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Abstract

Many toxin-antitoxin operons are regulated by the toxin/antitoxin ratio by mechanisms collectively coined ‘‘conditional
cooperativity’’. Toxin and antitoxin form heteromers with different stoichiometric ratios, and the complex with the
intermediate ratio works best as a transcription repressor. This allows transcription at low toxin level, strong repression at
intermediate toxin level, and then again transcription at high toxin level. Such regulation has two interesting features; firstly,
it provides a non-monotonous response to the concentration of one of the proteins, and secondly, it opens for ultra-
sensitivity mediated by the sequestration of the functioning heteromers. We explore possible functions of conditional
regulation in simple feedback motifs, and show that it can provide bistability for a wide range of parameters. We then
demonstrate that the conditional cooperativity in toxin-antitoxin systems combined with the growth-inhibition activity of
free toxin can mediate bistability between a growing state and a dormant state.
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Introduction

Many bacteria and archaea have multiple Toxin-Antitoxin (TA)

loci [1], where the toxin normally inhibits cell growth, while the

antitoxin neutralizes the activity of the toxin by forming a tight TA

complex. One of the known functions of TA loci is to respond to

nutritional stress [2], namely, toxins are activated upon nutritional

starvation and slow down the rate of translation. When cells are

under normal fast growth conditions, on the other hand, the

majority of the cells will be in the antitoxin-dominated state, such

that toxin activity is fully inhibited.

It has been found that many bacterial TA loci are auto-

regulated at the transcriptional level by a mechanism called

‘‘Conditional Cooperativity’’ (CC) [3], where the transcription

factor can bind cooperatively to the operator only if the

concentrations of two different proteins satisfy a certain

stoichiometric ratio. CC was quantitatively studied in one of

the Escherichia coli TA loci, relBE [3–6]. Here the two proteins,

the toxin (mRNase) RelE and the antitoxin RelB, are encoded

by the same operon, which is negatively auto-regulated. The

tight dimer RelB2 is a weak transcriptional auto-repressor, but

this repression is strongly enhanced by the presence of RelE

and becomes strongest at RelB2 : RelE ratio 1 : 1. Over-

expression of RelE above twice of RelB2, though, will result in

an abrupt de-repression of the promoter. This unique behavior

is a consequence of formation of alternative hetero-complexes

of RelB and RelE; RelB2RelE and RelB2RelE2. Two

RelB2RelEs bind to the promoter site cooperatively to repress

the promoter strongly, while RelB2RelE2 does not bind to the

promoter.

Interestingly, all plasmid and chromosome-encoded TA loci

investigated are found to be regulated by CC so far, including

relBE of E. coli [3,4], vapBC of Salmonella enterica [7], phd/doc of

plasmid P1 [8,9] and ccdA/ccdB of plasmid F [10]. This suggest

that CC is a common feature for TA loci.

In our previous work, we have explored the function of CC in

the starvation response of the RelBE system, and showed that CC

prevents random toxin activation and promotes fast translational

recovery when starvation conditions terminate. However, to

reproduce the full dynamics of the starvation response, we took

into account details of the RelBE system, which made the model

rather specific to it. The primary purpose of this paper is to

construct a simple mathematical model that demonstrates the

functions of CC in a more general perspective.

TA loci have been suggested to be involved in persister

formation [11–16]. When an antibiotic is applied to a growing

bacterial population, the majority of the bacteria are killed.

However, a very small fraction of them survives and re-grows after

the antibiotic is removed. If the progeny of the bacteria is again

sensitive to the same antibiotic, they are called persisters, in

contrast to the resistant bacteria that have acquired resistance to

antibiotic by mutation. Persisters are genetically identical to the

sensitive cells, but believed to be in a non- or slow-growing,

dormant state. Since the majority of antibiotics interferes with the

cell growth and division process, cells can survive if they grow

slowly or not at all.

The exact molecular mechanism underlying persistence is not

fully understood. However, it has been found that mutations in

hipAB genes severely increase the level of of persisters formation.

