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Abstract

Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating
transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite
the precision of these experiments, identification of genes directly regulated by a TF (target genes) is not trivial. Numerous
target gene scoring methods have been used in the past. However, their suitability for the task and their performance
remain unclear, because a thorough comparative assessment of these methods is still lacking. Here we present a systematic
evaluation of computational methods for defining TF targets based on ChIP-seq data. We validated predictions based on 68
ChIP-seq studies using a wide range of genomic expression data and functional information. We demonstrate that peak-to-
gene assignment is the most crucial step for correct target gene prediction and propose a parameter-free method
performing most consistently across the evaluation tests.
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Introduction

Chromatin immunoprecipitation coupled with high-throughput

DNA sequencing (ChIP-seq) is a powerful technique for the

genome-wide profiling of protein-DNA interactions, histone

modifications, and nucleosome positions [1]. One of the most

prominent applications of this technology is the genome-wide

discovery of transcription factor (TF) binding sites. The procedure

of identifying TF binding sites from ChIP-seq experiments is

known as ‘peak calling’ and the identified genomic regions that

potentially contain true TF binding sites are called ‘peaks’ [2].

Whereas a lot of effort has been put into development of peak-

calling methods [3–5], prediction of TF targets from ChIP-seq

data is still an unresolved problem [6–8]. Yet, this last step is

critical for the functional interpretation of the many TF ChIP-seq

studies that are currently being conducted.

Published ChIP-seq studies often use ad-hoc approaches for

calling target genes, such as defining as targets all genes with a

peak within a certain distance from the transcription start site

(TSS) [9–11]. However, different TFs display various geometries

and frequencies of binding events around a TSS for triggering

transcriptional changes of the respective target gene. For example,

some TFs bind at enhancer elements, which can be far from the

TSS, whereas others bind close to or at proximal promoters. Such

TF-specific features need to be taken into account when calling

targets based on ChIP-seq data. Hence, more sophisticated

approaches have been developed, which summarize all peaks

around a TSS and weight each peak based on its genomic distance

and/or strength [7,8,12,13]. These more recent methods compute

a quantitative target score reflecting the confidence that a given

gene is a target based on the pattern of binding events around the

TSS. Generally, it is assumed that (1) genes with many peaks in

proximity to their TSS are more likely to be targets and (2) peak

proximity to the TSS increases the probability of the gene being a

target. These assumptions are implicitly made in virtually all

published scoring schemes although they may not always hold

(especially in case of enhancer elements). Published methods differ

with respect to how they assign peaks to genes, how they score the

peaks, and how they summarize scores of peaks in the proximity of

a given TSS. The suitability of these assumptions for the task and

the performance of the various scoring schemes remain unclear,

because a thorough comparative assessment of these methods is

still lacking. For the same reason, the key aspects that need to be

tuned to improve the accuracy of target predictions remain elusive.

In this study, we systematically compared different TF target

prediction approaches. We focused on the genome-wide predic-

tion of targets using ChIP-seq data alone, because it is often the

case that only this data is available. ChIP-seq-based target scores

can be later integrated with expression data or any other

information that could enhance target identification, if such data

is available [14]. Many published methods differ with respect to

implementation details such as window sizes used or how

distributions of peaks around TSSs are computed. Instead of

trying to compare all published implementations we decided to
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evaluate different strategies, like using windows versus ‘window-

free’ approaches. This assessment is based on a representative

selection of published methods and additional variants that

allowed us to systematically evaluate the importance of individual

steps. In order to facilitate such systematic analysis, we structured

the target scoring into three major steps and discuss in this paper

different ways of choosing the peaks to be scored, using different

scoring criteria and different ways of integrating (combining) peak

scores. We developed assessment procedures for evaluating TF-

target prediction methods based on the consistency of the target

predictions, expression data, and functional homogeneity of the

predicted targets. We tested the target scorings using 68 ChIP-seq

experiments conducted in mouse hematopoietic and embryonic

stem (ES) cells [12,15] comprising 42 different transcription factors

(TFs), and we evaluated them across 23 expression datasets. We

have implemented all the target scoring methods that we tested in

a unified R-package, which can be downloaded from www.

cellularnetworks.org. This package greatly facilitates the parallel

testing of the various methods on any given ChIP-seq dataset.

Results

TF target prediction methods
We have structured the TF-target scoring based on ChIP-seq

data into three main steps that are conducted on a gene-by-gene

basis (Figure 1): (1) peak-to-gene assignment (deciding on which

peaks the score of a gene is based on); (2) peak scoring (giving

quantitative weights to peaks, e.g. based on their distance from the

TSS); and (3) summarizing peak scores of all peaks assigned to a

given gene. Target prediction methods can be classified with

respect to how they implement each of these three steps. We

compared six different approaches, in most cases inspired by

published algorithms or ideas (Table 1). These methods were

chosen to represent different types of existing approaches and to

facilitate the assessment of different parameters.

Peak-to-gene assignment. We distinguish window-based

and window-free peak-to-gene assignment methods. The simplest

approach is to define a fixed window around each TSS and assign

all peaks within this window to the corresponding gene (‘Window’,

Figure 1) [8–11]. The main drawback of this method is the

necessity of choosing the size of the window, which is often an

arbitrary decision that does not account for binding specificities of

individual TFs. Here we compare three alternatives that do not

require the definition of a window: (1) assigning all peaks of the

chromosome to a given gene (‘AllPeaks’, Figure 1) [12], (2)

assigning each gene to its closest peak (‘ClosestPeak’, Figure 1)

[13], (3) assigning each peak to its closest gene (‘ClosestGene’,

Figure 1) [16,17]. (Note the difference of the latter two.)

