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Abstract

A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction.
Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches
combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night
Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic
simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological
recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the
pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis
improve the resolution of information, showing that such impairment is likely due to disruption of the PDEc binding cavity
in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-
catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These
findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a
missense mutation in one component of the signaling network. This combination of network-centered modeling with
atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants
of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any
signaling network either in physiological or pathological conditions.
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Introduction

A number of incurable diseases in the visual system involve one

or more components of the phototransduction signaling network

(Figure 1). Visual phototransduction is the G protein-mediated

process that generates a neuronal signal following light capture by

visual pigments in photoreceptor cells (rods and cones). A unique

feature of rod cells, the vertebrate photoreceptors dedicated to dim

light vision, is the capability to transduce signals from even single

photons due to an extremely efficient amplification not paralleled

by other signal transduction pathways [1,2]. The first event in

scotopic vision is the absorption of a photon by rhodopsin (R), the

cornerstone of family A of the seven-transmembrane G protein

coupled receptors (GPCRs), which leads to the formation of the

signaling active state (R*) [3,4]. The latter, in turn, catalyzes the

exchange of bound GDP for GTP on the abc heterotrimeric G

protein transducin (Gt). The GTP-bound a subunit (GaGTP)

dissociates from the bc dimer thus stimulating the activation of

phosphodiesterase 6 (PDE), a tetramer made of two nearly

identical a and b catalytic subunits and two identical c subunits

[5]. The binding of GaGTP to the c subunit of PDE (PDEc)

releases its inhibitory constraint on the catalytic subunits, thus

leading to the hydrolysis of guanosine 39,59-cyclic monophosphate

(cGMP), followed by a rapid closure of the cGMP-gated ionic

channels in the outer membrane and a drop in the circulating

current. The lowering in intracellular calcium concentration,

associated with cell hyperpolarization ultimately signals the

presence of light to the secondary neurons of retina. Signaling

shutoff includes at least three calcium feedback mechanisms as well

as the simultaneous deactivation of GaGTP and PDE. In this

respect, the termination of PDE activation by GaGTP is achieved

when the GTP-bound to Ga is hydrolyzed to GDP by the intrinsic

GTPase activity of the protein. The latter process is significantly

accelerated by a multiprotein complex containing the ninth

member of the Regulators of G protein Signaling (RGS) family,

hereafter indicated as RGS [6]. As a result of the GTPase

Activating Protein (GAP) action of RGS, the GaGDP complex re-

associates with the bc dimer restoring the GaGDP-bc heterotrimer

(i.e. Gt).

Misfunctioning of any component of the phototransduction

network causes more or less severe vision impairments. Such an

example is the Nougaret form of dominant stationary night

blindness (Nougaret Congenital Night Blindness, NCNB) caused

by a missense mutation, G38D, found in the rod Ga of affected

individuals [7–9]. Stationary night blindness is not associated with

retinal degeneration and is characterized by the inability to see in

the dark, whereas daytime vision is largely unaffected [7–9]. In vitro

characterization showed that the aspartate substitution for G38

does not alter the interaction between Ga and Gbc or activation of

transducin by R* [9]. Furthermore, the mutant Ga is character-
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ized by modestly reduced kcat value for the intrinsic (,2.5-fold) and

RGS-catalyzed (,5 fold) GTP hydrolyses. In contrast, biochem-

ical data showed that G38D is totally impaired in its ability to bind

and activate PDE [9], whereas suction electrode recordings

revealed that homozygous GaGTP
G38D2/2 rods exhibit residual

light responses, indicating that the mutation reduced but did not

completely abolish effector function [8]. Functional consequences

of substituting the homologous amino acid in other G proteins

were found to inhibit GTPase activity and to prevent stimulation

by GAP in Ras-p21 [10], Gai [11], Gaz [12], and Gas [13].

Thus, a single-point mutation in Ga seems to elicit a multitude

of effects not entirely clarified by in vitro and in vivo experiments and

likely involving more than one component in the phototransduc-

tion signaling network. In this framework, to gain insights into the

molecular bases of the NCNB disease, we integrated the

information from in vitro/in vivo experiments with systems-based

and atomistic modeling. The systems-based approach relied on a

comprehensive quantitative model of phototransduction in rod

cells that explicitly includes most of the molecular components of

the cascade [14] (Figure 1). In this study, that model was extended

to the NCNB pathological phenotype, thus highlighting those

reactions and intermolecular interactions perturbed by the Ga
mutation. The molecular systems involved in those reactions were

subjected to atomistic Molecular Dynamics (MD) simulations and

included: wild type and mutated GaGTP taken both in their

isolated forms (i.e. GaGTP
WT and GaGTP

G38D) and in the ternary

complex with RGS and PDEc (GaGTP-RGS-PDEcWT and

GaGTP-RGS-PDEcG38D) (Figure 2).

Results

Mathematical modeling of the NCNB phenotype
We presented a dynamical model of the phototransduction

signaling network made up of ordinary differential equations,

which describe the reactions and their kinetic parameters [14].

The working model used in this study includes also the dynamic

scaffolding reactions between dark rhodopsin and Gt [15]. Herein,

such model was further extended to describe the heterozygous

(GaGTP
G38D+/2) and homozygous (GaGTP

G38D2/2) mutated

conditions of GaGTP
G38D. This was accomplished by introducing

the mutated G protein as an explicit new molecule and adding all the

relative reactions in the phototransduction cascade, which con-

cerned the GaGTP
WT+/+ status (Table 1, see Methods). The output of

mathematical simulations (i.e. change in photocurrent with respect

to dark value, DJ) was analyzed and compared with the photo-

responses of rods from wild type and transgenic mice (Figure 3A, 3B,

and 3C). It is worth noting that, due to the significant difference in

the species between in vitro (i.e. mammals, Figure 3A, 3B, and 3C)

and in silico (i.e. amphibian rods [14], Figure 3D, 3E, and 3F)

experiments, the time scales of the photoresponses is different, thus

allowing for semi-quantitative comparisons.

The results obtained with our GaGTP
WT+/+ model were in

remarkable agreement with in vitro recordings on wild type cells

(Figure 3A and 3D).

In order to fit the models onto the pathological NCNB

condition, the rates of a number of reactions involving GaGTP
G38D

were systematically reduced by tuning the relative kinetic

parameters in decreasing steps (Table 1, Figure 1, see Methods).