Interestingly hipAB is one of the TA loci in E. coli [11,13,14]. In
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addition, recent experiments [15] showed that removal of 10

mRNase-encoding TA loci reduced the persister fraction signifi-

cantly. These observations strongly suggest that TA loci are

important factors for persister formation.

One of the possible explanations is that stochastic activation of

the toxin will slow down cell growth, resulting in a dormant state.

This will be possible if the TA locus dynamics exhibits bistability,

where a cell can be either in the antitoxin-dominated state that

ensures the growth or in the toxin-dominated state that inhibits the

growth. This viewpoint is also consistent with the observation that

the persister state can be described as a metastable state with a

constant stochastic switching rate to and from normal growing

state [12].

This idea was theoretically pursued by Lou et al. [17] with a

simple mathematical model that did not take CC into account.

They concluded that, for bistability to be achieved, high

cooperativity (Hill-coefficients *4) is necessary, both in transcrip-

tional auto-regulation of the TA operon and in the free toxin

activity.

In this paper, we explore the basic features of CC as a

regulation mechanism mediated by heteromer formation. We

demonstrate that CC provides bistability in a simple feedback

motif in a wide range of the parameters. We then construct a

simplified model of TA system regulation and demonstrate that

CC with growth rate-mediated feedback via toxin activity can

provide the bistable alternatives between the antitoxin-dominated

and the toxin-dominated states.

Results

Conditional regulation
Complex formation. We examine a simplified system, where

protein A and T can form two kinds of heteromers, AT and ATT

(Fig.1A):

AzTzT<ATzT<ATT: ð1Þ

Here, we assume that AT is the active molecule that act as a

transcriptional repressor, whereas free A, free T, and ATT are not

active in transcriptional control. This is a simplification of the

transcriptional regulation by RelBE, where RelB2 corresponds to

one A, while RelE corresponds to one T.

The amount of active molecule ½AT � shown in Fig. 1 is

determined from total A and T distributed among complexes

½AT � and ½ATT � according to

½AT �~ ½Af �½Tf �
KT

, ð2Þ

½ATT �~ ½Tf �½AT �
KTT

, ð3Þ

Here KT and KTT are the dissociation constants for AT and ATT,

respectively, whereas the concentration of free A (T) is denoted

½Af ] (½Tf �).

Figure 1. Heterocomplex formation in a TA system. (A) Reaction
scheme of the heterocomplex formations, implying that the active
complex [AT] is constrained by through A~½Af �z½AT �z½ATT � and
T~½Tf �z½AT �z2½ATT � with complex concentrations expressed by
eq. (2). (B) Concentration of AT heteromers for a fixed value of A~100
as a function of T with KT~KTT ~1. Note that it has a peak at A~T .
In the strong binding limit of KT?? with KTT ~rKT (r kept constant),

½AT � for Tv2A is given by
1

4{r
{rAz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A2z(4{r)rT(2A{T)

p� �
for r=4 and T(2A{T)=(2A) for r~4, where ½AT � always has a peak at
A~T . In this limit, ½AT �~0 for T§2A. (C) The behavior of ½AT � shown
in (B) is reflected in the behavior of the repression factor
1=(1z½AT �=KO) as a function of T , calculated for fixed A~100, and
dissociation constant for AT-DNA binding KO~1.
doi:10.1371/journal.pcbi.1003174.g001

Author Summary

The effectiveness of antibiotics on many pathogenic
bacteria is compromised by multidrug tolerance. This is
caused by a small sub-population of bacteria that happen
to be in a dormant, non-dividing state when antibiotics are
applied and thus are protected from being killed. These
bacteria are called persisters. Unraveling the basic mech-
anism underlying this phenomenon is a necessary first step
to overcome persistent and recurring infections. Experi-
ments have shown a connection between persister
formation and the battle between a toxin and its antitoxin
inside an E. coli cell. Toxin inhibits the cell growth but is
neutralized by the antitoxin by forming a complex. The
proteins also regulate their own production through this
complex, thereby forming a feedback system that controls
the growth of the bacterium. In this work we provide
mathematical modeling of the feedback module and
explore its abilities. We find that the auto-regulation with
reduced growth associated with free toxins allows the cell
to be bistable between two states: an antitoxin-dominated,
normal growing one, or a dormant one caused by the
activity of the toxin. The latter can be the simplest
description of persister state. The toxin-antitoxin system
presents a powerful example of mixed feedback design,
which can support epigenetics.

