinitely whereas normal cells can undergo only a
limited number of divisions. The switch to immortalisation
of the tumour cell is dependent on maintaining the
integrity of telomere DNA which forms chromosome ends
and is achieved through activation of the telomerase
enzyme by turning on synthesis of the TERT gene, which is
usually silenced in normal cells. Suppressing telomerase is
toxic to cancer cells and it is widely believed that
understanding TERT regulation could lead to potential
cancer therapies. Previous studies have identified many of
the factors which individually contribute to activate or
repress TERT levels in cancer cells. However, transcription
factors do not behave in isolation in cells, but rather as a
complex co-operative network displaying inter-regulation.
Therefore, full understanding of TERT regulation will
require a broader view of the transcriptional network. In
this paper we take a computational modelling approach to
study TERT regulation at the network level. We tested
interactions between 14 TERT-regulatory factors in an
ovarian cancer cell line using a screening approach and
developed a model to analyse which network interven-
tions were able to silence TERT.

Boolean Network Model of hTERT Transcription
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of overexpressing E2F1 is shown separately from the other TERT

repressors on a log scale in figure 1C because of its very strong self-

regulatory effect (73.5-fold activation). Effects at the TERT

promoter (right hand side of each panel) were in the expected

direction for all factors except FOS. The reason for this

discrepancy is not clear, but may reflect the different construct

and cell line [27]. We initially tested several candidate network

models assembled by using different criteria for inclusion of an

interaction in the network and implementing the BN rules on each

network. The threshold rule governing model dynamics is given in

materials and methods. Briefly, the rule is activation-dominant: for

any node, unless more of its repressors than activators are on at

any time step, the node will be active on the next time step.

We tested a range of cutoff values based on fold-change in

promoter activity and significance (ANOVA) for inclusion of

individual interactions from the transfection screen and imple-

mented the rules on each resulting network. The results of this

model-fitting exercise are also detailed in supplemental file Text

S1. The best results were obtained when we selected cutoffs of

minimum 1.5-fold change in reporter activity with p,0.01 (in

figure 1, interactions meeting the cutoff are marked **).

A single relaxation of these cutoffs was made for the effect of

STAT3 at the TERT promoter. Although regulation tended in the

expected direction, it was not significant. Other studies have shown

that STAT3 does activate TERT expression [28] and we have

previously detected STAT3 binding to the TERT promoter by ChIP

analysis in A2780 cells [4] and we re-performed this analysis here

(supplemental file Text S1). We retained STAT3 as a TERT

activator since our model performs better with its inclusion. We

discuss this decision and the role of STAT3 in our model in detail in

supplemental file Text S1, along with results obtained using a net-

work in which STAT3 is excluded. As detailed in the file, the

STAT3-deleted model still captured most behaviour we describe in

this report, though the model was more aligned with some exper-

iments when it was included. The selected model comprises 92 total

interactions of which 50 are activating and 42 are repressive.

We performed literature searching with inclusion/exclusion

criteria detailed in materials and methods for each of these

individual interactions. We found 47 previously reported interac-

tions (excluding STAT3 activation of TERT since this was retained

according to a modelling decision). The cumulative hypergeo-

metric probability of this overlap was p($47) = 1.2461024. 35

interactions were found to be in agreement with our results (table 2)

[27,29–63]. 12 previously reported interactions were non-concor-

dant with our results, having different effect directions (table 3)

[27,49,55,64–72]. The reasons for these differences may be

because of the use of different cell lines or constructs. However,

the cumulative binomial probability of this concordance is p($

35) = 5.4461024. Hence, the overlap between our screen and the

literature was highly significant. The remaining 44 interactions we

identified are given in table 4. We apologise if we have overlooked

the work of any authors who have previously demonstrated these

interactions according to our literature search criteria. If we are

made aware of any such study, we will endeavour to cite it in any

future publications relating to our model. We next analysed the

model dynamic behaviour in more detail.

Analysis of the basal model dynamics
The BN model has 32768 total dynamic states, representing the

215 possible combinations of on/off states across all 15 nodes in the

model. As noted above, classical BN always converge to either

steady states or oscillations. 32766 states are transient states

evolving to the 2 steady states of our basal model shown in

figure 2A, along with the structure of the network model. TERT is

active in both steady states, which are highly similar, differing only

in JUN activation (in the figure, red indicates on, whereas green

indicates off). Therefore, telomerase is ‘‘stably expressed’’ in the

model, in line with the stable telomerase expression and telomere

maintenance that we previously observed in these cells over 6

months in culture [4].

For all model variants in this paper we have performed

statespace analysis [73]. This involves sequentially treating each of

the 32768 total dynamic states as the current model state, then for

each node determining how many of its activators and repressors

are currently on. This in turn determines the next state of each

node and hence the next overall model state. In this way, every

possible state transition is calculated. The approach is only feasible

for relatively small networks, but allows identification of all steady

states without the need to run multiple simulations starting from

different initial conditions.

Since each individual state transits to exactly one next state, the

statespace itself can be represented as a network (figure 2B). Here,

each node represents a single model state and the arrows represent

transitions between them. The single yellow nodes near the centre

of each network are the respective steady states shown in figure 2A.

All other nodes are transient states evolving toward these. Note

that the 32768-state system is too large to show, so a truncated

core structure is shown in figure 2B as described in the legend.

Steady state 1 (figure 2A, left) dominates, with 20156 associated

states which flow to it. If the model is initialised and run from any

of these states, it will evolve to steady state 1. 12612 states are

associated to steady state 2 (figure 2A, right).

This analysis provides an overview of global dynamics of the

model by considering path lengths through statespace. Since no

TERT-off attractors exist, if perturbed to an ‘‘outer state’’, the

model must return to a TERT-on state. Long paths indicate that

the model takes longer to reach a steady state. In our model, most

system states evolve very rapidly toward the steady states which

have TERT active. The longest paths are 9 steps and 8 steps for

steady states 1 and 2, respectively. Hence, the model exhibits a

high degree of global stability with respect to TERT activation.

Specifically, if the model is transiently perturbed to turn off TERT,

Table 1. Accession numbers of all human genes from the
model.

Gene Gene ID

AR 367

JUN 3725

TP53 7157

SP1 6667

E2F1 1869

MYCN 4613

MXD1 4084

RELA 5970

MYC 4609

FOS 2353

HIF1A 3091

SP3 6670

STAT3 6774

NR2F2 7026

TERT 7015

doi:10.1371/journal.pcbi.1003448.t001
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this will be rapidly reversed. This is an interesting feature of the

model, although clearly a qualitative BN model cannot be used to

predict the rate of reversal in cells. However, telomere lengths and

telomerase expression are stable over greater than 6 months in

culture in A2780 cells, suggesting that any noise that does occur

must indeed be reversed rapidly enough to facilitate ongoing

telomere maintenance [4].

Modelling inhibitor effects on the TERT transcriptional
network

It is possible that different states exist in the endogenous TERT

transcriptional network some of which are more compatible for

TERT silencing by particular approaches than others. It is of

interest to evaluate this question in the modelling context and to

compare model behaviour with actual regulation of endogenous

TERT under signalling interventions. We therefore examined

effects of several small molecule kinase inhibitors on the

transcription factor promoter panel and incorporated these effects

into our model. The compound IUPAC names are given in table 5.

A2780 cells were transfected with the promoter panel and 32 h

post-transfection were treated for 16 h with either the Src-family

inhibitor SU6656 (5 mM), the ERK inhibitor FR180204 (10 mM),

or the GSK3 inhibitor 6-bromoindirubin-39-oxime (BIO, 5 mM).

Effects of SU6656 and FR180204 on the promoter panel are

shown in the leftmost panels of figures 3A and 3B, respectively.

SU6656 significantly stimulated several promoter constructs.