Peak scoring. In the simplest approach, which we refer to as

Binary (Table 1), each gene with at least one peak within the

window will get a score of 1, and all other genes will get a score of

0. Apart from the necessity of arbitrarily choosing the window size,

this basic method has several caveats: it neither accounts for the

number of peaks in the proximity of the TSS, nor their relative

distances to the TSS or their intensities. More sophisticated

methods use the distance of a peak from the TSS as a scoring

criterion, which is based on the assumption that binding sites are

more likely to influence the expression of proximal genes. A simple

realization of this notion is to assign linearly decreasing weights to

peaks, i.e. being ‘1’ at the TSS and ‘0’ at the far end of the window

(Linear, Table 1), which is inspired by the study by MacIsaac et al.

[7], who found that the influence of binding sites on expression

falls off almost linearly with distance from the TSS within a 10 kb

range. In addition to the distance of the peak from the TSS,

Ouyang et al. [13] took into account peak intensity. They proposed

a method (Ouyang, Table 1), scoring each peak based on its

intensity and distance from the TSS. Ouyang uses AllPeaks

assignment, i.e. assigns all peaks on a chromosome to a given

gene, but using weights that are exponentially decaying with

distance from the gene. Thus, peaks far from the TSS have

negligible influence on the score. Cheng et al. [8] proposed an

Figure 1. Overview of the scoring procedure. Target gene scoring
consists of three steps: (1) peak-to-gene assignment, (2) peak scoring
and (3) integration of individual peak scores. Black arrow indicates
transcription start site (TSS) of the gene that is to be scored. Grey arrow
indicates a TSS of another gene (currently not scored). Red color
indicates peaks that are assigned to the evaluated (black) gene; grey
peaks are not assigned to this TSS by the given peak-to-gene
assignment method. Blue and yellow peaks are peaks of other TFs
that might be used to score the functionality of binding sites. See
Table 1 for details about the alternative scoring options.
doi:10.1371/journal.pcbi.1003342.g001

Author Summary

Transcription factors (TFs) are the main regulators of gene
transcription. Thus, knowing the genes that are targeted
by a specific TF is of utmost importance for understanding
developmental processes, cellular stress response, or
disease etiology. Chromatin immunoprecipitation coupled
with deep sequencing (ChIP-seq) allows for measuring the
genome-wide binding of TFs. Several computational
methods have been used for inferring the genes that are
targeted by TFs using this binding information, but a
thorough evaluation of their performance has not been
performed so far. Here we present an assessment of a
range of TF-target-calling methods using 68 ChIP-seq
datasets. It turns out that the first step of the scoring, the
assignment of binding events to genes, is the most
important for correctly calling target genes. Our evaluation
revealed important performance differences between the
target-calling methods, with some simplistic methods
exhibiting a particularly poor performance compared to
more elaborate scorings. One of the methods is particu-
larly attractive, because it does not require the a priori
definition of any parameter — all parameters are ‘learned’
from the data. This and other methods tested were
implemented in a freely available software package for
future testing and application to other ChIP-seq datasets.

Transcription Factor Target Calling
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approach that implicitly accounts for peak intensity and distance

from the TSS (Cheng, Table 1). Contrary to previously described

methods, Cheng uses an observed binding profile within a window

surrounding the TSS, taking into account individual TF binding

characteristics. Another related approach also using an observed

binding profile to score peaks scores each gene based on the

distance to its nearest peak (Chen, Table 1) [12]. We compared

these previously presented approaches to ClosestGene (Table 1),

which is a novel combination of ClosestGene assignment and TF-

specific distance-based peak scoring. This method summarizes the

distances of peaks around all TSSs and uses the shape of the

resulting distribution to assign distance-dependent scores to peaks.

The underlying assumption is that the peak-to-gene distance

distribution will be narrow for factors requiring binding close to

the TSS, whereas it will be broader for factors that may bind

further away and still affect the expression of their targets.

ClosestGene uses the peak-to-gene distance distribution to compute

the probability that a peak is found at the given distance by

chance. Our implementation of this approach computes the

distance distributions separately for peaks being upstream (59) and

downstream (39) of the TSSs. Thereby it implicitly accounts for a

potential bias for preferential upstream (or downstream) binding.

Score integration. The last step consists of integrating the

scores of all peaks that have been assigned to a given gene. The

Binary and Chen methods do not require any integration; Binary

does not depend on the number of peaks and Chen assigns only one

peak to each gene. All other methods assume an additive influence

of multiple binding events on the gene expression. Therefore, the

total TF-gene association score is computed as the sum of the

individual scores of the peaks assigned to that gene.

Evaluation of TF-target prediction methods
We have evaluated six target assignment methods that are

representative for the different classes of methods being used in the

recent literature (Table 1). For the Binary and Linear methods we

tested several window sizes and chose the optimal one for the

comparison with other methods (Figures S1 and S2). TF-target

calling was performed using two sets of ChIP-seq experiments:

The first is the HemoChIP compendium consisting of 53 ChIP-seq

studies performed in mouse hematopoietic cells [15], covering 30

hematopoiesis related transcription factors or transcriptional

regulators. The second set consists of ChIP-seq studies performed

in mouse embryonic stem (ES) cells [12], covering 15 ES cell-

related transcription factors and transcriptional regulators, which

we will refer to as ESChIP. This large compendium of ChIP-seq

studies covers a broad range of diverse types of transcriptional

regulators and heterogeneous cell types (Table S1). For the sake of

simplicity, we refer to all factors commonly as ‘transcription

factors’ (TFs) although not all of them are strictly classified as

specific transcription factors. Whenever possible we have evalu-

ated the target scoring methods independently for the two datasets

(HemoChIP and ESChIP) in order to assess the robustness and

generality of our findings.

