
Systems Modeling of Anti-apoptotic Pathways in
Prostate Cancer: Psychological Stress Triggers a
Synergism Pattern Switch in Drug Combination Therapy
Xiaoqiang Sun1,2*, Jiguang Bao2, Kyle C. Nelson3, King Chuen Li1, George Kulik3*, Xiaobo Zhou1*

1 Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 2 School of Mathematical Science, Beijing Normal

University, Beijing, P. R. China, 3 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America

Abstract

Prostate cancer patients often have increased levels of psychological stress or anxiety, but the molecular mechanisms
underlying the interaction between psychological stress and prostate cancer as well as therapy resistance have been rarely
studied and remain poorly understood. Recent reports show that stress inhibits apoptosis in prostate cancer cells via
epinephrine/beta2 adrenergic receptor/PKA/BAD pathway. In this study, we used experimental data on the signaling
pathways that control BAD phosphorylation to build a dynamic network model of apoptosis regulation in prostate cancer
cells. We then compared the predictive power of two different models with or without the role of Mcl-1, which justified the
role of Mcl-1 stabilization in anti-apoptotic effects of emotional stress. Based on the selected model, we examined and
quantitatively evaluated the induction of apoptosis by drug combination therapies. We predicted that the combination of
PI3K inhibitor LY294002 and inhibition of BAD phosphorylation at S112 would produce the best synergistic effect among 8
interventions examined. Experimental validation confirmed the effectiveness of our predictive model. Moreover, we found
that epinephrine signaling changes the synergism pattern and decreases efficacy of combination therapy. The molecular
mechanisms responsible for therapeutic resistance and the switch in synergism were explored by analyzing a network
model of signaling pathways affected by psychological stress. These results provide insights into the mechanisms of
psychological stress signaling in therapy-resistant cancer, and indicate the potential benefit of reducing psychological stress
in designing more effective therapies for prostate cancer patients.

Citation: Sun X, Bao J, Nelson KC, Li KC, Kulik G, et al. (2013) Systems Modeling of Anti-apoptotic Pathways in Prostate Cancer: Psychological Stress Triggers a
Synergism Pattern Switch in Drug Combination Therapy. PLoS Comput Biol 9(12): e1003358. doi:10.1371/journal.pcbi.1003358

Editor: Gautam Sethi, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Received July 18, 2013; Accepted October 7, 2013; Published December 5, 2013

Copyright: � 2013 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Funding: NIH R01LM010185-03 (XZ), NIH U01HL111560-01 (XZ), NIH 1R01DE022676-01 (XZ), U01 CA166886-01 (XZ), DOD-
W81XWH-11-2-0168-P4 (XZ). KCN was supported by training grant CA-079448. GK was supported by R01CA118329 from the National Cancer Institute and by
institutional grants from Wake Forest University Health Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xiaoqiangsun88@gmail.com (XS); gkulik@wakehealth.edu (GK); xizhou@wakehealth.edu (XZ)

Introduction

Psychological stress has been implicated in cancer for almost 2

millennia. It has been observed that psychological stress may

contribute to cancer initiation and progression [1,2]. However, the

causal relationship between stress and cancer remains poorly

understood [3], largely because of limited information about how

stress could influence tumor development and drug resistance

[4,5].

Our recent experiments in an animal model [5] demonstrated

that injections of epinephrine or immobilization stress counteract-

ed the anti-tumor effects of PI3K inhibitors on prostate cancer

xenografts in mice. Based on these observations, we hypothesized

that psychological stress activates anti-apoptotic signaling in

prostate cancer cells and, as a result, contributes to the progression

of prostate cancer and chemotherapeutic resistance in advanced

prostate cancer. Our experiments [5–8] have demonstrated that

tumor-promoting effects of stress depend on phosphorylation of

BAD, a member of the BH-3 only subfamily of Bcl2 proteins. BAD

is phosphorylated at Ser112 through the epinephrine-beta2

adrenergic receptor (b2AR)-PKA-BAD anti-apoptotic signaling

pathway [5–7]. BAD can also be phosphorylated by other

signaling pathways. For example, epidermal growth factor (EGF)

triggers phosphorylation of BAD at Ser112 through the EGFR-

Raf-MEK/ERK-KinaseX pathway and at Ser136 through the

Rac-PAK pathway [8], whereas activated PI3K transmits signals

to Ser136 through AKT activation, and also regulates Ser112 via an

unidentified mechanism partially dependent on Akt [8].

To extend analysis of interactions between stress and apoptosis

beyond single linear pathway, we used a systems biology approach

to study interactions between stress-activated signaling and a

regulatory network that controls apoptosis in prostate cancer cells.

Several mathematical models of apoptosis regulation have been

developed. A Boolean model of apoptosis [9] was proposed to

qualitatively analyze the central intrinsic and extrinsic apoptosis

pathways and connected pathways. Continuous modeling based

on kinetic laws, such as the law of mass action and Michaelis-

Menten kinetics, is an alternative approach. Constituted by

differential equations, a model of the signaling pathways governing

apoptosis [10] demonstrated that inhibition of caspase 3 and

caspase 9 resulted in an implicit positive feedback and in

bistability. Recently, a mathematic model of Src control on the
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mitochondrial pathway of apoptosis [11] was designed and fitted

to experimental data, used for theoretical design of optimal

therapeutic strategies.