However, only 5 constructs achieved the cutoffs for inclusion in

the model (as before, FC.1.5 and p,0.01). These were JUN (FC

2.59; p 0.0048), TP53 (FC 1.99, p 0.0092), MYCN (FC 3.19, p

0.0089), MXD1 (FC 1.84, p 0.0081) and SP3 (FC 2.5, p 0.005).

Hence, SU6656 had a strong stimulatory effect on the promoters

of several TERT repressors. In contrast, FR180204 significantly

inhibited only two promoters, both of which achieved the cutoffs.

These were TP53 (FC 0.63, p 0.0083) and FOS (FC 0.6, p 0.0037).

To model these results for SU6656, the updating rules for JUN,

TP53, MYCN, MXD1 and SP3 were modified to result in

constitutive activity: these nodes were set to the on state indepen-

dent of any combination of their upstream activators or repressors.

Similarly, those of TP53 and FOS were modified for constitutive

Figure 1. Definition of the TERT transcriptional neighbourhood in A2780 cells by transfection screening. (A), overexpression of TERT
activators. A2780 cells were transfected with the luciferase reporters shown on the vertical axis. Each reporter was co-transfected alongside vector
control or transcription factor expression plasmid shown in the right hand boxes. Each bar type represents a different expression vector relative to
control. 48 h post-transfection, promoter activities were analysed by luciferase assay. (B), overexpression of TERT repressors, transfected as in (A). (C),
overexpression of E2F1 against the promoter panel, transfected as above. Because of the very strong self-regulatory effect on its own promoter, E2F1
is shown on a different scale and separately from the other TERT repressors. Mean 6 SEM of 3 experiments (ns: not significant; *: p,0.5; **: p,0.01).
doi:10.1371/journal.pcbi.1003448.g001

Table 2. Common, concordant interactions in literature and
data-derived models.

FromRTo Literature Effect Reference

ARRTP53 Inhibition Rokhlin et al (2005) [53]

ARRTERT Inhibition Moehren et al (2008) [48]

JUNRJUN Activation Angel et al (1988) [31]

JUNRTERT Inhibition Takakura et al (2005) [27]

TP53RMYC Inhibition Ho et al (2005) [39]

TP53RE2F1 Inhibition Ookawa et al (2001) [52]

TP53RSP1 Inhibition Tapias et al (2008) [56]

TP53RFOS Inhibition Kley et al (1992) [45]

TP53RTERT Inhibition Kanaya et al (2000) [44]

SP1RJUN Activation Chen et al (1994) [33]

SP1RMYCN Activation Hossain et al (2012) [40]

SP1RFOS Activation Duan et al (1998) [36]

SP1RTERT Activation Kyo et al (2000) [46]

E2F1RE2F1 Activation Johnson et al (1994) [43]

E2F1RHIF1A Activation Sengupta et al (2011) [54]

E2F1RAR Inhibition Davis et al (2006) [35]

E2F1RMYC Activation Thalmeier et al (1989) [57]

E2F1RTERT Inhibition Crowe et al (2001) [34]

MYCNRTP53 Activation Chen et al (2010) [32]

MYCNRE2F1 Activation Oliver et al (2003) [51]

MYCNRTERT Activation Mac et al (2000) [47]

MXD1RTERT Inhibition Oh et al (2000) [50]

RELARJUN Activation Xing et al (2013) [61]

RELARTP53 Activation Hsu and Lee (2011) [41]

RELARFOS Activation Anest et al (2004) [30]

RELARTERT Activation Gizard et al (2011) [38]

MYCRJUN Inhibition Zeller et al (2006) [63]

MYCRTERT Activation Wu et al (1999) [60]

HIF1ARTERT Activation Anderson et al (2006) [29]

SP3RSP1 Inhibition Nicolás et al (2003) [49]

SP3RTERT Inhibition Wooten-Blanks et al (2007) [59]

STAT3RJUN Activation Durant et al (2010) [37]

STAT3RFOS Activation Yang et al (2003) [62]

STAT3RMXD1 Activation Jiang et al (2008) [42]

NR2F2RTERT Inhibition Wang et al (2004) [58]

doi:10.1371/journal.pcbi.1003448.t002

Table 3. Common, non-concordant interactions in literature
and data-derived models.

FromRTo Literature Effect Reference

JUNRAR Inhibition Yuan et al (2004) [72]

JUNRFOS Inhibition Schönthal et al (1989) [70]

TP53RNR2F2 Activation Neilsen et al (2011) [68]

TP53RSTAT3 Activation Kim et al (2009) [67]

E2F1RTP53 Activation Choi et al (2002) [66]

E2F1RSP1 Activation Nicolás et al (2003) [49]

E2F1RSP3 Inhibition Tapias et al (2008)b [55]

MYCNRMYCN Inhibition Sivak et al (1997) [71]

HIF1ARMXD1 Activation Cho et al (2013) [65]

STAT3RTP53 Inhibition Niu et al (2005) [69]

NR2F2RE2F1 Activation Chen et al (2012) [64]

FOSRTERT Inhibition Takakura et al (2005) [27]

doi:10.1371/journal.pcbi.1003448.t003
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repression in the case of FR180204. The corresponding steady

states resulting from these model changes were then characterised.

Both sets of modifications produced a single steady state (shown as

heat-maps in the centre panels of figure 3A and 3B).

The modelled effect of SU6656 on the network results in a

steady state with TERT-off. Hence, the model predicts TERT

repression by SU6656. In the case of FR180204, a single TERT

activator and a single repressor are both inhibited. In the new

steady state, TERT remains on and differs from basal state 1,

above, only in TP53 status. This result could be interpreted either

as a prediction of no change or of activation. These alternatives

cannot be readily discriminated in this modelling framework.

We next tested the effects of each compound on endogenous

TERT expression in repeat treatment schedules. A2780 cells were

treated twice weekly with SU6656 (5 mM), or FR180204 (10 mM)

for 2 weeks (SU6656), or 3 weeks (FR180204). Compounds were

not removed between treatments. In the case of FR180204, both

control and treated cells were maintained in continuous log-phase

for the 3 week treatment duration. However, 5 mM SU6656

induced a complete and sustained growth arrest and the treated

cells could be maintained with ongoing treatment for only 2 weeks

in this state (not shown).

RT-QPCR analysis revealed profound suppression of TERT

levels in day 14 SU6656-treated A2780 (right panel, figure 3A).

Treated cells had TERT levels 8.4% those of control levels. In

contrast, in day 21 FR180204 treated cells, no change in TERT

was observed (figure 3B, right panel). In treated cells TERT

mRNA levels were 110% of control, but this was not significant.

The endogenous effect of both compounds was therefore in line

with modelling predictions. To our knowledge this is the first

report in which a Boolean network model of a transcriptional

network has successfully predicted the outcome of a signalling

intervention in respect of gene expression.

The effect of treating the transfected promoter panel for 16 h

with 5 mM GSK3 inhibitor BIO is shown in the top panel of

figure 4A. BIO significantly affected the promoters of E2F1, FOS

and STAT3. However, only FOS (FC 0.64, p 0.0088) and STAT3

(FC 2.77, p 0.0017) met the model cutoffs. As above, the rule-

tables for these nodes were modified to simulate constitutive

repression of FOS and constitutive activation of STAT3.

We have previously reported the effect on TERT levels of very

long term culture in the presence of BIO [4]. We found that TERT

is initially suppressed, reaching minimal levels at 3 weeks

treatment. Expression subsequently recovers slowly over a period

of months, though levels remain low enough to achieve telomere

shortening. However, TERT expression eventually recovers

sufficiently for brief telomere re-elongation, before its levels and

telomere length are again suppressed. During this treatment

period, levels of JUN protein are found to oscillate over a very

wide range.