An obvious way to compare the performance of target scoring

methods would be to use known target genes as benchmarks.

However, since relatively few target genes have been validated in

small scale studies, we have chosen to conduct a range of unbiased

tests employing different genome-wide expression datasets and

using functional consistency of the predicted targets as a criterion.

Perturbation expression data. First, we used perturbation

expression profiling data, i.e. measurements of differential

expression after inhibiting a specific TF either through RNA

interference (RNAi) or genetic modifications. Functional targets of

a TF are expected to respond stronger to the perturbation of a TF
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than non-targets. Even though perturbation experiments have

indirect effects on genes that are not direct targets of the TF, a

bigger overlap with perturbation expression data is indicative of

better target scoring [14,18]. We collected genome-wide pertur-

bation expression data for 13 factors in HemoChIP and 8 factors

in ESChIP (Table S1). In order to evaluate the target scorings, we

compared the rankings of genes according to their target scores

and according to the absolute expression fold change in response

to the TF perturbation (assuming that a TF might serve as an

activator or repressor for different sets of genes). Intuitively, one

could compare the consistency of the whole rankings across all

genes, for example calculating the Spearman rank correlation

coefficient or the sum of rank products [19]. We demonstrated,

however, that including all genes in the analysis leads to a subtle,

but very important artifact. A large fraction of genes might not

respond in any of the perturbation experiments that we used,

either because they are housekeeping genes or because they were

not expressed in the cell types or conditions tested. These genes

would always rank low and thus any arbitrary expression dataset

compared with any ChIP-seq experiment would result in better

than random correlation (Figure S3). Thus, we decided to take a

simple, yet, robust approach and compute the overlap (number of

shared genes) between the top 500 genes based on the target

scorings and the top 500 genes based on the expression profiling.

Results for other sets of top scoring genes are described in Text S1.

In order to correct for TF specific biases we normalized the

observed overlaps for the average performance of all methods (see

Materials and Methods).

The first important observation was that all methods resulted

in target scorings that are consistent with the perturbation

expression data. We performed permutation tests that showed

that the overlap is significantly reduced when randomly picking

the same number (i.e. 500) of genes (Figure S4). This gives

credibility to the target scoring methods and confirms that

perturbation expression data can be used for validating target

predictions, even if sometimes different cell lines or cell types

were used. However, we also observed important differences

between the scoring methods (Figure 2 A, B). Binary and Chen

performed worst suggesting that considering peak distances

from the TSS (neglected by Binary) as well as proper peak-to-

gene assignment are crucial aspects of target scoring. In

addition, the Chen method suffers from the fact that the scoring

is based on one peak only and thus is very sensitive to

experimental variation in ChIP-seq data, such as miscalled

peaks. The best performing method in this test was ClosestGene

(Figure 2 A, B). Similar conclusions could be drawn when

comparing other sets of target genes (Figure S5).

Differential TF activity data. Perturbation expression

experiments yield relatively specific, functional data on genes

whose expression is directly or indirectly affected by the TF.

However, they mostly do not reflect physiological conditions. We

therefore performed a complementary analysis using expression

data of different cell types, for which we expected (based on the

function of the TF) that a given TF would change its activity. As

an effect true targets of the TF should exhibit differential

expression between these two conditions. This latter analysis rests

on more physiological conditions than engineered TF activity

changes, but it has the drawback that several TFs may change

their activity between the two cell states. Thus, observed

expression differences cannot exclusively be attributed to the TF

of interest. This analysis was performed similarly as for perturba-

tion expression data (Figure 2 C, D). The results are mostly in

agreement with the previous analysis, except that ClosestGene

performs worse than Linear, Ouyang and Cheng on the HemoChIP

data (Figure 2 C, D). Similar conclusions could be drawn when

comparing other sets of target genes (Figure S6).

Functional homogeneity of targets. Genes being targeted

by the same TF should be functionally related and a significant

fraction of the target genes should be functionally related to the TF

[14,20]. In particular, we expected that targets of HemoChIP-TFs

should be relevant for hematopoiesis and targets of ESChIP-TFs

should be annotated for processes related to ES cell biology. Thus,

methods generating target lists that are functionally more

homogeneous and whose functionality is of higher relevance to

the given cell type should be preferable. To quantify this notion we

performed GO enrichment analyses [21,22] on the different target

scorings using the top 500 targets and compared the number of

significantly enriched (p–value,0.001, Fisher’s exact test) cell-type

specific GO terms of the ‘biological process’ category (Figure 3).

For HemoChIP we counted the hematopoiesis related GO terms,

and for ESChIP the GO terms related to embryonic development

and stem cell maintenance (see Materials and Methods). ClosestGene

had the largest number of relevant GO terms in both cases

(HemoChIP and ESChIP). Similar conclusions could be drawn

when comparing other sets of target genes (Figure S7) or other p-

value thresholds (Figure S8).