However, no models have examined interactions between

signaling activated by psychological stress, apoptosis, and drug

resistance, particularly, resistance to drug combination therapy

[12–14]. We developed a systems biology model to examine the

role of psychological stress in apoptosis regulation and thera-

peutic sensitivity, and to further analyze the associated signaling

pathways activated by stress hormones. By comparing predictive

power of two different models with or without the role of Mcl-1,

we predicted that in addition to BAD phosphorylation Mcl-1

expression could be upregulated by stress/epinephrine signaling

to inhibit apoptosis. Overall our modeling showed that stress/

epinephrine signaling interfered with apoptosis induced in

prostate cancer cells by combinations of signal transduction

inhibitors.

Results

Experiment-guided mathematical modeling of stress-
mediated anti-apoptosis pathways

BAD is a convergence point for several anti-apoptotic signaling

pathways in prostate cancer cells. Phosphorylated BAD is critical

for the anti-apoptotic effects of such signaling pathways, while

dephosphorylated BAD has pro-apoptotic effects. Stress, EGF and

PI3K can activate independent signaling pathways that phosphor-

ylate BAD (Figure 1). These signaling pathways form a

convergent network that control apoptosis via BAD phosphory-

lation.

We modeled these signal transduction networks using a system

of ordinary differential equations (ODEs) to describe the dynamic

phosphorylation and dephosphorylation of each protein in the

pathways. The model was built according to Michaelis-Menten

kinetics [15] using Hill functions [16,17].

Our experimental data (Figure 2) demonstrated that the

phosphorylation of ERK1/2 peaks under the stimulation of EGF,

and then decreases within 1 hour due to the short term signaling

of the epidermal growth factor receptor (EGFR) [18]. Therefore,

we described the de-phosphorylation rates of each protein in the

EGFR-Ras-ERK1/2-KinaseX pathway to be dependent on both

its phosphorylation and dephosphorylation level and time course

as in Equations (1–4) below,

d½EGFR�
dt

~
V1
:½EGF �

K1z½EGF �
: EGFRTotal{EGFRð Þ{d1

:½EGFR�:t ð1Þ

d½Ras�
dt

~
V2
:½EGFR�

K2z½EGFR�
: RasTotal{Rasð Þ{d2

:½Ras�:t ð2Þ

d½ERK �
dt

~
V3
:½Ras�

K3z½Ras�
: ERKTotal{ERKð Þ{d3

:½ERK �:t ð3Þ

d½KinaseX �
dt

~
V4
:½ERK �

K4z½ERK�
: KinaseXTotal{KinaseXð Þ

{d4
:½KinaseX �:t

ð4Þ

Where Vi and Ki are maximal activation velocities and Michaelis

activation coefficient of each protein by its upstream regulator,

respectively. By multiplying the constant dephosphorylation coef-

ficient di (i~1, � � � ,4) with time t, Equations (1–4) can reproduce

the signaling curves with peaks followed by later declines.

The other signaling regulations regarding phosphorylation or

activation of Rac, PAK, PI3K, AKT, PKA, cAMP, PKA, CREB,

S112BAD and S136BAD were also modeled by ODEs using Hill

functions as described below in Equations (5–13), where the

dephosphorylation rates were modeled as constants calculated by

ensuring the existence of the steady states of these proteins (see

Materials and Methods).

d½Rac�
dt

~
V5
:½EGFR�

K5z½EGFR�{d5
:½Rac� ð5Þ

d½PAK �
dt

~
V6
:½Rac�

K6z½Rac�{d6
:½PAK� ð6Þ

d½PI3K�
dt

~
1

1z½LY �=K7

{d7
:½PI3K � ð7Þ

d½AKT �
dt

~
V8
:½PI3K�

K8z½PI3K �{d8
:½AKT � ð8Þ

d½cAMP�
dt

~
V9
:½Epi�

K9z½Epi�{d9
:½cAMP� ð9Þ

d½PKA�
dt

~
V10

:½cAMP�
K10z½cAMP�{d10

:½PKA� ð10Þ

Author Summary

Psychological stress and anxiety are often experienced by
prostate cancer patients, but the underlying mechanisms
of interactions between psychological stress and cancer
development, as well as drug resistance, are unclear. Here,
we employed a systems biology approach to study
interactions between stress-activated epinephrine/beta2
adrenergic receptor/protein kinase A signaling and a
regulatory network that controls apoptosis in prostate
cancer cells. We developed a dynamic network model of
signaling pathways that control apoptosis in prostate
cancer cells and quantitatively evaluated the effects of
stress-activated signaling on apoptosis induced by drug
combinations. Experimental data were used to guide
modeling, to fit the unknown parameters and validate
the model. Based on our model we found that epineph-
rine/beta2 adrenergic receptor/protein kinase A signaling
can decrease drug efficiency, and can shift the effect of
drug combination from synergy to antagonism. We also
predicted that in addition to BAD phosphorylation Mcl-1
expression could be upregulated by stress/epinephrine
signaling to inhibit apoptosis. This study provides insights
into the mechanisms of psychological stress signaling in
therapy-resistant cancer, and suggests that reducing
psychological stress could help to make prostate cancer
treatment more effective.