Analysis of the model under BIO modified rules reveals two

steady states (figure 4A, heat map labelled ‘‘model’’). In the

dominant BIO state 1 (associated with 26002 system states), TERT

is off. In BIO state 2 (associated with 6766 system states), TERT is

on. Therefore, modelling of the effect of GSK3 inhibition on the

transcription factor network panel predicts that two conflicting

network states are possible under BIO treatment: TERT

suppressed or not. As with the steady states of the basal model,

the key difference between these states is in activity of JUN.

Noise influences TERT repression under simulated GSK3
inhibition

To explore the modelling result for BIO in more detail, we

examined the impact of simulating transient noise in either the

basal model or under the BIO rule modifications. We adopted the

‘‘bit-flip’’ approach for noise simulation: the objective is to model

impact of a transient change in each node on the stability of a

steady state of interest. The system is initialised with a single state

change at one node relative to the steady state of interest (for

example, JUN onRoff relative to steady state 1 of either basal or

Table 4. Candidate novel interactions included from the
screen.

FromRTo Effect

ARRRELA Inhibition

ARRHIF1A Inhibition

JUNRSTAT3 Activation

TP53RJUN Inhibition

TP53RMXD1 Inhibition

TP53RRELA Inhibition

TP53RHIF1A Inhibition

TP53RSP3 Inhibition

SP1RSTAT3 Activation

E2F1RMXD1 Inhibition

E2F1RRELA Inhibition

E2F1RJUN Inhibition

E2F1RSTAT3 Inhibition

MYCNRAR Activation

MYCNRJUN Activation

MYCNRSP1 Activation

MYCNRMYC Activation

MYCNRHIF1A Activation

MYCNRFOS Activation

MYCNRSP3 Activation

MYCNRSTAT3 Activation

MXD1RMYCN Activation

RELARNR2F2 Activation

MYCRSP1 Inhibition

MYCRMXD1 Inhibition

MYCRRELA Inhibition

MYCRFOS Inhibition

MYCRSP3 Inhibition

MYCRNR2F2 Inhibition

HIF1ARMYC Activation

HIF1ARNR2F2 Activation

HIF1ARAR Activation

FOSRAR Activation

FOSRMXD1 Activation

FOSRRELA Activation

FOSRSTAT3 Activation

FOSRNR2F2 Activation

SP3RNR2F2 Inhibition

STAT3RAR Activation

STAT3RRELA Activation

NR2F2RJUN Inhibition

NR2F2RNR2F2 Inhibition

doi:10.1371/journal.pcbi.1003448.t004

Boolean Network Model of hTERT Transcription
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BIO models). The model is then run to steady state and it is

determined whether the transiently modified state returns to the

original steady state or not. This is performed sequentially for each

individual node and each steady state.

As shown by the arrows representing steady state shifts induced

by each node in figure 4B (top), the basal model is readily

influenced by simulated noise. State 2 (top right) can be reached

from State 1 (top left) through a transient change on 8/14 nodes in

the network. However, the reverse transition can be achieved

through noise at only 5/14 factors. Therefore, although state 1

associates with the larger fraction of statespace, under noise a

switch to steady state 2 is likely. In contrast, the main GSK3

inhibited state 1 (bottom left) is highly resistant to noise with only

2/14 factors able to affect a shift to state 2 (bottom right). Inter-

estingly, the reverse transition to the TERT-off state (BIO state 1)

is readily achieved through transient changes at 7/14 factors.

Importantly, noise at JUN is able to promote any shift.

We also examined the effect of a rule-set shift (basalRBIO, or

the reverse) in determining which steady states are visited (vertical

and diagonal arrows between top and bottom panels). This is

intended to model effects of BIO treatment and effect wear-off

applied to the different network states. When initialised in basal

state 1, application of the BIO rule-set results in evolution to BIO

state 1 (TERT repressed). However, from basal state 2, the BIO

Figure 2. Topology, steady states, and statespace structure of the TERT transcriptional neighbourhood model. (A), topology and
steady states of the basal TERT model. Transfection screening data were used to assign activating or repressive network interactions according to the
direction of regulation of each promoter and using the cut-offs of minimum fold-change 1.5 up- or down-regulation of promoter activity and p-value
(ANOVA),0.01. Topology of the final model was visualised in Cytoscape [105]. Arrows indicate activation, T-shape indicates repression. Left and right
panels show steady states 1 and 2, respectively. Red colour indicates the node is on, green colour indicates the node is off in each steady state. (B),
core statespace structure of the model. Statespace was calculated by brute force and visualised in Pajek [103]. Basins of attraction were extracted as
weak components of the statespace. To visualise the core structure, all nodes with in-degree $1 were extracted as new networks from each weak
component and visualised with transient states in blue and attractor states in yellow. Left panel corresponds to state 1, right panel corresponds to
state 2.
doi:10.1371/journal.pcbi.1003448.g002

Table 5. IUPAC names and CAS numbers of the compounds used in the study.

Compound IUPAC name CAS

SU6656 (3Z)-N,N-Dimethyl-2-oxo-3-(4,5,6,7-tetrahydro-1H-indol-2-ylmethylidene)-2,3-dihydro-1H-indole-5-
sulfonamide

330161-87-0

BIO (3Z)-6-bromo-3-[3-(hydroxyamino)indol-2-ylidene]-1H-indol-2-one 667463-62-9

FR180204 5-(2-Phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-ylamine 865362-74-9

doi:10.1371/journal.pcbi.1003448.t005
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rule modification causes evolution to BIO state 2 (TERT active). In

the reverse rule shift, both BIO simulated states evolve to basal state 1.

Extrapolating to the biological case, we interpret these results as

a model prediction that a significant subset of cells may be at least

transiently resistant to TERT suppression under BIO treatment (in

the model, entering BIO state 2 from basal state 2). However, over

time, noise could promote a network state compatible with TERT

suppression. Therefore, TERT levels should initially decrease over

time [4]. The impact of JUN in mediating the effects of BIO may

be central. The model predicts that network noise selects for JUN

over-expression under BIO treatment (as more cells move to BIO

state 1). We did observe progressive up-regulation of JUN under

long term BIO treatment up to 4 months treatment, after which an

oscillation is observed [4]. Up-regulation of JUN was also

previously found to be important in mediating mesenchymal stem

cell differentiation through GSK3a inhibition [74]. However, very

high levels of JUN may be poorly tolerated. If mechanisms exist to

reduce JUN expression under such conditions, we suggest that

unstable TERT expression will result.

Subsystems in the TERT transcriptional network
One key reason to model complex systems is to interrogate

potential functional roles of underlying structures in overall system

behaviour. In the context of TERT it is of interest to attempt to

define critical hubs for interventions to stably repress telomerase,

and to identify how these cooperate to affect stability. We have

previously proposed that stable activation or repression of TERT

expression using pathway specific inhibitors which affect expres-

sion and activity of diverse transcription factors may depend partly

on the structure and states of the transcriptional network and, in

particular, on the relative effects on feedforward subsystems [4].

We next used our model to further investigate this hypothesis.