Consistency and specificity of target predictions. In

order to investigate the robustness of the TF-target prediction

methods, we checked the consistency of the target predictions

across different ChIP-seq experiments for the same TF, available

for several TFs in the HemoChIP compendium. Although these

datasets are not replicates, but independent experiments, per-

formed in different cell types or different conditions, we reasoned

that targets predicted for the same TF in different studies should

be more similar than targets predicted for different TFs. We thus

used the consistency of targets predicted based on different ChIP-

seq experiments for the same TF compared to the overlap of

predictions for different TFs as a criterion to quantify the quality of

the target scorings (Figure 4). In order to also assess the specificity

of the predictions we distinguished the overlap between ChIP-seq

studies measuring (1) the same TF, (2) measuring different TFs but

also in hematopoietic cell types, and (3) measuring different TFs in

a different cellular system (i.e. ESChIP, Figure 4). The overlap

between ChIP-seq experiments performed on the same TF usually

falls in the range of 150 to 250 out of 500 genes, which is

statistically highly significant (expected number of overlapping

genes if the ranking was random is on average 9.72). Perfect

overlap is not expected, because the compared datasets are not

replicates, but independent experiments, differing both in biolog-

ical (different cell types or conditions) and technical (different labs,

different antibodies, etc.) aspects. Importantly, the overlap

between the ChIP-seq experiments of the same TF is significantly

higher than the overlap between different factors from the

HemoChIP compendium, which in turn is higher than the

overlap with ChIP-seq experiments from ESChIP. Since the

HemoChIP TFs are likely to share more targets between each

other than with ESChIP TFs, higher overlap with HemoChIP TFs

is expected. Although all TF-target prediction methods tested are

robust and specific, meaning they can repeatedly identify targets of

a given TF across different ChIP-seq experiments for the same TF,

we observed important differences between the scoring methods.

Binary and Chen performed worst in these tests, while Ouyang and

ClosestGene were performing best (Ouyang had the highest specificity

when comparing TF-specific ChIP-seq experiments versus other

HemoChIP experiments. ClosestGene had the highest specificity

when comparing HemoChIP experiments versus ESChIP experi-

ments). The relatively weak performance of Binary and Chen

correlates with the fact that they both ignore the number of peaks

Transcription Factor Target Calling

PLOS Computational Biology | www.ploscompbiol.org 4 November 2013 | Volume 9 | Issue 11 | e1003342



Figure 2. Evaluation of target scoring methods using genomic expression data. Overlap of the top 500 targets with the top 500 genes
differentially expressed in (A) HemoChIP and (B) ESChIP TF perturbation experiments. Overlap of the top 500 targets with the top 500 genes
differentially expressed (C) between erythroid and myeloid cells or (D) between undifferentiated (ES) and differentiated (MEF) cells. Distributions of
those normalized values are shown.
doi:10.1371/journal.pcbi.1003342.g002

Figure 3. Functional homogeneity of targets. Number of significantly enriched GO terms specific for a given cellular system and specific for the
opposite cellular system for HemoChIP (A) and ESChIP (B). The specific terms are hematopoiesis or embryonic development related GO terms for
HemoChIP and ESChIP, respectively.
doi:10.1371/journal.pcbi.1003342.g003

Transcription Factor Target Calling
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in the proximity of a gene. Similar conclusions could be drawn

when comparing other sets of target genes (Figure S9).

Inclusion of additional genomic data. We and many

others have shown that the consideration of additional informa-

tion, such as binding site conservation, expression data, or

interactions among target genes, improves TF target gene

identification [14,18,23–26]. In this study we have exclusively

used ChIP-seq data in order to specifically investigate the utility of

different types of information that can directly be extracted from

high-throughput DNA binding data. Other information can be

included in subsequent steps. The scorings discussed so far rely on

various aspects of TF binding, such as number of peaks in the

proximity of the TSS, relative distances of the peaks from the TSSs

or peak intensities. However, due to different implementations, it

is difficult to directly compare the importance of these various

aspects on target prediction. Therefore, we extended the

ClosestGene method, which in its basic form uses distance between

peaks and TSSs as the sole weighting criterion, and conducted

additional analyses using also peak intensities and presence of co-

factors as scoring criteria (see Text S1). We observed that peaks

closer to TSSs tend to be stronger and that they more often co-

bind with other TFs than peaks binding further away (Figures S10

and S11). Surprisingly, including these additional parameters did

not improve the target gene prediction (Figure S12). The scoring

that we tested was based on the number of other TFs binding at a

given site. However, the relationship between co-binding (which

not always implies co-activity) and functionality of a binding site

may be much more complex. Approaches explicitly modeling

combinatorial interactions between TFs have proven to better

explain expression changes than single-TF analyses [13]. Depend-

ing on the peak calling method, peak intensities are affected by

numerous factors not related to the binding strength or

functionality of the binding. For example, peak intensities and

their significance are affected by the local background of DNA

being purified, by the mapability of the specific region and by the

presence or absence of co-factors in the protein-DNA complex,

which may affect the efficiency of the immune purification. These

factors might partially explain why in this case the inclusion of

peak intensity did not improve target predictions.

Gene density around predicted targets
Another important aspect of peak-to-gene assignment not

discussed so far is its sensitivity to gene density of genomic regions.

Methods using a fixed window around the TSS are prone to miscall

targets in gene-rich regions. The fact that density of peaks is higher in

gene-dense regions (these regions are likely to contain more targets

than gene-sparse regions) increases the likelihood of finding a peak

close to any gene in such region. In order to test the relevance of this

issue for target gene identification we compared the gene densities

around the highest scoring targets for the different scoring methods

(Figure 5). The strongest gene density bias was observed for Linear,

due to the relatively large window size (250 kb to 50 kb) used in this

method. Methods using smaller window sizes (Binary, Cheng) or relying

on fewer proximal peaks (Chen) show a smaller bias in favor of gene-

rich regions. Importantly, Ouyang, which assigns all peaks to each gene

(but with decreasing weight) shows a stronger bias than methods

considering only peaks in the proximity of the TSS. Compared to the

other methods, ClosestGene shows a bias in favor of gene-poor regions,

which can be explained by the fact that in a gene-poor region more

peaks are likely to be assigned to a single gene. These gene density

biases are persistent across different sets of targets (Figure S13).