Modeling Stress Pathway for Drug Synergism Switch

PLOS Computational Biology | www.ploscompbiol.org 2 December 2013 | Volume 9 | Issue 12 | e1003358



d½CREB�
dt

~
V11

:½PKA�
K11z½PKA�{d11

:½CREB� ð11Þ

d½BADs112�
dt

~
V12a

:½PKA�
K12az½PKA�z

V12b
:½KinaseX �

K12bz½KinaseX �z
V12c

:½PI3K �
K12cz½PI3K�

z
V12d

:½AKT �
K12dz½AKT �{d12

:½BADs112�
ð12Þ

d½BADs136�
dt

~
V13a

:½PAK�
K13az½PAK �z

V13b
:½AKT �

K13bz½AKT �{d13
:½BADs136�ð13Þ

We then fitted unknown parameters in the model to the

experimental data (see Materials and Methods). The estimated

parameter values involved in the modeled signaling pathways are

listed in Table S1. Figure 3 shows that the simulations are

consistent with the experimental data (mean squared error

between the simulated and experimental data = 0.1211).

Next we linked the BAD phosphorylation signaling path-

ways established above to apoptosis percentage. Recently, the

preliminary experimental study in our lab indicated that,

besides BAD, Mcl-1 may be also involved in stress-mediated

apoptosis regulation [19,20]. Thus, we considered one model

based on BAD phosphorylation only (see Equation 14.1

below) and one based on both BAD phosphorylation and

stabilization of Mcl-1 (see Equation 14.2 which accounts for

the potential role of stress-induced activation of CREB,

leading to increased transcription of Mcl-1 independent of

BAD phosphorylation).

dC(t)

dt
~{dapop

: 1

tz1
: VBADs112

: S{BADs112ð Þn

KBADs112z S{BADs112ð Þn
�

z
VBADs136

: S{BADs136ð Þn

KBADs136z S{BADs136ð Þn
�
:C(t)

ð14:1Þ

Figure 1. BAD signaling pathway of apoptosis regulation in prostate cancer cells, mediated by psychological stress. Phosphorylated
BAD is critical for the anti-apoptotic effect of multiple signaling pathways, while dephosphorylated BAD has a pro-apoptotic effect. Stress, EGF, and
PI3K can activate independent signaling pathways that phosphorylate BAD. Stress, represented by epinephrine (or VIP) can promote the
phosphorylation of BAD at Ser112 via activation of cAMP and PKA. EGF phosphorylates BAD at Ser112 through the Ras/Raf-MEK/ERK-KinaseX pathway
and at Ser136 through the Rac-PAK pathway. PI3K transmits signals to Ser136 through AKT activation, and AKT can partially regulate Ser112. The anti-
apoptotic role of the activation of CREB and Mcl-1 induced by stress was determined by comparing the predictive power of different models. Multiple
drugs targeting different signaling pathways were integrated into the model.
doi:10.1371/journal.pcbi.1003358.g001

Modeling Stress Pathway for Drug Synergism Switch
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dC(t)

dt
~{dapop

: 1

tz1
: VBADs112

: S{BADs112ð Þn

KBADs112z S{BADs112ð Þn
�

z
VBADs136

: S{BADs136ð Þn

KBADs136z S{BADs136ð Þn z
VCREB

1zCREB=KcREB

�
:C(t)

ð14:2Þ

AP(t)~1{C(t) ð15Þ

where C(t) is cell survival percentage and AP(t) is apoptosis

percentage. dapop is the apoptosis rate in prostate cancer cells. S

represents total BAD. The additive incorporation of S{BADs112
and S{BADs136 in Equation (14) implies that phosphorylation at

either S112 or S136 is sufficient to inhibit pro-apoptotic function of

BAD, as previously observed [6,21]. The potential role of Mcl-1 will

be verified by examining its predictive power. The unknown

parameters in Hill functions including VBADs112, KBADs112,

VBADs136, KBADs136, VCREB, KcREB, n, and apoptosis rate, dapop,

were fitted to our experimental data (Figure S1) by a procedure

similar to that above (see Materials and Methods); estimated values

are listed in Table S2. We did not explicitly model the regulation of

apoptosis by some proteins or transcription factors (e.g. BclXL,

BAX and BAK [22]) involved downstream of our considered

pathways. In an implicit approach, indicated by fitting to the

evolution of experimental apoptosis percentage (Figure S1), we

modeled the time-dependent nonlinear regulation of apoptosis by

multiplying 1=(tz1) to the right hand of the equation, which

resulted in a better data fit. Figure 4 shows prediction of apoptosis

percentage in the model with Mcl-1 compared to the experimental

data (mean squared error = 0.0221).