The reductions were combined into specific heterozygous and

homozygous models. At the end, the best fit with electrophysio-

logical recordings of the mutant cells was obtained by making

changes in the following reactions:

1) PDEzGaG38D
GTP �?

kP1
PDE:GaG38D

GTP

2) PDE:GaG38D
GTP �?

kP2
PDE�:GaG38D

GTP

3) RGSzPDE�:GaG38D
GTP �?kRGS1

RGS:PDE�:GaG38D
GTP

describing, respectively, a) the binding of one molecule of

GaGTP to one inactive PDE subunit, b) activation of the GaGTP-

PDE complex, and c) binding of the RGS complex to a PDE

tetramer with one active subunit. The relative changes in the

parameters were 35000-fold reduction in kP1 and kP2 and 2-fold

reduction in kRGS1, with respect to the wild type value. Following

such changes, heterozygous cells show a similar behavior to wild

type cells under dim flash responses but elongated recovery under

brighter flashes associated with slight loss in sensitivity (i.e. a 40%

brighter flash is required to generate a half-maximal response, Io;

Figure 3G and Figure 5B in Moussaif et al. [8] and Table 2). In

contrast, homozygous cells show marked decrease in sensitivity to

light (50-fold brighter Io, Table 2) and impaired response

recoveries for all flash intensities.

Same strengths of flashes delivered to the cells in simulations

and electrophysiological recordings [8] result in quantitative

differences concerning time scales and sensitivity of the photo-

responses, likely due to the different species considered. The

higher DJ elicited by the dimmest flash in computational

experiments compared to electrophysiological recordings is

exemplar in this respect (Figure 3A and 3D). Differences between

the cellular properties of mammals and amphibian rods include

temperature and volume, which likely influence initial conditions

and concentrations of the molecular species involved in signal

transduction [5].

It is worth noting that, in the actual mathematical model, up to

two GaGTP can bind, and in turn activate, either one of the

catalytic subunits of PDE, hence leading to a 2:1 stoichiometry.

Nevertheless, as previously discussed [14] (see also Table S4

therein), the 2:1 GaGTP:PDE complex is detectable only in the

presence of light flashes with intensities in the order of 105

photons/mm2 and, even then, their presence is negligible. As a

confirmation of those results, deep reductions of kP3 and kP4

(regulating, respectively, the binding of the second molecule of

GaGTP to GaGTP-PDE and the activation of both catalytic

subunits of the PDE tetramer), in the background of any of the test

Author Summary

Incurable retinal diseases causing vision impairments may
be due to spontaneous mutations in one component of
the visual phototransduction signaling network. Such
alterations include the transducin single point mutation
G38D associated with the Nougaret Congenital Night
Blindness (NCNB). We combined a systems biology
approach with atomistic simulations to gain insights into
the structural fundamentals of the NCNB disease. Consis-
tent with in vitro evidence, mathematical modeling
suggests reduced effector recognition and activation as
the main determinants of the pathological phenotype.
Sub-microsecond molecular dynamics simulations improve
the resolution of information, suggesting that such
impairment is likely due to disruption of the effector
binding cavity. Atomistic simulations also suggest that the
observed slight reduction of the RGS9-catalyzed GTPase
activity of transducin depends on perturbed inter-protein
communication involving the nucleotide. The study
highlighted manifold effects of a single point pathogenic
mutation, thus paving the way for analogous studies
towards a thorough understanding of the structural
determinants of genetic retinal diseases.
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models used in this study, did not elicit any change in the

photoresponse (Table 1). We cannot, however, exclude that this

was due to an inaccurate modeling of this part of the network,

whose biochemical detail remains mainly unknown. For example,

a finer treatment of the allosteric and regulatory mechanisms may

be necessary to recover the role of the second PDE subunit [14].

This might also explain why, with the changes in kP1, kP2, and

kRGS1 necessary to reproduce GaGTP
G38D2/2 photoresponses,

loss in sensitivity and delay of the time to peak are more marked in

simulated responses compared to in vitro ones (78- vs 47- and 2.4-

vs 1.7-fold, respectively, see Table 2).

In line with the statements above, we relied on the fact that, in

the present model, changes in kRGS1 and kRGS2 only affect the

formation and activity of the 1:1:1 GaGTP-RGS-PDE complex.

Noteworthy, as shown in Table 1, kRGS2 is a rather coarse

parameter, as it describes the RGS-catalyzed GTPase activity in

both GaGTP-RGS-PDE and GaGTP-RGS-PDE-GaGTP complexes

as well as disruption of these complexes. For this reason, we

couldn’t use the mathematical model to properly evaluate

mutational effects on the GAP activity of RGS in the GaGTP-

RGS-PDE complex.

In summary, consistent with electrophysiological recordings [8]

but not with earlier biochemical data [9] mathematical modeling

highlights reduction of both PDE binding and activation as the

major mutation-induced perturbations in the visual phototrans-

duction signaling network. A marginal reduction in RGS binding

helped as well in reproducing the electrophysiological phenotype.

On these bases, insights into the structural determinants of such

perturbations were searched by atomistic MD simulations

targeting both wild type and mutated Ga in its isolated form

and in ternary complex with both RGS and PDEc.

Atomistic simulations on the GaGTP system: The G38D
mutant affects the swII/a3 cleft, primary determinant in
PDEc binding

Atomistic simulations were firstly carried out on the isolated

GaGTP in its wild type and mutated forms (GaGTP
WT and

GaGTP
G38D, respectively).

Figure 1. Network structure of the phototransduction model in a rod cell used in the present work. The different forms depict the
molecular species involved in the cascade, whereas lines or arrows indicate reversible or irreversible reactions, respectively. Those reactions whose
kinetic parameters were changed in this study are numbered and listed accordingly in Table 1. In this respect, red numbers indicate those reactions
that were changed to properly model the NCNB pathological conditions. The molecules involved in these reactions, i.e. GaGTP, PDE, and RGS, are blue,
green, and magenta, respectively. Filled red rectangles indicate the stoichiometric quantity of the specific molecule in the heteromeric complex,
when higher than one. Yellow stars indicate the number of PDE-activated catalytic subunits. Hexagons indicate the molecular species that were used
in atomistic simulations.
doi:10.1371/journal.pcbi.1003207.g001
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The mutation site is the third position of the G box 1 (i.e. G1:3,

see Figure 2 and its legend for description and visualization of the

G protein regions as well as for explanation of the position-based

numbering). Incidentally, the G boxes are five ultra-conserved

regions of the Ras-like domain involved in nucleotide binding

(Figure 2). Such mutated position is not involved in backbone-

mediated H-bonding interactions with the nucleotide neither in

the wild type nor in the mutant, (Supplementary Figure 1A (Figure

S1A)). The interaction pattern of the nucleotide remains almost

unchanged in the two forms following MD simulations, as also

indicated by the patterns of interaction energies between GTP and

surrounding residues (Figure S2). Collectively, these data are

consistent with the results of in vitro evidence that the mutation

elicits a marginal effect on the intrinsic GTPase activity of the

protein [8,9].

In contrast to lack of local structural effects, the G38D mutant

turned out to affect the intrinsic dynamics of the protein.