Conditional Cooperativity Mediates Bistability
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Fig. 1B shows ½AT � as a function of T for fixed A, pinpointing

that when TvA, T is limiting the amount of AT, while TwA
implies that a substantial fraction of A is sequestered in the ATT

complex. For Tw2A, ATT formation sequesters nearly all AT

and ½AT � drops sharply to a value close to zero. This last transition

can be ultrasensitive, provided that the binding between AT and

ATT is strong, KTT%A. For RelB-E system the binding is indeed

very strong, with a measured KTT in the nanomolar regime [6]. A

sequestration-mediated ultra-sensitivity is also known in small

RNA regulation [18–21] as well as in transcription factors [22–

25]. In the present case, just a factor two difference in T around

T&2A can change ½AT � dramatically.

This ultra-sensitivity is reflected in the promoter activity

behavior, that shows a sharp de-repression occurring at T&2A
(Fig. 1C), where ½AT � drops. Another unique feature of CC is its

non-monotonicity, and an associated derepression for small T
because ½AT � is small, see Fig. 1B,C.

Note that Fig. 1C does not include possible cooperativity in AT-

DNA binding. The unique characteristics of CC, ultra-sensitivity

by sequestration and non-monotonicity, do not require this

cooperativity. For simplicity, therefore, we focus on regulation

by AT without cooperativity, and we call it ‘‘conditional

regulation’’ (CR), rather than CC. Of course, adding cooperativity

will make the response even sharper, and the following results hold

for the cooperative case, too.

Bistability in a simple feedback motif. We now study

production of T repressed by AT, while A is fixed. The regulatory

circuit is described by

dT

dt
~

s

1z
½AT �
KO

{T , ð4Þ

where s is the maximum production rate of T, and KO is the

dissociation constant of AT molecule to DNA. We assume that

total A can be controlled and maintained at a steady state by a AT

independent promoter. In this subsection, we take the lifetime of T

to be the time unit and set KT~KTT~1 for the dissociation

constants, thus measuring concentrations of AT and ATT in units

of their mutual binding strength. Further, focusing on CR, we

assume that there is no cooperativity in binding of AT to

promoter.

Fig. 2(A) shows the production term of eq.(4) as a function of T ,

for three different values of A with each of them two different

values of KO. The repression is always strongest at T~A, and

sharp de-repression happens at Tw2A for all the cases. The

higher A, the more ½AT � will present when A~T , resulting in

stronger repression at A~T for larger A. The AT-DNA

dissociation constant KO also contribute to the repression strength.

The thick black line represents the degradation term in eq.

(4), and the intersection between this and the production gives

the steady state values of T . For small A ( = 20) with KO = 1,

there is only one crossing, happening at a relatively high value

of T (&900.). At intermediate A (~100), there are two stable

fixed points and one unstable fixed point in between (T&200),

reflecting a bistable system. At high A (~400), the high T fixed

point vanishes and the system settles at a monostable state with

low T . We have also analyzed the systems systematically for

weaker repression, i.e. higher values of KO, and again found

bistability provided that A (and thus T ) is increased accord-

ingly.

In addition, the non-monotonicity of the CR has a striking

implication in regulation at low T values: It guarantees that the

low (uninduced) T steady state value has finite amount of T that

is maintained at a level nearly independent of A (Fig. 2A,

compare A~100 and 400 with KO~1.). This is an important

feature for TA system in terms of the starvation response, as

discussed later.