Here, we theoretically analyzed the stability of the developed

system. Let F (t,Y ) denote the vector of functions in the right hand

of the Equations (1–15) with Y the vector of proteins phosphor-

Figure 2. Western blots for protein phosphorylation in stress-mediated BAD signaling pathway. Both experiments were conducted in
LNCaP cells. (A) Protein phosphorylation in cells treated with 50 mm LY294002 for 2 hours followed with increasing concentrations of epinephrine
(0.01–1000 nm) for 1 h. BAD phosphorylation at Ser112 and CREB phosphorylated at Ser133 were measured. (B) Protein phosphorylation in cells
treated with LY294002 (LY) followed with EGF 2 h later. Phospho-Ser473 Akt, phospho-Thr308 Akt, total Akt, phospho-ERK1/2, total ERK1/2, phospho-
Ser112 BAD, and total BAD were measured for the indicated times. LY294002 inducing dephosphorylation of HA-BAD at Ser112 and Ser136 were also
followed by Western blot analysis. Data from [6,7]. Panel A reproduced from [7] and Panel B reproduced from [6] with permission from the American
Society for Biochemistry and Molecular Biology.
doi:10.1371/journal.pcbi.1003358.g002

Modeling Stress Pathway for Drug Synergism Switch
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Figure 3. Simulation results of phosphorylated levels of some proteins under different conditions compared to experimental data.
Different conditions correspond to different treatments (see right panel of Figure 2). Mean squared error between the simulated data and
experimental data is 0.1211.
doi:10.1371/journal.pcbi.1003358.g003

Figure 4. Apoptosis percentage prediction. Parameters were fitted to experimental data [6,8] under the treatments of LY294002, LY294002 &
EGF, and LY294002 & VIP. Mean squared error between the simulations and experimental data is 0.0221.
doi:10.1371/journal.pcbi.1003358.g004

Modeling Stress Pathway for Drug Synergism Switch
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ylation considered. Then F(t,Y ) is Lipschitz continuous with

respect to Y uniformly in the range t[½0,T � for any finite T,

therefore the developed system continuously depends on the initial

values and parameters [23]. We then performed a sensitivity

analysis for the estimated parameters (see Materials and Methods).

Each parameter was increased by 1% from its estimated value,

and then we obtained the time-averaged percentage change of

each variable value. All sensitivity values were not more than

1.4327% (Figure 5). The sensitivity analysis result confirmed that

the developed system is conserved through the modest parameter

changes and our model is rather robust.

Integrating effects of inhibitor interventions targeting
signaling pathways

Currently several inhibitors that target the BAD upstream

signaling network are in clinical trials, including PI3K inhibitors

(e.g. LY294002 (LY), CAL-101, BKM120, and GDC-0941), EGFR

inhibitors (e.g. gefitinib, erlotinib HCl) and MEK inhibitors (e.g.

AZD6244, GSK1120212). As shown in Figure 1 we considered 8

pharmacological and dominant negative inhibitors of signaling

downstream of the EGF, PI3K and psychological stress pathways:

the PI3K inhibitor LY294002, the EGFR tyrosine kinase inhibitor

AG1478, the Rac inhibitor N17Rac, the PAK inhibitor DN-PAK1,

the RAF inhibitor C4BRaf, the MEK/ERK1/2 inhibitor DN-

MEK1, the PKA inhibitor PKI-GFP, and BADS112A as a functional

equivalent of an inhibitor of BAD phosphorylation at S112 [5,6].

The inhibition effect of LY294002 (LY) was modeled in

Equation (7) using an inhibition Hill function. Inhibition effects

of the other inhibitors were also modeled by multiplying an

inhibition Hill function to the maximal reaction velocity (see

Equations 1–3, 5, 6, and 10, respectively). We integrated these

inhibition effects by redefining each Vi as:

~VVi~Vi
: 1

1zDi=KDi

, i~1{3, 5, 6, and 10ð Þ ð16Þ

where KDi
is the Michaelis-Menten constant indicating the

concentration of drug i that decreases the maximal reaction velocity

Vi to half the original value without drug treatment. In this work we

normalized the concentration of drug Di toKDi
. As a result, the non-

dimensional value of the drug concentration became ~DDi~Di=KDi
.

Thus, we did not introduce any additional parameters into the model.

Mutant BADS112A inhibits the anti-apoptotic role of phos-

phorylated pS112BAD by decreasing the relative ratio of

phosphorylated pS112BAD to dephosphorylated S112BAD that

binds BclXL and promotes apoptosis. Therefore, we assumed that

BADS112A decreases the relative level of steady phosphorylation

of S112BAD, which was modeled by integrating drug effects into

the dephosphorylation rate of S112BAD as follows,

~dd12~d12

�
1

1zBADS112A

� �
: ð17Þ

Experimental validation and model selection revealing
the anti-apoptotic role of Mcl-1

To investigate the potential role of Mcl-1 transcription in anti-

apoptosis, we compared two different models of anti-apoptosis

Figure 5. Sensitivity analysis for the estimated parameters. Variables 1–13 correspond to the proteins in Equation (1–13) respectively;
variable 14 is apoptosis percentage. Parameters 1–54 were listed in Table S1, 2. Each parameter was increased by 1% from its estimated value; then
we obtained the time-averaged percentage change of each variable value. All the sensitivity values were below 1.4327%. The sensitivity analysis
result confirmed that the developed system is preserved to the modest parameter changes and our model is rather robust.
doi:10.1371/journal.pcbi.1003358.g005

Modeling Stress Pathway for Drug Synergism Switch
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regulation: one based on BAD phosphorylation only, and one

based on both BAD phosphorylation and stabilization of Mcl-1, as

modeled in Equations 14.1 and 14.2, respectively.