Indeed, the Ca-atom Root Mean Square Deviation (RMSD) of

the mutant is higher than that of the wild type especially over

the second half of MD simulation (Figure S3). As expected, Ca-

atom fluctuations evaluated in terms of Root Mean Square

Fluctuations (RMSFs) show peaks of flexibility in the loops

connecting the elements of secondary structure, especially those

in the a-helical domain. This effect is greater in the mutant than

the wild type (Figure 4). In line with RMSFs, in the mutant

form, selected portions of the protein show significant enhance-

ments in their collective motions as inferred from the Principal

Component Analysis (PCA) of the trajectories. These portions

include linker1, aB/aC loop, aC, aE, aF, inter-switch, and C-

term of a3 (Figure 4).

Figure 2. Structure and primary sequence of GaGTP and GaGTP-RGS-PDEcWT. A. The cartoon representation of GaGTP structure (PDB code:
1TND) is shown. The G protein holds a Ras-like domain and an a-helical domain. The interface between a-helical and Ras-like domain makes the
nucleotide binding cleft. The a-helical domain is an orthogonal bundle of six a-helices. The Ras-like domain holds a Rossmann fold, characterized by a
3-layer(aba) sandwich architecture due to the inversion in the order of the strands b3 and b1 as well as b1 and b4, which are adjacent to each other.
The Ras-like domain is colored according to secondary structure (i.e. helices, strands, and loops are, respectively, violet, yellow and white), whereas
the a-helical domain is gray. The mutation site is indicated by a cyan sphere centered on the Ca-atom. The GTP nucleotide is represented by sticks
colored by atoms type. The nucleotide docks into a binding site contributed by the b1/a1, a1/b2 (aF/b2 in the Ga proteins), b3/a2, b5/a4 and b6/a5
loops. These are ultraconserved regions also called G boxes 1–5 (G1–G5, colored green). G2 is also called swI (a1/b2 loop (aF/b2 loop in the Ga
proteins)), whereas G3 is part of the switch II (swII, or b3/a2 loop, plus the a2-helix). The b2/b3 hairpin in between swI and swII is also called inter-
switch. The b4/a3 loop, which is not a G box, is also called swIII [19]. In Ga proteins, the two domains are connected by two loops, linker 1 or a1/aA
loop and linker 2 or aF/b2 loop; the latter corresponds to swI. B. According to computational experiments [20], the strands b1 and b4 divide the
conserved domain into two dynamically distinct lobes, lobe 1 (i.e. the N-terminal half of the domain, colored magenta) and lobe 2 (i.e. the C-terminal
half of the domain, colored blue). C. The cartoon representation of the complex involving GaGTP (gray), RGS (i.e. the RGS domain of RGS9, amino acids
286 to 418, orange), and PDEc (green) is shown (PDB code: 1FQJ [16]). In deep detail, the RGS domain is a bundle of nine a-helices, configured into
two subdomains: an N- and a C-terminal region holding an orthogonal bundle architecture (helices a1, a2, a3, a8 and a9), and a prototypical right-
handed, antiparallel four-helix bundle (helices a4, a5, a6 and a7). PDEc (residues 46–87) comprises three short a-helices and an N-terminal loop
region that originates near the C-terminus and winds over helices a1 and a2. D. The primary sequence of Ga is shown. Helices, strands, and loops are,
respectively, violet, yellow, and white. The G boxes are delimited by green boxes. Black numbers on the left side of the alignment refer to the
sequential numbering, whereas black numbers above the sequences indicate the beginning of a secondary structure/G-box motif. An arbitrary
numbering of each residue was set, characterized by the label of the secondary structure segment followed by the amino acid position within the
segment. In those cases where the G-boxes overlap with the secondary structure segment, positions refer to the G-boxes. Orange and green stars
mark, respectively, RGS and PDEc recognition sites.
doi:10.1371/journal.pcbi.1003207.g002
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To investigate whether mutation-induced changes in intrinsic

dynamics may affect Ga portions deputed to RGS and/or

PDEc recognition, we monitored the solvent accessibility of all

the RGS and PDEc recognition sites on Ga (indicated,

respectively, by orange and green stars in Figure 2), finding

more marked effects on the PDEc sites, in particular Y254 (in

the a3/b5 loop). The latter is, indeed, exposed to the solvent in

the wild type but buried in the mutant form where it is

permanently involved in inter-helical interaction with

F211(s2:11), another PDEc recognition site that becomes no

longer available to PDEc as well (Figure 5). In line with these

observations, Functional Mode Analysis (FMA, see Methods)

found that the Solvent Accessible Surface Area (SASA) of Y254

is correlated with the modes describing the essential subspace of

Ga. Incidentally, the essential subspace (ES) is given by a

variable number of eigenvectors whose associated eigenvalues

account for 90% of the total variance of the Ca-atom

displacements in a trajectory. The correlation is already present

in the wild type but increases in the mutant form (i.e. the

correlation coefficients are 0.73 and 0.86, respectively). Differ-

ences in functional modes between wild type and mutant

amplify when considering only the first principal component

(PC1); in fact, the correlation remains still significant for the

mutant (i.e. 0.74) but it drops for the wild type (i.e. 0.39).

Collectively, FMA is suggestive of a functional link between

protein dynamics and structural environment of Y254. Thus,

mutation-induced burying of Y254 results in deformation of the

swII/a3 cleft, which is the primary determinant in PDEc
binding.

We also investigated mutational effects on the structural

communication features of Gt by the Protein Structure Network

(PSN) analysis, a product of graph theory applied to protein

structures (see Methods). The analysis searched for mutation-

induced changes in network components (e.g. nodes, hubs, links,

shortest communication pathways, etc) on the MD trajectories.

The comparative analyses of the Protein Structure Graphs (PSGs)

of wild type and mutated Ga revealed a slight reduction in number

of nodes, hubs, and links in the G38D mutant compared to the

wild type (Table 3). In contrast, the number of communication

pathways and their average length increases in the mutant

compared to the wild type. In line with this trend, the maximal,

minimal, and average strengths reached by the totality of links in

the paths tend to be higher in the mutant compared to the wild

type.

To infer a global and coarse view of mutation-induced

changes in the communication pathways of Ga we drew global

meta paths, i.e. assemblies of the most recurrent nodes and links

in the pool of paths characterized by frequency $30%

(Figure 6A and 6B, see Methods). In this respect, whereas the

wild type is characterized by nucleotide-mediated paths at the

interface between Ras-like and a-helical domain, in the mutant

form, inter-domain pathways are less frequent as also highlight-

ed by the distribution of linked-node fragments (Figures 6 and

S4). This inter-domain uncoupling may be in part related to the

fact that, in the mutant, selected portions of the a-helical

domain undergo increases in essential dynamics compared to

the wild type (Figure 4). Noteworthy, this trend is also evident in

the meta paths computed on the sub set of paths made by

$50% of conserved amino acids (Figure S5A and S5B).

Differently from the wild type, in the mutant the most frequent

nucleotide-involving pathways transverse essentially b1 and b3

Table 2. in vitro and in silico flash responses.