Discussion

In this study we have presented the first systematic comparison

of ChIP-seq based TF-target prediction methods using a wide

range of ChIP-seq studies from different biological systems. We

have developed robust evaluation tests that account for several

biases and potential pitfalls. Structuring the target scoring process

into three phases helped systematizing the methods and it revealed

the peak-to-gene assignment as the most important step. Although

all methods resulted in TF-target predictions that are better than

random, we observed important differences between the methods.

A common principle underlying all of these methods is the

scoring of putative TF-targets by correlating the positions of TF

binding sites with the positions of TSSs. Even though genomic

distance is not a perfect predictor for TF-target interactions

(especially in the case of enhancers and silencers) this approach

yields statistically significant predictions. Individual targets would

however have to be validated through functional assays. Out of six

compared methods, Binary and Chen clearly performed the worst.

In contrast, all other methods accounting for the number and

distance of peaks around a TSS consistently performed better

across all our tests. All of these methods (Linear, Ouyang, Cheng,

ClosestGene) performed similarly, but we observed a small advan-

tage of ClosestGene especially in the expression data tests and GO

Figure 4. Consistency of target gene predictions. Independent
ChIP-seq experiments are available for some of the factors measured in
the hematopoietic system. Consistency of target predictions is
quantified as the overlap between the top 500 target genes. Results
are summarized based on intersecting targets from pairs of ChIP-seq
experiments measuring the same transcription factor (‘same TF’), using
ChIP-seq experiments from different factors, but the same system
(hematopoietic cells, ‘HemoChIP’) and using ChIP-seq experiments from
a different system (ES cells, ‘ESChIP’). Numbers on the right are rounded
p-values, measuring the significance of the difference between the
overlaps (t-test). P-values for the comparison ‘same TF’ versus
‘HemoChIP’ are generally less significant than ‘HemoChIP’ versus
‘ESChIP’, because the number of comparisons (observations) is smaller.
doi:10.1371/journal.pcbi.1003342.g004
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enrichment. Although the performance gain was small it was

consistent when changing thresholds (see Text S1). This indicates

that assigning each peak to its closest gene, a simple solution that

has been used before to determine TF targets [16], yields specific

and biologically relevant results. The ClosestGene approach

presented in this study is a combination of three ideas that have

not been used in this combination in the past: (1) assigning peaks to

their closest gene, (2) scoring peaks based on the distribution of all

peaks around the TSSs, and (3) considering (summing) all peaks

assigned to a particular gene. Contrary to all other methods tested,

ClosestGene does not require the definition of any parameters, giving

it another advantage.

An obvious limitation of all methods tested herein is their

inability to predict distal regulatory events. Matching long-range

DNA interaction data obtained through methods such as 5C [27]

or ChIA-PET [28] are currently not available in sufficient quantity

to aid the interpretation of most ChIP-seq studies. We are

convinced, however, that including complementary data, espe-

cially on long-range DNA interactions, and further improving the

scoring by accounting for combinatorial interactions will yield

even better target scorings in the future.

Another factor influencing the quality of the TF target

prediction from ChIP-seq data is the quality of peak calling itself.

Different peak calling algorithms result in different numbers of

identified peaks and/or different peak intensities, which in turn

influences the performance of target identification methods. All,

but one (Cheng), methods assessed in this paper use the list of

identified peaks as input. Since all target prediction methods were

faced with the same set of peaks, the evaluation tests allow for a

fair comparison of the predictions.

It should be emphasized that all of our analysis is based on

mouse data. Whereas it is very plausible that the performance of

the target prediction methods will be similar for other mammalian

species, ChIP-seq data from non-mammalian species may have

different requirements. Hence, similar assessments should be

performed for other species.

Materials and Methods

ChIP-seq data
Fifty three ChIP-seq studies covering 30 transcription factors

and transcriptional regulators were taken from HemoChIP [15].

We used the peaks as identified in the original HemoChIP

publication [15]. BED files containing the peak coordinates as well

as BIGWIG files were downloaded from http://hscl.cimr.cam.ac.

uk/ChIP-Seq_Compendium/ChIP-Seq_Compendium2.html.

For several TFs there are multiple corresponding ChIP-seq studies

in the HemoChIP compendium. For those TFs we chose one

representative ChIP-seq study (indicated in Table S1), on which

we based the target prediction used in the majority of the analyses

and evaluation tests we have conducted (we wanted to avoid

biasing the results of the evaluation tests due to the overrepresen-

tation of some TFs). We also used, however, the remaining ChIP-

seq studies to evaluate the consistency of the predictions.

The ChIP-seq studies of the 15 transcription factors and

transcriptional regulators performed in mouse ES cells, which we

refer to as ESChIP, were obtained from [12], GSE11431. Peak

calling was performed using MACS version 2.0.6 [29].

In case of both, HemoChIP and ESChIP the peak summit was

used as the location parameter for distance computations. The

peak intensity was calculated as the maximum pileup height

extracted from BIGWIG file (HemoChIP) or pileup height at peak

summit as returned by MACS (ESChIP). Peaks with intensity

above 200 were excluded from the analysis.