Remarkably, the system exhibits bistability without cooper-

ative binding to DNA. In the TA system the cooperativity is

instead provided by the ultrasensitive de-repression at T = 2A

that is facilitated by a very strong protein-protein binding [22–

25]. This bistability is seen in a wide range of A and s values as

shown in Fig. 2(B). The larger s and A, the high-T steady state

value increase proportionally, while the low-T steady state value

remains practically unchanged. Thus, as externally imposed A is

increased, the model predict a larger contrast between the two

steady states. If the binding to DNA is cooperative, the de-

repression at ATT formation becomes even sharper, thereby

favouring bistability.

We have also studied other possible motifs, where either T or A

is repressed or activated by AT complex (data not shown). For

example we found that if AT activate A while T is kept constant,

one can obtain bistability between a high A state and a low A state

in a wide range of parameters. This bistability is again supported

by the ultrasenstivity of AT sequestration, as ½AT � increase sharply

with increasing A around *T=2.

Figure 2. Conditional regulation of T with fixed A concentra-
tion. (A) Production term of eq. (4) as a function of T for s~1000, for
A~20 (blue line), 100 (red line), and 400 (green line). The solid lines
represent KO~1 case, and the dashed lines represent KO~100 case,
where KO is the dissociation constant for the binding of AT-DNA. (B)
Region in the parameter space (A, s) that shows bistability for KO = 1.
The color of each bistable point represents the ratio between the low-T
fixed point and the high-T fixed point.
doi:10.1371/journal.pcbi.1003174.g002

Conditional Cooperativity Mediates Bistability
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Simple model of persister formation
In this section, we construct a simple model of TA activity

control with CR, a model aimed at capturing the central features

of persister formation. We use the RelBE system as a reference

because the molecular interactions and parameters are best known

here. The reference parameters are listed in Materials and

Methods.

In RelBE [6], the antitoxin RelB and the toxin RelE are

encoded by the same operon, and transcriptionally auto-regulated

by CC. RelE is metabolically stable, and its concentration

decreases only by dilution due to cell division (generation time

,30 min in log phase growth in rich medium). On the other hand,

RelB is actively degraded by protease Lon, resulting in its very

short half-life of *3 min. In spite of this, the RelB concentration

in a normally growing cell is about 10 times of that of RelE [4],

suggesting that the RelB mRNA is translated about 100 times

more often than RelE mRNA [6].

This situation is depicted in Fig. 3A1. Since both toxin T and

antitoxin A are regulated by the same promoter, the correspond-

ing equations apply:

dT

dt
~

sT

1z
½AT �
KO

{T and
dA

dt
~

sA

1z
½AT �
KO

{CA
:A, ð5Þ

where sT and sA are the maximal production rate for T and for

A, respectively. The dilution rate of T is given by cell division,

and is taken as a unit rate, while CA is the active degradation

rate of A.

This motif, however, cannot exhibit bistability. Fig. 3A2 shows

example null-clines, which have only one stable fixed point at the

antitoxin dominated state. We performed parameter scan span-

ning from 1/8 to 8 fold relative to the values used for Fig. 3A2, but

did not find any combination of parameters that gives bistability,

even if we allow cooperative binding of AT to DNA with Hill

coefficient 2 (data not shown). This absence of bistability is due to

A being regulated identically to T. Accordingly, the de-repression

of the promoter around T&2A increases not only the toxin

production but also the antitoxin production, and the latter is so

large that the system remains in the antitoxin-dominated state.

When we include the activity of free toxin on cell growth,

however, the model system can show bistability. This is because

the toxin-induced arrest of cell growth prolong lifetime of T, while

leaving A being degraded by Lon at a high rate. The mathematical

formulation of this extended model is

dT

dt
~

sT

1z
½AT �
KO

� �
(1zbMTf )

{
1

1zbC ½Tf �
:T ð6Þ

dA

dt
~

sA

1z
½AT �
KO

� �
(1zbM ½Tf �)