I0(photons/mm2)a Time to Peakb

in vitro in silico in vitro in silico

GaGTP
WT 48.362.1 23.64 11166 0.96

GaGTP
G38D+/2 77.466.0 (1.6) 31.5 (1.3) 10969 (1) 0.975 (1.01)

GaGTP
G38D2/2 22966125 (47.5) 1854 (78.4) 192643 (1.7) 2.345 (2.4)

aFlash strength that elicited a half-maximal response. The time scales for in vitro
[8] and in silico measurements are ms and s, respectively.
bTime to Peak of the flash.
In vitro data were taken from the literature [8], while in silico data are the
outcome of mathematical simulations done in this study. In brackets, the ratios
to the wild type value are shown.
doi:10.1371/journal.pcbi.1003207.t002

Figure 3. Flash responses from wild type, GaGTP
G38D+/2, and

GaGTP
G38D2/2 rods. Experimental (A, B, C) versus simulated (D, E, F)

responses to flashes of increasing intensities from wild type GaGTP
WT+/+

(A, D), heterozygous GaGTP
G38D+/2 (B, E) and homozygous GaGTP

G38D2/2

(C, F) rods are shown. Experimental data, i.e. published in Moussaif et al.
[8] and provided by Marie E. Burns, refer to mice rods exposed to flashes
ranging from 5 to 97000 photons mm22 (A and B) or from 650 to 94000
photons mm22 (C). Simulated responses derive from the model of an
amphibian rod stimulated with the same light intensities as in vitro
recordings. The pathological GaGTP

G38D+/2 and GaGTP
G38D2/2 models

were generated by changes in the kinetic parameters kP1, kP2 and
kRGS1 as described in the text. The dissimilar species justify the time
scale difference between in vitro and in silico experiments. The
responses were normalized with respect to the maximum photocurrent.
G. Normalized simulated light response amplitude is plotted as a
function of flash strength. For comparison to in vitro data, see Figure 5B
in Moussaif et al. [8]. Flash intensities are the same as in D, E and F.
doi:10.1371/journal.pcbi.1003207.g003
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rather than the swII/a3 interface, which is the primary PDEc
binding cleft (Figure 6A and 6B).

In summary, in spite of the lack of significant differences in the

interaction pattern of GTP between wild type and mutated forms,

GaGTP
G38D is characterized by increased flexibility of the a-helical

domain compared to wild type, which reflects on an apparent

inter-domain uncoupling in terms of shortest communication

pathways. In contrast, in the wild type, inter-domain pathways

localized on the nucleotide binding site cover a significant part of

the structural communication modes. Above all, the most

significant effect of aspartate substitution for G38 is a structural

perturbation in the swII/a3 cleft participating in the PDEc
binding site. A marker of such perturbations is the solvent

accessibility of Y254, which in the mutant becomes buried and no

more available for PDEc interaction, shielding also F211(s2:11)

from effector binding.

Atomistic simulations on the GaGTP-RGS-PDEc ternary
complex: The G38D mutant affects the communication
between nucleotide binding site and RGS

Atomistic MD simulations on monomeric GaGTP highlighted

long-distance mutational effects on the Ga regions deputed to

PDEc recognition likely related to the reduced PDE binding and

consequently activation inferred from both mathematical simula-

tions and in vitro experiments [8].

In order to clarify ambiguities by in vitro experiments on the

GAP activity of RGS towards the G38D mutant [8,9], which

couldn’t be properly addressed by mathematical simulations, wild

type and mutated Ga were simulated also in the context of the

ternary complex with PDEc and RGS. In this respect, MD

simulations on the GaGTP-RGS-PDEcG38D ternary complex are

justified by the fact that the mutated Ga holds a residual binding

to PDEc [8].

Comparing the dynamics and structural communication

features of all the components of the ternary complex in the

presence of either wild type or mutated Ga served to infer the

effects of the G38D mutation on different structural aspects such

as: a) communication and interaction features of the nucleotide, b)

intrinsic dynamics of each component of the complex, and c) inter-

protein communication.

In line with simulations on monomeric GaGTP, simulations on

the ternary complex show that the interaction pattern of the

nucleotide is substantially similar in wild type and mutated Ga
(Figures S1 and S2), thus not providing any clue on mutational

effects on the GAP activity of RGS.

As for the intrinsic dynamics of the three proteins in the

complex, differently from PDEc, GaGTP and RGS are character-

ized by low mobility in terms of RMSDs, (Figure S3). The higher

mobility of PDEc is likely due to the poor intramolecular and

intermolecular tertiary contacts made by such protein, which is a

42-amino acid fragment of a small subunit. In deep detail, as for

GaGTP, the wild type and mutated forms do not differ significantly

in terms of RMSDs or RMSFs; major differences concern only the

swIII region, which fluctuates less in the mutant than in the wild

type (Figures S3 and S6). In line with such behavior, the overlap

between the ES of the two Ga forms in the context of the

heterotrimer is quite high (0.90), the essential motions of b2/b3

loop and swIII contributing to such differences (Figure S6). RGS

shows low mobility as well, its intrinsic flexibility being comparable

in the complexes with wild type and mutated Ga (Figure S3). In

contrast, the intrinsic flexibility of PDEc is higher in the complex

with mutated GaGTP than in the complex with wild type GaGTP

Figure 4. RMSF profiles and PCA projections. A. The Ca-RMSF profiles from MD trajectories of GaGTP
WT (violet) and GaGTP

G38D (green) are
shown. They refer to the 100000 frames constituting the 100 ns trajectory. The secondary structure elements are shown on the abscissa, following
the Noel’s nomenclature [19]. B, C, D, E. The Ca-atom projections along the linear combination of the ED analysis-derived principal components,
which describe the essential subspace of the trajectories of GaGTP

WT (B and C) and GaGTP
G38D (D and E) are shown (see text for an explanation of ED).

The number of PCs used was 111 for GaGTP
WT and 74 for GaGTP

G38D. Ca-atom displacements are highlighted by color ranges from violet to blue for
GaGTP

WT, and from green to blue for GaGTP
G38D.

doi:10.1371/journal.pcbi.1003207.g004

Network and Atomistic Modeling of Retinal Diseases

PLOS Computational Biology | www.ploscompbiol.org 7 August 2013 | Volume 9 | Issue 8 | e1003207



(Figures S3 and S7). This suggests that the pathogenic Ga
mutation increases the intrinsic flexibility of PDEc, which would

imply increased instability of the PDEc-GaGTP interface.