Expression datasets used for validation
For the perturbation analysis, 13 HemoChIP related and 8

ESChIP related expression datasets were collected (Table S1). In

the selected studies the expression profile of the wild-type cells was

compared to the expression profile after knock-out or knock-down

of the respective TF. All measurements were conducted in mouse

tissues, in most cases close to the hematopoietic or embryonic cell

types. Whenever Affymetrix raw data were available, they were

normalized with GCRMA, using Bioconductor [30] and Brainar-

ray custom CDF files [31] to summarize probes to genes based on

Ensembl gene IDs. Otherwise, the normalized data were

downloaded, quantile normalized and log2 transformed when

necessary, and summarized to genes using Affymetrix, Illumina or

Agilent probes to Ensembl gene IDs mapping retrieved from the

Ensembl64 database (www.ensembl.org) using the R package

biomaRt [32]. In case of the GATA1 and PU.1 expression

datasets genes with expression levels lower than the 0.3 quantile

under both conditions were removed. After averaging replicates,

Figure 5. Gene density in target regions. Gene dense regions tend to contain more binding events (peaks) than gene sparse regions of the
genome. The figure shows gene density (number of genes inside 1 Mb regions around the target gene’s TSS) of the regions harboring the top 500
genes across the studies in the (A) HemoChIP and (B) ESChIP datasets.
doi:10.1371/journal.pcbi.1003342.g005
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the absolute log2 of the expression ratio between the perturbation

and control conditions (fold change) was calculated for each gene.

For the activity analysis of HemoChIP TFs, the normalized

expression data were obtained from [33], where the expression

measurements in four different hematopoietic cell types (stem cells,

progenitors, erythroid and myeloid cells) across a number of BXD

mouse strains are reported. We used expression measurements

from erythroid and myeloid cells, since we expected that most of

the TFs in HemoChIP have different activities in these two cell

types. The probes were summarized to genes based on Ensembl

gene IDs and the absolute log2 of the expression ratio between

erythroid and myeloid cells (fold change) was calculated for each

gene. The fold change was calculated for each strain (with

measurements in both cell types) and then averaged.

For the activity analysis of ESChIP TFs, we compared

expression profiles for ES cells and differentiated (MEF) cells

[34], since most self-renewal and pluripotency related TFs are

known to change their activity upon differentiation. The raw data

were downloaded (GSE14012) and normalized with GCRMA,

using Bioconductor [30] and Brainarray custom CDF files [31] to

summarize probes to genes based on Ensembl gene IDs. After

averaging replicates, the absolute log2 of the expression ratio

between the undifferentiated and differentiated cells (fold change)

was calculated for each gene.

Gene positions
Genomic positions of the transcripts were retrieved from the

Ensembl64 database (www.ensembl.org) using the R package

biomaRt [32]. Only genes encoded on the autosomes and

chromosome X were considered. Out of those, all genes other

than the ones described as protein-, miRNA-, or lincRNA-coding

were excluded. This filtering resulted in 81,881 transcripts,

assigned to 25,199 genes. If multiple transcripts were assigned to

one gene, the most 59 TSS position of the transcripts was

considered as the representative TSS of the gene, so that

ultimately each gene was associated with one TSS only.

TF-target prediction methods
For the Binary and Linear methods, a window of fixed size was set

around each gene’s representative TSS, centered at the TSS.

Binding events within the window were treated equally, irrespec-

tive of whether they occurred upstream or downstream from the

TSS. The window sizes were optimized based on our assessment

criteria (see Figures S1 and S2).

Binary. A gene was designated as a target with a score 1 if

there was at least one peak within the window, and as a non-target

with a score 0 otherwise. For this approach we chose a window

[25 kb, +5 kb], i.e. spanning the region from 5 kb upstream of

the TSS to 5 kb downstream of the TSS (Figure S1).

Linear. A gene’s score was calculated as a weighted sum of

the peaks within the window. The weights linearly decreased with

distance from the TSS being 1 at the TSS and 0 at the edges of the

window. The TF-gene association score of a gene g and a TF tf
was computed as:

stf ,g~
Xn

i~1

w{di

w
,

where n is the number of peaks within the window, w is the size of

the window meaning the distance from the TSS to the edge of the

window (upstream or downstream), and di is the distance of the ith

peak from the TSS. In case of Linear the window was set to

[250 kb, +50 kb] (Figure S2).

Ouyang. The TF association strength (TFAS) score was

implemented as described in [13]. Following the original

publication, the value of d0 (a constant determining how strongly

the peak effect decays with distance from the TSS) was set to

500 bp for E2F1 in ESChIP and 5000 bp for other TFs in

ESChIP and HemoChIP.

Cheng. The target identification from profiles (TIP) method

was implemented as described in [8] using the code available

online http://archive.gersteinlab.org/proj/tftarget/. There are

two variants of this method: (1) using a binding profile inferred

directly form the wiggle file or (2) using a list of identified peaks as

input. We used the first approach and following the original

publication, we set the window size to [210 kb, +10 kb] to

calculate binding profile around the TSS.

Chen. The TF-gene association score was implemented as

described in [12].

ClosestGene. In the first step, each peak was assigned to its

closest gene. When a particular gene was scored, only the peaks

assigned to that gene, i.e. peaks closer to that gene than to any

other, were considered. The peak scoring was derived from the

observed peak-to-gene distance distribution.

The peak-to-gene distance distribution was obtained by

computing the distances between each TSS and all peaks within

1 Mb upstream and 1 Mb downstream of the TSS. Separate

distributions for upstream and downstream binding were gener-

ated and the distances were pooled across all chromosomes. This

distribution approximates the distribution of the distances of all

peaks to all genes. The restriction of the distance to 1 Mb was

applied in order to minimize artifacts for genes located close to the

telomeres and due to different lengths of the chromosomes.

Subsequently, individual peaks were scored using the cumula-

tive distance distributions by computing the fraction of peaks

observed at the given distance from the TSS or closer (again

separately for upstream and downstream binding). This fraction

(fi) was interpreted as the probability of observing the peak at this

position or closer to the TSS if the gene was not a target of the TF.