{CA
:A: ð7Þ

Figure 3. TA system with CR without and with feedback through free toxin activity. (A.1) Schematic representation of the genetic
circuit described by eq. (5) for TA system with CR, without considering toxic activity of free T. (A.2) Null-clines for eq. (5). Blue line represents
dT

dt
~0, and red line represents

dA

dt
~0. For comparable values of A and T the two null clines become parallel and does not cross, as shown in the area

highlighted in grey, i.e. the system does not show bistability. The parameters used are listed in Table 1 in Materials and Methods. Dashed lines with
arrows show the flow to the fixed point. (B.1) Schematic representation of the genetic circuit described by the model (6) and (7). (B.2) Null-clines for

the system of eqs. (6) and (7) with bM~bC&11. Blue line
dT

dt
~0, Red line

dA

dt
~0. Dashed lines with arrows show the flow to the stable fixed points.

doi:10.1371/journal.pcbi.1003174.g003

Conditional Cooperativity Mediates Bistability
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expressing that ½Tf � reduces all protein production, and accordingly

also decreases the dilution by cell growth. bM represents the

reduction of protein expression per free toxin (Tf ) molecule, and bC

represents the growth inhibition per free toxin molecule. Notice that

½Tf � does not influence degradation of A, because it is anyway so

unstable that cell division hardly affects its concentration.

These terms correspond to the growth-rate dependent feedback

[17,26,27]. The reduction of the protein production (bM term) can

account for both direct activity of free toxin to TA locus and the

global slowdown of the transcription rate due to change of

physiological conditions [26]. Comparison of the present model

with the steady state growth data in Ref.[26] is given in Text S1.

We expect bM&bC because the slowing down of the growth rate

is due to the global slowing down of the protein production. At the

same time, there can be some quantitative difference because bM

may include the effect specific to the TA locus.

The growth-rate reduction mediated by T constitutes a positive

feedback [17,26,27] on T accumulation, which is essential for

bistability and persister formation. The term with bM reduces the

production of both antitoxin and toxin, and thus overall weaken

the ability to maintain the bistability. Note that bM primarily

influences the transition state from A to T dominated state,

because the reduction of production targets the short lived A

protein first.

Fig. 3B1 examines eqs. (6)–(7) with parameters extracted from

the RelBE system [6] (see the figure caption of Fig. 3). The null-

clines in Fig. 3B2 are from the bM~bC&11 case, exhibiting two

stable fixed point, one at the antitoxin-dominated state (the low-T
state, A&10, T&1) and another at the toxin dominated state (the

high-T state, A&1, T&100). Note that the antitoxin dominated

state has almost the same concentrations as the stable fixed point

in Fig. 3A2 with bM~bC~0. The antitoxin dominated state

scarcely depends on bM and bC , since there is almost no free toxin

(½Tf �&0) in the antitoxin dominated state.

Figure 4A shows the ratio between the T dilution rates at the

low and high T steady state, ½1zbcTf (high)�=½1zbcTf (low)�.

The figure illustrates that our model predicts bistability for a wide

range of parameters, and further that this bistability is indeed

governed by the increase in cell generation parameterized by the

bC term. For too large bM the bistability is counteracted because

the toxin production is reduced too much by free toxin to

accumulate enough for the stable high toxin state. Remarkably, for

proportional reduction of protein production and increased cell

generation, bM~bC , the model predicts bistability for all

bM~bCw1.

We also studied the robustness of the bistability against

parameter change. One of the most crucial parameters for the

bistability is the ratio sA=sT , because this determines the

difference of the concentration of A and T . We therefore varied

sA=sT with keeping sT constant, and searched for the bistable

regime in (bM ,bC) space. The rest of the parameters are kept same

as those used in Fig. 4A. Only sA=sTw10 is considered, because

lower ratios prevent antitoxin domination due to its 10 times

higher degradation rate. For rather small sA=sT (&20), too large

bC makes the anti-toxin dominated state unstable, because very

small amount of free toxin is enough to activate the positive

feedback to toxin via the growth rate. With even larger sA=sT ,

stronger feedback is needed to stabilize toxin-dominated state,

reflected in larger values of bC and bM .