According to the crystal structure of the heterotrimeric complex,

RGS does not contribute directly to the active site by donating

residues or through water-mediated interactions [16]. It is rather

thought that RGS would increase the GTP hydrolysis rate by

stabilization of the Ga switch regions in their transition state

conformation and orientation of the critical Ga carbonyls used to

position the nucleophilic water [16,17]. Thus, RGS action is likely

due to inter-protein structural communication. On these bases,

possible structural relations with the postulated mutation-induced

reduction of the GAP activity of RGS were searched by the PSN

analysis. Significant differences between the two simulated ternary

complexes could be inferred from the analysis of the shortest

communication pathways, which were almost halved in the

mutated complex compared to the wild type (Table 3). Remark-

ably, more than 60% of the communication paths that charac-

terize the wild type form hold the GTP-Q200(G3:5)-R:N364

fragment of linked nodes, which is completely absent in the

mutant (Figure S4). The global meta path representation clearly

shows that the most significant communication in the GaGTP-

RGS-PDEcWT involves GTP, Q200(G3:5), R:N364, and E203(s2:3)

(i.e. the GTP-Q200(G3:5)-R:N364-E203(G3:8) meta fragment of

linked nodes; Figure 6C and 6D). Remarkably, the GTP-

Q200(G3:5)-R:N364 connection found in the wild type form is

essential for the GAP activity of RGS [16]. Such connection is no

longer present in the mutant. In line with path fragment

distribution, the most representative nucleotide-mediated paths

in the GaGTP-RGS-PDEcG38D complex are intra-Ga located

(Figure 6C, 6D, and S4). These differences between wild type and

mutant forms are strengthened by the meta paths computed on the

sub set of paths made by $50% of conserved amino acids (Figure

S5). Thus, nucleotide-mediated paths involving the RGS-Ga
interface are few and characterized by the D38(G1:3)-Q200(G3:5)-

R:N364 fragment of linked nodes (Figure S4). Another difference

concerning the structural communication of wild type and

mutated Gt is that, whereas for the wild type some (4%) of the

shortest pathways describe a communication between Ga and

PDEc, in the mutant form such communication could not be

found, likely due to the increased flexibility of the effector subunit.

In summary, atomistic simulations on the ternary complexes

highlight a possible disturbing effect of the pathogenic mutation on

the GAP activity of RGS. This would act, at least in part, by

destabilizing the Q200(G3:5)-mediated communication between

GTP and R:N364. Finally, they strengthen the influence of the

mutation on the G protein-effector interface, in line with

electrophysiological recordings and mathematical simulations.

Discussion

Mutations in any components of the visual phototransduction

signaling network may cause more or less severe impairments in

vision. Because of the complexity of such network, any alteration

of one of the cascade components would lead to unpredictable and

not easily determinable results. Thus, a monogenic disease such as

Figure 5. SASA time series. The SASA computed on Y254 (in the a3/b5 loop) is shown. Cartoons of the GaGTP
WT (A) and GaGTP

G38D (B) snapshots
halfway through the simulation (frame 50000th) are shown, which are zoomed on the swII/a3 cleft, the primary recognition site for PDEc. The Ga
residues directly involved in PDEc recognition (i.e. marked by green stars in the primary sequence in Figure 2) are shown in sticks. The atom color
code is grey for carbon, blue for nitrogen, and red for oxygen. The residue Y254, on which the SASA index was computed, is green. The cyan ball in B
indicates the mutation site. C. The time series of the SASA index calculated on Y254 along the 100 ns trajectories of GaGTP

WT (violet) and GaGTP
G38D

(green) are shown.
doi:10.1371/journal.pcbi.1003207.g005

Network and Atomistic Modeling of Retinal Diseases

PLOS Computational Biology | www.ploscompbiol.org 8 August 2013 | Volume 9 | Issue 8 | e1003207



NCNB, considered in this study, can result from perturbations not

circumscribed to the mutated protein but involving also other

members of the network. In this framework, modeling the effects

of mutation by systems-based approaches serves to infer how the

pathogenic signal propagates through the network and which

molecular species are involved. When possible, the latter

information is passed to atomistic simulations to gain insights into

the structural determinants of the disease.

In this study, we combined visual phototransduction modeling

with atomistic simulations to thoroughly investigate the defect

associated with the NCNB-causing G38D mutation of Ga. The

mathematical model of visual phototransduction was able to

reproduce the key features of the behaviors of heterozygous and

homozygous rods typical of the NCNB disease. This could be

possible upon reducing the constants governing: a) the binding of

GaGTP to PDE, b) the activation of the catalytic activity of PDE,

and c) the binding of the RGS complex to a PDE tetramer with

one active subunit. In fact, a strong reduction in PDE recognition

and activation by GaGTP coupled to a two-fold reduction in the

RGS binding constant was essential to reproduce the visual

responses in Nougaret patients, while decreasing the intrinsic or

RGS-catalyzed GTPase activities did not seem to have a

significant effect. Thus, mathematical modeling emphasized the

formation and activation of the GaGTP-PDE complex as the

processes more significantly affected by the aspartate substitution

for G38 in Ga, in line with electrophysiological recordings [8].

MD simulations on monomeric GaGTP suggest that such reduction

in the PDEc binding ability of mutated Ga is likely due to altered

dynamics of the protein associated with changes in the architecture

of the swII/a3 cavity, essential recognition point for PDEc. A

detrimental effect of the mutation on such cavity had been also

postulated based upon crystallographic analyses [16]. We ended

up independently with this conclusion by individuating also the

main actors of this structural effect. In this framework, the Y254

position seems to be particularly sensible to the concerted motions

of the protein triggered by the mutation. Indeed, deformation of

the swII/a3 cavity results in the burying of Y254 in the a3/b5

loop, preventing both the Y254 itself and F211(s2:11) from being

available to PDEc. We also speculated that mutation-induced

reductions of the catalytic activity of PDE may derive from the

Table 3. Network parameters.

GaGTP
WT GaGTP

G38D GaGTP-RGS-PDEWT GaGTP-RGS-PDEG38D

Imina 3.24 3.23 3.52 3.58

Hubstotb 34 33 51 51

Nodes 1st Clsc 228 192 291 285

Hubs 1st Clsc 34 28 47 46

Links 1st Clsc 304 265 396 394

Number of Pathsd 268 330 1930 975

1st Cluster Popd 57 72 1819 924

2nd Cluster Popd 27 37 80 36

3rd Cluster Popd 26 34 22 7

4th Cluster Popd 22 23 22 4

5th Cluster Popd 13 19 22 /

Max Lengthe 7 9 16 11

Avg Lengthe 5.4 5.6 7.7 6.1

Max Freqf 83.6 82.7 85.2 82.3

LengthMaxFreqf 5 5 5 5

Max Scoreg 1.0 1.0 1.0 1.0

Min Scoreg 0.4 0.6 0.4 0.5

Avg Scoreg 0.9 0.9 0.4 1.0

Max SumWgth 79.1 89.2 155.3 127.8

Min SumWgth 26.2 36.1 32.5 32.7

Avg SumWgth 51.1 54.9 77.1 62.9

Max AvgWgti 11.3 12.1 12.3 12.5

Min AvgWgti 4.3 5.9 5.4 5.5

Avg AvgWgti 7.9 8.3 8.8 8.9

aImin values (%) employed for the four simulated systems.
bTotal number of hubs.
cNumber of nodes, hubs and links in the most populated node cluster.
dTotal number of paths characterized by frequency $30% and number of paths in the first five most populated path clusters.
eMaximum and average path length excluding the two extremities.
fMaximum path frequency and length of the maximum frequency path (i.e. excluding the extremities).
gMaximum, minimum and average correlation score.
hMaximum, minimum and average path strength obtained by summing the interaction strengths of the links constituting the path.
iMaximum, minimum and average path strength obtained by summing the interaction strengths of the links constituting the path and dividing such sum by the
number of links involved in the path.
doi:10.1371/journal.pcbi.1003207.t003
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formation of an improperly assembled GaGTP-PDEc complex.