The interaction score between TF tf and gene g was calculated as

the sum of { log10 transformed scores fi for individual peaks

assigned to a given gene:

stf ,g~
Xn

i~1

{log10(fi)

Evaluation of the TF-target prediction methods
Consistency analysis. For each TF, for which multiple

ChIP-seq datasets were available (HemoChIP only), the overlaps

between the top 500 genes ranked according to the TF-gene score

in the representative ChIP-seq dataset and the top 500 of genes

ranked according to the TF-gene score in other ChIP-seq studies

for the same TF were calculated. For Binary method, which yields

discrete scores, it was not always possible to unambiguously define

the top 500 genes. In the case of bindings, the top 500 genes were

randomly sampled 1000 times and the average overlap was

reported. We have validated that our conclusions are robust with

respect to the choice of this set of top genes (Figure S9).

Perturbation and activity analysis. For each TF, for which

perturbation expression data were available, the overlap between

the top 500 genes ranked according to the TF-gene association

score and the top 500 genes ranked according to the fold change

between perturbation and control conditions was calculated. In

case of the activity analysis respective fold changes from different
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conditions were used. Bindings were handled in the same way as

for the consistency analysis. The overlap between the target

scorings and expression data not only depends on the performance

of the scoring methods but also on the compatibility between the

ChIP-seq data and the expression data (e.g. depending on the cell

types measured). In order to correct for this effect the average

overlap achieved by all methods for a particular ChIP-seq -

expression data pair was subtracted. Hence, this measures how

much better (or worse) than average each method performed on a

given dataset.

We have validated that our conclusions are robust with respect

to the choice of this set of top genes (Figure S5 and S6).

GO enrichment. For each TF the GO enrichment was

analyzed using the ‘biological process’ GO category. Genes were

ranked according to the target score and the enrichment of top

500 genes with specific GO functions was quantified with Fisher’s

exact test using the ‘elim’ algorithm from the topGO R package

[21]. The number of significant (p–value,0.001) hematopoiesis-

specific terms (term ‘hemopoiesis’ and all its child terms) and ES

cells specific terms (terms ‘embryo development’ and ‘stem cell

maintenance’ and all their child terms) was reported for each

ChIP-seq dataset. We have validated that our conclusions are

robust with respect to the choice of the set of top genes (Figure S7)

or p-value threshold (Figure S8).

Supporting Information

Figure S1 Performance of Binary for different window
sizes. Overlap of the top 500 targets with the top 500 genes

differentially expressed in (A) HemoChIP and (B) ESChIP TF

perturbation experiments. Overlap of the top 500 targets with the

top 500 genes differentially expressed (C) between erythroid and

myeloid cells or (D) between undifferentiated (ES) and differen-

tiated (MEF) cells.

(PDF)

Figure S2 Performance of Linear for different window
sizes. Overlap of the top 500 targets with the top 500 genes

differentially expressed in (A) HemoChIP and (B) ESChIP TF

perturbation experiments. Overlap of the top 500 targets with the

top 500 genes differentially expressed (C) between erythroid and

myeloid cells or (D) between undifferentiated (ES) and differen-

tiated (MEF) cells.

(PDF)

Figure S3 Specificity of TF-target prediction methods.
High specificity of target predictions means that there should be

higher congruence with perturbation expression data from the

same factor than with perturbation data from different factors.

Here, we compare measuring consistency based on the overlap of

the top 500 genes (A, B; considering only top ranking genes) with

measuring consistency based on the sum of rank products (C, D;

comparing the entire rankings). Specificity is quantified as the

difference between the scorings obtained for matching data

(matching ChIP-seq and expression data) versus non-matching

data, expressed as the –log10 (p–value) of the respective t-test

(horizontal axis). ‘Same category’ (A, C) refers to comparing

matching and non-matching pairings from the same cellular

system. ‘Other category’ (B, D) refers to comparing matching

pairings with pairing HemoChIP ChIP-seq data with ES cell

expression data and vice versa. Larger differences are expected in

the latter case. ‘All’ using all genes for the scoring; ‘5000’ and

‘2000’ using only the top 5000 (or 2000) most variable genes. The

dashed line corresponds to p-value = 0.05.

(PDF)

Figure S4 Significance of the targets recovery within top
500 genes. Z-scores of the overlap between the top 500 targets

with the top 500 genes differentially expressed in (A) HemoChIP

and (B) ESChIP TF perturbation experiments, (C) between

erythroid and myeloid cells, (D) between undifferentiated (ES) and

differentiated (MEF) cells. The difference between this visualiza-

tion and Figure 2 of the main text is that here the overlaps are not

normalized for the average performance across all methods. Thus,

the z-scores do not account for the fact that some ChIP-seq studies

intrinsically match better with the respective expression data (e.g.

because identical cell types were used) than others.

(PDF)

Figure S5 Targets recovery within different sets of
genes (perturbation). Overlap of the top (A,B) 300, (C,D)

500 or (E,F) 1000 targets with the respective number of genes

differentially expressed in (A,C,E) HemoChIP and (B,D,F)

ESChIP TF perturbation experiments.

(PDF)

Figure S6 Targets recovery within different sets of
genes (activity). Overlap of the top (A,B) 300, (C,D) 500 or

(E,F) 1000 targets with the respective number of genes

differentially expressed (A,C,E) between erythroid and myeloid

cells or (B,D,F) between undifferentiated (ES) and differentiated

(MEF) cells.

(PDF)

Figure S7 Functional homogeneity of targets for differ-
ent sets of targets. Number of significantly enriched GO terms

among top (A,B) 300, (C,D) 500 or (E,F) 1000 targets specific for

a given cellular system and specific for the opposite cellular system

for HemoChIP (A,C,E) and ESChIP (B,D,F). The specific terms

are hematopoiesis or embryonic development related GO terms

for HemoChIP and ESChIP, respectively.