The predictions of apoptosis percentage under different

treatments or conditions were compared to the experimental data

[6,8] (Figure S1). Experimental data were normalized to the

same experimental environment. The prediction of apoptosis

percentage for EGF&LY&C4BRaf&DNPAK1 in the first model

(Figure 6A) was not consistent with the experimental data. The

second model (Figure 6B) improved validation and presented

better predictive power, and emphasized the potential role of Mcl-

1 in anti-apoptotic effects of emotional stress/epinephrine.

Our selected model, the second model with Mcl-1, predicted

that LY294002, LY294002 & C4BRaf, LY294002 & DNPAK1,

LY294002 & DNPAK1 & C4BRaf should have similar effects on

the percent apoptosis of cancer cells, which was consistent with the

experimental data (Figure 6B). The prediction that LY294002

plus BADS112A would produce the best pro-apoptotic effect was

experimentally validated. Moreover, addition of EGF or activation

of PKA signaling by epinephrine inhibited apoptosis induced by a

single inhibitor or a combination, shown both in the model and

experimentally. The agreement between the predicted and the

experimental results confirmed that our model can quantitatively

predict apoptosis percentage of prostate cancer cells under various

treatments and different conditions.

Quantitative evaluation of inhibitor combination
Then we investigated the effects of combined signaling

inhibitors on apoptosis percentage with or without EGF and/or

epinephrine. Since the combination of more than 3 drugs is less

realistic for clinical purposes and may lead to unknown side effects,

we limited our considerations to a combination of two inhibitors.

The dose of each inhibitor in the pairs was set as 1, so the total

dose of each combination was 2, which was the same for one single

inhibitor ‘‘combined’’ with this inhibitor itself. Figure 7A shows

the apoptosis percentages induced by inhibitor combinations

under conditions without EGF and epinephrine. The signaling

pathways stimulated by EGF and psychological stress were

inactivated and the apoptosis percentage was effectively promoted

by all inhibitors. LY294002 showed a strong pro-apoptotic effect

as a single treatment or combined with other inhibitors, and

BADS112A had less effect. Figure 7B shows the combinatorial

effects of inhibitors with EGF but no psychological stress. The

apoptosis percentages were decreased compared to Figure 6A.

However, LY294002 combined with BADS112A demonstrated a

much stronger pro-apoptotic effect compared to other combina-

tions. Figure 7C shows the effects of inhibitor combinations plus

epinephrine. Pro-apoptotic effects of all combinations of inhibitors,

except for BADS112A with LY294002, were inhibited by stress-

activated signaling. Finally, when both EGF and epinephrine were

present, pro-apoptotic effects of all inhibitor combinations were

substantially decreased (Figure 7D). These results demonstrate

variability of apoptosis induction by different combinations of

inhibitors, in the presence of agents that activate anti-apoptotic

pathways.

Based on our modeling, the combination of BADS112A and

LY294002 produces the greatest effect on promoting apoptosis in

prostate cancer cells. Therefore, we tested whether this combina-

tion of BADS112A and LY294002 is synergistic [24,25]. We first

adopted the Loewe additivity [26–28] to quantitatively evaluate

and examine the synergism of LY294002 plus BADS112A.

The Loewe combination index is defined as a ratio of total

effective drug dose (combination versus single drug) required to

achieve a given effect as follows:

CILoewe~
d1

D
(1)
x

z
d2

D
(2)
x

ð18Þ

where d1 (BADS112A) and d2 (LY) are the doses in the

combination isobologram with respect to the x percentage of

apoptotic cells. D
1ð Þ

x and D
2ð Þ

x represent the concentration of

Figure 6. Experimental validation and model selection. (A) Model 1: Apoptosis regulated by BAD phosphorylation only. (B) Model 2: Apoptosis
regulated by both BAD phosphorylation and stabilization of Mcl-1. The predicted apoptosis percentages under various treatments or conditions were
compared to the experimental data [6,8]. Single LY294002 and its combinations with other inhibitors (C4BRaf, DNPAK1 and BADS112A) or growth
factors/cytokines (EGF and VIP) were used for validation. Model 2 shows better predictive power than model 1.
doi:10.1371/journal.pcbi.1003358.g006

Modeling Stress Pathway for Drug Synergism Switch
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BADS112A and LY294002 with respect to promoting apoptotic

cells by x percentage, respectively. CILoewe,1, CILoewe.1 and

CILoewe = 1 indicate Loewe synergy, antagonism, and additivity,

respectively.

Figure 8 shows that 25% isobologram of BADS112A and

LY294002 (blue curve) bows inward, indicating CILoewe,1.

Therefore the combination of BADS112A and LY294002 is

synergistic regarding the 25% apoptosis isobologram.

To calculate the Loewe index requires solving a reverse problem

based on an isobologram. Thus, this approach requires a high

computing cost and consideration for specific isobolograms.