Along this line, also in the ternary complex with RGS and PDEc
the mutation exerts a long distance effect on the effector binding

site resulting in increase in the intrinsic flexibility of PDEc and lack

of communication pathways at the Ga-PDEc interface. Another

clear effect of the Ga mutation is the incapacity to form a stable

Q200(G3:5)-mediated communication between the nucleotide and

N364 of RGS. Such communication is instead present in the wild

type and is necessary for the GAP action of RGS [16].

In conclusion, the main structural effects of the G38D mutation

turned out to be deformation of the primary effector binding site in

monomeric Ga and enhanced flexibility of PDEc in the ternary

Figure 6. Global and coarse view of the communication pathways. The global meta paths regarding GaGTP
WT and GaGTP

G38D in their free
state (A and B panels, respectively) as well as in ternary complex with both RGS and PDEc (C and D panels, respectively) are represented, colored
violet and green, respectively. The width of each link is proportional to r, while the sphere diameter is proportional to the average r of the connecting
link (see Methods for r definition). The a-helical and Ras-like domains are dark and light gray, respectively, the PDEc binding site on Ga is aquamarine,
RGS is orange and PDEc is lemon-green. The mutation site is indicated by the red sphere.
doi:10.1371/journal.pcbi.1003207.g006
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complex, which would destabilize the Ga-effector interface.

Collectively these effects are connectable with the impaired

effector recognition and activation shown by in vitro experiments.

Finally, the pathogenic mutation of Ga seems to affect the

communication between RGS and nucleotide essential for the

GAP activity, thus suggesting that the observed slight reduction of

the RGS-catalyzed GTPase activity is a matter of perturbed inter-

protein communication.

This study extends the dynamic model of visual phototransduc-

tion to the pathological NCNB phenotype and provides insights at

the atomic level into the structural bases of the disease. This is an

example of a thorough computational investigation employing

different scales of description, an approach which should be

pursued to unveil the structural determinants of genetic retinal

diseases. Analogous approaches are suitable to infer the mecha-

nisms of information transfer in any signaling network either in

physiological or pathological conditions.

Methods

Mathematical modeling
The mathematical model of rod phototransduction (BioModels

ID: BIOMD0000000326), employed in the present work for

numerical simulations of the phototransduction cascade includes

91 reactions, 71 molecular species, and 63 parameters and was

previously developed and validated over a wide range of

experimental data on normal and genetically modified rods [14].

The rate of change of the molecular species are monitored by

calculating, at given time steps, their rates of production and

consumption [14]. The original model was recently modified to

account for the postulated R-Gt precoupling in the dark [15],

leading to the inclusion of the following reactions, which describe:

a) the dynamic formation and b) dissociation of dark R-Gt

complexes:

a)RzGt �?
kon

dark
R:Gt and its reverse

b)RzGt /�
kdark

off

R:Gt

The parameters were calculated as relative kinetic constants,

following the relationships kon
dark~1:6|kon

light and

k
off
dark~315|kon

light taken from Surface Plasmon Resonance (SPR)

experiments [15]. This led to a <20% of Gt to be dynamically

precoupled to Rin the dark, consistent with published data [15].

In this study, we built a dynamic model able to describe the

GaGTP
G38D+/2 and GaGTP

G38D2/2 mutated conditions of

GaGTP
G38D by introducing the mutated G protein as an explicit

new molecule and adding all the relative reactions in the

phototransduction cascade, which concerned the GaGTP
WT+/+

status (Table 1). The concentration of the new species

(GaGTP
G38D) was obtained by using its ratio to the normal

concentration of Ga in wild type cells taken from expression

levels in transgenic mice for the mutation [8]. Therefore, the total

level of Ga (25% of which is GaGTP
G38D) in heterozygous cells is

the same as in wild type rods, while only 35% of the native levels

are found in homozygous cells for the mutation. The levels of all

the other proteins were kept unchanged and the mutation was

assumed to have no effect on rhodopsin-GaGTP
G38D binding

[8,9].

In order to fit the models onto the pathological NCNB

condition, the rates of a number of reactions involving GaGTP
G38D

were systematically reduced by tuning the relative kinetic

parameters in decreasing steps (Table 1, Figure 1). The reductions

were combined into specific heterozygous and homozygous

models. In detail, these reactions refer to: a) intrinsic GTPase

activity of GaGTP, b) binding of GaGTP to PDE and resulting PDE

activation, and c) shut-off of the photoresponse by RGS binding

and RGS-catalyzed GTP hydrolysis. These reactions are high-

lighted in Figure 1 and listed in Table 1. In line with in vitro

electrophysiological recordings on rods from transgenic mice, we

monitored the following features of the photocurrent elicited by

increasingly stronger flashes of light (Figure 3): a) rate of the

activation phase, b) light sensitivity, and c) speed of the recovery

phase. In detail, a) the rate of the activation phase was evaluated

as the time needed to reach the maximum value of DJ after the

delivery of the flash; b) light sensitivity was taken as the

normalized response amplitude as a function of flash strength

(Figure 3G and Figure 5B in Moussaif et al. [8]); and c) the speed

of the recovery phase was evaluated as the time needed for the

photocurrent to reestablish its dark value (DJ = 0) after a flash. In

some cases, the parameters had to be eventually set equal to 0,

while in other cases also more limited reductions led to

modification of the output (Table 1). All the numerical

simulations were carried out by means of Matlab, within the

SBTOOLBOX2 framework [18] (http://www.sbtoolbox2.org/

main.php) as already described [14].

MD simulations: The structural models
The following PDB structures were selected as inputs of MD

simulations: GaGTP
WT (PDB code: 1TND [19], residue range 27–

342), which is the GTP-bound form of Ga, and the GaGTP-RGS-

PDEcWT ternary complex (PDB code: 1FQJ [16]) involving

GaGTP (amino acids from 28 to 344), RGS (i.e. the RGS domain

of RGS9, amino acids 286 to 418) and the 42-amino acid C-

terminal fragment of PDEc (residues 46–87). Input structure setup

required a number of modifications in the original crystal

structures. As for 1TND, the original GTPcS analogue was

replaced by GTP, as recently reported [20]. As for 1FQJ, the

original Ga was indeed a chimera identical to Gat except for

residues 216–294 which were replaced with the corresponding

homologous region of Gai1 (residues 220–298). The Gai1 sequence

was therefore mutated into the corresponding one in bovine Gat.

Moreover, the original GDP-AlF4
2 was replaced by GTP.