Figure 3. Modelling inhibitor effects on the TERT transcriptional neighbourhood. A2780 cells were transfected with each luciferase
reporter shown and 32 h later cells were treated for 16 h prior to luciferase assay with DMSO or (A), 5 mM SU6656, (B), 10 mM FR180204. Left panels
show mean 6 SEM of 3 experiments (ns: not significant; *: p,0.5; **: p,0.01). Central panels: luciferase assay results meeting model cut-off of FC.
1.5, p,0.01 were modelled as rule table modifications. Heat-map representation of new model steady states obtained by setting rule tables for
constitutive activation or suppression at those nodes significantly affected in the luciferase assay. Red colour indicates the node is on, green colour
indicates the node is off. Right panels: analysis of TERT expression after repeat inhibitor treatments. Control and treated samples from treatment time
points shown were analysed by RT-QPCR for TERT expression normalised to RPS15. Mean 6 SEM of TERT expression in treated cells relative to control
from three experiments (ns: not significant; **: p,0.01).
doi:10.1371/journal.pcbi.1003448.g003
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Figure 5A shows 4 types of feedforward loop (FFL) motif widely

present in transcriptional networks (FFL type I–IV). In each case,

two transcription factors (labelled X and Y in the figure) control

expression of a third gene, Z. In addition, X also transcriptionally

regulates Y. Each interaction may be activating (solid lines) or

inhibiting (dashed lines). Of the 8 possible configurations of this

motif, type I–IV are designated ‘‘coherent’’, since the overall effect

on Z resulting from the path XRYRZ is the same as the direct

path XRZ in terms of activation or repression. In particular, types

I and IV are activating at Z, whereas types II and III are

repressive. These have previously been characterised in a kinetic

modelling context as delay elements which may reduce noisy

expression of Z [75].

It is a reasonable expectation that the expression of a regulated

gene Z, such as TERT, may be affected by the extent to which

multiple FFL centred on its regulation interact and overlap to form

coherent activation or repression ‘‘modules’’, and by the relative

dominance of one or other of these subsystems. Specifically, in the

current context, we define the ‘‘activation module’’ to be the set of

overlapping FFL types I and IV focused on activation of TERT

and the corresponding repression module to be the set of

overlapping FFL types II and III focused on its repression.

We extracted these subsystems from our network model of

TERT transcription (figure 5B). The method of extraction is

detailed in materials and methods and supplemental file Text S1.

The activation module comprises 12 nodes including TERT, and

31 interactions, of which 22 are stimulatory and 9 inhibitory. MYC

plays a key role in blocking TERT repression in this system

through several interactions which antagonise TERT repressors.

Most other interactions involve TERT activators which support

each other’s expression. The repression module comprises 13

nodes and 27 interactions (9 activating, 18 inhibiting). Therefore,

the 2 systems seem reasonably balanced at first glance.

However, further analysis suggests the activation module is

structurally more co-operative. Longer paths are present, suggest-

ing more scope for positively reinforcing delays: activation module

network diameter (length of the longest of all shortest paths

between any 2 nodes in the network) is 3 compared with 2 for the

repression module. We also quantified relative participation of

each factor in pathways in either subsystem using the betweenness

centrality and flow centrality metrics [76,77]. Betweenness

centrality of a node n is the fraction of all shortest paths between

all other pairs of nodes in which n participates. By this analysis,

MYC, MYCN, HIF1A, STAT3 and FOS all participate strongly as

intermediates on shortest paths in the activation module, whereas

only AR plays this role in the repression module (table 6). Flow

centrality is a related measure which considers all paths, not only

geodesics. As can be seen from table 6, this analysis provided

similar results to the betweenness centrality analysis. Therefore,

the TERT activator subsystem is more co-operatively connected in

our model.

Robust MYC dependent TERT repression
To determine the contribution of each factor to overall

activation of TERT in the model, we investigated the effect of

simulating constitutive activation or suppression of each node

individually. As above, appropriate changes were made in the

rule-tables of each node and steady states were investigated. We

quantified, in each case, the total proportion of model states which

evolve to steady states with TERT-on. The weak components of

Figure 4. Simulated effects of GSK3 inhibition and network
noise on TERT transcription. (A), Effect of BIO on the transcription
factor promoter panel and simulation in the model. Top panel: A2780
cells were transfected with each luciferase reporter. 32 h later
transfectants were treated for 16 h prior to luciferase assay with DMSO
or 5 mM BIO. Luciferase assay results meeting model cut-off of FC.1.5,
p,0.01 (Fos and STAT3) were modelled as rule table modifications.
Lower panel: heat-map representation of new steady states obtained by
setting Fos to be constitutively suppressed and STAT3 to be
constitutively active. Red colour indicates the node is on, green colour
indicates the node is off. (B), noise simulation by the bit-flip method
under basal or BIO modified rules in the model. State coherence [73] of
each attractor under the model basal rule-set (top) or BIO simulation
(bottom) was evaluated as described in the text. Heat-maps of both
attractors under either rule-set are shown, with colouration as above.
Horizontal arrows between attractor states indicate that a transient
state change of the adjacent node caused a shift to the alternate steady

state. Vertical and diagonal arrows indicate the state changes resulting
from the rule-set change (basal R BIO, or the reverse).
doi:10.1371/journal.pcbi.1003448.g004
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statespace (basins of attraction) were obtained by depth-first search

and the sizes of these were quantified. The total proportion of

statespace contributed by each basin of attraction harbouring a

TERT-on steady state was quantified (figure 5C). In BN models,

attractors are usually taken to be distinct ‘‘phenotypes’’ [78].

Hence, the steady states should be interpreted as different network

states capable of supporting TERT expression. The fraction of

statespace associated with them is a rough measure of the

probability that any deviation from those steady states (through

noise or intervention) will be reversed and maintain TERT-on

rather than leading to a steady state transition to stable repression.

Most factors had little effect individually on the stable expres-

sion of TERT in the model. However, constitutive repression of

both MYC and FOS fully ablated all stable on-states (black bars for

basal model, absent for MYC- and FOS-off). Therefore, the

frequently observed critical role of MYC in TERT expression was

reproduced [2,79]. Suppression of the MYCN and HIF1A nodes

also had a substantial impact on TERT. MYCN suppression

produced 2 stable off-states, associated with 63.5% and 5.7% of

model states, in addition to a small oscillator (5%). The remaining

25.7% of system states associate to the single remaining on-state.

HIF1A suppression produced a single large off-state associated to

78.9% of statespace and a single smaller on-state. It is noteworthy

that these factors all score as important in the betweenness analysis

of the activation module, above.

Among the repressors, constitutive activation of MXD1

produced the largest off-state (61.6% of statespace). Activation of

either NR2F2 or TP53 had a mild effect in producing small off-

states. Despite its key topological role in the repression module,

activation of AR did not suppress TERT. Instead, constitutive AR

suppression resulted in an off-state, though its size was negligible

(0.7%). Overall, we make 2 conclusions from these results. Firstly,

the model reproduces, from a network perspective, well known

findings that both MYC and MXD1 are centrally important in

TERT expression [80,81]. Secondly, the impact on TERT

expression of targeting individual activators in the model seems

to depend closely on their structural contribution in the activation

module.

Because of the known importance of MYC in TERT regulation

in the cellular setting, we next investigated the resistance to

reversal of MYC dependent TERT repression observed in our

modelling context. Starting from the MYC constitutively sup-

pressed rule set, we again modified the rules for each of the other

transcription factor nodes to simulate co-activation or co-

repression alongside MYC inhibition. Steady states were analysed

and the ability of each condition to restore TERT activity relative

to the MYC ablated state was scored (figure 5C, grey bars –

presence of a grey bar indicates recovery of TERT expression).

Most secondary ruleset mutations had no effect. However, AR

suppression resulted in complete TERT recovery, consistent with

its central topological role in the repression module. SP3

suppression was also able to promote partial recovery, producing

a single small on state (8.9% of statespace). Therefore, MYC

dependent TERT repression appears substantially robust in the

model, but is still not entirely resistant to reversal.