Another quantification method for combination therapies is Bliss

independence [27,29]. But the calculation of this qualification

index resulted in negative expected apoptosis percentage values of

combined inhibitors, which is not realistic. Thus, indicated by (but

different from) the Bliss index, we defined a new combination

index as follows:

CI(x,y)~
max(AP1(2:x),AP2(2:y))

AP12(x,y)
ð19Þ

where AP1(2:x) is apoptosis percentage induced by 2:x doses of

inhibitor 1, and AP2(2:y) is apoptosis percentage induced by 2:y
doses of inhibitor 2. AP12(x,y) is the apoptosis percentage

promoted by combined inhibitor 1 and inhibitor 2 with x dose

and y dose, respectively. With the same total doses, if the

combined inhibitors produce a greater effect than both single

inhibitor 1 and inhibitor 2, the index considers that these two

inhibitors work synergistically. Therefore, the index considers the

combination as a synergism effect if CI ,1, as antagonism if

CI.1, and otherwise additivity.

Synergism switch induced by psychological stress
We evaluated dose-dependent synergism of combined

BADS112A and LY294002 as defined in Equation (19) with or

without psychological stress. In the simulation, the dose of each

inhibitor ranged from 0.01 to 100. In the no or low psychological

stress environment, BADS112A plus LY294002 has a synergistic

effect, but in the high psychological stress environment, the

synergism pattern switched (Figure 9). The synergism pattern was

divided into two regions: one with CI,1 indicating synergism and

Figure 7. Drug combination prediction with or without EGF and/or epinephrine. (A) Without EGF and epinephrine. (B) With EGF but no
epinephrine. (C) With epinephrine but no EGF. (D) With both EGF and epinephrine. The combination of LY294002 and BADS112A has the greatest
effect among all combinations of 8 inhibitors under all conditions examined. EGF and epinephrine (stress) reduced drug efficiency.
doi:10.1371/journal.pcbi.1003358.g007

Modeling Stress Pathway for Drug Synergism Switch
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Figure 8. Synergy prediction of LY294002 and BADS112A combination based on 25% apoptosis isobologram. Loewe Index was used
to evaluate the combinatorial effect of LY294002 and BADS112A. 25% isobologram of BADS112A and LY294002 (blue curve) bows inward, indicating
CILoewe,1. The combination of BADS112A and LY294002 is synergistic regarding the 25% percent apoptosis isobologram.
doi:10.1371/journal.pcbi.1003358.g008

Figure 9. Synergism pattern switch triggered by psychological stress. In the no or low psychological stress environment (i.e. VIP or
epinephrine set close to 0 in the simulation), the index was less than 1, which indicated that BADS112A plus LY294002 has synergistic effect in the
whole dose region we considered. Whereas as high psychological stress emerged (VIP or epinephrine set as 100 in the simulation), the synergism
switched to a different pattern that was divided into two regions: one synergism (CI,1) in high dose region and another antagonism or additivity
(CI. = 1) elsewhere.
doi:10.1371/journal.pcbi.1003358.g009

Modeling Stress Pathway for Drug Synergism Switch

PLOS Computational Biology | www.ploscompbiol.org 9 December 2013 | Volume 9 | Issue 12 | e1003358



another with CI$1 corresponding to antagonism or additivity.

Therefore, psychological stress triggered the synergism pattern

switch to a dose-dependent combination synergism. Under the

high psychological stress condition, only if the doses of BADS112A

and LY294002 were high enough, did their combination produce

synergism with respect to promoting apoptosis of cancer cells.

Stress could decrease the efficiency of anti-cancer therapy

(Figure 1). A dose-dependent response of BADS112A and

LY294002 combination therapy in Figure S2 further demon-

strates drug resistance induced by psychological stress. When the

stress (or epinephrine) was absent, the apoptosis percentage was

slightly affected by the doses of LY294002 and BADS112A and

remained at a high level. While when the psychological stress

emerged, high doses and low doses of LY294002 resulted in

different levels of apoptosis percentage, even when combined with

the high doses of BADS112A. The drug resistance induced by

stress was consistent with the switch of synergism pattern as

demonstrated above.

We then examined the differences in signaling pathways with or

without psychological stress with combination therapy. When

there was no psychological stress, the epinephrine-b2AR-cAMP-

PKA-CREB signaling pathway was not activated. PI3K-AKT

pathway was inhibited by LY294002, and the relative phosphor-

ylation of BAD at S112 and S136 was repressed to a low level

around 0.1 (Figure 10). When psychological stress was intro-

duced, the epinephrine-b2AR-cAMP-PKA signaling pathway was

activated leading to phosphorylation of BAD at S112, which

counteracted the repression of BAD phosphorylation at S112

induced by LY294002 and BADS112A. As a result, the relative

phosphorylation of BAD at S112 returned to a higher level.

In addition to phosphorylation of BAD at S112 and s136, Mcl1

(or CREB) activated by stress signaling could also inhibit

apoptotic, so percent apoptosis in cancer cells was decreased

compared to the no-stress condition (Figure 10). Therefore, the

differentially activated signaling pathways stimulated by psycho-

logical stress, leading to both BAD phosphorylation and Mcl-1

Figure 10. Molecular responses to the BADS112A and LY294002 combination therapy with (red) or without (blue) psychological
stress. The time course ranges from 0 to 8 hours. The single red lines in panels of PI3K, AKT and S136BAD indicate there were no differences for the
conditions with and without psychological stress. The differentially activated signaling pathways, i.e. the signals of epinephrine-ADRB2-cAMP-PKA
transducing to both S112BAD and CREB (or Mcl1), stimulated by psychological stress are responsible for the drug resistance and synergism pattern
switch in drug combination therapy. Psychological stress activated epinephrine-ADRB2-cAMP-PKA signaling pathway, which counteracted the
repression of S112BAD by proposed inhibitors and decreased their apoptosis-inducing effects. Independently of S112BAD and S136BAD, the CREB (or
Mcl-1) pathway activated by PKA added an anti-apoptotic role.
doi:10.1371/journal.pcbi.1003358.g010
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activation, were responsible for the drug resistance and synergism

pattern switch in combination therapy.