All the simulated systems hold the Mg2+ ion together with the

coordinating water molecules.

The native G protein in the GaGTP
WT and GaGTP-RGS-

PDEcWT complexes was finally subjected to the substitution of

aspartate for G38, in order to produce the pathogenic mutant (i.e.

GaGTP
G38D and GaGTP-RGS-PDEcG38D). In silico mutagenesis was

performed by means of the Quanta software (www.accelrys.com).

MD simulation: Set-up
MD simulations on the four systems, GaGTP

WT, GaGTP-RGS-

PDEcWT, GaGTP
G38D and GaGTP-RGS-PDEcG38D, were carried

out by using the GROMACS4 simulation package [21] with the

AMBER03 all atoms force field [22,23]. The TIP3P water model

was employed to describe the solvent. AMBER parameters to

describe the GDP and GTP molecules were taken from the

literature [24]. Depending on the dimensions of the systems, a

variable number of Na+ and Cl2 ions were placed at optimum

electrostatic positions in order to neutralize the system. In detail,

the systems included: 63740 total atoms for GaGTP
WT (19512

water molecules, 48 Na+ and 38 Cl2 ions); 63743 total atoms for

GaGTP
G38D (19511 water molecules, 49 Na+ and 38 Cl2 ions);

81906 total atoms for GaGTP-RGS-PDEcWT (24609 water

molecules, 60 Na+ and 50 Cl2 ions); 81882 total atoms for

GaGTP-RGS-PDEcG38D (24599 water molecules, 61 Na+ and 50

Cl2 ions).
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Periodic Boundary Conditions (PBC) were applied by using an

octahedric box as a unit cell, imposing a minimum distance of

12 Å between the solute and the box boundaries.

MD simulation setup is the same as the one recently employed

to simulate a number of Ras GTPases [20]. All the input

crystallographic structures were subjected to energy minimization

keeping restricted the positions of the main chain atoms, the

nucleotide, the Mg2+ cation and the coordinating water molecules.

The systems were then equilibrated at 300 K for 4 ns of backbone

restricted MD simulations. The Particle Mesh Ewald (PME)

method was employed to compute the electrostatic interactions.

Short range repulsive and attractive interactions were computed

by using a Lennard-Jones potential with a cutoff of 10 Å. The

LINCS algorithm [25] was used to constrain all bond lengths

except those in water molecules, allowing for an integration time

step of 2 fs through the leap-frog algorithm. The v-rescale

thermostat [26] was employed to keep the system at a constant

temperature of 300 K, by using a coupling constant (tt) of 0.1 ps.

The pressure of the system was kept fixed at 1 atm, using the

Berendsen weak coupling algorithm [27] with a coupling constant

(tp) of 1 ps. The pre-equilibrated systems were then subjected to

100 ns of unrestrained isothermal-isobaric (T = 300K, P = 1 atm)

MD simulations.

MD analyses of the intrinsic flexibility
MD trajectories were subjected to a variety of analyses aimed at

inferring a) the time series of a number of structural descriptors

such as the SASA, b) the intrinsic flexibility of the systems (e.g.

RMSD, RMSF, and Essential Dynamics (ED) or PCA), and c)

potential correlations between structural descriptors and essential

motions (i.e. FMA).

As for ED, resting on the assumption that the major collective

modes of fluctuation dominate the functional dynamics of a

system, information on such global motions can be inferred from

the atomic fluctuations by means of the PCA. The latter allows the

decomposition of the atomic fluctuations into a set of principal

components (eigenvectors of the covariance matrix of positional

fluctuations) that describe the concerted motions of these atoms

(e.g. the Ca-atoms). The technique is based on the diagonalization

of such covariance matrix producing a set of eigenvector and

eigenvalue pairs in which the eigenvector and the eigenvalue

describe, respectively, direction and amplitude of the concerted

atomic motion (a mode). The atomic components of an

eigenvector provide a quantitative measure of the participation

of each Ca-atom to the collective motion described by the

corresponding eigenvector. The subspace spanned by the major

modes of collective fluctuations is accordingly often referred to as

‘‘essential subspace (ES)’’. In the same framework, FMA is a

technique to identify collective atomic motions related to a specific

protein function. Given a large set of structures of one protein, for

example from an MD trajectory, the method detects a mode that is

maximally correlated to an arbitrary quantity of interest.

Except for FMA, which was carried out by using the

GROMACS package, all these MD analyses were performed by

means of the Wordom software [28]. As for PCA, the covariance

matrices were built on the Ca-atoms of the isolated MD

trajectories.

FMA [29] was carried out by using the Linear Mutual

Information (LMI) estimator [30]. The structural descriptor

correlated with the Principal Components (PCs) was the SASA

calculated on selected Ga amino acids involved in Ga-PDEc and

Ga-RGS interactions. A number of PCs were probed.

Non bonded interaction energies for the nucleotide were

monitored every 20 ps along the trajectory with GROMACS4.

MD analyses of the structural communication
The structural communication (i.e. PSGs and shortest commu-

nication paths) in the four simulated systems was inferred by

means of the graph-based approach proposed by Vishveshwara

and coworkers [31] and defined as Protein Structure Network

(PSN), that was recently implemented in the Wordom software

[28]. With this approach, the dynamics of the system is taken into

account in terms of occurrence of network components along the

trajectory and of correlated motions [32–34].

A graph is defined by a set of points (nodes) and connections

(edges) between them. In a PSG, each amino acid is represented as

a node and these nodes are connected by edges based on the

strength of non-covalent interactions between nodes [31]. The

strength of interaction between residues i and j (Iij) is evaluated as a

percentage given by the following equation:

Iij~
nijffiffiffiffiffiffiffiffiffiffi
NiNj

p |100

where Iij is the percentage interaction between residues i and j; nij

is the number of atom-atom pairs between the side chains of

residues i and j within a distance cutoff (4.5 Å); Ni and Nj are

normalization factors for residue types i and j, which take into

account the differences in size of the side chains of the residue

types and their propensity to make the maximum number of

contacts with other amino acid residues in protein structures. The

normalization factors for the 20 amino acids were taken from the

work by Kannan and Vishveshwara [35]; the normalization values

for GTP (derived from 3 heterotrimeric G proteins), Mg2+ (based

on 4 heterotrimeric G proteins to properly describe the

coordination of such ion in the system under study) and water

(based on 5 structures, comprising G proteins and rhodopsin) were

361.3, 23.8 and 27.0, respectively. Thus, Iij are calculated for all

nodes, excluding i 6 n, where n is a given neighbor cutoff of 3. An

interaction strength cutoff Imin is then chosen and any residue pair

ij for which Iij$Imin is considered to be interacting and hence is

connected in the PSG.

As previously demonstrated [31], the optimal Imin is the one at

which the size of the largest cluster of nodes at Imin 0% halves.

Incidentally a node cluster is a set of connected nodes in a graph.