We further performed scanning of other parameters. We fixed

one parameter at a time and sampled the rest of the parameters

randomly to test 1000 samples in logarithmic scale within the

range between 1/8 to 8 fold of the reference values. We then

systematically changed the fixed parameters between 1/8 to 8 fold

and repeated the procedure, to see the effect of the parameter. We

found that 20% to 80% of the samples showed bistability. The

detailed results are given in Text S2. We also explored the effect of

the dissociation constant KT and KTT more intensively, by

changing KT~KTT from the reference value to 64 fold, since they

describe the sharpness of the CR and this is expected to influence

the bistability. We find that the number of bistability parameter

sets decreases gradually with the fold change of KT and KTT .

Details are given in Fig. S4.

Figure 4. The state diagram of the bistability. Colored region represents the combinations of (bM , bC ) that makes the system bistable. (A)
Reference parameters in table 1 are used except for bM and bC . The color code represents ratio between T dilution rate calculated upon the low-T

steady state and the high-T steady state, ½1zbcTf (high)�=½1zbcTf (low)�. (B) Bistable region for various values of
sA

sT

, with sT ~100. The remaining 6

parameters are fixed to the reference values. The shaded regions represent the areas in the 2D parameters space bM ,bC that show bistable behavior.
doi:10.1371/journal.pcbi.1003174.g004

Conditional Cooperativity Mediates Bistability
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Discussion

Using known parameters for the RelBE system in E. coli, we

constructed a minimal model for TA activity, combining

conditional regulation with a feedback from free toxin to the

cell growth. It was demonstrated that this model shows

bistability for a wide range of parameters, with a stable state

corresponding to the antitoxin-dominated, normal growing

state, and another metastable state corresponding the toxin

dominated state, potentially corresponding to the persister

state.

Noticeably, the model eqs. (6)–(7) did not rely on details of the

molecular mechanisms of how the toxin works, and therefore the

model is not limited to the RelBE system. The important

assumptions are: (i) The TA system is conditionally regulated, (ii)

toxins are stable and diluted mainly by cell division, while

antitoxins are metabolically unstable, and (iii) free toxins reduce

the productions of proteins and hence cell growth. All the

Figure 5. Schematic summary of the role of conditional regulation in persister formation. The red curves show the toxin production rate
and the blue lines give the degradation rate, both from eq. (6). Both terms depend on A, and here we make approximation that A is always in steady
state (eq. 7 with dA=dt~0) for given T , because dynamics of A is much faster than T due to high production and degradation rate. Since production
term of A and T are proportional to each other and A is degraded at a constant rate, resulting A concentration is proportional to the production
term of T (red curves). The scales of curves are modified from actual functional forms so that the characteristic behaviours can be grasped easily. The
ultra-sensitivity mediated by protein-protein binding combined with feedback from free toxin activity is reflected in the peak of the production rate
and drop of the degradation rate, resulting in bistability of the system. This accounts for the type II persister where a cell can spontaneously switch to
and out of the persister state. The non-monotonicity of the conditional regulation secures that some toxins are stored in antitoxin dominated state,
helping the transition to the stress-induced activation of toxin [6], which becomes the base for type I persister formation.
doi:10.1371/journal.pcbi.1003174.g005

Conditional Cooperativity Mediates Bistability
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conditions are satisfied in the TA loci that are confirmed to be

regulated by conditional cooperativity [3,4,7–10].

Our simple model pinpoints minimal ingredients for obtaining a

persister state, but did not include stochastic production and/or

degradation, and therefore cannot address the switching rates. In

order to understand stochastic persister formation in E. coli, just

performing stochastic simulation of the present motif is not enough,

because the frequency of persisters depends on multiple parallel TA

systems. In E. coli, 11 simultaneously interfering TA systems

maintain a probability of persisters to be about 0.01%, while this

probability is changed substantially first when about 50% of the TA

systems is removed [15]. This clearly suggests that the interference

of parallel systems has a strong influence to the switching behavior.