Discussion

Our modeling strategy successfully captured key kinetic

features of the underlying signaling pathways discussed above.

We did not describe the kinetics in the pathway by linear

equation based on mass action law, since the detailed reaction

was unclear and ignorable. Instead, we incorporated by

Michaelis-Menten kinetics using the Hill function [16,17] to

integrate less critical reaction details. Based on experimental

data, we phenomenologically modeled the rate of change for

dephosphorylation of proteins in EGFR-ERK1/2 pathway and

apoptosis regulation to be time dependent. The simulation

results (Figure 3) were consistent with experimental data

(Figure 2), which suggested the fundamental signaling networks

used in this work were reliable. In future work, we will integrate

elements downstream of BAD, such as BclXL, BAX and BAK

[22], to investigate a more detailed mechanism related to stress

interactions in prostate cancer.

The anti-apoptotic role of BAD phosphorylation mediated by

emotional stress has been well studied. Recently, our lab found

that, besides BAD, Mcl-1 may be also involved in stress-mediated

apoptosis regulation (Hassan et al unpublished data). Here, we

applied a systems biology approach to investigate the potential role

of Mcl-1 stabilization in anti-apoptotic effects of emotional stress/

epinephrine, which was verified by comparing the predictive

power of two different models with or without the role of Mcl-1.

The selected model with better predictive power will be used to

explore effects of stress on Mcl-1 in our ongoing experiments.

Effects of drugs on apoptosis varied depending on which

components in the signaling network were targeted. This was due

to kinetic asymmetry of different signaling pathways. As shown in

Figure 1, PI3K/AKT pathway can phosphorylate BAD at both

S112 and S136 [8], so the inhibition of this pathway by PI3K

inhibitor LY294002 could induce more cell death compared to

other inhibitors, such as N17Rac or DN-PAK1, that target

pathways that phosphorylate only one site of BAD. Expression of

phosphorylation-deficient mutant BADS112A can also effectively

promote apoptosis [5,6]. Finally, drug-induced signaling network

remodeling is an important and interesting question for future

work.

Psychological stress and anxiety are often experienced by

prostate cancer patients. The increased psychological stress that

can result from cancer progression and diagnosis strengthens the

activation of anti-apoptotic signaling pathways [19], as demon-

strated in our simulation, which could decrease therapy efficiency

and shift drug combinations from synergy to antagonism. These

results also suggest the need for deeper analysis of the role of stress-

related signaling in other therapy-resistant cancers.

In summary, we developed a dynamic network model of

signaling pathways that control apoptosis in prostate cancer cells to

study the role of psychological stress on prostate cancer therapy,

and justified the role of Mcl-1 stabilization in anti-apoptotic effects

of emotional stress. A drug resistance and synergism switch was

revealed in our model, and the associated signaling mechanisms

were explored.

Materials and Methods

Experimental data
We collected data at both the molecular and cellular levels. The

molecular data regarding protein phosphorylation included two

sets of Western blotting images [6,7], both done in LNCaP cells.

In the first experiment (Figure 2A), cells were treated with

50 mm LY294002 for 2 hours followed with increasing concen-

trations of epinephrine (0.01–1000 nm) for 1 h. BAD phos-

phorylation at Ser112 and CREB phosphorylated at Ser133

were measured. The second set of data (Figure 2B) contains

the time course of protein phosphorylation in cells treated with

LY294002 followed with EGF 2 hours later. Phospho-Ser473

Akt, phospho-Thr308 Akt, total Akt, phospho-ERK1/2, total

ERK1/2, phospho-Ser112 BAD, and total BAD were measured

for the indicated times. LY294002, inducing dephosphorylation

of HA-BAD at Ser112 and Ser136, was followed by Western

blot analysis (Figure 2B). We quantified the Western blotting

data using ImageJ software and the normalized values were

listed in Table S3. For the first experimental data set, there

were 8 conditions with or without LY294002 treatment and

with increasing concentrations of epinephrine. The concentra-

tion of phosphorylated BADs112 was normalized to the control

condition without LY294002 treatment and epinephrine.

Phosphorylated CREB was normalized to the maximal concen-

tration, since the concentration in the control condition was

minimal. For the second experimental data set, there were 10

treatment conditions with different time periods of LY294002

and EGF treatment. Concentrations of phosphorylated

S473Akt, S112BAD, and S136 BAD were normalized to the

control condition (neither LY294002 nor EGF treatment).

Phosphorylated ERK1/2 concentration was normalized to total

ERK1/2 concentration, since the concentration of phosphory-

lated ERK1/2 under the control condition was almost zero.

These data were used to estimate the parameters in Equations

(1–13).