We approximated the Imin value to the second decimal place. The

final Imin cutoffs were: 3.24% for GaGTP
WT, 3.23% for

GaGTP
G38D, 3.52% for GaGTP-RGS-PDEcWT, and 3.58% for

GaGTP-RGS-PDEcG38D. To build the PSG, only the edges

present in at least 30% of the trajectory frames were used. Those

nodes involved in at least four links are named as hubs.

Possible shortest communication paths or optimal paths (OPs) in

the different GaGTP binary complexes as well as between wild type

and mutated GaGTP and the other two proteins in the GaGTP-

RGS-PDEc ternary complex were searched. All residue pairs

except those at sequence distance 65 were considered as path

extremities (i.e. the first and last amino acids in the path). In detail,

the number of intra-Ga amino acid pairs was 49770 for the wild

type and mutated forms of isolated GaGTP and 50090 for the wild

type and mutated forms of GaGTP in the ternary complex with

RGS and PDEc. Finally, 56350 amino acid pairs were considered

to search all possible communication paths between wild type and

mutated GaGTP and the two proteins in the ternary complex.

Vishveshwara and co-workers implemented also the search for

suboptimal paths (SOPs), alternate routes of communication,

which can be computed by systematically removing all interactions

of an OP node(s), thus forcing the traversal of a less than optimal

path [36]. Since our path searches, different from those by

Vishveshwara and co-workers [36–38], are not limited to a few
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selected node pairs but systematically consider almost all node

pairs in a system, the additional search for SOPs would have been

too costly in terms of computer time with the high risk to produce

more noise than relevant information. For this reason our

approach is dedicated exclusively to OPs.

The search for the shortest path(s) between pairs of nodes as

implemented in the PSN-path module of Wordom relies on the

Dijkstra’s algorithm [39]. They were searched by combining PSN

data with cross-correlation of atomic motions calculated by using

the LMI method.

Following calculation of the PSG and of correlated motions (by

means of the LMI method [30]), for each frame, the procedure to

search for the shortest path(s) between each residue pair consists of

a) searching for the shortest path(s) between each selected amino

acid pair based upon the stable PSN connectivities, and b)

selecting the shortest path(s) that contains at least one residue

correlated (i.e., with a LMI cross-correlation $0.3) with either one

of the two extremities. All the shortest paths that pass the filter of

correlated motions are subjected to a further filter based upon path

frequency, i.e. number of frames containing the selected path

divided by the total number of frames in the trajectory. The

relative number of amino acids holding correlated motions with

either one of the two extremities is quantified by the correlation

score, i.e. the ratio between the number of correlated amino acids

and the path length; the latter excludes the two extremities.

Outcome of this stage is the total pool of paths for the system

under study. Meta paths made of the most recurrent nodes and

links in the path pool (i.e. global meta paths) are worth computing

to infer a coarse/global picture of the structural communication in

the considered system. In this study, meta paths were computed on

the ensemble of paths with frequency $30%. For each link a

recurrence score r is calculated using the following equation:

rl~
X

i=j

pij(l)

pij

where l is a given link present in the considered set of shortest

paths, pij is the total number of shortest paths from node i to node j

and pij(l) is the total number of shortest paths from node i to node j

that include link l. Finally, only those links with a recurrence score

$30% of the highest score are used in the meta path

representation.

Supporting Information

Figure S1 Details of GTP binding modes in GaGTP (top)
and GaGTP-RGS-PDEc (bottom). In both panels, the

superimposed structures of wild type (violet) and mutated (green)

forms are shown. The nucleotide is always colored by atom type.

Only the amino acids that contribute the most to interactions with

the nucleotide are shown in sticks. For those amino acids, which

contribute through the backbone NH group, only the latter is

shown. The mutated side chain is cyan. See the legend to Figure 2

for the labeling scheme.

(TIFF)

Figure S2 Nucleotide-protein non bonded interaction
energies averaged along the trajectories for GaGTP (A)
and GaGTP-RGS-PDEc (B). In both panels, violet bars refer to

the wild type form and green bars to the mutated form. Vertical

black bars indicate standard errors. Only the non bonded

interactions whose average values along the simulations were

smaller than 220 kJ mol21 were plotted.

(TIFF)

Figure S3 Ca-RMSD plots. The time series of the Ca-RMSD

with respect to the input structures concerning isolated GaGTP

from 1TND, complexed GaGTP from 1FQJ, PDEc from 1FQJ,

and RGS from 1FQJ are shown. Violet refers to the wild type

whereas green refers to the mutant.

(TIFF)

Figure S4 Fragment analysis on the pool of paths
generated by GaGTP (top) and GaGTP-RGS-PDEc (bot-
tom) structures. In both panels, violet bars refer to the wild

type form and green bars to the mutated form. Fragment

recurrence is the number of paths containing the given fragment

divided by the total number of paths. On the abscissa, the nodes

constituting the fragment are numbered according to the

secondary structure nomenclature explained in the legend to

Figure 2 and used throughout the text. Only fragments of length 3

were taken into account.

(TIFF)

Figure S5 Global and coarse view of the communica-
tion pathways with high content of conserved amino
acids. The meta paths computed over those paths holding

$50% of conserved amino acids are shown. They concern

GaGTP
WT and GaGTP

G38D in their free state (A and B panels,

respectively) as well as in ternary complex with both RGS and

PDEc (C and D panels, respectively), colored violet and green

respectively. The width of each link is proportional to r, while

the sphere diameter is proportional to the average r of the

connecting link (see Methods for r definition). The a-helical and

Ras-like domains are dark and light gray, respectively, the

PDEc binding site on Ga is aquamarine, RGS is orange and

PDEc is lemon-green. The mutation site is indicated by the red

sphere.

(TIFF)

Figure S6 Ca-RMSF profiles and Ca-atom projections.
A. The Ca-RMSF profiles from MD trajectories of Ga from

GaGTP-RGS-PDEcWT (violet) and Ga from GaGTP-RGS-

PDEcG38D (green) are shown. They refer to the 100000 frames

constituting the 100 ns trajectory. The secondary structure

elements are shown on the abscissa, following the Noel’s

nomenclature (see [19] in the text). B, C, D, E. The Ca-atom

projections along the linear combination of the PCA-derived

principal components, which describe the ES of the trajectories of

Ga from GaGTP-RGS-PDEcWT (B and C) and of Ga from

GaGTP-RGS-PDEcG38D (D and E) are shown. The ES is given by

a variable number of eigenvectors that describe 90% of the total

variance (sum of eigenvalues). The number of PCs used was 108

for B and C, and 103 for D and E. Ca-atom displacements are

highlighted by color ranges from violet to blue or and from green

to blue, respectively.

(TIFF)

Figure S7 Ca-RMSF profiles. The Ca-RMSF profiles from

MD trajectories of PDEc (top) and RGS (bottom) from GaGTP-

RGS-PDEcWT (violet) and Ga from GaGTP-RGS-PDEcG38D

(green) are shown. The secondary structure elements are shown on

the abscissa.

(TIFF)
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