Furthermore, comparing the stochastic simulations with the

experimentally observed frequency of persisters requires a knowl-

edge of the underlying distribution of the T expression levels and

corresponding growth rates in the cell population. It is not a simple

task when the single cell growth rate depends on T expression levels,

because it feedbacks to the frequency of the cells as pointed out by

Nevizhay et al. in [28]. In addition, it has been suggested that there

is a strong link between the activation of the protease Lon and the

TA-mediated persister formation, through the increase of the

antitoxin degradation rate [15,16]. The fluctuation of the Lon

activity may be particularly important in determining switching

rates, because it can provide coherent noise that favours simulta-

neous switching of many TAs to the persister state. It should also be

noted that the Lon activity is activated by polyphosphate, which is

regulated by the stringent response signalling molecule (p)ppGpp

[16]. We plan to extend the present model to include these features

and study the switching behavior in near future.

It is still interesting to think about possible implication of the

observed switching rate to the present model. The fact that the

persister formation is a rare event may indicate that the actual

parameter value in the real system is located close to the boundary

between the bistable region and the monostable region of the

antitoxin-dominated state. Such parameter values can be chosen

through selection process in a fluctuating environment, where slow

growth of the persister pays off as a risk hedging strategy; the

switching rate is expected to reflect the time scale of the temporal

fluctuation of the environment [29].

Conditional regulation is an example of mixed feedback motifs

[30], where protein-protein interactions and transcriptional repres-

sion are combined. In natural systems, protein-protein interaction

mediated bistable switch was previously found for example in the

epigenetic switch of the TP901 phage [23,25] and in the sigma-

factor/antisigma-factor system [24]. Conditional cooperativity in

TA systems opens for a toolbox of regulatory units that can exhibit

sufficient bistability to support also epigenetics. When removing the

toxic ability of toxin, which has been done for RelE [3], and

separating antitoxin from the operon to allow independent control,

the strong binding between RelE and RelB should provide extreme

ultrasensitivity, and thus very well separated metastable states. This

conditional cooprativity-mediated bistability is the base for the

bistability in full TA systems, and thus for the type II persister

formation [12,13], where a cell can spontaneously switch between

the dormant state and the growing state (Fig. 5).

While simple protein-protein heteromers could produce ultra-

sensitivity, the non-monotonicity of the conditional cooperativity

also secure that the antitoxin dominated state has a substantial

amount of toxins present (Fig. 5). These toxins’ activity is normally

inhibited by short lived antitoxins, but the stored toxins can be

used for faster switching to a dormant state if overall protein

productions are externally inhibited, for example by starvation

(Fig. 5). Therefore, the non-monotonicity may enhance the

transition to type I persister formation [12,13], where environ-

mental stress triggers persister formation.

The importance of the protein-protein interaction mediated

ultrasensitivty [22–25] and the growth rate-mediated feedback

[17,26–28] to bistable systems have been discussed as independent

regulatory features in recent literature [31]. The uniqueness of the

bistability in the TA system is that it combines both of these mechanisms.

The need for combining these two mechanisms is closely

associated with the fact that T and A are produced from the

same operon, and thus are exposed to identical transcription

regulation. Though it is difficult to get bistability with only one of

the mechanisms [17], the TA system realizes a persister state by

regulating the products of one operon through a combination of

growth modulation and hetero-complex formation.

Materials and Methods

Numerical solutions of the model equations
All the numerical analyses are done using C++ codes developed

by the authors. When necessary, ½AT � was calculated by solving

algebraic equations (2) and (3) with conservation of mass for a

given amount of (A,T) by Newton’s method [32]. The bistable

solutions in Fig. 2 B (Fig. 4) were obtained by finding the fixed

points for dT=dt~0 with eq. (4) (dT=dt~0 and dA=dt~0 with

Table 1. Reference parameter values.