The cellular level data from [6,8] were apoptosis percentages

determined by counting at least 350 cells in several randomly

chosen fields for every treatment. Considering that the experi-

mental data were conducted in different experimental environ-

ments, we scaled the data in Figure S1B, C to the data in Figure
S1A to ensure the apoptosis percentages under the treatments of

LY294002 and LY&EGF were at the same levels. Treatments of

LY, LY&EGF, and LY&VIP were used to estimate the parameters

in Equation (14); the remaining data were used to validate model

predictions.

We measured apoptosis by several independent methods: 1)

caspase assay – a quantitative assay that measures activity of

effector caspase 3 against fluorogenic substrate DEVD-amc [6]; 2)

time-lapse video microscopy- a quantitative assay that follows

morphological changes of individual cells over 24 hours [6]; 3)

western blotting for apoptosis markers– cleaved caspase 3, caspase

7 and cleaved PARP, this is qualitative assays that confirms

activation of caspases and cleavage of physiological substrate in

dying cells [30]; 4) immunofluorescent staining for active caspase 3

and release of cytochrome c from mitochondria– a specific

hallmark of apoptosis [30,31]; 5) TUNEL assay, this assay detects

cleaved DNA – specific hallmark of apoptotic cell death [20]. Of

these methods caspase assay and time lapse video microscopy are

considered most appropriate to quantitatively measure apoptosis.

Other methods confirm that cell death is indeed by apoptosis

mechanism. These methodologies are consistent with published

‘‘Guidelines for the use and interpretation of assays for monitoring

cell death in higher eukaryotes’’ [32].

Parameter estimation
We estimated the unknown parameters in the model by fitting

the simulation results to the experimental data described above.

Equation (20) was employed for parameter estimation by
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minimizing the fitness error between the experimental and

simulated data,

ĥh~arg min
h[H

Xn

i~1

(yCondi
sim(h){yCondi

exp(h))2 ð20Þ

where yCondi
sim(h) and yCondi

exp(h) represent the simulated and

experimental data with parameters h under condition Condi ,

respectively. H stands for the parameter space, in which the search

space for each parameter was preset in a range according to the

experimental observations and Michaelis-Menten kinetics.

According to the experimental data (Figure 2), we set the initial

values of Equations (1–13) as the vector (0, 0, 0, 0, 0, 0, 1, 1, 0, 0,

0, 1, 1) in the simulation. To further reduce the numbers of

unknown parameters, the parameters di, i~5,6, � � � ,13, were

calculated by ensuring the existence of the steady states of the

system, for example, the dephosphorylation rate of PI3K, d8, was

set as

d8~
V8
:½PI3K ��

K8z½PI3K��
�
½AKT �� ð21Þ

where ½PI3K �� and ½AKT �� are steady states of PI3K and AKT

which are assumed as 1 equal to their initial concentrations,

respectively.

The remaining parameters, including Vi, Ki(i = 1, 2, …, 13a,

13b) and d1, d2,…, d4, were estimated using the above optimization

procedure, for a total of 37 parameters in Equations (1–13) that

were estimated by fitting to 56 experimental data points under

different conditions. Similarly, 7 parameters in Equation (14) were

estimated by fitting to 27 experimental data points.

A genetic algorithm [33] was adopted to minimize the cost

function in Equation (20). The system of nonlinear ODEs was

numerically solved using the 4th Runge-Kutta method. The model

simulation and result analysis were performed in MATLAB

R2007b (MathWorks, USA).

Sensitivity analysis
Parameter sensitivity analysis examines whether a system is

preserved to the modest parameter changes and quantitatively

explores the sensitive parameters. We used parameter sensitivity

analysis to study the relationship between the proteins, apoptosis

percentage and the variations for each parameter value. The

relative sensitivity coefficient [34] of a variable Yi at time t with

respect to a parameter Pj was computed by:

Sij(t)~
LYi

LPj

�
Yi

Pj

&
DYi

Yi

�
DPj

Pj

for small DPj : ð22Þ

Time-averaged sensitivities were calculated according to

Sij~

ðT

0

Sij(t)
�� ��dt

�
T&

Xn

k~1

Sij(tk)
�� ��,T ð23Þ

where tk,k~1, � � � nf g is an equal partition of ½0,T �. In the

simulation, n was set as 100 and T as 10. Each parameter was

increased by a small perturbation, for instance 1%, from its

estimated value, and then we obtained the time-averaged

percentage change of each variable value.

Supporting Information

Figure S1 Experimental data of apoptosis percentage.
The percentages of apoptosis were determined by counting at least

350 cells in several randomly chosen fields for every treatment.

The data from [6,7] (for A, B) and [8] (for C) respectively Panel A

reproduced from [6] with permission from the American Society

for Biochemistry and Molecular Biology.

(TIF)

Figure S2 A dose-dependent response of BADS112A and
LY combination therapy induced by psychological
stress. When the stress (or epinephrine) was absent, the apoptosis

percentage was slightly affected by the doses of LY and

BADS112A and kept in a high level. While when the high

psychological stress emerged, high dose and low dose of LY

resulted in distinct apoptosis percentage even combined with the

high doses of BADS112A.

(TIF)

Table S1 Estimated parameters involved in the signal-
ing pathway.
(PDF)

Table S2 Estimated parameters involved in apoptosis
regulation.
(PDF)

Table S3 Quantification of experimental western blot-
ting data.
(PDF)
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