To determine whether this prediction holds experimentally, we

conducted RNAi double knockdown experiments in A2780 cells to

simultaneously reduce expression of MYC alongside individual

TERT repressors. We examined co-suppression of MXD1, TP53,

AR, SP3, or JUN. Western blotting of each RNAi target following

Figure 5. Topological analysis of the TERT model, and prediction of robust MYC dependent TERT repression. (A), structure of FFL types
I–IV. Structures visualised in Pajek [103]. Bold lines indicate activation, dashed lines indicate repression. X, Y represent generalised transcription
factors, Z represents a regulated gene. (B), activation and repression modules in the TERT transcriptional neighbourhood model. Subnetworks were
extracted from the main model and visualised in Pajek [103]. Extraction was achieved as described in materials and methods. As an indicator of
topological importance, node betweenness centralities were calculated and are given in table 6. Additionally, we calculated flow betweenness which
is not dependent only on geodesics [77]. (C), Effect of single- and double-node targeting on TERT on-states. Rule-sets for each node were modified in
turn individually (black bars) to simulate constitutive repression or activation. For each rule-set change, statespace was derived and the proportion of
system states evolving to attractor states with TERT stably on was quantified. The analysis was repeated for each node in the context of double
knockouts with MYC also suppressed in each case (grey bars). (D), MYC dependent TERT repression and reversal by AR. A2780 were transfected with
200 nM non-specific control siRNA (Con), 100 nM MYC with 100 nM non-specific (MYC), or 100 nM MYC and 100 nM each specific siRNA. Cells were
harvested after 48 h and RNA extracted for analysis of TERT expression normalised to RPS15 by RT-QPCR. Mean 6 SEM of TERT expression in treated
cells relative to control from three experiments (ns: not significant; *: p,0.05; **: p,0.01). (E), Knockdown of TERT regulatory transcription factors by
RNAi. A2780 were transfected with 100 nM each specific siRNA (RNAi) or non-specific control (NS) and harvested after 48 h. 20 mg protein samples
were analysed by western blotting against the respective targets. ERK counter-blots were also performed. Each experiment was performed twice.
Representative blots are shown.
doi:10.1371/journal.pcbi.1003448.g005

Table 6. Node betweenness centrality values for the
activation and repression modules.

Subnetwork Node Betweenness Flow Betweenness

AM JUN 0.0000 0.200

SP1 0.0000 0.833

MYCN 0.0545 6.917

MXD1 0.0000 0.533

RELA 0.0000 1.667

MYC 0.0909 10.500

HIF1A 0.0091 1.167

FOS 0.0091 3.750

SP3 0.0000 0.200

STAT3 0.0091 3.750

NR2F2 0.0000 0.200

TERT 0.0000 0.000

RM AR 0.0151 2.500

JUN 0.0000 0.000

TP53 0.0000 0.000

SP1 0.0000 0.825

E2F1 0.0000 0.000

MYCN 0.0000 0.125

RELA 0.0000 0.658

MYC 0.0000 0.125

HIF1A 0.0000 0.458

FOS 0.0000 0.125

SP3 0.0000 0.700

STAT3 0.0000 0.325

TERT 0.0000 0.000

doi:10.1371/journal.pcbi.1003448.t006
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transfection of 100 nM non-specific or specific siRNA in figure 5E

demonstrates that each individual siRNA successfully resulted in

target knockdown, though the efficiencies varied between siRNA.

Control blots for ERK were also performed. In most cases, RNAi

had no effect on ERK, although SP3 knockdown did slightly

reduce ERK levels, suggesting positive regulation of ERK by SP3

in these cells. However, knockdown of SP3 itself was clearly

substantially greater.

We next quantified the effect of the double knockdowns on

endogenous TERT expression by RT-QPCR in A2780 cells. As

expected from its well known role in endogenous TERT regula-

tion, MYC knockdown alone substantially reduced TERT mRNA

levels to 40.6% of the non-specific control transfectants. Interest-

ingly, as predicted by the model, AR co-suppression substantially

restored TERT expression relative to MYC knockdown alone. SP3

knockdown had a very mild effect, as predicted, restoring TERT

expression to 57% of control levels. Additionally, TP53 knock-

down was found to have slightly stronger effect than SP3, restoring

levels to 62.9% of control, although this was not predicted by the

model. Neither JUN nor MXD1 knockdown had a significant effect

in our hands. Therefore, our model successfully predicted that

MYC inhibition produces TERT suppression which is largely but

not completely resistant to targeted attempts at reversal.

Additionally, the model identified the only factor, AR, which was

able to reverse MYC dependent TERT suppression by RNAi in

these experiments. Therefore, the model can be used to provide

previously unknown mechanistic insights into TERT regulation.

Modelling Ets-factor gain of function at the TERT gene
During preparation of this manuscript, several papers emerged

reporting identification of somatic and germline mutations in the

TERT promoter in a range of tumour types and cell lines including

melanoma, glioma, hepatocellular carcinoma and others [23–25].

Among those reported to occur at high frequency, particularly in

melanoma, are the C228T and C250T mutations which occur

close to the transcriptional start site and introduce gain of function

binding sites for Ets family transcription factors resulting in

increased TERT promoter activity. Since we have not considered

Ets-factors in our model, we were interested to determine the effect

of adding an Ets-factor into the basal model.

We therefore acquired a promoter reporter and expression

vector for ETS2 and tested these as before for the effect of ETS2

overexpression in our promoter panel and for the effect of our

expression vector panel on the ETS2 promoter (figure 6A and 6B).

The ETS2 promoter was suppressed by overexpression of TP53

and activated by MYCN and STAT3 in addition to its own

overexpression (figure 6B). Overexpressed ETS2 up-regulated its

own promoter and that of AR, and repressed those of JUN, HIF1A,

FOS, SP3, STAT3 and NR2F2 with fold change .1.5 and p,0.01

which satisfied our cut-offs described earlier. We did not detect a

significant effect of ETS2 overexpression alone on our TERT

promoter construct. However, we were also interested in whether

there may be interplay between MYC and ETS2. We therefore co-

transfected cells with MYC siRNA and ETS2 expression vectors

(figure 6C). MYC siRNA strongly repressed promoter activity to

18% of control levels in vector co-transfected cells. However, in

ETS2 co-transfected cells, promoter activity was only reduced to

30% of control levels. Hence, ETS2 did appear to stimulate the

TERT promoter under conditions of MYC inhibition. It is possible

that c-Myc protein at the TERT promoter participates in

complexes that occlude Ets2 binding. Since ETS2 expression did

stimulate the promoter in these conditions and our objective is to

model a gain of function, we included ETS2 as an activator of

TERT. These interactions were incorporated into the model to

generate a new 16 node network. The included ETS2 subnetwork

is shown in figure 6D.

We re-performed the analysis of the effect of constitutive

activation or suppression of each node under the new basal 16-

node ETS2-added condition (figure 6D, black bars). In this analysis,

TERT repression was still achieved by MYC inhibition. However,

this was the only modification able to substantially ablate TERT on-

states in the new model. Loss of MYCN or activation of TP53 were

the only other modifications to have any effect, though these effects

were very mild. In contrast to the results in figure 5C, when we

repeated the analysis under the condition of MYC inhibition in the

ETS2-added model (figure 6D, grey bars), TERT repression was

found to be fragile and easily reversible, rather than robust. This is

in line with our finding that ETS2 overexpression stimulated the

TERT promoter only when MYC was knocked down, although the

model did not report that ETS2 itself recovered TERT expression.

Rather, not only loss of AR, but also of repressors TP53 and E2F1 or

activation of HIF1A caused complete or substantial recovery.

Therefore, ETS2 gain of function may enhance TERT expression

stability. Surprisingly, recovery was also observed when activators

FOS and STAT3 were suppressed, or when repressor NR2F2 was

activated. These effects presumably result from reprogramming of

the network balance through introduction of ETS2 interactions at a

variety of nodes (figure 6D).

Topological control of TERT on state multiplicity in the
model

Our results so far suggest that the model can predict at least

some experimentally verifiable aspects of TERT regulation. To

explore in more detail the role of the transcriptional neighbour-

hood topology in TERT regulation, we focused on the roles of the

activation and repression modules (AM/RM) in the model by

specifically targeting their connections.