X [6] R R ~XX

sT 166:28nMmin{1 sT
:tu

Cu

166:28nMmin{1:43min

71:5nM

100

KO 1 nM KO

Cu

1nM

71:5nM

0.015

KT 0.3 nM KT

Cu

0:3nM

71:5nM

0.004

KTT 0.3 nM KT T

Cu

0:3nM

71:5nM

0.004

CA 0:2min{1 CA
:tu 0:2min{1:43min 10

CT 0:02min{1 CT
:tu 0:02min{1:43min 1

bC 0:16nM{1 bc
:Cu 0:16nM{1:71:5nM 11

bM 0:16nM{1 bc
:Cu 0:16nM{1:71:5nM 11

doi:10.1371/journal.pcbi.1003174.t001
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eqs. 6 and 7) by Newton’s method and then evaluating the stability

based on the Jacobian. The trajectories that constitute the flux in

Figs. 3A2 and 3B2 were calculated by the 4th-order Runge-Kutta

method [32].

Reference parameters
The values of the parameters used in the ODEs correspond to a

conversion to dimensionless numbers of the parameters relative to

the RelBE system we studied in [6].

In particular we used the lifetime of RelE in exponential growth

conditions (
1

C0
) as time-unit (tu) and the maximal amount of A

proteins produced in the unit time as concentration unit (Cu). In

the RelBE system
sA

C0
^715000 nM thus fixing sA~10000 we

obtain Cu~71:5 nM, while tu~
sA

C0
~43 min. The value of bM in

the starved condition [6] was evaluated to be around 1000 in this

units. However, it is expected to be smaller in the normal

condition, since RelE cleaves mRNA at the ribosomal A-cite,

which is expected to be more accessible at the starvation.

Therefore, we mostly explore bM values smaller than 1000.

The reference parameters are shown in table 1.

Supporting Information

Figure S1 Fit of the free toxin activity parameters to the
grown-rate dependent global transcription rate. Left: Red

points: Global transcription rate am(C) from Klumpp et al. [26].

Green Line: normalised production rate a(C) from our model with

b~0:4. Right: Red points: Normalized global transcription rate

multiplied by gene copy number, am(C)g(C)=g(1) from Klumpp et

al. [26]. Green Line: normalised production rate a(C) from our

model with b~1:2.

(EPS)

Figure S2 bM=bC fitted to the global transcription rate
lies in the bistable region. Each green dot in the plot

represents a combination of bM and bC that give bistable results.

The red line represents bM=bC~0:4, and and the black line

bM=bC~1:2.

(EPS)

Figure S3 The robustness of the bistability against
parameter change. We fix sT~100 and C0~1, and vary rest

of the parameters. In (a) bM is changed systematically between
1

8
and 8 fold of the value used in the main text bM

0~11:4475; we

change it between
1

8
:bM

0~1:4309 and 8:bM
0~91:58 with a pace

given by 2n:b0
M with an integer n[½{3,3�. For each value of bM ,

we sample rest of the parameters randomly and independently of

each other, and they can take any values from the set 2n:(the

reference value) with n[½{3,3�. The reference values are given in

Table 1. We collect a sample of 1000 points in the parameter

space. The bars in the histogram represent the fraction of this

sample of points in the parameter space that still shows bistable

behavior. The same procedure is then carried out for bC (b), CB

(c), KT (d), KTT (e), KO (f) and sA (g).

(EPS)

Figure S4 The robustness of the bistability against the
change of the dissociation constants KT and KTT . We set

KT~KTT , and increase them systematically from the reference

value (0.004) to 64 fold of the reference value. Since the

dissociation constants set the concentration of A and T at which

AT and ATT formation is significant, we fix sA~10000 and

CA~10 in addition to fixing sT~100 and C0~1. We then

sample the rest of the parameters randomly in the base 2

logarithmic scale, within 1/8 to 8 fold of the reference value.

We tried 1000 parameter sets for each values of KT~KTT . The

plot shows the fraction of the parameter set that shows the

bistability. We see that the number of bistability parameter sets

decrease gradually with fold increase of the dissociation

constants.

(EPS)

Text S1 Correspondence of parameters with the growth
rate dependence data of protein production rate in the
steady state growth.

(PDF)

Text S2 Parameter scan by Monte Carlo sampling to
test the robustness of bistability.

(PDF)
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