(PDF)

Figure S8 Functional homogeneity of the targets for
different enrichment significance thresholds. Number of

significantly enriched GO terms specific for a given cellular system

and specific for the opposite cellular system for HemoChIP (A,C)

and ESChIP (B,D). The significantly enriched GO terms were

defined as the ones with p–value,0.05 (A,B) or p–value,0.0001

(C,D) of the Fisher’s exact test.

(PDF)

Figure S9 Consistency of target gene predictions for
different sets of targets. Independent ChIP-seq experiments

are available for some of the factors measured in the hematopoi-

etic system. Consistency of target predictions is quantified as the

overlap between the top (A) 300, (B) 500 or (C) 1000 target genes.

Results are summarized based on intersecting targets from pairs of

ChIP-seq experiments measuring the same transcription factor

(‘same TF’), using ChIP-seq experiments from different factors,

but the same system (hematopoietic cells, ‘HemoChIP’) and using

ChIP-seq experiments from a different system (ES cells, ‘ESChIP’).

Numbers on the right are rounded p-values, measuring the

significance of the difference between the overlaps (t-test). P-values

for the comparison ‘same TF’ versus ‘HemoChIP’ are generally

less significant than ‘HemoChIP’ versus ‘ESChIP’, because the

number of comparisons (observations) is smaller.

(PDF)

Figure S10 Characterization of binding events with
different numbers of co-factors. Density distribution of

binding sites around TSSs as a function of the number of factors

binding (as shown in legend). Figure shows a fragment of the
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density distribution plot; the density below the lines sums to 1 for

distances from 21 Mb to 1 Mb from the TSS.

(PDF)

Figure S11 Characterization of binding events with
different intensities. Density distribution of peaks around

TSSs as a function of normalized peak intensity (1 = highest

intensity, 0 = lowest intensity; see legend) for (A) HemoChIP and

(B) ESChIP. Figure shows fragments of density distribution plots;

the below the density lines sums to 1 for distances from 21 Mb to

1 Mb from the TSS.

(PDF)

Figure S12 Combination of peak-scoring criteria. Peaks

are scored based on their distance to the TSS (Distance), intensity

(Intensity) or number of co-binding factors at the same site (Co-

binding) or combinations thereof (as indicated). Peak-to-gene

assignment and score integration is done using the ClosestGene

scheme. Overlap of the top 500 targets with the top 500 genes

differentially expressed in (A) HemoChIP and (B) ESChIP TF

perturbation experiments. Overlap of the top 500 targets with the

top 500 genes differentially expressed (C) between erythroid and

myeloid cells or (D) between undifferentiated (ES) and differen-

tiated (MEF) cells.

(PDF)

Figure S13 Gene density in target regions for different
sets of targets. Gene density (number of genes inside 1 Mb

regions around the target gene’s TSS) of the regions harboring the

top 300 (A, B), 500 (C, D) or 1000 (E, F) genes across the studies

in the HemoChIP (A, C, E) and ESChIP datasets (B, D, F).

(PDF)

Figure S14 Characterization of transcriptional regula-
tors. Fraction of peaks binding at promoters, or co-occurring with

P300 or CTCF binding. Overlap encompasses peaks falling in

more than one of those categories. Regulators are grouped

depending on the cellular system in which the corresponding

ChIP-seq study has been conducted (hematopoietic cells or

embryonic stem cells, respectively).

(PDF)

Figure S15 Performance of ClosestGene for different
scorings. Z-scores of the overlap between the top 500 targets

with the top 500 genes differentially expressed in (A) HemoChIP

and (B) ESChIP TF perturbation experiments, (C) between

erythroid and myeloid cells, (D) between undifferentiated (ES) and

differentiated (MEF) cells. ClosestGene corresponds to ClosestGene

using TF-specific peak-to-gene distance distribution. ClosestGene

(symmetric) corresponds to the variant where a distribution

symmetric around a TSS (obtained by pooling all peak-to-gene

distances without distinguishing between upstream and down-

stream peaks). ClosestGene (unspecific) corresponds to the variant

where a distribution specific for another TF is used for peak

scoring. Linear 1Mb corresponds to the variant where peaks

assigned to the TSS are scored using linearly decreasing weights.

(PDF)

Figure S16 Peak-to-gene distance distribution. Peak-to-

gene distance distribution for (A) OCT4 and (B) P300 used for

peak scoring.

(PDF)

Figure S17 Performance of the OCT4 target prediction
using different distributions. Z-score representing the

significance of the overlap between top 500 targets and top 500

genes differentially expressed after Oct4 knock-down (‘perturba-

tion’) or between ES and undifferentiated (MEF) cells (‘activity’)

when scoring OCT4 peaks using OCT4 (‘OCT4’) or P300 (‘P300’)

distributions.

(PDF)

Figure S18 Overlap between targets and differentially
expressed genes. Median overlap between top 300, 500 and

1000 targets with the respective number of genes differentially

expressed in (A) HemoChIP and (B) ESChIP TF perturbation

experiments. Median overlap between top 300, 500 and 1000

targets with the respective number of genes differentially expressed

(C) between erythroid and myeloid cells or (D) between

undifferentiated (ES) and differentiated (MEF) cells.

(PDF)

Table S1 Transcription factors and data included in the
study.

(PDF)

Text S1 Supporting text. (1) TF characterization based on

ChIP-seq studies. (2) Importance of using TF-specific peak-to-gene

distance distributions. (3) Incorporation of peak height or binding

of co-factors does not improve target prediction. (4) Significance

and robustness of evaluation methods. (5) Ranking is biased by

non-changing genes. (6) Q-value calculation for ClosestGene scores.

(PDF)
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