One problem in analysis of the role of topology in complex

networks is that reagents are unavailable to efficiently target

multiple individual network interactions in a selective manner.

However, panels, or ensembles, of random Boolean networks have

previously been used effectively as a statistical approach to probe

how topological features or interventions regulate system dynamics

[82,83]. We have adopted this approach to study to study the roles

of AM/RM. We are unaware of any BN study that has previously

investigated roles of these feedforward systems in network

dynamics. AM/RM edges were deleted from the model in a

series of random attacks of increasing severity targeting either the

AM alone or both AM/RM. Probability for each edge to be

deleted was varied between 0.1 and 0.7 in increments of 0.05. This

produced a series of re-wired networks based on the original model

but with differing contributions from AM/RM. All edges

connecting directly to TERT were left unmodified in each case.

We extracted AM/RM from each resulting modified network

and quantified the number of edges remaining in the re-wired

subnetworks in each case as a measure of overall prevalence of

either system. In the case of the ‘‘wild-type’’ basal model, AM is

slightly dominant with an edge ratio AM/RM of 1.15 although, as

noted, the AM also has greater betweenness. We also calculated

the statespace of each model variant and quantified the number of

TERT stable on-states. The relation between these metrics is

shown in figure 7A. It is clear that AM dominance associates with

emergence of multiple on-states. The median edge ratios for 0, 1,

2, or 3 or more on-states were 0.78, 1.04, 1.14 and 1.36,

respectively. These differences were all highly significant (p,0.01,

by Wilcoxon Rank Sum).

Lastly we investigated the roles of AM/RM in the more general

case of semi-random networks. We generated 300 (15 node)
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Figure 6. Simulation of Ets family transcription factor gain of function at the TERT promoter. (A), overexpression of ETS2 against the
promoter panel. A2780 cells were transfected with the luciferase reporters shown. Each reporter was co-transfected alongside vector control or
pCMV-ETS2. 48 h post-transfection, promoter activities were analysed by luciferase assay. Mean 6 SEM of three experiments (ns: not significant; *: p,

0.05; **: p,0.01). (B), regulation of the ETS2 promoter by the transcription factor panel. A2780 cells were co-transfected with ETS2-luciferase reporter
alongside vector control or expression vectors shown. 48 h post-transfection, promoter activities were analysed by luciferase assay. Mean 6 SEM of
three experiments (ns: not significant; *: p,0.05; **: p,0.01). (C), effect of ETS2 expression on the TERT promoter under MYC inhibition. A2780 cells
were co-transfected with the TERT-luciferase reporter and with pCMV control or pCMV-ETS2 with non-targeting or MYC-specific siRNA. 48 h post-
transfection, promoter activities were analysed by luciferase assay. Mean 6 SEM of three experiments (D), interactions in the ETS2 subnetwork added
into the model with cutoffs FC.1.5, p,0.01 from the transfection data. The subnetwork was visualised in Cytoscape [105]. Arrows indicate activation,
T-shape indicates repression. (E), Effect of single- and double-node targeting on TERT on-states in the ETS2 modified model. Rule-sets for each node
were modified in turn individually (black bars) to simulate constitutive repression or activation. For each rule-set change, statespace was derived and
the proportion of system states evolving to attractor states with TERT stably on was quantified. The analysis was repeated in the background of the
MYC suppressed rule-set (grey bars).
doi:10.1371/journal.pcbi.1003448.g006
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networks of increasing edge seeding density (100 networks each

with each possible edge included with probability 0.1, 0.15, or 0.2).

The probability for any included edge to be activating or

inhibitory was 0.5. We imposed the constraint that the 15th node

was downstream of all other nodes as in the case of TERT in our

main model. Each node was randomised to be activating or

inhibitory at node 15. Hence, this represents the scenario where a

wider range of potential topologies for AM/RM are possible than

in the case of our deletion analysis above. Figure 7B confirms that

association between relative dominance of the AM feedforward

substructure and on-state multiplicity for the regulated node was

also retained in this second network panel.

Our results overall provide an insight into the roles of these

systems in BN models and suggest that a co-operative activation

module may provide redundancy in respect of the individual

activators of a regulated gene which is its focus, consistent with the

proposed functions of FFL type I and IV. In the context of TERT

regulation, this could allow for multiple states which are permissive

for TERT expression. This may have potentially important

implications for strategies targeting the expression of TERT in

cancer cells since telomerase inhibition by targeting TERT

activators may be more problematic than was previously thought.

Discussion

Previous studies have taken mathematical modelling approaches

to investigate cellular senescence responses to telomere homeo-

stasis and oxidative stress [84,85]. The current report is the first

investigation of TERT transcription using modelling to probe its

regulation at the systems level. Telomerase regulation has been

widely studied at the level of identification of individual transcrip-

tion factor regulators of TERT. However, like most complex

biochemical systems, a clear view of their co-operative activities is

lacking. Multiple pathways regulate TERT and some such as MYC

may be more critical than others globally or context-independently,

whereas some may play essential context-dependent roles

[2,4,6,23,29,79–81,86]. From the point of view of therapeutics

based around TERT transcription, including signalling inhibitors,

better understanding of system behaviour would be advantageous.

Clearly, endogenous gene transcription involves multiple complex

events which are mechanical in nature as well as dynamical, and

which are not easily captured in simplistic models. These include

chromatin effects, complex formations, promoter melting, abortive

initiation, promoter escape and elongation [87]. Classical Boolean

networks offer only a qualitative modelling solution and suffer from

several major disadvantages. For example, it is necessary to define a

static network structure by literature-curation or, as in the model

reported here, by experiment. This ‘‘snap-shot’’ does not take

account of the possibility that network structure also changes in a

dynamic way. This is potentially an extremely interesting route for

refinement in future models by combining time-dependent network

inference with advanced dynamic features such as memory [88,89].

However, as an entry point to systems level study of TERT, even

simple models such as that presented here could be useful. In this

study, as a direct consequence of application of the model, a

previously unknown role for AR in stabilising MYC dependent

TERT repression was revealed. Furthermore, our model predicted

the effects of several signal transduction inhibitors, including the

powerful TERT repressor effect of SU6656 in cells. The model also

suggests that Ets-factors may functionally co-operate with MYC

expression to enhance TERT transcription stability.

It is noteworthy that the experiments required in order to show

phenotypic effects of telomerase inhibition are usually very long

term and their outcome is rarely certain at the start of an

experiment. In our previous work, BIO was effective in

suppressing TERT expression but not in long term treatments

[4]. Our model suggests this may be the result of susceptibility to

noise, which is in line with our previous observations. Therefore,

the possibility that small reporter screens as performed for

SU6656, coupled with application of models, could be used as a

filter to increase confidence in the potential for the long term

effects of a compound is intriguing. Modelling might also assist in

clarifying which network interventions are fragile or reversible in

targeting telomerase, potentially allowing better approaches to be

designed. To develop our network model we applied a screening

approach. To our knowledge this is the first report of a BN model

of transcription generated in this way. We initially tested a range of

literature-curated models which did not perform as well as the

data derived model. This may be because the interactions in these

networks are curated from a range of experiments performed in

different contexts. The overlap between our screening results and

the literature was highly significant, although some interactions

were found to be non-concordant. These may reflect different

effects in different cell systems or the use of different constructs.

Regulation of transcriptional network interactions is likely to differ

substantially among different cell lines. In contrast, excellent

models of core signal transduction pathways can be literature

curated since specific cell models and relatively standard reagents

are often widely employed in studying their kinetics. That the

model was able to make several de novo predictions that could be

verified in cells suggests that this might be a useful general

approach to develop BN models of transcriptional systems.

Figure 7. Topological control of TERT on-state multiplicity in
the model. (A), influence of activation module dominance on TERT on-
state multiplicity. Topology of the model was altered by a series of 600
random attacks deleting activation and repression module interactions
with increasing probability. Direct interactions with TERT were left
unaltered in all attacks. The remaining sub-networks were extracted
from each model variant as described in materials and methods and the
number of edges in each were counted to determine the edge ratio
AM/RM. The statespace of each model was calculated and the number
of stable on states present for the TERT node was quantified and
plotted against the calculated AM/RM edge ratio for each variant
network. Significance of edge ratio population differences was tested in
Matlab by Wilcoxon rank-sum test (**: p,0.01). (B), influence of AM
dominance in random networks. A series of 300 (15 node) networks was
generated with semi-random edge seeding and increasing edge
density. All networks were constrained to have one regulated node
which was connected downstream of all others. The number of
activators and repressors of the node was allowed to vary randomly.
Statespace and AM/RM edge ratios were calculated for each network
and compared as in (A), calculating number of stable on-states for the
fully connected node. Significance of edge ratio population differences
was tested in Matlab by Wilcoxon rank-sum test (**: p,0.01).
doi:10.1371/journal.pcbi.1003448.g007
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Because of the nature of the threshold rule, which is a balance

between activating and repressive interactions, in model develop-

ment we felt that a network having an evenly balanced number of

TERT activators and repressors would likely give better results. In

preference to reducing the model size to achieve that balance, we

therefore retained STAT3 as an activator throughout model

selection. We previously found that STAT3 protein binds the core

TERT promoter and we repeated this analysis here. As discussed

in supplemental file Text S1, a model without STAT3 still had

most of the behaviour of the complete model.

One limitation of the Boolean framework analysis is in

modelling constitutive repression or over-expression by mutating

the rules for a node to be ‘‘always off’’ or ‘‘always on’’. This does

not reflect the biological setting, where a relative decrease or

increase in concentrations would more likely be observed. One

possibility to refine the existing model would be to make use of the

thresholds and weights for nodes and interactions to more accu-

rately reflect this scenario. However, our approach did capture

behaviours that we demonstrated experimentally. Thus, the current

qualitative model does seem able to reproduce some essential

aspects of endogenous TERT regulation.

Although MYC has been well studied in the context of TERT

regulation in cancer cells, the stability of TERT suppression by

MYC inhibition is not well understood. Our modelling results

suggested this state is substantially but not completely resistant to

reversal. Our structural analysis of the model suggests that MYC

may be important not only in its direct effects at the TERT

promoter but also by its ‘‘brokerage’’ role throughout the tran-

scription network.

We examined the role of network topology in promoting stable

TERT expression in the modelling context. We identified

feedforward systems in the network whose structure suggests

coordinated functional regulation of transcriptional interactions.

The activation module sub-system was topologically dominant

over the repression module sub-system in the ‘‘wild-type’’ model.

Targeted edge attacks showed the activation module contributes to

TERT on state multiplicity in the model. If this model prediction is

also similar to the endogenous scenario, then network organisation

would indeed play a significant role in TERT transcriptional

stability.

Clearly, these results are an untested extrapolation, but

interesting nevertheless since experimental confirmation that

individual interactions give rise to emergent behaviour would

require reagents capable of ablating individual endogenous

interactions. No current reagents are able to efficiently produce

this effect since reagents such as siRNA can only target gene

products and not their interactions. On the other hand, BN panels

have previously been used to infer relations between topology and

network dynamics [82,83]. To our knowledge, the roles of the

feedforward systems we describe have not been directly tested

before and our results suggest they may play important general

roles in network dynamics. In our model of TERT regulation, the

activation module was more co-operative than the repression

module by the measures of betweenness centrality and flow

centrality (table 6).

In the endogenous context, TERT expression clearly is essential

in most cancer cells and it is likely that a variety of backup

mechanisms exist which are capable of subverting TERT

suppression as we previously observed [4]. A highly co-operative

AM could promote stable expression dynamics of TERT by

providing for long signal delays and substantial redundancy

among activators, thereby allowing the transcriptional neighbour-

hood to adopt divergent states while maintaining expression of

TERT and promoting stability.

In respect of the therapeutic scenario, multiple approaches have

been suggested to target telomerase including transcriptional

suppression through intervention with its regulatory pathways

[86,90,91]. If this is indeed a viable approach, and if the true

regulatory network does indeed share the features we describe,

then it seems one should aim to hit the pathways as broadly as is

possible while retaining acceptable toxicity. Suppression of TERT

through MYC knockdown was substantially robust but, as we have

shown, also fully reversible under appropriate conditions. Hence,

it is probably insufficient to consider targeting TERT transcription

in terms of individual factors since targeting any single transcrip-

tion factor may not guarantee repression in the long term.

Advanced therapeutic approaches based on TERT suppression

may need to explicitly target the systems complexity of telomerase

regulation by, for example, polypharmacology strategies. In

general, broad inhibition of the activation module or broad

activation of the repression module may be preferable.

SU6656 appears to engage the latter mechanism and to cause

both profound TERT suppression in cells and a powerful cell cycle

arrest. Given the functions of several repression module factors in

cell cycle arrest, DNA damage and senescence, it may be that its

co-ordinate activation selectively promotes cell cycle arrest and/or

premature senescence rather than a classic telomerase inhibitor

phenotype. Similar results might also be obtained with other

compounds which engage senescence pathways [92]. If senescence

and immortalisation are considered to be opposing processes, regu-

lated by opposing mechanisms, then just as the activation module

appears evolved for efficient telomerase expression in immortal

cancer cells, it may be that the opposing repression module is

evolved for efficiency of arrest. Highly co-ordinated regulation of

telomerase expression appears hard-wired in both processes.

Materials and Methods

Cell lines, plasmids, siRNA and inhibitors
The cells used were A2780 ovarian adenocarcinoma cells.

Reporter pGL3-TERT contains the TERT promoter region 2

585/29, relative to the translational start site. All other reporters

were obtained from Switchgear Genomics (Menlo Park, CA).

Constructs were AR (S7148912), JUN (S721598), TP53 (S721662),

SP1 (S722903), E2F1 (S719961), MYCN (S719321), MXD1

(S708803), p65 (S720207), MYC (S719565), HIF1A (S721637),

FOS (S721638), SP3 (S711215), STAT3 (S706087), NR2F2

(S708524), ETS2 (S719772). pCMV expression vectors for MYCN,

FOS, NR2F2, STAT3 and MXD1 were obtained from Cambridge

Bioscience (Cambridge, UK). Expression vector for TP53 was

obtained from Clontech Laboratories (Mountain View, CA). We

previously reported the expression vectors for SP1, SP3 and

HIF1A [29,93,94]. Expression vectors for E2F1 and RELA [95,96]

were kind gifts from Professor Kevin Ryan (Beatson Institute for

Cancer Research, Glasgow, UK). Avian MYC and v-Jun vectors

[97,98] were kind gifts from Professor David Gillespie (Beatson

Institute for Cancer Research, Glasgow, UK). AR expression

vector [99] was a kind gift from Professor Hing Leung (Beatson

Institute for Cancer Research, Glasgow, UK). FR180204, 6-

bromoindirubin-39-oxime (BIO) and SU6656 were obtained from

EMD Biosciences (Nottingham, UK). OnTargetPlus siRNA

smart-pools against MYC (L-003283), AR (L-003400), TP53 (L-

003329), MXD1 (L-009325), JUN (L-003268), or SP3 (L-023096),

were obtained from ThermoFisher Scientific (Leicestershire, UK).

Transfections and luciferase assay
All transfections were performed in triplicate (3 technical

replicates) using superfect reagent according to the manufacturer’s
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instructions using a 2.5:1 ratio reagent:DNA (Qiagen, Crawley,

UK). 250 ng reporter plasmid and expression vector per well were

transfected in 96-well luminometer plates (ThermoFisher Scientific

UK, Leicestershire, UK). 48 h post-transfection, luciferase activ-

ities were determined using luciferase assay reagents according to

the manufacturer’s instructions (Promega Ltd, Madison, WI). All

experiments were repeated at least 3 times (3 biological replicates).

Western blotting
Protein extracts (1 technical replicate per experiment) were

prepared in passive lysis buffer (Promega Ltd, Madison, WI).

Protein concentrations were estimated at OD595 using the

BioRad protein assay (BioRad Laboratories Ltd, Hemel Hemp-

stead, UK). 20 mg protein were separated by SDS-PAGE, blotted

onto PVDF filter (Millipore, Watford, UK) and blocked overnight

in PBS-T containing 5% non-fat dried milk. Antibodies used were

Androgen Receptor (ab9474) and TP53 (ab7757), obtained from

Abcam (Cambridge, UK), MXD1 (sc-222), SP3 (sc-644), MYC (sc-

764), obtained from Santa Cruz Biotechnology Inc (Heidelberg,

Germany) and JUN (9165), obtained from New England Biolabs

UK (Hitchin, UK) Primary antibodies were detected with HRP-

conjugated secondary. HRP was detected using ECL HRP

detection reagents (Amersham Pharmacia, Buckinghamshire,

UK). All experiments were performed at least twice (2 biological

replicates).

Quantitative RT PCR
Q-PCR was performed in triplicate (3 technical replicates) using

Genetic Research Instrumentation (Essex, UK) Opticon monitor

equipment and software. Sybr green was used as fluorophore. The

primers used were: RPS15, 59-TTCCGCAAGTTCACCTACC

and 59-CGGGCCGGCCATGCTTTACG; TERT 59-CTGCT

GCGCACGTGGGAAGC and 59-GGACACCTGGCGGAA

GGAG. Optical read temperatures were optimised to exclude

primer dimers. All treatments were repeated three times (3

biological replicates) and Q-PCR was performed twice for each

assay.

Boolean networks modelling framework and topology
analysis

BN comprise a set of N nodes and the set of their activating or

inhibitory interactions. Each node takes one of 2 states: 1 (on) or 0

(off). Hence, there are 2N possible combinations of node states.

The system is initialised at time t0 under some combination of on/

off states and the dynamics of each node during simulation of

further time steps are determined entirely by a rule-table

specifying the next state of each node given each possible state

combination of its regulators [100]. In the classical BN all nodes

are synchronously updated. We use the ‘‘threshold’’ rule,

sj tz1ð Þ~ 1,
Pkj

i~1

vi,jsi tð Þzw§0

0,otherwise,

8><
>:

Here, sj(t+1) is the next state of node j, si(t) defines the current

state of the i-th node [90], vi,j is the weight of the interaction from

node i to node j (1 if the interaction is activating, 21 if repressive),

and kj is the input-degree of the regulated node j. The threshold

variable w is zero in all rule-sets in this study. Hence, a node will be

turned off at time t+1 only in the case that more of its repressors

than activators are on at time t. Topology of the basal model was

defined using data from the transfection screen. Cut-offs for

assignment of an interaction were fold-change in reporter activity,

FC.1.5 (up- or down-regulation), and p-value (ANOVA),0.01.

Each vi,j = 1 if promoter j was activated by transcription factor i,

or vi,j = 21 in the case of repression.

In at most 2N+1 time steps during simulation of classical BN, a

previous state must be revisited as must all subsequent steps. The

system is then locked in an attractor. Commonly, far fewer steps

are required. Therefore, BN rapidly converge either to point

attractors or limit cycles [101], though we use the informal

terminology steady states or oscillations here. Characterisation of

these is a principal method for analysis of BN models. In this paper

we have performed statespace analysis of all models [73,102]. We

use the brute force approach of calculating each state transition

since the networks are small, rather than the reverse approach of

computing pre-images [102]. Basins of attraction were identified

as the weak components of statespace and the corresponding

attractors as their input degree core. The states of the TERT node

were analysed in each attractor. Limit cycles were considered to

have stable TERT activity if the node was on in all sub-states.

During the study, we developed a Windows console application

which implements the statespace analysis and other functions on

Pajek net files (http://sourceforge.net/projects/statespaceminer).

Topological analysis of models was performed in Pajek [103],

UCINET [104] and Cytoscape [105]. To extract AM and RM,

firstly loops were removed and a tripartite partition P placed on

the nodes on the basis of their relation to TERT: P1, TERT

repressors; P2, TERT activators; P3, TERT. For extraction of FFL

type I and IV (the activation module, AM), 4 edge sets (E1–4) were

extracted from the partitioned network:

E1~ (i,j) : i,j[P2,vi,j~1
� �

E2~ (i,j) : i[P2,j[P3gf

E3~ (i,j) : i[P2,j[P1,f vi,j~{1g

E4~ (i,j) : i[P1,j[P3gf ,

such that E1 contains all positive interactions among TERT

activators, E2 contains the edges between TERT activators and

TERT itself (by definition, vi,j = 1), E3 contains inhibitory edges

from TERT activators to repressors, and E4 contains the edges

between TERT repressors and TERT itself (by definition, vi,j =

21). Common union of edge sets was performed. Since each node

connects with TERT, network reduction by elimination of nodes

with degree less than 2 and their associated edges ensures recovery

of an overlapping system of complete triads comprising FFL type I

and IV. The repression module (RM) was similarly defined to

comprise overlapping FFL types II and III. A pseudocode

description of the extraction algorithms using the network

adjacency matrix is given in supplementary file Text S1. In

comparing relative dominance of each subnetwork, we use the

simple metric of the edge ratio AM/RM.

Literature search
We apologise to any authors if we have overlooked your study

which meets our inclusion/exclusion criteria in the preparation of

table 4. Please contact us and the relevant references will be

included in any future publications concerning this model or

refined versions. To determine the literature in this area, we

analysed references within the MetaCore database [4], the

Transcriptional Regulatory Element Database [106], in addition

to performing PubMed searches. In our PubMed searches, we

included a range of search terms to find regulator R target

interactions including ‘‘‘regulator’’ AND ‘‘target promoter’’’,

‘‘‘regulator’’ AND ‘‘target mRNA’’’, ‘‘‘regulator bind*’’ AND
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‘‘target promoter’’’, ‘‘‘regulator represses target’’’, ‘‘‘regulator activates

target’’’, and similar variations. We tested both gene and common

protein names and, in the case of regulators which are intrinsically

parts of a complex such as NF-kB, we also tested the name of the

complex. In the model we consider only regulator R target

transcriptional interactions. We therefore applied the following

inclusion/exclusion criteria on the searches:

Inclusion criteria

1. Demonstration in human cells and any or all of:

2. Selective modulation of regulator causes regulation of target

mRNA.

3. Selective modulation of regulator causes regulation of target

promoter activity.

4. Regulator binds to target promoter in vitro or in vivo with

effect on target mRNA or protein

Exclusion criteria

1. Only found in non-human system.

2. Regulator binds target promoter but without validated

expression change.

3. Genomic-scale studies without specific validation of effect on

target.

4. Regulator and target proteins physically and functionally

interact to regulate a third gene but without evidence of direct

regulator R target interaction as defined by the inclusion

criteria.

Statistical analysis
Statistical analysis of all transfection and QPCR experiments

was performed by one way ANOVA or Student’s t-test in

Microsoft Excel. Analysis of distribution of AM/RM edge ratios

was performed by Wilcoxon Rank-Sum using Matlab.

Supporting Information

Text S1 Detail of model development.

(DOC)
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